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On the Barotropic Motion of Compressible Perfect Fluids.

H. BEIRÃO DA VEIGA

1. - Introduction.

In this paper we consider the equations of the barotropic motion of a
compressible perfect fluid in an open, bounded and connected subset Q

of the euclidean space R3 (or R2). For an useful introduction to the proof
given in this paper and for a clear description of the main ideas we refer
the reader to [3].

We assume that S2 is locally situated on one side of its boundary r a
differentiable manifold of class C5. We denote by n = n(x) the unit outward
normal to the boundary r and we assume that the vector field n(x) is defined
and of class C4 in a neighbourhood of T.

We denote by Hk(Q), k non-negative integer, the Sobolev space of order k .

endowed with the usual norm II Ilk, and by ( , ) and II )) the scalar product
and the norm in HO(,Q) E2(Q). We denote also by Hk(,Q) the space (Hk(Q))3
of the vector fields v (v,, v,, v3) such that Vi E Hk(Q), i = 1, 2, 3 and

by Ilvllk the norm of v in (Hk(Q))3. A similar convention applies to the other
functional spaces and norms used in this paper.

We denote by L’(0, T; Hk) the Banach space of the (measurable) essen-
tially bounded functions defined on [0, T] whith values in Hk(Q). The norm
in this space is denoted by 11 Ilk,T. The subspace of the continuous [resp.
lipschitz continuous] functions on the closed interval [0, T] is denoted by
0(0, T ; Hk) [resp. Lip (0, T ; Hk)]. We denote by E’(O, T ; Hk) the Banach
space of the integrable functions on [0, T] with values in Hk(Q), with the
usual norm []k,T. · 

kli(r)We also use on T the Sobolev fractionary spaces Hk+!(T) and the cor-
responding spaces L’(0, T; Hk+!(T)). The norms in these spaces will be

denoted by III lllk+i and III I I Illk+i,T respectively.

Pervenuto alla Redazione il 28 Dicembre 1979 ed in forma definitiva il 13 Otto-

bre 1980.
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For scalar or vector fields w we use the notations w(O) = w(Ol X), atw =

where v and ware vector fields.

In this paper we consider the equations of the barotropic motion of a
compressible perfect (i.e. non-viscous) fluid in Q. An interesting example
of barotropic flow is given by a gas in isentropic motion (i.e. the entropy
is constant). For the particular case of an ideal gas (i.e. the equation of
state is Clapeyron’s equation) with constant specific heats one has in parti-
cular p = NeY where N &#x3E; 0 and y &#x3E; 1 are constants. Another interesting
case is the isothermical motion of an ideal gas.

Let us denote by v(t, x), e(t, x) and p(t, x) the velocity, the density and
the pressure of the fluid in the point x at the time t, and by f(t, x) the density
of the external mass forces. The equations of the motion are then (see for
instance [16] sections C.I and E.I, II, [14] IV § 1, [10] § 1 and § 2)

We assume that the initial velocity a(x) and the initial density distribu-
tion eo(x) are given. Moreover we assume that the fluid is barotropic that
is the pression p = p(e) depends only on e. The known function (( $ --* p ($) ))
verifies the physical hypothesis p($) &#x3E; 0 for $ &#x3E; 0. We assume that p E
E C4(]o, + oo[; R). We also assume that

where mo is a positive constant, that

and that the following compatibility conditions are verified (which are

independent from the extension of the vector field n(x) to the neighbor-
hood of r):
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where we set

Assumptions (1.3), (1.4) and (1.5) are necessary to the solvability of (1.1),
for by taking the scalar product of (1.1)1 with the normal n one gets

which for t = 0 gives (1.4). On the other hand from (1.1) it follows that

atvlt=o = 4. By differentiating (1.7) with respect to t for t = 0 and using
(1.1)2 to determinate atelt=o, we deduce (1.5).

In this paper we prove the following result, announced in [2] (see also [1]):
THEOREM 1.1. Assume that the above conditions hold and that

Then there exists Ti e ]0, To], depending only on Q, on the particular function
« $- p($) » and on the norms lIalls, lIeolls, Ilôflls-i,To’ j = 0,1,2 (TI is a
non decreacsing function of these norms) such that (1.1) is uniquely solvable

The uniqueness of the solution was proved by D. Graffi [6] and, in a
more general context, by J. Serrin [15].

The assumption on the force field f can be weakened. Moreover results

and proofs remain essentially the same if one use Sobolev spaces of greater
order. Obviously one must then add supplementary compatibility conditions.

Finally put Z = ((w, e) : 8)(v, e) E .L°°(o, T,,; H3-’), j = 0, 1, 2} and let

Z - Y be a compact embedding. Our proof shows trivially (by a compact-
ness argument) that v, e depends Y-continuously on a, eo, f provided that
these data remain bounded respect to the norms indicated in theorem 1.1

(under this condition the specific topology for the data is not substantial).
System (1.1) has been considered by T. Kato [8], [9] when Q is the whole

space. The boundary value problem in the case in which the initial velocity
a(x) is everywhere sub-sonic and the initial density Q,,(x) is nearly constant
(and f = 0) has been studied by D. G. Ebin [4].

PLAN OF THE PROOF. By using the change of variables (4.1) and the

identity (4.4) with h(t, x) = p[exp g(t, x)], one sees that system (1.1) is

(1) It is not hard to prove a little more; actually
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equivalent to the system

where go(x) = log eo(x). On the other hand a vector field V vanishes iden-
tically if and only if (4.2) holds. Applying this result to equation (1.8)1
and (1.8)3 it is not difficult to show that system (1.8), hence system (1.1),
is equivalent to the hyperbolic first order system (referred in [1])

plus the system (2.5)ð’ where (2.5)ð denotes the system (2.5) (see the follow-
ing section) with 0 replaced by 3. To show this equivalence use also (4.3)
and the definitions (2.1), (2.26). The operator Q is defined as

Finally system (1.9) + (2-5),, is clearly equivalent to system (2.5),, + (2.23) +
+ (2.28).

We solve this last system as follows: for each 0 E Ko (see the definition (2.4))
we solve (2.5) and we put for convenience v = 0,.[0], and for each q c- K,
(another suitable convex set) we define h = Ø2[q] by (2.15). Now we consider
the solution g = Ø3[v, h] of (2.23) and we define 6 = Ø4[v, g] by (2.28).
Finally we prove the existence of a fixed point for the map 0: (0, q) -&#x3E; (6, g)
in KoXKi. We remark that in general 6 doesn’t verify the condition (2.2)1,
hence a suitable device must be introduced.

The functions v = 0,[0] and g, corresponding to the fixed point of the
map 0, are obviously solutions of (2.5). + (2.23) + (2.28), hence of (1.1).
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2. - Some basic estimates.

Since .Q and the function p () )&#x3E; are fixed, the quantities which
depend only on these data are constants, and will be denoted by c, c, ëo,
ci, c2, .... Different constants can be denoted by the same symbol c. We

also denote by V, V,,, ’lpl, ... , non-decreasing functions in all their arguments.
In general these functions depend on the arguments lIall3, )!o!!3? lIô:flf3-i,To’
j = 0, l-, 2, and this dependence will not be explicitely indicated. Everytime
a function will depend also on other arguments this will be explicitely
remarked. Notice that one can always replace a finite number of functions V
by their maximum, which is again a ip-type function on the same arguments.
This will be done many times, without any comment and without a chacnge of
the symbol 1p.

In the following we will consider the tridimensional case since the proofs
in the bidimensional one are similar. The following inequalities will be

used without any comment:

where c = c(Q). 
We start by remarking that (see for istance [7], [5]) there exist N vector

fields u(’)(x), I = 1, ..., N, defined in Q, which are a basis for the linear space
of the solutions of the system div w = 0, rot w = 0 in Q, w.n = 0 on -P
(N is the number of cuts needed to make Q simply connected). We assume
that (u(l), u(i») = bli.

Let us put
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We assume for convenience that Ta c 1. For the moment, T is any real
number such that T E ]0, To]. Later on we will impose on T the condition
(2.6) and in section 3 we will put T = Ti (see definition (3.3)).

Consider now a scalar field 0 (t, x), defined in QT, and verifying the quali-
tative conditions

and the bounds

For the sake of clearness the values of the positive constants A, E, A1 r
L, B, Bi, B2 and Ti, which appear in this number, will be specified only
later in equations (3.1) and (3.3). It turns out from the definitions that

these constants depend only on 11 a ll:,, IleoBla, 11 a’ f, j = 0, 1, 2.
We remark that it would be easy to obtain explicit (but not significant!)

expressions for the functions yo, V,., 1p2, V,,, 1p4, ’P appearing in (3.1), (3.3).
Define the convex set

This set is bounded in Lip (0, T; gl) and 110 (t) 11,  B for each t E [0, TJ
and each 0 E Ko. Hence, by Ascoli-Arzela’s theorem, Ko is a relatively com-

pact set in C(0, T ; Hl). Moreover, by using a weak* topology argument
in the spaces -L°°(0, T ; Hk), one easily sees that Ko is closed. Hence Ko is a,

compact set in C(o, T ; Hl).
We consider now the following problem where 0 is a fixed scalar field:
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We recall that this system of equations was solved in [1] (see (1.1’),
(1.1") in [1]) and that it is equivalent to system (1.1) of [1] (2).

From the theorems 1.1, 1.2 and 1.3 of [1] it follows in particular (see
section 4 in [1]) that there exists a constant Co = co (,S2) such that if

then for each 0 E Ko there exists a unique solution v of system (2.5) in [0, T],
which we denote by V = 0,[Ol. Moreover (1.3)3 holds. From the equa-
tions (1.9)*, (1.10)* and (1.12)* of [1] used for k = 1 it follows that

where c = c(Q). Furthermore ([1] lemma 4.2 and 4.3 with k = 1)

We need also the following estimates of v and atv in terms of A and A1:

where c = c(D).

PROOF. One easily verifies that the proof of the estimate (2.8) of [1]
holds if k = 0 and gives, when f ¥= 0,

Analogously, for k = 0 and f fl 0, the estimate (2.26)1 of [1] gives

(2) See section 5 of [1] for the case /# 0.
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(this also follows from (2.5)6’ (2.5h). The above estimates, together with

(2.7)1 and (2.6) yield (2.9)1.
On the other hand, from equation (2.5), it follows that

Moreover, as in the proof of theorem 1.1 in section 3 of [1], one gets

and

From this last estimate, using equation (2.9) of [1] and estimates (2.10)
and (2.11) one gets (2.9)2. ~

From now on we assume that T verifies (2.6).
Consider now functions q(t, x) such that

and that

and define the convex and compact subset K1 of C(0, T ; H2) as

Let us define h = 0,[q] by the equation

for each q E KI. Let c be a positive constant such that

Vw c- HI, and put

Notice that m = m(E) is a non-increasing function of E. For each q such
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that 11 q ll,,,  E, hence for each q E KI’ one has

since lq(t, x)lëE. We will now get a bound for ath, j = 0, 1, 2, in terms
of E and Z. Put

K = K(E) is a non decreasing function of E. With some calculations one
sees that

Moreover from (2.15) it follows that

We introduce now a sufficient condition in order that the sets Ko and K,
are non empty. We remark that Ko is non empty if and only if K (see defi-
nition (3.2)) is non empty, as follows from (3.8).

Let now y,(x) be the right hand side of (2.2)3 . The quantities Ilyllk+l,
II Yl II k  llgll,+,, k = 0, 1 and llgll, are bounded by a known fixed function
"Po = Vo(llall., IIfoll3’ Ilflt=oIl2). We shall see now that there exists CI = c,(,Q)
such that if

then K and Ki are non empty. In fact let S2,, be a ball such that D c JOi and
let A: Hk(,Q) --&#x3E; Hk(,Q:,), k = 0, 1, 2, 3, be a linear continuous operator such
that for each U E E2(,Q) the function Au has compact support in Qi and
(Au) 1,2 = u. Consider now the solution 0 of the Cauchy-Dirichlet problem
for the wave operator
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where TI is the boundary of QI. From well known estimates for the wave
2

equation it follows that I Ilô:Oll2-i,TCI1JlO. Hence O(t)/D belongs to K if
j=0 

min {A, AI, B, B1, B2}"&#x3E; c,, Vo
A similar argument works for Ki.
To prove theorem 1.1 we need the following result on linear hyperbolic

equations :

THEOREM 2.1. Let giEH3-i, i=O,l, ô:FELOO(0,T;H2-i) ai t G c L’(o,
T; HI-i(T)), j = 0,1, 2, and assume that the following compatibility condi-

tions hold for i = 0, 1

Moreover let 8§w, Ô:hELOO(O, T ; H3-i),j = 0, 1, 2, v.n = 0 on ET’ h(t, 0153»
&#x3E; m &#x3E; 0 in QT. Then there exists polynomials

whose coefficients depend only on Q such that if

the linear hyperbolic mixed problem

has a uniq2ce solution g(t, x). Moreover
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Condition TPo c 1 can be dropped and the hypothesis on the data F
and G can be weakened by minor changes in (2.24).

Existence, uniqueness and regularity for the solution of (2.23) with

regular coefficients is due to S. Miyatake [11], [12], [13]. Estimate (2.24)
will be proved in the appendix. We take the opportunity to thank S. Miya-
take for some useful conversations.

From theorem 2.1 one gets the following result:

COROLLARY 2.2. There exists 1p1 = 1p1(A, E, AI) and 1p = 1p(A, E, AI, L,
B, BI’ B2) such that if

the following result holds: let (0, q) E Ko X KI, v = 01[0], h = (/)2[q], and con-
sider the problem (2.23) with F and G given by

and with go and gl given by (2.1). Then the problem (2.23) has a unique solu-
tion g(t, x) in QT- Moreover

The solution g of this problem will be indicated by g = Ø3[v, h].

PROOF. Condition (2.22)1 follows from (1.4). On the other hand if one
puts

it follows from (4.3), (2.5)6’ (2.2),, (2.5),, (1.4), (1.1)3 and (2.5), that Yo veri-
fies the system (4.2), consequently Yo = 0. Hence ÔtVlt=o = å for each
0 E Ko and the compatibility condition (2.22)2 follows easily from (1.4) and
(1.5). For the determination of hl,=o and a,hl,=,, use equation (2.12).

On the other hand from the definition of P2, from (2.7) and from (2.19),
it follows that P21jJ(A, .E, AI, .L, B, B,, B2). Recall that m-1 and K are

non-decreasing functions of E. Analogously from the definition of Po, (2.9)
and (2.19)i one gets Po1jJI(A, E, AI). In particular condition (2.25) im-
plies TP,  1.
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Using now the expressions of F and G and the bounds (2.7), (2.19)2 and
(2.17) one easily gets

Using the above results one show that (2.24) yields (2.27). D

Let us define 6 = Ø4[v, g] by

where g is the solution described in corollary 2.2. The function 6 solves

the problem

as one easily verifies by a direct computation. Define now

and consider the map

defined as 0[(0, q)] = (6, g) where g = 0,[v, h], ð == 0,[v, g] (recall that v
and h are given by v = ØI[O], h = Ø2[q]). In other words, given a pair
(0, q) we solve (2.5) in order to get v and we use (2.15) to define h. Once v

and h are known, we solve (2.23) to obtain g and we use (2.28) to define 6.
The pair (6, g) is the image under 0 of (0, q).

The following result holds:

LEMMA 2.3. The map 0 is continuous with respect to the X topology.

PROOF. Let (On, qn) e Ko xKi, (On, qn) - (0, q) in X and put vn = (P:,[On]7
hn = Ø2[qn], gn - (-P3[Vn, hn]7 6,, = Ø4[vn, gn]. From (2.8), (2.20) and (2.26)
it follows that vn -&#x3E; V in C(0, T ; H2), hn - h in C(0, T ; H2), atvn - 81v in

C(07 T ; Hl), Fn - F in C(0, T ; Hi) and Gn - G in C(0, T ; HI(F)); recall
that Ilvnl13,T and ilh.,,Ill,T are bounded sequences. Write now the equation
(2.23)1 for g, the corresponding equation (2.23)? f or gn and subtract the two
equations obtained. By adding and subtracting suitable terms we easily
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verify (use also the bounds (2.27)) that g - gn verifies the equation (2.23),
with F replaced by a function -P,,, such that IIFnllo(o,P;Hl) -&#x3E; 0 when n - + oo.
Moreover (g - g.) 0, (a, g - a, g.) 0 and (ôjôn)(g - 9n) = G - Gn
on IT.

In particular JIF,,, 11,1,T--&#x3E; 0 and III G - Gnllll,P - 0, hence gn - g in LOO(O, T ;
Hi) by well known estimates for linear hyperbolic second order mixed pro-
blems, as for instance estimate (6.19) (3) used for g - gn. From (2.27), by
a compactness argument, it follows then that g,,, --&#x3E; g in 0(0, T; H2 ) and
atgn - atg in U(0, T; HI) (this can be derived also from estimate (8.2)).
Hence 6.,, - 3 in C(0, T ; Hl). D

PROOF. Set for convenience

Using the equation (2.29) and recalling that v - n = 0 on 27y one easily
sees (see for instance [1]) that

hence by comparison theorems for ordinary equations and by (2.29),

Using now (2.7)1, (2.19)1 and (2.6) one gets (2.30). On the other hand
from (2.29)1 it follows that

(3) Adapted to Q, as done in section 9.
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Moreover from (2.28) one gets by standard techniques

Again by comparison theorems, and by (2.6) and (2.7)1’ it follows that

By (2.32), (2.33) and (2.19), one gets (2.31). 0

LEMMA 2.5. Under the hypothesis of lemma 2.4 the following estimates hold :

PROOF. Estimates (2.34) and (2.35) follows from (2.28). Estimate (2.36)
follows easily by differentiating (2.29)1 with respect to t and by using (2.19) 0

then
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PROOF. The proof follows directly from (2.30), (2.31), (2.27), (2.9), (2.33),
(2.34), (2.35), (2.36). ~

3. - Construction of the fixed point.

Let A, E, A1, .L, B, B,, B2 be fixed as follows

Put also

From (2.21) it follows in particular that K X K1 is non-empty. Finally
define T I by

where y = y(A, E, A1, L, B, B1, B2) is the function appearing in theorem 2.6.
Possibly taking a larger ’ljJ we may assume that TI verifies also condition (2.6).
It follows from the above definitions that

is a positive function, non-increasing in all the five variables.
The following result holds:

THEOREM 3.1. Let A, E, Ai, L, B, Bi, B2, T1 be given by (3.1), (3.3).
Then for each T E ]0, T1] the set EQ X K1 is non empty, the map

is continuous in the X topology for (0, q) E Ko X KI, and
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PROOF. The continuity follows from lemma 2.3 and the inclusion (3.6)
from theorem 2.6 and from definitions (3.1). D

We define now the linear operator

which acts on functions u defined in Q or in QT . One has 117ril [) - 1 in Hk,
k&#x3E;O, hence in L’(0, T; Hk). Furthermore

7co 1,=,, = 0 1,.,, and 7c a, 0 1 t=o == a t 0 1 t=o as one verifies by straightforward cal-
culations (see (2.2)). From these properties it follows that

Using theorem 3.1, the properties just stated for 7t and the Schauder
fixed point theorem one gets the following result, where I denotes the identity
map on K,:

COROLLARY 3.2. Let the assumptions of theorem 3.1 hold, then the map
(n XI)oW, i.e. the macp

has a fixed point in Ko X KI .
We will now establish the existence of a fixed point for the map 0:

THEOREM 3.3. Under the assumptions of theorem 3.1 the map 0: (o, q) ---&#x3E;

-&#x3E; (6, g) has a fixed point in Ko X KI.
The following lemma will be useful to prove theorem 3.3 :
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PROOF. Using the divergence theorem one gets easily

On the other hand an easy computation yields the well known formulaes (4)

hence by the divergence theorem

Integrating now both sides of (2.29)1 in Q, using (3.10), (3.12) and (2.5)1
one easily gets (3.9)1. D

PROOF oF THEOREM 3.3. Let (0, q) = (Tcb, g) be the fixed point in the
statement of corollary 3.2. To prove theorem 3.3 it suffices to show that

1tð = ð, since rcb = 0. Put for convenience

One has

since 0 = 1tå. On the other hand from (3.9) one gets

By comparison theorems for ordinary differential equations it follows

then that y(t) - 0 on [0, T]. ~
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4. - Equivalence of the two formulations.

The functions v and g corresponding to the fixed point of theorem 3.3
solve the system (2.5) + (2.23) with h = p’(eg) and with 0 = 3 given by
(2.28). We shall verify in this section that (v, e) is a solution of system (1.1)
in [0, T1], where by definition

Let us put for convenience

It is true that

The first equation follows from (2.5)2’ (2.5)6 since

The second equation follows from (2.5)1 and (2.29)1 since

The third equation follows from (2.5)3, (3.11)2, (2.23)4 and (4.4). Finally
(4.2)4 follows from (2.5)5 (recall (4.3) and the properties of u(’)). Now from
(4.2) one gets V E= 0, i.e. equation (1.1),.

On the other hand (2.28) and definition (4.1) yield equation (1.1)2. The
initial condition (1.1)3 holds since v ( o ) - a verifies the system (4.2) (see [1]).
The two remaining equations (1.1)4 and (1.1)5 are trivially verified. 0
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APPENDIX

In this appendix we prove theorem 2.1.
In paper [13] (see also [11], [12]) S. Miyatake introduces the algebrical

condition (H) which connects the coefficients of a second order regularly
hyperbolic operator with the coefficients of a first order boundary operator.
Condition (H) is necessary and sufficient in order that the solution of the

initial-boundary value problem exists and verifies estimates like (2.24).
However in this last estimate we need a particular dependence for the « con-
stants » Po, P2 in terms of the coefficients v and h of the hyperbolic operator P,
dependence suggested heuristically by our non-linear problem (1.1). This

particular dependence is crucial to get the basic estimates (2.38).
In spite of the fact that some of the essential tools to prove estimate

(2.24) are those utilized in Miyatake’s proofs (as for instance the use of
(Pg, (Q + Eax) g)o."CO,t) and the method of section 6) the exact form of (2.24)
can not be claimed directly from his papers.

Our essential aim is to prove the a priori estimates. The proof of the
existence of a solution is then based on these a priori estimates (the exact
dependence on the coefficients being now superfluous). To shorten this

appendix we show the existence by combining our estimates with the existence
results of [13] instead of repeating known arguments.

5. - Notations and some basic estimates.

Let us put y = (y1, y,) and consider real functions w,(t, y, x), lk(t, Y, X)r
k = 1, 2, 3, defined for (t, y, x) E RI x R’ x RI and constants (Wk = 0 and

lk = 1) outside a fixed compact set in Rt X R: X R . We denote by w the
vector field (WI’ W2, w3) and by l the triplet (1,, 1,, l3), which play here the
part of (vi, v2, v3) and (h, h, h) in the preceding sections.

Norms of vector functions are defined as the maximum of the norms.

of the components. We write Ôj = a,,J I j = 1, 2, a3 = ax, and we denote
by Ô1I one or both the derivatives al, a2. For instance a, W II = max 11 ai Wk 11,
j = 1, 2, k = 1, 2, 3. Analogously a denotes spatial first derivatives. For

instance 11 aw = max 11 ai Wk III j, k = 1, 2, 3. The meaning of symbols like-

II ô:w II, lia2W 11 and so on is now clear. 
°

Unless otherwise stated the indices of summation take values from 1 to 3..
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We assume that ev and I verify the following conditions (k = 1, 2, 3):

m constant,

where HS = HI (R’ v x K). In the following we shall use the differential

operators

Let y be a positive parameter. We put
and

where the integrals are over R2y X R+. Moreover

A star [resp. an apostrophe] added to a norm means that the derivative
of greater order in the x variable [resp. t variable] does not appear in the
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norm. For instance (fl = (12))

We consider also the following norms and semi-norms on the boundary
x = 0 :

These definitions will be used also for the time intervals Ri and Rt,
Let now g(t, y, x) denote a complex valued C°° function with compact

support in Ri X R’ X R:. Starting from the bilinear form 2 Re (Pg, (Q +
+ Eax) g)o,v(o,t) and performing suitable integrations by parts it is easy to

check that

where A (a sum of terms which we don’t write explicitely) verifies
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By definition Jul,,,, == sup lu(t, y, x) 1. To get (5.4) the following identities
are useful:

We denote by Po, P, and P2 polynomials (with real and non-negative
coefficients) in the following variables:

In this section and in the next one we shall take for convenience

instead of (5.6)1. We use the same symbol Pk, k = 0, 1, 2, to denote dif-
ferent polynomials (of the same type k) without any comment. However

in the same equation a symbol Pk denotes the same polynomial. From

well known Sobolev theorems it follows that POP,P,, when Po is de-

fined by (5.6’). Moreover a polynomial Po of type (5.6’) is always of type
(5.6)1.

We return now to (5.4), (5.5). It follows from these equations that there
exist Po and Pl such that if

then

We denote by Y a Fourier transform and by Y its inverse Fourier trans-
. form. For the sake of convenience the variables are sometimes indicated,
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as for instance

If

where k E R, one easily sees that

In particular one has, for j = 1, 2,

hence, after some calculations

From (5.15) one easily gets

On the other hand

From (5.8), (5.12) and (5.13) it follows that

for y and 8 verifying (6.11). We used also the estimate
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Estimate (5.14) will be useful to study the Neumann boundary condition.
For the Dirichlet boundary condition we will use the estimate

which holds for 8 and y verifying (5.7). Estimate (5.16) follows from (5.8),
(5.13) and from

Finally, starting from (at g, Y)o,y(O,t) one easily shows that

6. - The a priori bound of order zero for the Neumann condition.

In this section we use the notations Dt = (lji) Ôt, Dlc = (1/i) ak . Put

T = a - iy, a E R, and define

where x is a parameter. Notice that t runs in all of (- oo, + oo) . We assume
that the known functions are extended to Rt x R’ v x R x I with each norm bound-
ed by a constant times the corresponding norm in R’ x R 2xR’; It is easy
to show that
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Consider now two real functions {Ji(i, r), i = 1, 2, defined in C x R2/{O},
homogeneous of degree zero i.e. {Ji(ði, 3q) = ðf3i(i, n), Vð &#x3E; 0, and such
that 0 {Ji(i, q) c1, i = 1, 2, and fli + {J2 == 1. These functions are deter-

mined by the values on the sphere

Finally, assume that

where the supports are taken in E and a &#x3E; 0 is to be fixed later. The con-

stant ca depends only on oc.

Consider now the pseudo- differential operators fl,(D) = (Ji(Dt, D,), i =

- 1, 2, defined by

Obviously

It is clear that formulae (5.14) holds with (0, t) replaced by any other
time interval. In particular if g has compact support and E, y verify (5.7)
one has

where for convenience we put I = (- 00, + oo) . Denoting now by H;
the Hilbert space of the complex valued functions g(t, y, x) such that

gyEH2(RtxR;xR:), it follows by approximation that (6.9) (and also (5.14))
holds for every g e .Hy . In particular (6.9) holds for the functions gi , i = 1, 2.

Now we want to prove estimates (6.12). From the identity U&#x3E;,y;I =
= (2n)-3û&#x3E;,O;I it follows that

Since I -r I  o,, iq I on the support of PI’ one gets
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By using (6.5) to estimate the right hand side, it follows that

On the other hand from (6.9) with 8 = 0 one gets

Moreover from Schwartz inequality

From this last estimate and from (6.10) and (6.11) (see also (5.15)) one
easily shows that, for suitable Po and Pi, the following estimate holds (for
i = 1) :

for every g C _H 2, and f or y verifying (5.7).
Now we prove (6.12) for i = 2. By using estimate (6.9) for g, one easily

gets 
-

Moreover, choosing oc«2PO)-1 one has 11’B2- P’, 17712 &#x3E; 2-1 1 -c 12 on I2, hence

Consequently from (6.13) one gets

Now from the general formula
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it follows that

Fixing now E = (Po + l)-l (cf. (5.7)) and multiplying the above inequality
by 8-1 it follows that there exist Po and Pl such that, f or i = 2 and for y
verifying (5.7), estimate (6.12) holds for every g c- H,’,.

Furthermore from the identity Pgi = flipg + (P#i - #iP) g one gets

since as in [4], section 4)

Now from (6.8), (6.12) and (6.16) it follows that there exists a polynomial
P2 such that if

then

From (5.14) with s = 0 and from (5.15), (6.18) and (5.17) one gets the fol-
lowing result :

THEOREM 6.1. There exists a polynomial P2 such that if y verifies (6.17)
then

COROLLARY 6.2. There exist polynomials Po, Pi and P2 such that i f (6.17)
holds then for each t &#x3E; 0 and for each g E H2((0, t) X R; X R:) we have
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PROOF. To give a short proof we use also the existence and unicity result
of [13]. First we assume that the coefficients of P are regular. Then

go = glt=o E HI(R; XR:), gl= Ôtglt=o EL2(R; xR:) and there exist regular Fn,
Gn and gn) with ôxgn)lx=o = 0, such that Fn -+ F, Gn -+ G and gn) -+ go in
the Banach spaces indicated above. Since the coefficients are regular, from
theorem 2 of [13] for k = 1 the problem Pg(n) = Fn in (0, t) xR;xR:,
ôxg(n)lx=o = Gn in (0, t) X R;, g(n)lt=o = gn), Otg(n)lt=o = gl has a unique solu-
tion g(n) E H2( (0, t) X R; X R:). By applying now (6.19) to g(n) - g(m) it fol-

lows that the solution g(n) converges in the norm on the left hand side of
(6.19) to a function U E 0([0, t]; HI) n 01([0, t]; L2). Now using the exi-

stence and unicity result stated in theorem 2 of [13] for k = 0 it follows

that u = g. Writing now estimate (6.19) for g(n) and passing to the limit
one gets (6.20) for g.

When the coefficients of P are only as in (5.3) we prove (6.20) by approx-
imating Pg with p(n)g, where the coefficients w(n) and l(n) of p(n) are regular,
uniformly bounded in all the norms utilized in the definitions (5.6) and

converge to wand l in C(0, t; H2) n 01(0, t; H1).

7. - A priori bounds for the Dirichlet condition.

Froln (5.16) and (5.17) one gets the following result:

PROPOSITION 7.1. There exists Po and Pi such that if

then f or t &#x3E; 0 and gEH2(0,t)xR;xR:) one has

Now we want to prove corresponding estimates for the orders 1 and 2.
Let gEH3((0,t)xR;xR:). Using (7.2) f or g and for the tangential deri-
vatives (Jtg and (Jjg, j = 1, 2, and adding one gets
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where we used the estimate

Now we shall estimate a’g. One has from the definition of P

where

From (7.6), using Sobolev’s embedding theorems and interpolation theo-
rems, it follows that

and using (5.17) to estimate Ipg(t)12, one gets

On the other hand

as follows from the Sobolev’s embedding theorem H2 - Co,!. Hence if

0 c x  r= (2P°)-1 one has

Notice that with our conventions one has

since polynomials of type Po may depend on m-1.
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By using (7.5) and (7.7) it follows that for 0  x  r

where « (x  r) » means that the norms concern only the strip 0  x  r.

Now we want to estimate a’g in the interior. We take a real function
cp E 0’(R+), 0  q(r)  I, such that (p(x) = 0 if 0 c x c 2 and q(r) = 1 if 1 c x.
Putting lpr(x) = lp(xjr) one has (for each non negative integer n)

Using (7.2) for cpr Ôx g and using also (7.12) and (7.10) one gets for x &#x3E; r

(with obvious notations)

Now we shall estimate the norms of the commutators which appear
in (8.3) and (8.13). Denoting for convenience by a a derivative with respect
to t, yl , Y2 or x, we can write in a short form

where in the left hand side a denotes a fixed derivative. On the contrary
in the right hand side (where only the type of the terms obtained comput-
ing the left hand side is indicated) a runs over all the derivatives, with the
following exceptions: the derivative atg doesn’t appear; the derivative 8§w
appears only when we take a = at in the left hand side.

The functions (1 + w) 8w and (aW)2 are bounded in norm LOO by P1.
On the other hand by Holder’s inequality in R: x R one easily gets

and from H’ -&#x3E; Lp, for p = 3 and p = 6, it follows that the left hand side
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is bounded by P 2 lgl2, 2 V(Olt) Consequently

Moreover

Computing the left hand side of (7.16) as above one gets finally

On the other hand, using ÔtPr = a,, gg,. = 0 one shows that

Using Sobolev’s embedding theorems, (7.12) and (7.10) one shows that
the norm []’Y(O,t) of the right hand side of (7.18) is bounded by P2Igl;,y(o,t).
The same holds for the last term in the right hand side of the identity

as one shows using (7.15). Similarly one estimates the terms ak[lk Ôk(CPr ôxg)]-
- cpr ax ak[lk(akg)]- Consequently

From (7.3), (7.11), (7.13), (7.17) and (7.20) it follows

PROPOSITION 7.2. There exist polynomials Po and P2 such that if

then for each t &#x3E; 0 and each g E H3 one has
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8. - A priori bounds of higher order and existence under the Neumann
condition.

PROPOSITION 8.1. There exist Po, PI and P2 such that if

then for each t &#x3E; 0 and each g E H3 one has

To prove this result we apply (6.20) to the derivatives at g and ô1/g,
and (7.2) to ax g. We evaluate then the terms [P ag - apg] 0 2,1,(,,,) as in (7.17),
and the term 1B at g(o) 1I,y as in (7.4). Recall also (6.15)2.

PROPOSITION 8.2. There exist Po, PI and P2 such that if y verifies (8.1)
then for each t &#x3E; 0 and for each g E H3 one has the estimate

To prove (8.3) we use (8.2) to estimate the derivatives ô1/g and (7.22)
to estimate ðxg. We also use the estimate

obtained by diff erentiating the right hand sides of (7.14) and (7.16) and by
estimating then the []o,y(O,t) norms. Notice that the terms ô: g, 8?I and
ô:w don’t appear.

Existence of solutions.

Let now ô: F E L2(O, + 00; H2-i(R: X R)), j == 0, 1, ôG E L2(0, + 00;
H-k(R:)), k = 0, 1, 2 and gi E H3-i(R: X R), i = 0, 1, and assume that the
compatibility conditions ax gilx=o = ô: Glt=o, i == 0, 1 are verified. Assume

also that the coefficients of P are regular. Then there exists a unique solu-

tion g of problem Pg = F in RixR:xR, ôxglx=o == G on RixR:, ô;glt=o =
=, gi , i = 0, 1 in R:xR;. Moreover g verifies estimate (8.3), hence in par-
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ticular there exist polynomials Po, Pl and P2 such that

where the Sobolev Hs are defined on R§ X R) if s is integer and R’ other-

wise. We get these results from the a priori bound (8.3) and from the exi-
stence theorem 2 of [13]. In fact the operator P and the boundary ope-
rator Dx verify all the conditions (5) required to use theorem 2 of [13], as
the reader easily verifies; in particular the main condition (H) (II) of theo-
rem 1 in [13] is verified since a and fl vanish identically. When the coeffi-
cients of P verify only assumptions (5.1), (5.2) and (5.3), one easily shows
by approximating the coefficients by regular ones and by using the a priori
bound (8.3) (which holds uniformly) that the result holds again.

PROOF oF THEOREM 2.1. We denote here by (x1, x2, x,) the cartesian coor-
dinates of a point x E .i2 and by Px the operator in the left hand side of
(2.23)1. Let {Di}, i = 0,1, ..., m, be an open «regular» covering of Q such that
Do c Q and Di n T = Ti 0, i =F 0. By multiplying the data go, gi, F

and G by a suitable partition of the unity we get for i = 0 a Cauchy pro-
blem and for i = 1, 2,..., m, m mixed problems whose data have compact
support in Qi u Ti. We shall take in account the case i:A 0 since the case
i = 0 is easier. We assume without loss of generality that for each point
P E Qi there exists a unique Q E Ti such that PQ is orthogonal to jT,.

The coordinate y3 of P is defined as the length of PQ. The lines of cur-
vature on Fi are taken as parametric curves and the coordinates (y,, Y2)
of P are defined as the coordinates of Q on Fi. The system of coordinates
(YI, y2, y3) is orthogonal on Qi since on parallel surfaces curves correspond-
ing to lines of curvature are lines of curvature. The boundary hi is charac-
terized by y3 = 0, moreover y3 &#x3E; 0 when x E 92i. The operator Px is tras-
formed into the operator

where w, = I (a,,, yk) vi i and lk = IVxYk12h. The (known) coefficients ak are
i

(5) The definition of f in [13] has to be replaced by: f is the root of

P(s, t, qv + 77, T) = q2- f2 + d(q)2 such that i)i/i)-r &#x3E; 0 (communicated by the author).
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of class C2 (6). One easily shows that conditions (5.1), (5.2) and (5.3) hold

again. Hence each problem in Q, is equivalent to a problem in the half
space y3 &#x3E; 0 as long as the support of the solution remains in the image
of Qi under the change of coordinates r - y. Hence by solving m mixed
problems in the half space (and a Cauchy problem in all of the space) we
get a (local in time) solution in Q, which verifies (2.24) since x  y is of
class C4. Now we give a lower bound Ti for the time interval in which the
supports of the solutions verify the above property. Ti is clearly bounded
by a constant eo (7) times an upper bound for the propagation speed of the
solutions. The propagation speed is bounded above by the maximum of

the absolute value of the roots 1’:1: of the characteristic polynomial

hence is bounded above by a polynomial of type Po. Consequently problem
(2.23) is solvable in QT for T verifying TP,  1. Moreover from (8.4) applied
to each i-solution it easily follows (2.24).

REMARK. After doing the first step in [0, Ti] we can consider Ti as an
initial time and do a second step in [PI,2PI]. By using repeatedly this
argument, and recalling that T,, = Po’, one easily gets estimates as (2.24)
without condition TPOL.

(6) In the preceeding sections we didn’t take in account the lower order terms
akhôkg, since they are trivially estimated.

(7) Depending only on the minimal distance to be covered, hence on Q.
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