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1. InTRODUCTION AND Mame RESULTS

Inthis paper we consider the motion of a nonhomogeneous ideal incompressible
fluid in a bounded connected open subset £2 of R®. We assume that the boundary
I" is a compact manifold of dimension 2, without boundary, and that £ is
locally situated on one side of I". I has a finite number of connected components
Iy, Iy, Iy such that Ty (j = 1,..., m) are inside of Iy and outside of one
another, In Sections 2 and 3 we assume that £2 is simply connected; in Section 4
we drop this condition. We denote by o(2, &) the velocity field, by p(f, x) the
mass density, and by (¢, x) the pressure. The Euler equations of the motion
are (sce for instance Sédov [14, Chap. IV, Bect. 1, p. 164])

P[%ZLJF(W-V}UWIJ] =—Vr in  Qr,=[0,T)] x &,

dive =0 in Or
v-n=0 on [0, Ty x I, i
(£)
9 .
-‘—af;——!—?)'szo in Or,»
P =0 = po in 2,
V|pg=2a in £,

where # = a{x) is the unit outward normal to the boundary I', b = b(¢, x) is
the external force field, and @ = a(x), py = po(®) are the initial velocity field
and the initial mass density, respectively,

MNonhomogeneous ideal incompressible fluids have been studied by several
authors; see, for instance, Sédov [14], Zeytounian [18], Yih {I7]. In some
problems concerning oceanography (see, for instance, LeBlond and Mysak [10])
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THE EULER EQUATIONS 339

or, more generally, rofating systems (see also Kazhikhov [9]), Eq. (£), is replaced
by
2]
p[~é~?+(v-V)v+2wJ\'z)—b} = —Vn,

where w is the angular velocity, The perturbation term 2 @ A » does not give
rise to any difficulty and our results and proofs hold : again if one assumes that
we COINQ, ),

For the case in which the fluid is homogcneous i.e., the density p, (and
consequently p) is constant, Eqs. (E) have been stuched by several authors.

For the three-dimensional case see, for instance, Lichtenstein [11], Ebin and
Marsden {6], Swann {15], Kato {8], Bourguignon and Brezis [3], Temam [16],
Bardos and Frisch [2].

For nonhomogeneous fluids, Marsden [13] has proved (in the #-dimensional
case) the existence of a focal solution to problem (E), under the assumption
that the external force field b2, x) is divergence free and tangential to the bound-
ary, ie., divd = 0 in Or, and b -n =0 on [0, Ty] x I The proof rclies on
techmqueb of Rmmannmn geometry on infinite-dimensional manifolds. In a
previous paper [4], we have proved, in the two-dimensional case, the existence
of a local solution to problem (E) without any restriction on the external field
b(2, x). In this paper we prove the corresponding result for the three-dimensional
case, i.e.,

THroREM A, Let I' be of elass €30 Q0 < X <= |, and lei g Ol NED) with
diva =0mLanda - n=0onl, pueCl MDY with py(x) == 0 for each x = 82,
and b e COVINQ, ). Then there exists T el0, T,], 2 e CH1:NQ, S peCHR G, )
e Co 2*"(Or ) such that (v, p, ) s a solution of (E) in Qq

A uniqueness theorem for problem (E) is proved by Graffi {20]. See also [3].

For the study of nonhomogencous eiscous incompressible fluids see Kazhikhov
{9], [21] Antoncev and Kazhikhov [1], Ladyzhenskaya and Solonnikov [22],
Lions [12], and Simon [23].

2. PRELIMINARIES AND EXISTENCE OF A LocaL SOLUTION
OF THE AUXILIARY SvsteM (A

In this section and in Section 3 we assume that £ is simply connccted. We use
the notations introduced in [4]. We need only to define for a vector function P
the operator

1 ( Oy tepy  Gpy dipy Oy o, )
ceurlg s (2 — 2 e H
Oy Oxy Oxg  Dxy T Exy iy

* For the analytic case on compact manifolds without boundary see [19].
* Bee the end of this section.
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In the following ¢(t, x) € C*4Qy), T'e 10, T,], will be a generic element of the
sphere :

lelion < 4 (2.1}

{where the radius 4 is a positive constant which we will specify below} such
that for each ¢ [0, T

dive =0 in 2(Q), j p ndl =0 Vi=l.,m (22)
'y

This condition is equivalent to the existence of a vector function v, such that
@ = curl 7, ; see for instance Foias and Temam [7, Proposition 1.3]. We denote
by ¢, ¢, ¢z ,..., positive constants depending at most on A and £.

Under our assumptions on £, the conditions on ¢ assure the existence of a
unique solution € CO1*A((0y) of the elliptic system

curly = ¢ inQy,
dive =0 inQr, {2.3)
v == in [0, T] x I.
Moreover,

I ?"Hn.1+,\ Lelloloy <ed, (2.4)

which corresponds to inequality (3.4) in [4].

As in [4] we construct the functions Uls, t, x), p(t, %), and w(t, x) and we
prove the corresponding Lemmas 3.2, 3.3, 4.1, 4.2.

We want now to study the equation

a—g‘{f{@-V)C:ﬁerh%}"HC'V)ﬂ in - Or,

ot
{ g = @ in Q, (2:5)

"To solve (2.5) we use the well known method of characteristics. Consider in
Or the Cl-change of variable (¢, x) — (¢, &'y defined by

= U(0, ¢, x), Le. x=U(t,0,x7), Vie[o, T]. (2.6)
Set y = 8 + w A (Vp/p?); system (2.5) becomes then

fz—f (t, %) = (1, UG, 0, %)) + D(t, U2, 0, ) - Lt, ).

. 2.7)
g(or x’) = O‘(xr)’ (
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where
Ut, x') = (e, Ult, 0, &), (2.8
ie.,
Kt %) = L1, U, 1, 2). (29)

D is the matrix with &v,/8k; in the ith row, jth column, and Do - { is the matrix
product, '

‘The linear ordinary system (2.7) has a unique solution for each «' & .
Since ofx’), ¥{r, U(1,0, #')) and Do(¢t, U(t, 0, 1)) are not differentiable with
respect to x', {(#, ¥} is generally not differentiable with respect to this last variable;
hence {(#, x), being not differentiable in «x, is not a classical solution of (2.5).
For this reason we must define {(f, x) by (2.9). We denote by ¢, ¢, &,
pusitive constants depending at most on A, £, py, and 5.

yreey

Lemma 2.1, The solution { of system (2.7) satisfies

il <l @llo + Ty o) €77 < 2l ™ + Te(4, T),
{E]n.a < ([0‘],\ e Te,\r[e:}(,,np[y}mﬂ) eT!LDvEEm
+ (&l + Tl v lle) T[De]o,, €2 2000 10)
< [oly e+ T8(A, TH(L + § all), '
S 7 lo + (ot + THy llo} | Do fl €17¥] T2
< T4, TH( ] @),

(2.10)

[h.0

where £(A, T) is nondecreasing in the variables A and T

Progf  From (2.7) we have

dil(t, =) | dl, x)
At dt

100, 0] = | )] .

By comparison theorems and (2.4) one obtains (2.10); . Moreover we have

< \ <l y e + U Dol | £, <],

% RCESEREYIES ;f; [, ) — £t 2")]

< (Vo [UR1ip + 1 Dl [P0l [U T 1) | & — 7 |
+ [i DE’ “m | Z(t) x’) _ Z(i, x”)| y
L0, %) — L0, %) < [ody | 2" — & M.




342 BEIRAC DA VEIGA AND VALLI

TFrom (2.10); and estimate {3.7), of [4] we obtain

4 £ Wt aTTely
7y [, «) — 80t &) << [loa - (lele + Ty ) [Doly., e 2] T
¥ jal—at P Do, | @ a0 — Lt a)

By comparison theorems we have (2.10), .

Finally, from (2.7), (2.10), , and

% E('r, x'ydr

. . '
POt 2 — (s, ') = [
one ecasily gets (2.10), . §

From this lemma, (2.9), and estimate (3.7), , (3.7), of [4], one easily obtains

Lemma 2.2, The function I(t, x) defined in (2.8) is such that { € CMQy) and

LE = i Ll < Dl €744 Te(d, T,
[Clo,n << [Eloa (UL 11, < [y T+ Te(A, TY(1 + [l all,),

[C]A,ﬂ = [g],\,u + [Z]u.,\ [U}i\i:ﬂ,(l =S ClAA[‘x]A e + TIJAE(As T) (1 +io Hn)
(2.11)

Now we want to prove-that for each te[0, T} div { =0 in 2'(2) and
frii -ndl" = 0 for each 7 == 1,..., m. First of all we observe that

y =curlg,  geCO1Qy)
since w A Vp/p* == curl wfp, as one easily sees.

Lenmma 2.3, Let [{t, x) be defined bv (2.9), Then

divl =0 in DD
and (2.12)

f. ondl =0 Vi=1,..m ¥tre[0, T

I
Proof.  Suppose that a € C%(£), g e C¥(0y), v e COHOy),
dive == 0inQp, and o-m=0on[0, T] % I\

Then the solution { of (2.7) belongs to C(Qr), and consequently { e CYOr)
is a classical solution of (2.5).
Since

(v V) —({-Vio=odiv{—{dive — curl{z A ), (2.13)
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we obtain that { is the solution of

-

;_f Ffodivi—=culfpa ) +y in Q.

Clog — o in 0

Let 0 C'%Q,), 8 =0 on [0, T} x I, (T, x) = 0 for each x € £2. We obtain

[ —d‘;-Vﬁdxdt—{—f (div Qv - V6 dx dt — 0,
or Ot or

T

since curl grad == 0 and V8 A n = 0 on [0, T} x I'. By integrating by parts

-_l' Y

)

dx dt + f (div Do - V8 dx dt = 0,
I3 or

since @ |,_p == 0,divii,_=diva =0and 6 =0on [0, T] x I
Moreover

. a0 R
_ VL dydE = — t
Jo [V dudt Jordwﬁ o dxd

-
since ¢ E[n.’!‘]xj‘ == 0.
Hence we have
. ot
i — -V dx dt =
_]Qrdwg(at + v V8 dvdt =0,
and consequently
j (diviypdedt =0 Yib e D(0r),
or
since the solution 8(¢, ¥} of
ﬂ-E--f(f)'Vé?::z,b in

t
8lr=20 in

0

s in CL2(0h) and satisfies 8 (g 775 = 0.
In conclusion we have div { = 0 in ;. . Moreover

ifr C-:;JF::L%?--mirﬁf

dar . y ri’}/’12dF+Jvrt[(c-V)-y*(rU.V)C]_HdI-,

=0
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by using {2.13). Hence for cach i = 1,..., m

fz;-ndrxf wndl =0 Ve[, T].
I r,

i

If @, g, and » are not regular, we can approximate them in the following way.
By using the Friedrichs mollifiers we can find
at e Cz'*"'(ﬁ), a” —» g in Cl«{—)\,’z(g); gm e CO2N 0,

g g i COLP(O,); G e CO2(Qy), 7 — o in o112, Y,
Hence we have that

a™ = curl g — « i CMYLD,
p o= curl g™ — y in  C%YHO,
g o ocurl % — in  COM01,

From this Jast resuilt we see that the solutions v™ of

cur] o™ = " in O,
div o™ = 0 in O,
v ep =0 on [0, T]x T

are such that o" e CO2Y(Q), o - v in COL*2(0,). Define now the vector
function {7 by using o™, 3™, and o™; by the first part of the proof it follows that
div {" == 0 in Op and LU- (- ndl’ = (O for each t € [0, T]. Moreover, by using
(2.7), we easily see that (" —{ in C° (Qr); hence the lemma is proved. B

The function { defined in (2.9} triviaily satisfies (2.5), ; moreover { is a solution
of (2.5); in the following weak sense:

Levva 2.4, For each @ c CI(Q) one has

% LD =0 D)+ (- Vo, @)+ (v VYD, ), (2.14)

where (, } is the scalar product in LY(0).
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Proof. We have
f i, x) - B(x) dx = j &, &) - DU, 0, %)) da's
2 2
hence by (2.7),

% L i, x) - D) dx

=X J-p[ tfi% (¢, ) DU, 0, 57))

i=1

ngi (U5, 0, %)) - w5(t, UGz, 0, x’))-l dx’
¥

+ 3 L o)

> [ {60+ % 5ot e )] 069 4% e T @ 9 d!

i=1

Now we define the map F as follows. The domain of F consists of the functions
@ of the sphere defined by {2.1) with 4 satisfying

A= falh, (2.15)

and such that (2.2) holds.

Finally we put { = Flg].

It follows from estimates {(2.11} and from Lemma 2.3 that there exists
T, €10, T,] such that the set

S={pe C*Y O} el < 4, {ple < dM, o satisfies (2.2}

satisfies F[.STC S, where F, the norms, and the seminorms correspond to the
interval [0, T4].
S is a convex set and by the Ascoli-Arzeld theorem it follows that S is compact

in C%Q7).

Moreover, as in [4], we obtain

Levma 2.5. The map F: S — 8 has a fixed point.
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Hence we have construct a solution {, v, p, w of the auxiliary system

LR IR ER T AL i On,
curle = ¢ in Or,»
dive =10 in  QOrn,
v-n=>0 “ on [0, 7] % T,
—Z%qtv-Vp:O ' in Qg
P lizo = Pa in Q,
curlw =0 in Or.,

divw = Ve, w+p Y (D) (D) — pdiv b in Or, ,
P

(51

wen = —py (Dm)wp; —pb-n on [0, T =T,

Tyt

{lep = in 2,

where equation {A), is satisfied in the sense described in Lemma 2.4.

3. Existence oF a SoLutioN oF System (E)

First we prove that Dy exists in the classical sense and belongs to C*40g7 ).
We need two lemmas:

Levma 3.1 Ifoe YD), dive =0 2, and v - n = 0 on I, then

div[{v - V) o] = (D) (D) in £

3.1
o Vvl a=—) (Dm)ewe;,  on I,

where the operator div is in the sense of distributions m £

See Bourguignon and Brezis [5, Sect. 3] or Temam [16, Lemma 1.1},

Levma 3.2. If ve CY$2), { = curl o, we have

(v Vo, curl @) = —((@ - V), ) — (L - Vv, @) VP& CyH(2), (3.2)
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Froof. If v e C¥0D), by a direct computation we have
curf[{e * Vo] = (o - V){ — (Vo - {div )¢,
and this leads easily to (3.2).
If ve C1(2), we approximate it with o, € cHy. §

Now we can prove the existence of Do

LEvmaA 3.3, We have

d .
o0 gf*( Viz  in Org (3.3)

hence fvfél & CU"\(QTJ'
Proof. Let @ € Cpo(£2). We have
Dy(v, curl ) = D, ®)

since curl v = ¢ = I. Moreover from (2.14), (3.2), and the equation y =
curl(h -+ w/p) we obtain

Dz, curl @) = {3, ®) + (€-Vye,d) + (v V) D, )
=y, ®) — ((v - V), curl @) = (b—}——m('a V)w, Lu;l@)

Hence

(v, curl @) — (‘21{0, Y, curl @) - { t (b — (v V), carl @) dr

p
_ (7/.(0, 3ok f; [}, 1 Toli — (v-¥) 7)} (v, ) dr, curl (ﬁ) ,

and consequently for each £ e [0, 1]

o{f, v) — of0, vy — r [Z) [— — — (e ¥V "0] {7, x) dr = VE(1, v,

where He CL ), v e [0, T)]. From (2.3}, (2.3)y, (A)g, (A)y. and (3.1) we
conclude that divV.E =0 in the distributions sense, and V.5 -u == 0 on
{0, 7\] < I hence (3.3). B

From (3.3) and (A), it fallows that

[o‘v + (v Ve — I'J] = —Va in ers
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i.e., {E);, holds, with w € 02 NQr,) (see Lemnmas 4.1 and 4.2 in [4]). Furthermore

curd(v g~ @) = L]y p—a=0 in £
div(vlg—a) =0 in £,

(Olg—a) n=0 on I

and consequently (L), holds.
Finally, as in Remark 5.5 in [4], we prove that pe C*1Q, ), and the
proof of 'Theorem A is complete,

‘4. THE CasE £ Not SIMPLY CONNECTED

By the hypotheses on the domain £ (see Section 1), it is clear that if §2 is not
simply connected, one can make it so by means of a finite number of regular cuss.
The aumber NV of these cuts is the dimension of the first cohomology spacc
H (82} of £, ie., the quotient of the space of closed differential forms by the
space of exact differential forms.

Moreover one can construct V functions ¢; , ¢ ,-.., g5 such that 209 = - grad ¢,
are linearly independent and satisfy «/® e C1(Q), div o™ = 0, curl o' = 0,
v - = 0 on I'. These ¢'*) are a basis of the space H (£2).

Finally, one sees that a function = is a gradient if and only if curl & == 0
and {2, ¥y = 0 for each k& = ],..., N {for these results see Foias and Temam
[7, Remark 1.2, Lemma 1.3, and Proposition 1.1]}.

We can orthonomalize the o'*); if we denote the orthonomal system thus
obtained by #'", we have constructed a system of vectors which has the properties
of that introduced in [, Sect. 1].

The difference between two solutions »; and z, of {2.3) is given by

Uty &) — vy(t, %) = Y Oty u¥(x),

where the 8,{¢) € C¥[0, T]) are arbitrary,
We denote by o(f, &) the solution of (2.3) such that {», ¥} == 0 for each
k = 1,..., N. Such a solution is obviously unique, and we have

e Hu.;-n\ eliglos-
Moreover each solution ¥ of (2.3} can be written in the form

a(t, x) = ofi, &) + Z 1) ut¥(x).

Hence, arguing as is {4], we obtain a solution &, p, @ of system (6.1)-(6.5) and
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we prove Lemmas 7.2 and 7.3 and Remark 7.4 of [4]. Hence, by proceeding
as before, we construct a function { which <atisfies the usual properties and we
find a fixed point ¢ = £ (see Section 2 of this paper). The regularity of Do
is proved as in Lemma 3.3 of this paper; by also using the fact that

Do, W) = (% (5 NI b aw), Vel 7, Vk= Lo N

finally one has

curl(? {0 — a) = T lpwg — % = 0 n £,
(T o — & Wiy =0, vk = Lo N,
div(? o — ay="0 in 0,
(@la— @ =0 r,

that is, Tlie = @ in 2.
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