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STUDIES IN ANALYSIS
ADVANCES IN MATHEMATICS SUPPLEMENTARY STUDIES, VOL. 4

On Bifurcation and Asymptotic Bifurcation
for Nondifferentiable Potential Operators
and for Systems of the Hammerstein Type

HuGo BEIRAO DA VEIGAT

Instituto de Fisica e Matemdtica
Lisbon, Portugal

The greatest positive bifurcation point (cf. Theorem 1.1) and the greatest positive
asymptotic bifurcation point (cf. Theorems 1.2 and 1.3) for a class of nondifferentiable
potential operators on Hilbert spaces are characterized. These results, announced
in [3], are used to study bifurcation for systems of the Hammerstein type (cf. Section 4).

0. INTRODUCTION

Notation

Let H be a real Hilbert space with norm and inner product denoted by
| || and ( , ), respectively. The strong convergence in H is denoted by —
and the weak convergence by —.

In the following [ is a closed convex cone in H with vertex at the origin,
Le, [ is a closed subset of H such that ¢l < K forall t > 0 and K + K < K.
We assume that IS is nonvoid and different from {0}. We denote by int I
the interior of K. If p > 0, we put,

Sp,={ueH:|u|=p}, V,={ueH:|lu|<p}, K,=KnV,

Some Definitions

A real number 4 is said to be a bifurcation point for an operator I': [ - H
if for every € > 0 there exist a pair (1.,u,) e R x K with |1 — ¢| < € and
0 < ||uc|| < € such that I'(u,) = Au,.

Similarly + o is said to be a bifurcation point for I if the preceding con-
ditions hold with . > 1/e instead of |2 — .| < ¢; a similar definition holds
for — oo.
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If in the preceding definition we replace the condition 0 < |[u|| < € by
the condition ||ng|| > 1/e, one says that 2 (respectively, 4+ 00 or — o) is an
asymptotic bifurcation point for the operator I'.

If S is a nonempty subset of H and @ is a real functional defined on §,
one says that @ is weakly continuous on S if u, € S and u, — uo € S implies
that ®(u,) = lim,_, , ., ®(u,). One says that @ is weakly upper semicontinuous
on S if under the same conditions one has ®(ug) = lim,_, 4, sup @(u,). The
weak lower semicontinuity on S is defined similarly.

We denoted by S the weak closure of S in the following sense: S=
{ueH:3u,eS, n=1,2,...,u,— uj. Obviously S=SifSis a convex and
(strongly) closed subset of H.

Let @:S — R. We say that @ is weakly continuous on S if there exists an
extension @ of @ to S that is weakly continuous on S. One gives similar
definitions for the weak (upper or lower) semicontinuity of @ on S.

In the following, different positive constants shall be denoted by the same
symbol c.

The Classical Result

The following result is well known (cf. [6, §6, Theorem 2.1] and [10,
§17, Theorem 17.6]):

THEOREM A. Let @:H — R, ®(0) = 0, be a weakly upper semicontinuous
functional. Let & be differentiable and put I' = V®. Suppose that roy=0
and let I be Fréchet differentiable at the origin with DI'(0) = B linear, con-
tinuous, self-adjoint, and compact. Then the largest eigenvalue .o of B, if
positive, is a bifurcation point for I'.

The aim of this chapter is to generalize Theorem A to a class of operators
not necessarily differentiable at the origin'. The motivation was given by
some elementary examples of potential operators on R* to which this
theorem does not apply. We give these examples now.

Examples with a Nondifferentiable I" at the Origin

ExampLE 1. Consider the following set-up. Let ¢:[0, + o[ =R be a
continuously differentiable function which does not vanish identically in
any neighborhood of the origin and such that ¢(0) = ¢'{0) = ¢"(0) = 0. Let
:[0,2n] —» R be a differentiable function such that W(0) = y(2n), '(0) =

y/'(2m), and assume that i’ is unbounded in [0, 27].

! We remark that there is a result of Turner [9, Theorem 2.6] on odd multiplicity bifurcation
for nondifferentiable operators verifying ||(I" — B)(u)]| = O(||u|]) at the origin with B linear and
compact.
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For any y e R? define a function @ in polar coordinates (we write y =
(&,n) = [1,0], where ¢ = rcos 0, n = rsin 0) by

D(y) =312 + (r)Y(0). (0.1)

Then @ is Fréchet differentiable (F-differentiable) on R? and its gradient
is given by V@ = I' = | + w, where I is the identity operator on R? and w
Is given in each point y = (& 1) = [r,0] by w(y) = w,(y) + w,(y), where

@ () = 'Oy, w(y) = ()Y O) y*/r), (0.2)

and y* = (—n,&). Note that w,(y) is the radial component of w(y) and w,(y)
the tangential one.

Since I'(y) = y + w,(y) + w(y), the equation I'(y)= Ay yields, by de-
composition in the radial and the tangential components, y + w.(y) = Ay
and ,(y) = 0. Using (0.2) one obtains the system

¢/l +1=2 YO =0. (0.3)

Obviously the second equation in (0.3) is solvable. Let 0o be a fixed
solution of lﬁ(()o) = 0. The first equation in (0.3) admits, for each r > 0
the solution /, = 1 + r~1¢/( )w(()) Hence to each solution 0, of y/(0,)
corresponds a branch y,, 4, € R* x R of solutions of I'( (y,) = )L,yr, with y, =
[1 0o]. Obviously y, — 0 as r — 0; moreover A, — 1 since ¢"(0) = 0. Thus 1
is a bifurcation point (the unique point) for the operator I'. In order words
the greatest bifurcation point for I (actually the unique one) is the greatest
positive eigenvalue (the unique one) for the linear operator I. However,
Theorem A does not apply since I' is not F-differentiable at the origin. If
it were, we would have DI'(0) = I (since this holds in the Gateaux sense)
and the remainder w(y) would verify

lljllqo lw(y)|/]y|=0 (0.4)

or equivalently, its radial and tangential components should verify

|l}m lo.(»)|/|y| =0 (0.5)
and

lim Jo(D|/]y] = 0, 06)

ly]=0

respectively. The first condition holds since ¢”(0) = 0, but the second one
fails since

sup | (D)/|y] = + 0, ¥r>0.
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Our aim is to show that this is not a casual fact but a general one. More
precisely, we shall prove in this chapter (see Theorem 1.1) that the thesis
of Theorem A holds even if I' is not F-differentiable at the origin provided
that the radial component w, (1) of the remainder w(u) = I'(u) — B(u) verifies

lim Hu)r(u)H/HuH =0, 0.7
[lul|=0
or, equivalently,
“lilm ||( (), w)]|/||u||* = O. (0.8)
ul|—0

We emphasize that, as in the preceding example, we do not exclude the
situation

sup [jw(uw)]| = + oo, Vi > 0.
[[ull=r

ExaMPLE 2. We now give another example of a potential operator
w:R? = R? such that (0.5) holds but (0.6) fails. This function shall be utilized
in Section 4 to show that there exist Hammerstein systems to which our
results apply, but Theorem A does not apply; it is an easy exercise to con-
struct other functions on R? (or R™, m > 2) for which this holds. We turn
now to our example. For the sake of clarity we put ¢; = (1,0) and e, = (0, 1).
Let y = (¢,1) € R? and define a function @: R? - R by

P(y) = (&/m*)en, (0.9)
where ¢:R— R, ¢(0) # 0, is a continuously differentiable function with
compact support on R. Then @ is continuously differentiable on R? and
its gradient F® = w has components given by

w,(y) = 00/0¢ ey = {p(E/mn + ¢'(E/m*)E/Mm} ey
w,(y) = 0®/0n e, = {EME — 2¢'EMNE I} es.
By definition @ and w vanish when i = 0. We claim that o verifies (0.8)
but does not verify (0.4). First, one has
(@(y),y) = [20(E/n*) = ¢'E/m*)EMm*1én. (0.11)

On the other hand, it follows from (0.9) that there exists a positive con-
stant ¢ such that

(0.10)

lE|=en* = w(y)=0 (0.12)

since ¢p(&/n?) = ¢'(¢/n*) = 0 whenever &/n? ¢ supp ¢. Consequently one can
assume that || < cp®. Under this assumption (0.11) yields |(w(y),y)| <
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c|é||n| < c|n|® and consequently
(), »)|/|¥]> < ¢|y| -0 (0.13)

as [y| = 0, as desired. However, if one considers the points y, = (0,1), t € R,
one has

I(U(yl)l/lyl' = "/5(0)’ # 0, Yt # 0, (0.14)
which contradicts (0.4). Thus our thesis is proved.

As a matter of fact we have proved only that 0 is not the F-derivative of
o at the origin. However, one can easily see that o Fréchet differentiable
at the origin implies Dw(0) = 0.

We take the opportunity to state two estimates that shall be used in
Section 4:

oM< el Jos(y)] < cfg. (0.15)

These estimates follow from (0.10) and (0.12).
The two examples just presented show that (0.8) is the natural assumption
to be made for the calculus of the largest positive bifurcation point.

Examples with a Nonlinear B

We shall give in this chapter another generalization of the F-differen-
tiability condition requested in Theorem A, whose meaning is shown by
elementary examples as, for instance, the function (y?/2) sgn y, defined in
the real line, whose gradient is |y|.

Another elementary example (in the plane) is the following one. Using
polar coordinates put

®(y) = $r?sin 0. (0.16)

This function is F-differentiable on R* with V®(y) = B(y) = B,(y) + B,(y),
where B.(y) = ysin0 and B(y) = 3y"* cos 0 are, respectively, the radial and
the tangential components of B(y). Furthermore, the equation B(y) = Ay
is equivalent to the system (independent of r) 1 = sin0, cos0 = 0, which
admits the solutions = /2, . =1and = —n/2, 1 = —1. Hence —1 and
1 are the bifurcation points for B. However, Theorem A (as well as the
generalization we have previously mentioned) does not apply since B is
not decomposable as a sum B = A + o with A linear and w verifying (0.4)
or (0.8). However, the bifurcation points for B, 1 and — 1, coincide with
M(B) = Isup (By, »)/|y|? and m(B) = inf (By,y)/|y|%
x|=1

|x|=1
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respectively. We claim that this is a general fact, provided B is a positively
homogeneous operator [i.e., B(ty) = tB(y), Yt = 0].

In fact, we prove in this chapter that Theorem A holds if B is positively
homogeneous and if 1, is replaced by M(B). Note that M(B) coincides with
the largest eigenvalue 1, if B verifies the assumptions of Theorem A.

Operators I' Defined Only on a Cone K

The third direction in which we generalize Theorem A is to operators I
defined only on a closed convex cone K with vertex at the origin. We assume
in this case that a suitable geometrical condition holds (see Assumption 1.1).
We emphasize that this geometrical condition holds if for each u € [K there
exists € = e(u) > 0 such that u + eI'(u) € K (or equivalently if the intersec-
tion of I with the half-line {v:v=u+ tI'(u),t >0} is not empty) and
consequently holds if 'K = K. Note that there are elementary examples
for which our condition holds but I'lK = K fails. For instance, let I be the
cone of positive functions (on a domain in R") and consider Iu(x)=
+sign u(x) or I'u(x) = —cu(x), ¢ > 0.

Examples Concerning the Asymptotic Bifurcation

Finally we shall prove also that our results hold for the asymptotic bi-
furcation case, as stated in Theorem 1.2 (to which we refer the reader). As
for the ordinary bifurcation the gradient of function (0.16) gives us a clear
motivation for considering in Theorem 1.2 a positively homogeneous B.
Similarly, the two first examples of this section show, after slight alterations,
that condition (1.2) is the natural one in Theorem 1.2. For the sake of com-
pleteness let us write the alterations: in the first example assume that
lim,, 4, [¢'(8)/t] = lim,_, , ,,[$(1)/t*] = O instead of $(0) = ¢'(0) = ¢"(0)=
0. In the second example define

D(y) = P(E*/mén, 0.17)

®(y) =0 if y = 0. This function is continuously differentiable on R? and
w = V® is given by its components

o,(y) = [$(E/mn + 282§ /n)]ey,
wa(y) = [$(E*/ME — (E/m'(E2/n)] ez,

being w(y) = 0 if n = 0. Since there exists a positive constant ¢ such that
w(y) = 0 whenever &2 > ¢|y| it follows easily that

() /P < o (0.19)

which implies (1.2). On the other hand, (0.14) holds again and consequently
lo(»)|/|¥| = 0 as |y| = + oo fails. Thus w is not F-differentiable at infinity

(0.18)
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(note that Dw(w0) = 0 if w were F-differentiable at infinity). Finally (0.15)
holds again; this shall be used later.

Plan of the Chapter

The plan of the chapter is the following. In Section 1 we state the main
results that shall be proved in Section 2. In Section 3 we discuss conditions
(1.1) and (1.2) and their relationship with Gateaux differentiability (G-
differentiability) and F-differentiability. In Section 4 we apply Theorems 1.1
and 1.2 to the study of bifurcation and asymptotic bifurcation for systems
of the Hammerstein type and we establish sufficient conditions in order
that (1.1) and (1.2) should hold for these systems. Finally in the Appendix
we consider briefly the case M(B) = 0 and the case in which B is homogeneous
of dega > 0.

1. MAIN RESULTS

One says that B: K — H is positively homogeneous if B(tu) = tB(u) for any
uelK and any t > 0. We define

m(B) = inf (B(u),u), My (B)= sup (B(u),u).

nelkn S, el NSy

One verifies easily that the following two propositions hold.

ProposiTION 1.1.  Let I' = B + w with B: K — R positively homogeneous
and w: K = R verifying
lim  (w(u), u)/||u]|* = 0. (1.1)
u—0
OFuek

Then the bifurcation points for I' are contained in the closed interval
[m(B), M. (B)].

ProrosiTION 1.2.  Let I' = B + w with B: K — R positively homogeneous
and w: K - R verifying
lim (e (u), w)/||u|* = 0. (1.2)

[u]]|= + oc
nelk

Then the asymptotic bifurcation points for I' are contained in the closed
interval [ my(B), M, (B)].

It is natural to study under what conditions the extreme points of the
interval [my(B), My(B)] are effectively bifurcation points for I'. First we
state some definitions and remarks.
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Remark 1.1, Since 2 is a bifurcation point (at the origin or asymptotic)
for an operator I if and only if — 2 is a bifurcation point for —I', the study
concerning the value m,(B) can be reduced to the study concerning M, (B).
Hence, without loss of generality, we shall consider in the following only
this last case.

If @ is a real functional defined on [, one says that ¢ is Gateaux differen-
tiable at a point u, € I and that its Gateaux gradient at ug is ve H if

D(uy + th) — P(ug) = (v, th) + w(ug, th) (1.3)

with lim,_, o[ @(ug, th)/t] = 0, for all h such that uy + he i and all t € 10,1].
We then write v = V®(u,). If @: K — K, — R and if ug € K — I, we con-
sider in (1.3) only the increments h such that 17l < [ltol| = Po-

We shall use the following assumption in the Theorem 1.1.

AssUMPTION 1.1, For every ue K such that (I(u),u) > 0 and I'(u) # u,
Ve R, thereexistsavel,(p = ||u|| ) such that v # u and (I'(u), v) = (F(u),u).

The following assumption will be used in Theorem 1.2.

ASSUMPTION 1.2.  For every ue K with Hul] > po such that (I'(u),u) >0

and T(u) # Ju, V2 € R, there exists a ve I, (p = ||u|) such that v # u and
(I'(w), v) = (I'(u), u).

It is easily verified that for points u € int I Assumptions 1.1 and 1.2 hold
with (I'(u), v) > (I'(u), u). Moreover we have the following proposition.

PROPOSITION 1.3.  Assumptions 1.1 and 12 hold in a point u (with
(I'(u), v) > (I'(u), 1)) if there exists € = €(u) > 0 such that u + €I'(u) € K.

In particular, the following corollaries hold.
COROLLARY 1.1.  Assumption 1.1 holds if T'K = K or if K = H.

COROLLARY 1.2.  Assumption 1.2 holds if (i — K, )) « K or if K = H.

Note that Propositions 1.1 and 1.2 have a local character. Similarly, in
the following theorem it is sufficient that @ and I' be defined only in a [,
with p, > 0 arbitrary small.

TueoREM 1.1. Let @:IK —» R, ®(0) = 0, be a weakly upper semicontintious
and Gateaux differentiable functional. Let I' = V® verify Assumption 1. 1 and
I = B + w with B positively homogeneous in I and o satisfying (1.1). Then
if My (B) is positive, M (B) is a bifurcation point for I' in I.
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In the next theorem condition (i) is obviously fulfilled if @ is defined and
weakly upper semicontinuous on all of K.

THEOREM 1.2. Let @:K — K, — R be a Gateaux differentiable functional
on K — K, and let I' = VO verify Assumption 1.2. Assume that I' = B + o
with B positively homogeneous in KK and w satisfying (1.2). Finally let ®(u) —
L(B(u), u) be bounded on each K N S, for p > p,, and assume that one of the
Jollowing conditions holds:

(1) @ is weakly upper semicontinuous on K — K, , or
(i) @ is weakly upper semicontinuous on I — I, and (B(u), u) is weakly
upper semicontinuous on K.

Then if My(B) is positive, My (B) is an asymptotic bifurcation point for I’
on [K.

As a corollary to Theorem 1.2 one has

THEOREM 1.3. Let &:K—> R be a weakly upper semicontinuous and
Gateaux differentiable functional. Let I' = V& verify Assumption 1.2 and
I' = B + w with B positively homogeneous in I and w satisfying (1.2). Assume
that ®(u) and (B(u), u) are bounded on bounded sets. Then if M, (B) is positive,
M(B) is an asymptotic bifurcation point for I' on K.

Remark 1.2.  From hypothesis (1.2) it follows that, for fixed K > 0, there
exists p; > po such that |(w(u), u)| < K||ul|, Vu € K with ||u]| > p,. Since

B(Eu) = D(u) + ff (F(tw),u)dt, &> 1,

it easily follows that if &(u) — $(B(u), u) is bounded on K N S,,, then it is
bounded on each IK " S, for all p > p,. Hence, if in Theorem 1.2 one chooses
po sufficiently large (po > p,), it is sufficient to assume that &(u) — +(B(u), u)
is bounded only on S, N K.

2. PROOF OF THE MAIN RESULTS

In this section we prove the results described in the preceding one. In
order to prove Theorem 1.1 we state some lemmas.

LemMA 2.1.  Let ¢:IK —» R, @(0) = 0, be radially continuous at the origin.>
Assume that @ is Gateaux differentiable on K — {0} and put I' = V¢. Let

2 That is, for any u € [§, the function t - &(tu), t > 0, is continuous for t = 0.



250 HUGO BEIRAO DA VEIGA

I' = B + w with B positively homogeneous in KK and o verzfving (1.1). Then

lim |®(u) — 5(B),u)|/|jul]* = (2.1)

u—0
OFuelk

In particular, ® is Gateaux differentiable at the origin (Frechet differentiable
if my(B) and M(B) are finite) with I'(0) = 0.

Proof. Letu # 0, u e K, and consider the function f(f) = ®(tu), t € [0,1].
Since /() is differentiable on ]0, 1], with bounded derivative f*(t) = (I'(tu),u),
and continuous at t = 0, it follows that

& (1) = $(B(u), u) + fol (o(tu), u) dt.

Denoting by d(€) a positive number such that |(e(u), )| < €l|u]|? if u e I,
||u|| < d(e), it follows that

|®(u) — $(B(u), u)| < 3el|ul|? 2.2)

. u||<5e

) “H = p, and (I'(v), u) > 0. If there exists
avelS,,v# u such that (I'(u),v) = ([(u), u), then there exists a v’ € I, such

that (I'(u), v") > (I'(u), u).

Proof. Suppose that (I'(u),v) = (I(u),u) and put v, = tu + (1 — t,t e
10, 1[. Since we use only values of ¢ close to 1 we assume, without loss of
generallty, that v, # 0. Define v’ = pv,/||v|. Then v, € I, and (I'(u), v/ — ) =
(I'(u),v, — v,) since v, — u = (1 — t)(v — u). Suppose now that the lemma is
false. It follows that (I(u), o, — v,) < 0 for all ¢ in a neighborhood of 1. Since
v, — v, = av, with o > 0 it follows that (I'(u),v) < 0; letting t — 1 we con-
clude that (I'(u), u) < 0 which is in contradiction to our assumptions.

LEmMmaA 2.3. Let uelS, u#0, and I'(u) # Au for all 1€ R. Assume that
there exists € =e(u) >0 such that u+ el'(u) € K. Then, putting p = H
there exists v' € I, such that (I'(u),v") > (I (u), ).

Proof. Put

p_ p
= ———Hu " eF(u)H (u + el'(u)).

One has v' € ,. Moreover v’ # u since v' = u implies that I'(u) = Au. Put
w=u+ el(u). "One has [Wl|(F @), v — u) = €™ (v ,|Jul|w = ||w|ju) and
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consequently

_ ufl + [
el

(C(u),v" — u) H (| 1w] = (u,w))

as desired.
Proof of Proposition 1.3.  The proof follows directly from Lemma 2.2.

Remark 2.1. Note that in Proposition 1.3 and Lemmas 2.2 and 2.3, I'(u)
is an arbitrary element of H.

Proof of Theorem 1.1.  Given €€ ]0,M[,M = M(B), let p e ]0,5(¢/3)]
be fixed. If u e K, ||u | < p, one has

(e (u), u)| < Fel|u]|? (2.3)

and
|(u) — 3(B(u), u)| < Lelul|* (2.4)

From the definition of M follows the existence of a sequence u, € I such
that |u,|| = p and (B(u,),u,) > Mp? — (1/n). Hence we get from (2.4) that

D(u,) = 3(B(u,), u,) — |D(u,) — 2(B(u, )|
> 3Mp* — (1/2n) — tep
consequently
suﬂg D(u) = GM — te)p2. (2.5)

On the other hand, @ attains its maximum in [<, at (at least) one point
uq since it is weakly upper semicontinuous in K, and (2.5) yields

D(ug) = (2 - %E)PZ-

For convenience put ”Lloll—p One has $(B(up), ug) + w(ug), ug) =
GM — §e)p* — Lep’® — tep’®, consequently

2(l(ug), uo) = (3M — 3€)p* > 0; (2.6)
and in particular I'(u,) # 0. We claim that
I(ug) = dug (2.7)

‘or a real number 1. Notice first that “uOH = p. If not, then putting h =
(p = p)/p']ue in (1.3) we obtain

Plug + th) = D(u) + t[(p — p')/p](I'(ug), uo) + w(ug, th)
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and this yields @(uy + th) > ®(u,) for t > 0 sufficiently small which is false
since ®(u,) is a maximum on [,,; hence ||u|| = p.

Suppose now, by contradiction, that (2.7) does not hold. Then from
Assumption 1.1 and Lemma 2.2 the existence follows of a v € [€, such that
(I'(ug), ' — ug) > 0. Hence by (1.3) one has ®(uq + t(v' — ug)) > P(u) for
¢t > 0 sufficiently small, which is not possible since ®(u) is a maximum on
[<,. Thus (2.7) holds.

Finally (B(ug), uo) + (w(ug), 1t0) = Ap> consequently ip* < Mp?® + 3¢p?,
Le.,

L<M + e (2.8)
On the other hand, from (2.6) and (2.7) it follows easily that
A=M—e. (2.9)

We remark that we have proved that for any € € ]0, M[ and any pe 0,
(e/3)] there exists uy € K, and 1€ [M — ¢, M + 1€] such that I'(ug) = Auq.
Furthermore ®(u,) = max ®(u) on [K,.

Remark 2.2. Ifthe condition described in Proposition 1.3 (or in Corollary
1.1) holds, then Lemma 2.2 is unnecessary since the existence of a point
v’ € I, such that (I'(ug), v — 1) > 0 follows directly from Lemma 2.3.

We now proceed to prove Theorem 1.2. We begin by stating the following
lemma.

Lemma 2.4, Let @:1 — K,, — R be a Gateaux differentiable functional
and put I = V®. Let I' = B + w with B positively homogeneous in I and w
satisfying (1.2) and suppose that |®(u) — $(B(u), w)| is bounded in I< N S, for
each p > po. Then

lim  |@(u) — 3(B(u),u)|/||u|* = 0. (2.10)
[[uf| =+
Proof. For every € > 0 there exists R, > p, such that |(o(u), u)| < ¢l|u]|?

ifue K, ||ul| = R.. Letu e K, ||uf| > R... One has

1 R
D (u) — L(B(u),u) = d)<HL—:” u) —5 <B<H“€H u>, — u> + f;c/”““ (eo(tu), u)dt

(2.11)
On the other hand,

Ll (eo(tu), u) dt

e/ lull < ge]Juf|*. (2.12)




BIFURCATIONS FOR NONDIFFERENTIABLE OPERATORS 253

On putting
S.= sup [o(u) — (B, u),

[lul| =R,
nel

it follows from (2.11) and (2.12) that
|P(u) — $(B(u), u)| < €|ul]?, VuelK, ||| > N, (2.13)
where

N, = max(R.,(2S_/e)}/?).

Proof of Theorem 1.2. First we verify that M = M(B) < + 0. Let
p > po and suppose, by contradiction, that M (B) = + 0. Then there exists
a sequence u, e K n S, such that (B(u,),u,) — +co. If hypothesis (i) of
Theorem 1.2 holds, one has ®(u,) - + oo and (at least for a subsequence)
un—ug € K — K, . But this contradicts (i). If hypothesis (ii) holds, then
(at least for a subsequence) u, — u, € I§, which contradicts the weak upper
semicontinuity of (B(u),u) on IK; thus M < + 0.

Given €€ ]J0,M[, let p,, p e [N(g/6), + o[, with p, < p, < p fixed. If
hypothesis (i) holds, we take p sufficiently large so that

IMp? > sup  D(u). (2.14i)

ueK,,l la) I}&—IK,)1

If (ii) holds, we take p such that
o® 2 3p% (2.14ii)

From the definition of M the existence follows of a sequence u, € S, n K
such that (B(u,), u,) > Mp? — (1/n). By using estimate (2.13) one obtains

sup P(u) = M — Le)p?.
Kp =Ko,

Now let v, € K, — [, be a maximizing sequence for @ such that v, — u,.
We claim that u, € I, — I, . Suppose that condition (i) holds and suppose,
by contradiction, that u, € I<,,,. Since u, € K, — K, it follows from (2.14i)
that @(u,) < $Mp? < lim ®(v,), which contradicts (i). If condition (ii) holds,
one has 3(B(v,),v,) = ®(v,) — tep?; passing to the limit and using (2.14ii),
one has 3(B(uo), tl) > Mp,* and consequently ||uo|| > p;.

Hence u, is a maximum point for ¢ on K, — K, ; moreover,

D(ug) = M — ge)p>.

Continuing the proof as for Theorem 1.1 we see that I'(uo) = Au, with
|uo|| = p and 2 € [M — €, M + Le]. Theorem 1.2 is proved.
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Remark 2.3. Notice that in Theorem 1.1 we have

M (B) = lim sup (u)/%||u||?
hSo

as follows from (2.1). Similarly, from (2.10), it follows that in Theorem 1.2,

M, (B) = limsup ®(u)/%||ul|>.
uel
Hull= + o

Remark 2.4. 1f B is a weakly continuous potential operator (in particular
a linear, continuous, compact, and self-adjoint operator) satisfying assump-
tion 1.1, then M(B) is the largest positive 4 for which B(u) = Au admits a
nonvanishing solution u e K.

3. ON THE Basic ConbpiTions (1.1) AND (1.2)
In this section we make some observations on hypotheses (1.1) and (1.2).

DEerFNITION 3.1.  Let B and B be two positively homogeneous operators

on K. Then B and B are said to be equivalent (and we write B ~ B) if
(B(u), 1) = (B(u), u), Vu € K.

Obviously if B ~ B, one has my(B) = my(B) and M(B) = M(B).

Remark 3.1. If B is a linear continuous operator, then there exists a
unique self-adjoint, linear, continuous operator B, such that B, ~ B. More
precisely, B, = 3(B + B¥).

DEFINITION 3.2, Suppose that I' is defined on [€,,, p > 0 [respectively, on
K —K,] and I' = B + @ with B positively homogeneous on K and o
verifying (1.1) [respectively, (1.2)]. Under these conditions B + @ is said to
be an a.d. (admissible decomposition) for I' (at the origin) [respectively, at
infinity].

PROPOSITION 3.1. If I' = B 4+ w is an a.d., then B ~ B if and only if there
exists an a.d. I = B + @.

The proof is left to the reader.
Now let I' = 4 + w with A positively homogeneous on I and w verifying

lim w(tu)/t =0, Vx e K. (3.1)

=0+

We then say that 4 is the Gateaux derivative of ' at the origin and we write
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DI'(0) = A. Similarly if one has (3.1) when ¢ — + o0, we say that A4 is the
Gateaux derivative of I' at infinity and we write DI'(c0) = A.

PROPOSITION 3.2. If I' = B+ w is an a.d. at the origin [respectively, at
infinity] and if T is Gateaux differentiable at the origin [respectively, at
infinity], then B ~ DI'(0) [respectively, B ~ DI'(o0)].

Thus DI'(0) [respectively DI'(00)] is not always the simplest operator in
its equivalence class. For instance, the operator w defined by (0.10) [respec-
tively (0.17)] admits the a.d. w =0+ w, but Dw(0) = A [respectively,
Daw(o0) = A] exists in the G-sense with A 5 0 since one has A(x) = ¢(0)ye,
if&=0.

If we replace (3.1) by the stronger condition

)
o0 [l ()/ul] = . (3.2)

then we say that A is the Frécher derivative of T at the origin (a similar
definition holds for infinity by putting, in (3.2), |ju| » + oo instead of u— 0).
Obviously I' = DI'(0) + (I' — DI'(0)) is then an a.d. To be more precise, if
one decomposes the vector field w(u) in its radial and tangential components

w,(u) = [(c(u), u)/||ul|*]u, w(u) = o(u) — [(w(u), u)/||u“2]u

and if one considers the two conditions

lim ||eo,(w)]|/|Ju]| = O (3.3i)
hew
lim {je,(w)]|/||u]| = O, (3.3ii)
u—0
uelK

‘hen (3.2) is equivalent to (3.3i) plus (3.3ii) while (1.1) is equivalent to (3.3i)
>nly. These facts hold if we replace (1.1) by (1.2) and if we put |ju]| - + oo
nstead of # — 0 [in (3.2) and (3.3i or ii)].

Finally, for a positively homogeneous remainder, the following result
10lds.

ProrosITION 3.3, Suppose that w: K — H verifies, for some o > 0,

(o(tu), u) = w(u), u), YuelK, Vt>0,

vith (w(u), u) not identically zero in K. Then w verifies (1.1) [respectively, (1.2)]
fand only if o > 1 [respectively, o < 1] and (w(u), u) is bounded in S, for one
ositive p.

Che proof is left an easy exercise.
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4, SYSTEMS OF THE HAMMERSTEIN TYPE

Assumptions and Notation

In this section we apply the preceding results to systems of the Ham-
merstein type. To study this problem Theorems 1.1 and 1.3 together with
some classical methods (see [6] and [10]) are used. For the study of Ham-
merstein operators we refer also to the papers by Amann [1, and references ]
and to a paper by H. Brézis and F. E. Browder [4].

In the following B is a subset of finite Lebesgue measure of the Euclidean
space R". Let y = (y,,. .., V,) denote a generic R"-element. The norm and
scalar product in this space are defined as |y* =|y,[* + -+ |y,|* and
(1,3) = ¥,V + 4+ VuF- Also p > 2 is a real number and ¢ is defined by
the equation (1/p)+ (1/q) = 1. We consider the reflexive Banach space
L?(B) with the usual norm

1/p
A

and also the Banach space LYB) with norm || ||q and the Hilbert space
L*(B) with norm || ||,. We denote by ¢ , > both the scalar product on
L*(B) and the pairing between LY(B) and the dual space L*(B):

(g, upy = fB vy(X)uy(x)dx

for v,(x),u,(x) € L3(B) or v,(x) e LYB) and u,(x) € LP(B). We consider also
the reflexive Banach space L, P(B) = L(B) x - - - x LP(B) (m times), the norm
of which is, as for L?(B), denoted by || ||, and defined by

1/p
Jll = [, o)

where u = (uy, . .., u,) € L,2(B). Similar definitions hold for || ||, and || [|,-
The scalar product on L,,%(B) and the pairing between L,%B) and the dual
space L, ”(B) are denoted by the same symbol ¢ , >, which is defined by

m

(o, ud = Z v, >

with v=(v,,...,v,) and u=(uy,...,u,) belonging to L,*(B) or with
ve L,YB)and u e L,”(B).

Let g;(x,y),i =1, ..., m, bereal functions defined on B x R™ and satisfying
the Carathéodory conditions, i.e., continuous in y for almost all x € B and
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measurable in x for all y e R”. Moreover, assume that there exists a real
‘unction G(x, y) defined on B x R™ such that for almost all x € B,

gi(x,y) = 0G(x, y)/dy;, i=1,...,m,

ind suppose that G(x,0) =0 and ¢,(x,0) =0, i=1,...,m, for almost all
¢ € B. Finally defined a function ¢g: B x R™ — R™ by

g(‘\" y) = (gl(xa J’), suialy gm(x7 y) )

We denote also by the symbols g; and g the Nemytsky operators defined by
9i(w)](x) = gi(x, u(x)) a.e. in B and [g(u)](x) = g(x,u(x)) a.e. in B, and we
wssume that each g; acts from L,,”(B) into LYB), i.e., that g;(x, u(x)) € LY(B),
7u(x) € L,,"(B). Under this condition the operator g; is bounded and contin-
1ous (cf. Krasnoselskii [6, Chapter I, §2]) and g: L,?(B) — L,,%B) is bounded
ind continuous. Moreover ¢ is a potential operator, ie, g = V® in the
‘réchet sense where @: L,”(B) — R is defined by

m

O(u) = J‘B G(x, u(x))dx

cf. [10, Theorem 21.1]).
Consider now m real symmetric kernels K;(x, &), measurable on B x B, and
he associated linear integral operators

[4(N]E) = [, Kilx, Of(D)dé ae.on B. (4.1)

Ve assume that the operators A4; act and are completely continuous from
A(B) into L”(B). Hence they are completely continuous as operators on L3(B).
Aoreover we assume that each A;, i = 1,...,mis self-adjoint and positive on
Z(B). Obviously the operator A(v) = (A,(v,), . . . , A,,(v,,)) verifies the corre-
ponding properties as an operator from L,%B) into L,”(B) and as an
perator on L, *(B). Moreover the positive square root of 4 on L,*(B) is
iven by A'? = (A}/?, ..., A}/?), where A}/? denotes the positive root of 4;
n L*(B). Recall that each A}/? (consequently A'/?) is self-adjoint and positive
f. [8, n. 104].

One can prove (see [ 10, Corollary 23.1] that the range of A'/? is contained
1 L,”(B) and that the operator A" = L,*B)— L,"B) is completely con-
nuous. It follows that the adjoint operator is a completely continuous
perator from L,*(B) into L,*(B). Since it coincides with A/? on L, %(B),
will be denoted by the same symbol 4/2.

It is easy to see that the functional #A'2: L %(B)— R is Fréchet differ-

m
1tiable with

P(DAY?) = AV2A(Pd) 412, (4.2)
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We return now to the Nemytsky operator ¢g. We assume that the functions
¢g; can be written-in the form

m

g y) = Y. gi(x)y; + wi(x, y), (4.3)
i=1
where ¢;;(x), i,j=1,. 1, belongs to LY(B) with s = p/(p — 2), gy(x) =

gi(x 0)® and the 1emamde1s w;(x, y) satisfy the Charathéodory conditions and
act from L, 7(B) into LB). We define the Nemytsky operator a(u) by

[o(w)](x) = (@, (x, u(x)), . . ., 0, (x, u(x))).
The Nemytsky operator g is then the sum of the linear operator g, defined by

[JO "l <z Jl] \)“ Z Jm] >

j=1 j=1

with the remainder .
The Muain Results
The following results hold.

THEOREM 4.1. Assume that the conditions described in this section hold
and that

lim <a(u),u)/||ull? = 0. (4.4)

[lullp—0

Then [in the space L,P(B)] the largest positive eigenvalue for the linear
problem

Ago(u) = Au 4.5)
is the largest positive bifurcation point for the problem
Ag(u) = Au. (4.6)

The result holds again if we replace “largest positive” with “smallest negative.”

TuEOREM 4.2.  Assume that the conditions described in this section hola
and that

lim  <a(u),ud/||ul|; = 0. 4.7
[ul|p=+ o
31( the functions g,(x, y) are regular, then g;;(x) = [dgi(x, ¥)/@y;]y=0; an analogous remar}

holds for the asymptotic case.
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Then [in the space L,P(B)] the largest positive eigenvalue for the linear
problem (4.5) is the largest positive asymptotic bifurcation point for problem
(4.6). The result holds again if one replace “largest positive” with “smallest
negative.”

Recall that (4.5) and (4.6) can be written more explicitly as
[} Kitx, é)[ Y g,-j(é)u,-(é)J dE =m0, i=1,....m
ji=1
and
Jo Ko O0de @), &) de = 2, i=1,..,m

respectively.

Remark 4.1. In Theorems 4.1 and 4.2 it is not necessary that the operators
4;, 1 < i< m, are integral operators [see (4.1)]. In fact the results and proofs
10ld if these operators verify the following properties:

(a) A;is completely continuous as an operator from L%B) into L?(B)

(b) A, is self-adjoint and positive as an operator on L*(B);

(c) A}*(L*(B)) = L”(B), and A}? is completely continuous as an opera-
or from L*(B) into L?(B).

[l

Proof of Theorem 4.1. The functional A2 is weakly continuous on
-n(B) since A''? is completely continuous from L, %(B) into L ?(B). On the

m m

ither hand, @ is Fréchet differentiable and (4.2) holds. It follows that
V((I)AI/Z) = Al/zgoAI/Z 4 AI/Z(,UAI/Z,

vhere A'?g, A"/ is linear and completely continuous on L, %(B). Moreover
rom (4.4),

lim  {(A20AY)(u), uy/||ul)3 = 0

[lul]2—0
ince ||4"/*(u)||, = ¢||u||,. Thus (1.1) holds. Then, by Theorem 1.1, the largest
ositive bifurcation point for
(AY2gAY?) () = du in L,*B) (4.8)
; given by
M(A'2goA' %) = sup ((AM2goA")(w),u),

[lull2=1
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if this quantity is positive. Since 4'%goA"? is a self-adjoint, completely
continuous operator, M is the largest positive eigenvalue for

(A'2goAY?)w) = Ju  in L,*(B). (4.9)

m

A corresponding result holds for the smallest negative bifurcation point
in (4.8).

To conclude the proof it suffices to verify that 4 # 0 is a bifurcation point
for (4.8) in L,*(B) if and only if it is a bifurcation point for (4.6) in L,"(B).*
This can be done with a standard method: If 1 is a bifurcation point for (4.8),
one has (AY2gAY?)(u.) = A, with 0 # |ju.||, >0 and A, — 4. By putting
v, = A'?(u,), one has (Ag)(v.) = A, with |jv][,»0 and v, # 0 (since
(AY2g)(v,) = A, # 0). Reciprocally, if 1 is a bifurcation point for (4.6), one
has (Ag)(v.) = Actes 2e — A 0% ||o[l, — 0. By putting u, = (1/2)(4*g)(v.).
it follows that |||, < c|2|”Y|jg(vo)||,— 0. Moreover A'*(u;) = v, con-
sequently u, # 0 and

(A2 A1) () = (A'2g)(v,) = At

Proof of Theorem 42. If AY*wA'? does not verify (1.2), there exists
a real €, > 0 and a sequence u, € L,,*(B) such that ||u[|, = + oo and

(@A)t APy B > €0, VK (4.10)

Since w is a bounded operator from L,”(B) into L, %B), it follows from
(4.10) that the sequence A'%(u,) is unbounded in L,”(B). Moreover (4.10)
yields

(@A ), AP AP w2 > ceo,  VE,

and with the help of (4.7) it follows that A"/?(u,) is bounded in L,,(B), which
is in contradiction with the preceding conclusion. The remainder of the proof
is similar to the preceding one.

Sufficient Conditions for (4.4) and (4.7)

Now we state some sufficient conditions for (4.4) and (4.7).

PROPOSITION 4.1. Assume that the vector function o verifies the condition

(@(x, ), 9)] < bEI[V? + eo| ¥, (4.11)

4 In the same Way one proves a similar result for the eigenvalues of (4.9) and (4.5).
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where b(x) € L¥(B) and ¢, is a constant, and also the condition

II}mO (@, ),/ =0 (4.12)
s
for almost all x € B. Then (4.4) holds.

Remark 4.2. A sufficient condition for (4.11) is
lo(x, )| < by + ey, (4.13)

where b(x) and ¢, are defined as before (note that p/g = p — 1).

Moreovel terms of the form d( x)’y[ with 1<r<p-—1 and d(x)e
Lr"=r=1)(B), are implicitly included in the second term of (4.13) since they
can be interpolated by b(x)|y| and ¢, | y["’2.

In connection with (4.3) recall that w acts from L, ?(B) into L,%(B) if and
only if |w(x, y)| < a(x) + b(x)|y| + ¢;] |7~ with a(x) € LY(B).

PROPOSITION 4.2.  Assume that the vector function w verifies the condition

[((x, y), y)| < ao(x) + b(x)]y[% (4.14)
where ay(x) € L*(B) and b(x) € L(B), and also the condition
i
i en (@ 1, )92 = 0 (4.15)

for almost all x € B. Then (4.7) holds.

PROPOSITION 4.3.  Assume that (4.15) holds unformly for almost all x € B.
Then (4.7) holds.

Proof of Proposition 4.1.  Assume that (4.4) fails. Then there exists and
€0 > 0 and a sequence u(x) € L,”(B) such that |||, — 0 and

vk, (4.16)

[Koo(u), ] > (1 + ¢ + ca)eol[u|Z,
where the positive constants ¢, and ¢ are defined in the following. Consider

now the real measurable functions defined on B by

filx) = {|(a)(x, up (X)), () X)> il |u(x)] # 0,

4.17
0 if |u(x)| = 0. (“-17)

Since the integral is absolutely continuous with respect to the measure, there
:xists a 0y > 0 such that

IE| < 0= fE b dx < €, (4.18)

vhere E is a measurable subset of B and |E| denotes the measures of E.
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On the other hand by assuming (without loss of generality) that i, (x x)—0
a.e. on B, it follows by (4.12) that f,(x) — 0 a.e. on B. Thus fi(x) converges in
measure to 0. Hence there exists an integer k, such that

k> ko= |Bg")| < dg, (4.19)
where
B(k) = {‘C € B: fi(x) = fof

Since

|<(D(U,‘.), “Ic>l < J‘B— BY l((,l)(x, “k(’\)) ”k( ))I dx + U \(a)(x, “k(x) )> le(X) )| dxa
it follows from the definition of By’ and (4.11) that
)2

|<oo (), u | < €|l |5 + B”" () |te()|* dx + ¢ [|ui |5

and by Holder’s inequality,

1/s
[Keo (), ued] < eaeollu|z + |l + <f3g<) b(x)“dx) |

where ¢, is a positive constant such that || Hz < ¢ ||3. Assuming k suffi-
ciently large in order that k > ko and |ju,||5™ 2 < €, it follows, with the help
of (4.19) and (4.18), that

.<U)(“k)a “k>| <(1+c + Cz)EOH”k Iﬁ,

which contradicts (4.16).
Proof of Proposition 42. Assume that (4.7) fails. Then there exists a
positive €, and a sequence u; € L,,"(B) such that ||u|, - + oo and
[Koo(u), ] > 2 + eo)eoljullz, k. (4.20)
Let d, > 0 be such that (4.18) holds and define a function f: B x R™ — R by

O i v #0
f(x,y)={|éw(¥’))’))|/|}| " iioj (421)

Then there exists a constant M, > 0 such that
|{x € B: f(x,u(x)) > €o}| < do- (4.22)

holds for any measurable u: B — R™ such that |u(x)| = M, ae. in B. If not,
to any positive integer M there corresponds a measurable function uy(x)
such that |uy(x)| > M a.e. in B and

[{x € B: f(x,up(x)) = €o}| > - (4.23)
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Since IuM(x)[ — +oasM — + oo, it follows from (4.15) that f(x, up,(x)) = 0
a.e. in B and in particular f(x,uy(x))— 0 in measure. But this contradicts
(4.23).

Now define BY and C*® by

BY = {xeB: f(x,u(x)) > € and C® = {x e B:|u(x)| = M,),
respectively. We prove that
|IC® A BY| < 8, Vk. (4.24)
Put

oy Ju(x) if xeC®,
Uk(x) = {yo if x ¢ C(k),
where y, € R" verifies |yo| = M. Since [i,(x)| > M, on B it follows, from
(4.22), that
[{xeB: f(x,m(x)) > €}| < .
Moreover one easily sees that C® n B§) < {x € B: f(x, W, (x)) > &0} and
consequently (4.24) holds.
Finally one has, for any k,

l(w(uk), uk>l < f

B—C0)

(@ 1)), 1)) dx
+ [ oo (@06 100, )] i

+ ot o @05 10,09), 1,09)

The first integral on the right is bounded by a constant (dependent on
M) as follows from (4.14). The second is bounded by € [ [u(x)|? dx as
follows from the definitions of BY’ and f. The third integral on the right
of (4.25) is less than or equal to

1/s
c+ (Fag D7)l

18 follows from (4.14) and Hélder’s inequality. Thus, by using (4.24) and
4.18), the referred integral is bounded by

dx. (4.25)

¢ + €o[u|3-
dence (4.25) yields
Ko@), wed| < e + (1 + ¢)€o ||tk

vhich contradicts (4.20) for any index k such that [|u|, > cseq .

2, vk,
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Proof of Proposition 4.3. 1If (4.7) fails, there exists an €, >0 and a se-
quence u, € L,”(B) such that ||u||, - +c0 and (4.20) holds. On the other
hand there exists M, > 0 such that

2

‘yi > M,= |((D(\, ), J’)I T 60|y|

for almost all x € B. Hence

Koo, u| < |,

iG> Mod I(U)(Xa U(X) ), () )‘ dx
[ copenry @00 (3D, ) dx

< ca€0ljuelf; + c(Mo).

By choosing k sufficiently large in order that |ju||> > ¢(M,)/2€, one con-
tradicts (4.20).

Examples with a Nondifferentiable Operator ¢

There exist operators g for which the sufficient conditions stated in
Proposition 4.1 hold (hence Theorem 4.1 applies) but which are not F-
differentiable at the origin. Similarly there exist operators g for which the
sufficient conditions stated in Propositions 4.2 or 4.3 hold (hence Theorem
4.2 applies) but which are not F-differentiable at infinity. This holds if
m = 2, even for functions g independent of the variable x. To show this we
give two examples of remainders o, one verifying the conditions of Proposi-
tion 4.1 but not

lim || ()||,/|lull, = 0, (4.20)

[lullp—0
and the other verifying the conditions of Proposition 4.2 but not

| |lim llco()||,/|[ull,, = O- (4.27)
ul|p—= + o

Note that (4.26) means that Dg(0) = g, in the F-sense and consequently
it implies that D(A'/2gA'?)(0) = A'/?g,A'/? in the F-sense. A similar remark,
concerning (4.27), holds at infinity.

ExaMmpLE 1. Consider the vector function w(y) whose components wy(y)
and w,( ) are defined by (0.10) with ¢ = y, and 5 = y,; recall that ¢, $(0) # 0,
is an arbitrary, real, continuously differentiable function defined and with
compact support on R. This function w(y) verifies the hypothesis of Proposi-
tion 4.1. In fact (4.12) and (4.11) hold (with b(x) constant and ¢, = 0) as
follows from (0.13) and (0.15), respectively. Defining g;(x,y), i = 1,2, by
(4.3) with arbitrary g;(x) € L"@~2(B), g;;(x) = g;(x) [note that g;(x,y) =
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G(x, y)/dy; with G given by G(x, y1, ¥2) =7 )1 j= 1 94(X)y175+ @ (11/¥22)y1 y25
see (0.9)], it follows from Theorem 4.1 that the largest positive and the
smallest negative eigenvalues for the linear system

fB Ki(x, O[9:1(Ou1(O) + 9i2(Oua()] dé = u(x),  i=12, (4.28)

are, respectively, the largest positive and the smallest negative bifurcation
points for the nonlinear system

fB Ki(x, 8)gi(&, uy (&), up(8)) dE = Juy(x),  i=1,2. (4.29)

However, (4.26) does not hold. This is easily verified by considering in
(4.26) the constant (vector) functions u(x) whose two components are,
respectively, the constant functions 0 and ¢ (¢ s 0). Thus w(u,) has as com-
ponents the constant functions t¢(0), and 0 and consequently

[l @)||o/ ||, = |#(0)|(mes B)?=2» (4.30)
does not verify (4.26) when t — 0.

EXAMPLE 2. (Asymptotic case). In Example 1 replace (0.10) by (0.18)
[and ¢(y1/y,*) by ¢(v,%/y,)]. From (0.19) and (0.15) it follows that Proposi-
tion 4.2 (as well as Proposition 4.3) applies to our remainder w. It follows
from Theorem 4.2 that the largest positive and the smallest negative eigen-
values for the linear system (4.28) are, respectively, the largest positive and
the smallest negative bifurcation points for the nonlinear system (4.29).
However, condition (4.27) fails since (4.30) holds for the vector functions
i,(x) used in Example 1.

Remark 4.3.  Since Theorems 1.1 and 1.2 hold for nonlinear positively
1omogeneous operators B it follows that the results of this section apply
ilso when g, is an operator of this type. For instance, let m = 1 and put
106, 3) = go(X, y) + o(x, y) with go(x, y) = g0 (x)y if y = 0, go(x, y) = g~ (x)y
f y <0, where g,"(x) and g, (x) are given functions and w is a suitable
-emainder. Then the Nemytsky operator g, is positively homogeneous and
;onsequently the results stated in Theorem 4.1 or in Theorem 4.2 hold with
>bvious changes. Roughly speaking, g, corresponds to the case in which
7= g(x, y) is right and left differentiable at y = 0, for almost all x € B, but
s not necessarily differentiable. A similar example holds for the study of
he largest negative bifurcation point A for Problem (2.1) of [2]°) if one
issumes the graphs f and y only right and left differentiable at the origin

*In this case /4 is the principal bifurcation point for (2.1) and corresponds to the largest
>ositive bifurcation point 1/u for Equation (2.4) of [2].
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(differentiability is understood in the sense introduced in Beirdo da Veiga[2]).
This holds because the proof of Theorem I of Beirdo da Veiga [2] holds
(with obvious changes) if the graphs § and y are right and left differentiable
instead of differentiable (this was remarked to the author by J. Hernandez).

Remark 4.4. We use in the following the usual notations for Sobolev
spaces. Consider the bifurcation problem

Lu(x) = ug(x, u(x)) in B,

R (4.31)
u(x) =0 on 0B,
where B is an open bounded set with boundary 0B, and
UG ou
Lu= _,-,,Z=1 s <al-j(x) R;)’ a;(x) = a;(x), (4.32)

is an uniformly elliptic operator on B and g acts from LP(B) into LYB) with
p < 2% = 2n/(n — 2) (assume for the sake of convenience that n > 2). It is
well known that the Green’s operator A(f)= u related to the problem
Lu= fin B,u = 0on 8B, acts from H~*(B) onto Hy*(B) and, in particular,
it is completely continuous from LI(B) into L"(B). Moreover (4.32) is equiv-
alent to the problem (in L?(B))

(Ag)(u) = Au, A= 1/ub, 4.31")
which can be reduced, by splitting the linear operator A, to
(AV2g AN (u) = Ju. (4.317)

This last problem concerns a potential operator in the Hilbert space L*(B).
Assume now that instead of the linear operator L one has a nonlinear
operator, as for instance,

- ,_p OUu
Lu= _i;1 o <|l7u| (7—x,>’ (4.33)
and assume that ¢ acts from L?(B) into LYB) with p <1* =rn/(r — n)
(assume for convenience that n > r). The inverse operator A(f) = u related
to the problem Lu = f in B, u =0 on 0B, acts from H~ Lr(B) onto Hy"(B)
and is weakly continuous from L%B) into L?(B). However, the problem
does not reduce to (4.31”) since 4 is nonlinear. This leads to the study of
problem (4.31) directly. Since L is defined on H L"(B) but not on all of L*(B)
(and g is defined in both of these spaces) one is lead to consider L and g as

¢ The largest positive 4 for (4.31) corresponds to the smallest positive u for (4.31) which is
the principal bifurcation point for a wide class of problems.
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operators from Hy'(B) into H™'"(B). In this context the operator g is
weakly continuous. Furthermore g and L are potential operators with
L = VY where

¥ (u) 2#;3 [Vu["dx,  ue H'(B).

is weakly lower semicontinuous.
Thus the bifurcation problem (4.31), (4.33) can be studied as a particular
case (A = L,I" = g) of the general problem

I'(u) = AA(u), A=1/y, (4.34)

where I' = V® and A = V¥ are potential operators acting from a Banach
space V into the dual space V', @ being weakly continuous (more generally
weakly upper semicontinuous) and ¥ weakly lower semicontinuous. The
results of the first part of this chapter can be extended to this more general
problem and applied, in particular, to the referred example or to more
general problems where L = (L,, ..., L,) is a system of nonlinear operators
and the boundary conditions are not of the Dirichlet type.

These results will be proved in a forthcoming paper and generalize in
particular a result of Naumann which is applied by this author to the study
of bifurcation buckling of thin elastic shells (cf. Naumann [ 7], Theorem 5.1".

APPENDIX

The proof of Theorem 1.1 is easily adapted to prove an analogous result
soncerning the case M (B) = 0. Consider the following condition.

AsSSUMPTION A.1. For any uelK, u#0, such that (I'(u),u)>0 and
(u) # Au, V2 € R, there exists ave K, (p = |[u]]), v # u, such that (I'(u),v) >
I['(u), u).

One has, in particular, from Lemma 2.3:

Remark A.1.  Proposition 1.3 and Corollary 1.1 "0ld if one replaces in
hese statements Assumption 1.1 by Assumption 5.1.

The following result holds (a similar result holds for the asymptotic
vifurcation).

7 Similar problems under unilateral conditions were studied by Do [5, and references]. It
eems that our results regarding Equation (4.34) can be adapted in order to be applicable in
1is case.
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THEOREM A.l. Assume that the conditions of Theorem 1.1 hold with
M (B) = 0 and with Assumption 1.1 replaced by Assumption 5.1. Furthermore
assume that:

(i) foranyp>0 there exists u € 1<, such that @(u) > 0;
(i) if @(u) > 0 and u e K, then I'(u) # 0.

Then 0 is the largest bifurcation point for I' in K.

To finish this chapter we remark that the method used here is applicable
if B is positively homogeneous of degree « (ie., if B(tu) = *B(u),Yu € KK,
Vt > 0) and if the remainder o verifies (1.1) [respectively, (1.2)] with [|ull”
instead of ||ul|>. In particular, one has the following results, the proofs of
which are similar to those of Theorems 1.1 and 1.2.

THEOREM A.2. Assume that the conditions of Theorem 1.1 hold with the
following modifications: B is positively homogeneous of degree o. > 0 (instead
of = 1) and

lim (e(u), u)/||ul|* ** =0

[lul|—0
uel

instead of (1.1).2 Then if o > 1, they are not positive bifurcation points and 0
is a bifurcation point for T' (unique if my(B) > —o0). If a <1, then +
is a bifurcation point for I' (unique if my(B) > 0).

THEOREM A.3. Assume that the conditions of Theorem 1.2 hold with the
following modifications: B is positively homogeneous of degree o> —1
(instead of o = 1) and

lim  (co(u), u)/|[ul' =0

||| = +
uelk

instead of (1.2) and ®(u) — [1/(e + 1)](B(u),u) replaces P(u) — L(B(u),u).8
Then if o < 1, they are not positive asymptotic bifurcation points and 0 is an
asymptotic bifurcation point for I' (unique if my(B) > —co). If o> 1, then
+ oo is an asymptotic bifurcation point (unique if my(B) > 0).

These results can be adapted to the case My(B) =0 as in Theorem 5.1.
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