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In this paper we prove the existence of C” selutions for the system (see Sedov

[ 111, chap. IV, § 1, pg. 164)

d
p[a—:+(v-\7)v—b]2—v'n in QTE]O,TO[XQ,

div v=0 in QTo ,

ven = 0 on J0,T,[x 8q ,
(E)

e + Yp=0 in Q

- V- o= s

At T

pltzo = Po in RY! 3

Vieog = @ in 8

This problem has been studied by Marsden{10iand by us [3], [4], [5] {where one

can find some references) from the point of view of (local in time)'existence, unique-
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96 DA VEIGA AND VALLI

ness and regularity of the solution. Marsden also obtains a result for C~ solutions,
The analytic case on compact manifolds without boundary was studied by Baouen-
di - Goulaouic [1']. These authors have proved analogous results also for manifolds
with boundary (private communication).

Here we solve system (E) , as in [4} , [5], via the equivalent system (2.2) (with
v =1{),(2.4),(2.7), (2.11); and the essential tool is the use of elliptic system (2.7).

In proving the existence of a fixed point in Sobolev spaces (as in {2]), we give
existence results in this context. Moreover, by generalizing the method of {6], we
prove a C7 - regularity result, and we see that the interval of existence of the C* so-

lution is the maximal interval of existence of the solution in L™ (R*; H*(Q2)).

1. Main Results

Let © be a bounded connected open subset of JR®. We assume that the boun-

" dary T is a compact manifold of dimension 2, without boundary, and thrat £ islo-
cally situated on one side of I' -+ T' has a finite number of connected components
A ST Fm such that F}.(j =1, ..., m) areinside of [, and outside of one another.

We prove the following results

Theorem A. Let T' be of class C<*3 gnd let ac H**2(Q), k> 1, with diva=0
in Q@ and a-n=0o0onT 6 p& Hk”(ﬂ) with po(x}> 0 foreach x€ , and
beL'(0, T, ; HX 2 () n LP (0, To; ¥ Loy, p> 1D,

Then there exists Ty = T, (k) €10, To], ve L=(0, T, : H**2(Q)) with

ov a
e, T H N R)), 0 € L=0, T, HY 2(0)) with éi; € L™(0, T, ; H¥*1(q)),

7€ LP(0, T, ;Hk”(ﬂ)) such that (v, p.w) is asolution of (E) in QT .

{1 The condition be LP 0, Ty; Hk+1(ﬂ)) can be weakened. By using the same proofs we can choose
for instance b & LP(O, To; H(02)) and X =C%[0, T,]; L*(Q) in Lemma 2.4,
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Theorem B. Let T' be of class C”, and let a€ C™(Q), ps € C”(Q2),be C™ ([0, + =[x
x Q). Then the solution (v, p, 7) of (E) belongs to C”(Q. ) for each Ty €10, T*,
where T* determines the maximal interval of existence of the solution (v,p)} in

L= (IR*; H (2)).

A uniqueness theorem for problem (E} is proved in [3] (see also Graffi [7]).

The same results hold if £ C IR2.

2. Proof of Theorem A

We suppose that §2 is simply-connected. Otherwise, we can prove the same re-
" sults by proceeding asin [51, §4 and [4], §6.
Let Te 10, T,] andlet ¢ be afunctionin L=(0, T; Htl (@) n C ([0, T}); -

e

HX(Q)) such that for each t€ {0, T}

(21) . dive=0 ae inQ and [tp-ndI‘=O Mi=1,..m -
r .

i
Then there exists a unique solution v of the elliptic system

ot v in Q.

Il
©

i
<

(2.2) div v in QT )

ven =0 on J0,T[=xT .

Moreover v € L=(0, T; H**2(Q)) n C°({0, T]; H¥*1 () with

(2.3) vl < clgl < cA ) c=ck, 2) ,

k+2.T k+1,T

where we have choosen ¢ such that iy I!}(H’T < A (which will be specified in (2.18)).
By Sobolev’s theorems, we obtain vE L=(0, T; C'(2))n C°(Q,) , and conse-

quently we can construct the solution p of
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— 4+ v-vp =0 in Q"r .
(2.4)
Pit=p = Po ina,

by using the method of characteristics.

Moreover the following estimates hold:

Lemma 2.1 Letr p be the solution of (2.4). Then p € L™ (0, T: H2(q)),

a
5“? € L0, T, B*+*1(Q)) and

(2.5) loheypr < ool eAT

cAT

ap .
—1 < cA l|p0i|k+2 et ,

2.6
(2.6) dt k+17T

where c=c(k, Q).

Proof. Apply the operator D7 to (2.4);, where 7 is a2 multi-index with Yl k+ 2;

multiply by D”p and integrate over £. Recalling that

{(v-9)D7, D7) = 0

since divv=0,(v- n)r =0, we obtain

l o

IDYpl? < c 1Dl z DY v-D%pll ,
1 O<o<y

[ R
(=%

By addingin v, for lyl< k+ 2, one gets

2

lolZ,, < clol? vl

k+2 k+2 >

Sia

1
2
since H**1(Q) isan algebra for k> 1.

Hence
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< ¢ vl

dt bo k2 W hn s

then from Gronwall's lemma we have (2.5).

From equation (2.4); we obtain

.

ap§ <
%!EIII(Jri < EV"kH |I,a|lk+2 ,

and consequently obtain (2.6). 0

We now consider the elliptic sysiem

rotw = ) in &,
. Vp . .
(2.7} divw——-w =p2z (D '\’j)(Dj V) — pdivb in Q,
o i
wen=-pZ (D.n)vv-pb-n on I,
. i,] by o)

which is equivalent to the Neumann problem

-

v
—an+ = -gr = p T (D, VD v)-pdivb=f~  in Q,
p i
(2.8)
aﬂ'_ ) D b — F
o %J(ﬂpﬂ“ pb-n =g on ,

where ~ V= w,

We need some estimates for the solution of the elliptic problem (2.8), We shall

see that

2.9 lnl < clk o, 121 | Qe + fel Vk >

Ln V?T.k+2 = C ) y k+1 B k+2) 3 k=1 )
P k+l

and

2.10)  1wnl, < ek 2,00, bol, s IR, gl DCE+ IEL + Dl o+ ol ),

Vk=2 .

We need this last estimate only for the C™ regularity result.
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As in [4] one has the existence of a solution of (2.8) {(unique up to an arbitrary

constant) and the estimate

' v
il < cla, 1, 127y aen o+ el L), O0<a<x] |
Cl+a p C C

Letting a = 1/2, it follows by Sobolev’s embedding theorems that(?)

v
I9al, < ofe2, b—§) (It + lighy)
£ 2

By a straightforward calculation one easily sees that this estimate holds also for

ivnly and lvwi; , and by induction one gets

Vo Ve
lvxl < ok, @, i—10_) I—I Il + kgl +
T2 ( 0 L) P k+l ( k g k+1)

]

+ ok, @) (IE1, + g ) - vk

Hence (2.9} and (2.10) hold.
From (2.9), (2.3) and (2.5) it follows that the unique solution w of (2.7) be-
longs to L'(0, T: HE*1(02)); and moreover

[T, ot < wa,m
0

where T is a non-decreasing function in the variables A and T (¢ depends also

on p,k,2,b and p,). In addition 1im+ TA,T =0
0

We want to study the equation

af vp .

5€+(V'V)§=ﬁ+WA;§+(§'V)V in Qg
(2.11)

g‘|t:0 s a in Q H

where « =rota and 8= rotb.

(2)  Onecanalso start from the more precise estimate (see LadyZenskaja - Ural’ceva [8], chap i, §5and 6)

19nl, < ofs2, 181 ) (IEN + Bgh,).
L
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As for equation (2.4), we can construct the solution { by using the method

of characteristics (see also [5]). Moreover, one has the following estimates;

Lemma 2.2 Let t be the solution of (2.11). Then t€ L=(0, T ; H**'1(Q)) ,

b}
5{-6 LP(0, T; HYQ)) and

(2.12) "HkH,T £ [IlcellkJrl + T(A, T ethAT ,
d
(2.13) JT II—S(t)Hp dt < ¢, (A, T)[ﬂallp‘ + 171,
0 at k K+l

where €, C; are non-decreasing functions in the variables A and T (C,<T; depend

also on p, Xk, 2, b and py), and 1ir8+ TA, T = 0
T
Proof. Apply the operator D7 to (2.11),, where v is a multi-index with lyI<k+ 1;
multiply by D¢ and integrate over 2. Recailing that
((v-v)D7¢,D") = 0,

we obtain

d 1
IDYER < DY {ID81 + T ID%w - DV y(-)i +
dt O<o<y p

Bl —

+ T D% DY Dvik + Z DY v-D°Dtl} .
O<o<y (<o<y

Addingin v, for lyl<k+ 1 , one obtains

1
I8 < OBy (Il 5 Wl I+ IvE o I )

b2 |
e

since H¥*1(Q) is an algebra for k= 1.

Hence, by Gronwall’s lemma
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T

1
KO, g[uaﬂw + cJ' (Ib(s)l,,, + Iw(s)E | u;(s)ﬂm)ds] -

0

t
Cexp [cf (s)l, ds] < [lak,, + T(A, T AL,
0

Finaily, from equation {2.11), one obtains easily (2.13). Recall that from (2.9

one gefs

we LP(0, T, H @) , k

W

If k=1 we use instead of (2.9) a corresponding estimate obtained via the no-

te (2). [

Lemma 2.3 Letr t be the solution of (2.11). Then, for each t€ [0, T} .

b

(2.14) ' dive = 0 ge in 0

(2.15) j fndl =0 Vi=1,...m.
T

i

Proof, From the general fofmula
(v -V}~ v)v=vdivi-¢divv-rot(vA{)

it follows that

:
(2.16) 5§+vdiv§:rot(w\;)+g+w\3§.
0

v W
On the other hand g+ w A ——f = 1ot [ b+ ; ] . Hence applying the operator
o

div to both sides of (2.16) one gets.
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i
(da“t’g) +oveu(dive) = 0 in Q ,
2.17)
(dive) Lo = diva=0 in @ ,

since divrot= 0. Hence divi =0,

Finally, by using (2.16) we have

d o )
me-ndF:J—-ndF=0 Vi=1,..,m
dat I Y

i i

since J ot G- ndl'=0 foreach G, and (v. n)lr = (0. Hence, foreach t€ [0, T],

T.
1

J {-ndF:Ja-ndFEO Vi=1,..,m. 0
r, r,

1 1
We can now construct a fixed point for the map F : ¢ — {. In fact, choose

(2.18) A> el .

Then Trom estimate (2.12) and from Lemma 2.3 one sees that there exists

T, €10, Tg] such that the set

S ={p€ L0, T; H @) n CO0, Ty ]; HY(@) el - < &,

¢ satisfies (2.1)}

satisifes F[S1C S, where F isrelated to the interval ]0, T,[. S is obviously convex

and closed in X = C°([0, T, 1; HE(@)).
Lemma 2.4. The map F has a fixed point in S,

Proof, We utilize the Schauder’s fixed point theorem in the space X. From Lemma

2.2 one has
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T

8¢ P _ p
F[-S]C{feSII I OF dt < T T el + 11} .

0

In particular F[S] is bounded in C*([0, T,]: HX(Q)) n L= (0, T,; H*1(q)),
a«= (p— 1)}/p, and from the Ascoli-Arzeld’s theorem F{S] is relatively compact in X.
Let now ¢, 9" € §, ¢" = ¢ in X. Then the solutions v" of the elliptic system

(2.2) converge in C°(10, T, ]; HK*L(Q)) to v. Moreover for p, and p one obtains

d
r——— — 2 é — o n_
; II;;»n ol |fp[1 ol ||\pr||L (QT‘) iy VHOL ,

B e

and consequently p_— p in L7(0, T, ; Lian.
Hence by (2.5), (2.6) and a compactness argument it follows that PP in

C°([0, T,1: H2(2)). In particular -

vy
Pa

v v
- ?p in L7(0, T, ; L*(Q)) , - =L 170, T, L2 ().
0

From the Neumann problem (2.8} one obtains with a straightforward calculation

that w" - w in L'(0, T, ; H'(2)).
d
Finally, by evaluating a 1¢7  ¢4?* in a standard way, from equations (2.11),

one easily gets {® — ¢ in C°([0,T,]; L*(Q)). By the compactness of F[S], this
implies that {® » ¢ in X. O

Let w=1¢ be a fixed point of F. Then the functions v, p and » determined
in (2.2), (2.4) and (2.8) by this ¥ are the solutions of system (E). In fact, by diffe-

! ov
rentiating in t system (2.2) we prove that "a—; € LP(0, T, ; Hk+! (£2)). Then by
(2.11); and (2.7) we have
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p] d v
mt[—"ﬂv-v)v—b——‘f] =S v -Gvv-s-wA=0 g,
at P ot P

2 w 1 %
div[—v —l—(v-v)v—b—-*]: E(D.v_)(D.v.)—divb—-—divw+W'—lZ =0inQ,
at P T P f

av w 1
[:—+(v-\7}v-b—— -n=-X(D.n)vv.—-b-n——w-n=0 onl .
at p i b p
Since w=- vr , we have obtained equation (E), .
Moreover
rot (vlt:o —a) = {It:o—-aEO in 2,
div ("n:o -a) =0 in £,
(Viieg —@) 0 =0 on ',
hence v,_,=2a in Q. -

3. Proof of theorem B.

We now prove that v(t), p(t) and =(t) belongto C~ (5) foreach t€ [0, T,],
where 0< T, <T%*, and [0, T*[ is the maximal interval of existence for the solution
(v,p) in L"(R* ; H*(2)).

It is sufficient to prove that T*(k) =T*(1) foreach k> 1. Since it is clear that
T*(k) is non-increasing in k , we want to prove that T*(k) = T*(1).

Let k= 2. Applying the operator DY to (E), , where v is a multiindex with

lyl < k + 2, multiplying by D”v and integraling over {1, we obtain

| ru

IDYv1? < Db IDPvl+ ¢ Z IDY¢ v - D” Dyt IDTvll +
i 0<o<y

o |
=}

v
4+ IDY(— )1 IDTvE |
p

since ((v-v) DYy, DYy}=0.
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By adding in v for ll< k+ 2 we obtain (see also [6] , (1.7))
3.1 Lo < e @) (b o+ vl vy 1y
G.1) dt Vi S oK (LLL Ve k+2 o k+2
From equation {(E), we have

d
(3.2) Zﬁ- flo ||k+2 < ok, 2) {"v"k+l o !Ek+2+ ko "k+1 §|\.'Hk+2 i

On the othe hand from (2.10) and (3.2) one has

v 1 ]
F—1 éck,n[liv Il - & + dval -1 :‘<
£ k+2 ( ) Tk 0 k+2 "lhra P k+l
< ek, 2, p0, Ip o, UEH, Al L1+ HEN  + Hgl Bl ] _

Recalling the definition of f and g, we obtain

v ' SR
(3.3) i ) !ik+2 < ofk, &2, pg, b, lp iik+1, "V"k+1) [1+ ¥Iv||k+2 + lp |Ek+3] .

Hence, from (3.1}, (3.2} and (3.3)
d
(3.4) E;(|EVi|k+2 + llp f|k+2} < ek, Q, 00, h, bp "k+;’ e o1+ ilvllk+2 + ot 1.

Consequently, by induction on k we prove that T*(k) = T*(1) for each k> 1.

The regularity in t is also proved by induction by verifying that if

2
v, p¥ = <4 p, =0, belong to L™(0, T, ; H¥*2(Q)) for each
» = H == 3 3 1

(%) =
v =
dtﬂ

2
dt®

k> 1, then the same holds for v®+1 gnd p®+1),
Formally, this can be done by differentiating in t equations (E),, (E), and

(2.8), recalling that this last equation gives
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v 2-1 vp _(24) .
cAr® TP g@ g0 (1 (2 (gl = F@ in a,
P j=0 3" " p
an®
— = g(g) on F .
an

Hence vn® satisfies (2.9) with f and g replaced by F® and g® respec-

tively.

For the complete proof we must use the well known method of differential

quotients (see for instance Lions {9] , chap. V).

(3}

[4

{s]

(6]

(71
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