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1. INTRODUCTION 

In this paper we study the motion of a non-viscous fluid consisting of two 
components, both incompressible, say, saturated salt water and water, taking 
into consideration the diffusion among these components. The equations of 
the model are obtained, for example, in Frank and Kamenetskii [6], and the 
viscous case is studied in Ignat’ev and Kuznetsov [8] and Kazhikhov and 
Smagulov [9, lo]. For a presentation of this kind of problems see also 
Kuznetsov [ 111. Observe that in [S-lo] the problem is solved only for fluids 
whose viscosity ,D is sufficiently large; i.e., 

,u >qo;;cyo. (*) 
Since we get the existence and uniqueness of the solution for non-viscous 
fluid (D = 0), condition (*) can probably be suppressed. 

Let pi = const. >0, i = 1,2, be the characteristic densities of the 
components of the mixture, v(” = ~(“(2, x), uf2) = ~‘~‘(t, x) their velocities 
and c = c(t, x), d = d(t, x) the mass and volume concentration of the salt 
water. 

The mean density of the mixture is 

~0, x) = 46 x) P, + [ 1 - d(t. x)]pz 

and we introduce the mean-volume and mean-mass velocities as follows 

a(& x) e d(t, x) u”‘(t, x) + [ 1 - d(t, x)] cc2’(t, x), 

w(t, x) = c(t, x) u”‘(f, x) + [ 1 - c(t, x)] G2’(t, x). 

Then the equations of the motion are (iv denotes the time derivative) 

p[l;~+(w~~V)w-b]=-mr in Q, E IO, T[ x R, (1.1) 
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b + div@w) = 0 in e,, (W 

divv=O in Qr.; (1.3) 

here 0 is a bounded connected open subset of R3, IL = K(C, x) is the 
(unknown) pressure and b = b(t, x) is the external force field. The 
experimental Fick diffusion law is (see Frank and Kamenetskii [6]) 

1 u(‘) = w - - vc, 
C 

(1.4) 

where 1 > 0 is the diffusion constant. Since 

4% c=-, 
P 

(1.4) is equivalent to 

and to 

1 
w=v--VP. 

P 
(1.5) 

Then from (1.1) and (1.2) we obtain the Euler system 

p[; + (v . V)v - b] - l(u . V) Vp - A(Vp . V)v 
2 2 

+;(vP.v)vP--$(VP.VP)VPf :dpVp+VP=O in Qr,(E), 

/?+v.Vp--IAp=O in QT, W2 

div v = 0 in Q,, (Eh 

where P = P(r, x) = R - A2 Ap + Iv . Vp. Finally we consider the following 
boundary and initial conditions 

v*n=o on 10, T[ X r, (El4 

+ - 0 

an- 
on IO, T] X r, 

v lIdI = 4x1 in 0, 0% 

PII= = PO(X) in 0; @>, 
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where f = X!, n = n(x) is the unit outward normal to r, a = a(x) and 
p0 =p,-,(x) are the initial velocity and density. The significance of the 
boundary conditions is that the fluid is isolated, i.e. there is no flux through 
the boundary. 

2. MANN RESULTS 

We assume that r is a compact manifold of dimension 2, without 
boundary, and that R is locally situated on one side of r. r has a finite 
number of connected components I’,,, I’, ,..., Tm, such that r,(j = l,..., m) are 
inside of To and outside of one another. We prove the following results 

THEOREM A. Let TE C5, a E H’(R) with div a = 0 in 0 and a . n = 0 
0n r, p. E P(a), apdan = 0 0n r, (a/an)(up, -U . vp,) = 0 0n r, 
pO(x) > 0 for each xEfi, bEL’(0, T,;HZ(~))nL2(0, T,,;H’(O)) with 
rot b E L’(0, T,; Z-Z*(Sa)). Then there exist T, E IO, To],0 E Lo3(0, T,; H3(0)) 
with C E L’(0, T,; H*(Q)) f7 L*(O, T,; H’(R)), P E L’(0, T,; Lf3(J2))n 
~‘(0, T,; H*(a)) p E L*(O, T,; H’(R)) n CO([O, T,]; H4(f2)) with 
I, E L’(0, T,; H3(a)) such that (0, P,p) is a solution of(E) in Q7,. 

THEOREM B. Suppose that minrrp, > 0 and b E L’(0, T; L”O(fi)). Then 
the solution of (E) is unique in the class of functions v E Lo3(Q,) 
with Dv E L*(O, T; Lm(S))), ir E L’(0, T; L@‘(n)), p E L”(Ql) with 
Vp E L4(0, T, Lm(SZ)), D*p E L*(O, T, L”O(0)). The function P is unique up 
to an arbitrary function oft which may be added to it. 

For the sake of simplicity we assume in the proof of Theorem A that f2 is 
simply connected. Otherwise we argue as in [ 1,2,4]. 

3. PROOF OF THEOREM A 

Let TE IO, 7’,] and u E Lm(O, T; H3(R)) with ic E L’(0, T; H’(a)), such 
that ~(0, x) = a(x) in 0, div u = 0 in QT, u . n = 0 on C, s 10, T[ x r, and 

IIull3.T. GA, [;I,., GA, (3.1) 

where A is a positive constant, which will be specified in (3.19). We denote 
by II . II/u and [ a lka7. the norm in Lm(O, P,Hk(fi)) and L*(O, T, Hk(R)), 
respectively. 
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We want to find a solution of 

b+u.Vp--LAp=O in QT, 

3P 
an, 

=o on &-, (3.2) 

Plea =Po(x) in R. 

LEMMA 3.1. There exists a unique solution of (3.2), such that 
p E L’(O, T, H’(0)) n C’([O, T]; H4(f2)) with j E L’(O, T; H3(8)), and 

[PI,,, + llPO4,T. + ~~13.T.~W* (3.3) 

Moreouer, 0 < minmpo ( p(t, x) < max p0 for each (t, x) E 0,. 

Here and in the sequel, c(A) is a non-decreasing function of its argument, 
depending also at most on 0, L, To, and suitable norms of a, b, and p,, . 

ProoJ From well-known results on parabolic equations one gets a 
unique solution p E L2(0, P, H’(Q)), with 

To obtain further estimates, we look at the term u . Vp as a datum in 
Eq. (3.2) and we regularize the solution p in three steps. Since 
u . Vp E L2(0, T, H’(R)), by using Theorem 3.2, Chap. 4 in Lions and 
Magenes [12] one gets that p E L2(0, T; H3(fl)) with i, E L’(O, T; H’(G)), 
and, consequently, by interpolation p E C’([O, T]; El*@)) (see Theorem 3.1, 
Chap. 1 in [ 121). Moreover one has 

IP13.T + IlPllz,r + u%T G W)* (3.4) 

Hence u . Vp E L2(0, T; H’(0)) with (a/at)(u . Vp) E L2(0, T, Ll(Q)). We 
use now Theorem 5.2, Chap. 4 in [ 121. First we choose H = H2(Q), 
.ir= L2(R), /3 = 1 and we obtain p E L2(0, T; H4(R)) with i, E L’(0, T; 
H’(R)) and PE L’(0, r; L’(n)), where the corresponding norms are 
estimated by $A). In particular u . Vp E L2(0, T; H’(0)) with 
@/&)(u * Vp) E L2(0, T; H’(0)) and from the theorem above (now with 
H = H3(R), 2 = H’(Q) and /3 = 1) we obtain the thesis. 

For some remarks about these results see the Appendix. Finally, the 
maximum principle gives 

rn# p. < p(t, x) < m;xp, for each (t, x) E e,. 1 

Now let us consider the Neumann problem (3.5), formally obtained by 
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taking the divergence of Eq. (E), in L& and by taking the scalar product of 
(E), with the outward normal n on P. If we write (E), as 

T + [id + (u * V)u - b] + $A = 0, 

where 

we obtain 

AP - F. VP = -p s (DiUj)(DjUi) - div b 
id 1 

-divA+y.A=F 
P 

in f2, (3.5) 

f2P 
-=px (Dinj)uiuj+pb.n-A. n-G 

an i.j 

on I-. 

WeremarkthatF=-pdiv[(u.V)u-b+fp-’~]andG=-p[(u.V)u-b+ 
p-‘/i\ - n. 

LEMMA 3.2. There exists a solution (unique up to an additive constant) 
of problem (3.5) such that VP E L’(0, T, H2(12)) n L’(O, T; H’(R)) and 

j’rllW’ll,dw(A) (T+ ).iljbll,d+ 
-0 -0 

[VP],,, <C(A)(T”” + [b],,,). (3.6) 

Proof. The compatibility condition for (3.5) is obviously verified as 
follows from the remark above. See also [3]. Moreover, one easily obtains 
from the previous estimates that 

IIF(t>lln + IIG(t>ll~ GW)[l + llb(~Il~I~ 

Taking into account that 

VP II- II P 
Q C(A), 

2.7 
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estimate (3.6), follows by well-known regularization results for elliptic 
boundary value problems. 

Analogously, we have 

and consequently (3.6), . I 

Now consider the following equation (formally obtained by taking the curl 
of (E), and writing rot u = <): 

x [VpXrotu+(u.V)Vp+(Vp.V)u-JVdp] in Qr, (3.7) 

tlrzo = a, in R, 

where by definition a c rot a and p = rot b. 

LEMMA 3.3. There exists a unique solution of (3.7) such that 
( E La(O, T; H’(R)) with [E L’(O, T; L’(a)) n L ‘(0, T; H’Q?)). Moreover 

II~l12,r~ ll~l12+(oTll~l12~r+M~~~ll~lI,~~+~~~~~]~~~~’7. 
[ 

(3.8) 

bil,,, <WT”2 + [bl,,r. (3.9) 

Proof. Set 

VP w=u-A-. 
P 

Equation (3.7) can be written 

i+(w * V)<=M- r+y, 

tll=o = a; 
(3.10) 

here M(t, x) and r(t, x) are a matrix-valued and a vector-valued function, 
respectively. 
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It is easy to get from previous estimates that 

lI413,rw4~ 

IIWl*.r < W)P (3.11) 

The solution of (3.10) can be obtained by the method of characteristics, 
solving the ordinary differential system 

dU(s; t, x) 
ds 

= w(s, U(s; f, x)) in 10, q x QTI 
(3.12) 

U(t; t, x) =x, 

(which has a global solution since w . nl, = 0), and by using then the change 
of variable (t, x) + (t, U(0, t, x)). 

Now the proof follows as in (51, observing that 

I_ [(~~V)D~Dj~~~D~Dji;d~~~lllOg~l~~IIDiDj~Il~~ 
-0 

One obtains 

2 ll~(~N* ,< 4 ~Wll, + IIPwll4 + II~(Oll*) IIr(oll* + IIYwllzl 

II4OIl2 = ll4l*, 

and by comparison theorems and (3.11), 

Il%r< Il~ll~+I):llPll~~~+~~~~~orI~~ll,d~+~~~)~] er7A’T. 

Estimate (3.9) and the fact that i E L’(0, T, H’(R)) follow directly from 
Eq. (3.7). 1 

Moreover if r is the solution of (3.7) we obtain 

LEMMA 3.4. For each t E [0, T] 

div c = 0 a.e. in R, ! (a n dT= 0 Vi = l,..., m. (3.13) 
. r, 
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Proof. In fact c is a solution of (see also [5]) 

8+wdiv<=p-rot(rx w)-rot F 
( 1 

+lrot [iV(U.Vp)]-i’rot (fVAp) inQ,, (3.14) 

Ll= a in fi, 

and taking the divergence of (3.14), we obtain 

z (div <) + w . V(div <) + (div w)(div <) = 0 

(div <)],=0 = div a = 0 

hence div r = 0 a.e. in 0 for each t E [0, T]. Moreover 

in Q,, 

in 0, 

since [ is a curl (see (3.14)) and . 

i 
rotg.ndI’=O 

ri 

for every vector lield g. Hence 

!,.$-ndT’[ a-ndr=O Vi = l,..., m. I 
I _ ri 

We can solve now the elliptic boundary value problem 

rot u = r in Q,, 
div v = 0 in QT, (3.15) 

v.n=O on &, 

and obtain that v E Lm(O, T, H3(0)) with ti E L*(O, T, H’(R)) n 
L’ (0, C H’(0)), and 

[~l*,r <w)T”z + c*[~l,,,, (3.17) 
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where c* = c*(Q). Moreover 

rot(vI,=,--a)=rl,=,-a=0 in f2, 

div(u ]I20 - a) = 0 in J2, (3.18) 

(Lqt~,-a)~n=O on I-, 

hence D]~,~ = u in LI. 
We proceed to find a fixed point of the map @: u + ~1. Choose in fact 

A > c* Ilallz. (3.19) 

From (3.16) and (3.17) it follows that there exists T, E IO, To] such that the 
set 

s s {u E L”(0, T; P(R)) 1 zi E P(O, T; If’@?)), ultxo = a, 

div u = 0 in Q7, U. n], = 0 on C,, u satisfies (3.1)) 

satisfies @[S] c S. 
Moreover S is convex, and we want to prove that S is compact in Xr 

C’([O, r,];H’(J2)). From (3.1) S is bounded in C”‘([O, r,];H’@))n 
f. “(0, T, ; H3(R)), which is compact in X by the Ascoli-Arzeli theorem. 

So S is relatively compact in X, and one easily verities that it is also 
closed in X; hence S is compact in X. 

LEMMA 3.5. @: S + S is continuous, in the topology of X. 

Proof. Let U, U” E S, U” + u in X. Then from (3.2) one obtains easily 
p, +p in CO([O, T,]; L*(Q)). By a compactness argument p, -+p in 
CO([O, T,] 1; ff3v4). 

From the Neumann problem (3.5) one gets VP,, + VP in L’(O, T, ; L*(G)). 
To show this result we write equation (3.5) in the form 

in R, 

&‘P.n=h.n on r, 
P 

where h- -(u . V)u +b-(l/p)/l, and we verify that h”+ h in 
L *(O, T, ; L’(R)). Finally, by evaluating 
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from Eq. (3.7), one gets that r -+ c in C’([O, r,];L’(a)), hence u” + u in 
x. I 

Then from Schauder’s theorem, we get the existence of a fiied point 
24 = v = 4qu]. 

Consider now the fmed point u = v and the corresponding functions p, P 
constructed in (3.2), (3.5); they are solutions of system (E), - (E),. In fact 
from < = rot v and (3.7),, div v = 0 and (3.5),, v . n], = 0 and (3.5), one 
easily verifies that 

rot V= 0 in Q,, y 

div V= 0 in QT, 3 

V*n=O on XT,, 

where V is the left-hand side of (E), divided by p; hence V = 0 in Qr., . 

4. PROOF OF THEOREM B 

Let V;p’, P’ and v,p, P be two solutions of (E),-(E),. Set u = v’- v, 
rl E p-p, u 3 P’- P: from equation (E), and (E)2 one obtains 

p[li+(a.V)u+(u~V)v]+Va+~[d+(v~V)v--] 
-n(u * V)V/T-qv - v)v?/f-qvq * V)d-A(Vp * V)u 

2 2 2 

+~(v~.v)vp-+$(vp.v)v&-&vp.v)v~-~(v~.vp)v~ 

-~(v~.v~v/+vp.Vp)vtl+-$~(vp.vp)vp- 

rj+v.Vr,‘---lAq=-u.Vp: (4.2) 

Take the scalar product in L’(a), denoted by ( , ), of Eq. (4.1) with U, and of 
Eq. (4.2) with II. Since 

=+(A/?u,u)-+ Vflu,u)+@ii,u) 
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and 

4 (v’ * v/T 24, 2.4) + @-(I? * V)u, 24) = 0, 

one gets 

where c(t) E L’(0, Z’), and depends also on A. 
Moreover, taking the gradient of Eq. (4.2) and taking the scalar product 

with Vq, we have 

where ]] . ]laj is the norm in Loo&!). 
Hence from (4.3) and (4.4) one obtains 

and by Gronwall’s lemma one sees that II = 0 and q = 0 in Qr . From (4.1) it 
is clear that Vu = 0, i.e., P’= P in Qr up to an arbitrary function of t. 1 

Remark. We can obtain analogous results for the simpler model (see for 
instance Graffi [7]) 

p[ti + (v * V)v -61 + v?r = 0 in Q,, 
P+v*Vp=Mp in Qr, (E) 

div o = 0 in Q,, 
with the same initial and boundary conditions (E)4(E),. In this case in 
Theorem A it is sufficient to have I-E C4, p. E H3(S)), and the condition 
(a/&)(1 dp, -a . VP,) = 0 on r can be dropped. 

Another case which can be solved under these hypotheses is that obtained 
by neglecting the terms in A2 in (E), (see [9, lo]). 
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5. APPENDIX 

Consider the parabolic initial-boundary value problem 

ri-tlAU=f inQ,, 

au 0 
an= on z,, 

Ul,=, = 0 in R, 

where 1 is a positive constant, and fE L’(0, T, H3(L!)) with 
fE L2(0, T; H’(.Q)) and f(0, x) 3 0 in R. 

We want to apply Theorem 5.2, Chapter 4 in [ 121, with H= H3(R), 
.P’=H1(R), /?= 1, A=-AA and D(A)=H;(.Q)= (UEHs(R))X.@n=O 
on r). One obtains easily the following estimates 

II UIIS G c(ll(A +Pml3 + I PI II Ul3)9 UE D(A), Re p > 1. (5.2) 

IPI II w, < II@ + PWII,, UED(A),Rep>O, (5.3) 

II VI3 G c II@ + PWIl1 UED(A),Rep> 1. (5.4) 

From (5.2) and (5.4) one gets 

II UII, 4 c II@ + PWII, + c I PI II@ + P)UIl, 9 

and from (5.3) one has 

(5.5) 

IP1211~III GIPIIIV + PM,- (5.6) 

Since 

II UII D(A) = II UIl3 + IIAUII, N II W5~ 

from (5.5) and (5.6) one obtains at once estimate (5.11) in Theorem 5.2, 
Chapter 4 of [12]. 

Hence there exists a unique solution of (5.1) and one has 

w%,T + m,,, + m,,T~w-l3,T + m,,,>t (5.7) 

where the constant c does not depend on T. 
Now we consider problem (5.1) with an arbitrary initial condition 

1/l,=, = U, and without the assumption f(O, x) = 0. By assuming that the 
(necessary) compatibility conditions 
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are satisfied, one can find a function WE L’(O, fco; Zf~,(R)) with 
I@E L’(0, foci; Hi,(R)). WE L*(O, +co; H’(Q)) such that 

Moreover 

where the constant c does not depend on T. By taking Y = Ii - W one 
reduces the problem under consideration to the first one. Hence in the 
general case the solution U verities the estimate 

where the constant c does not depend on T. 
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