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Abstract: H.-O. Bae and H.J. Choe, in a 1997 paper, established a regularity criteria for the incompressible
Navier-Stokes equations in the whole space R3 based on two velocity components. Recently, one of the
present authors extended this result to the half-space case R3

+ . Further, this author in collaboration with J.
Bemelmans and J. Brand extended the result to cylindrical domains under physical slip boundary conditions.
In this note we obtain a similar result in the case of smooth arbitrary boundaries, but under a distinct, appar-
ently very similar, slip boundary condition. They coincide just on �at portions of the boundary. Otherwise, a
reciprocal reduction between the two results looks not obvious, as shown in the last section below.
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1 Introduction
The starting point of the present paper is the well known Prodi-Serrin (P-S) su�cient condition for regularity
of the solutions to the incompressible Navier-Stokes equations{

∂tu + u ·∇u − ∆u +∇p = 0 , in Ω × (0, T] ,
∇ · u = 0 , in Ω × (0, T] .

(1.1)

whereu = (u1, u2, u3) denotes the unknown velocity of the �uid and p the pressure. To immediately set limits
to the circle of our interests, assume for now on that Ω ⊂ R3 is a bounded, smooth domain, even if many
results quoted below hold for larger space dimensions. For the time being, assume that suitable boundary
conditions are imposed to the velocity u .

The global existence of the so called weak solutions to system (1.1) goes back to J. Leray [1] and E. Hopf
[2] classical references. See also A.A. Kiselev and O.A. Ladyzhenskaya [3], and J.L. Lions [4]. Below, solutions
of (1.1) are intended in this sense.

Amain classical openmathematical problem is to prove, or disprove, that weak solutions are necessarily
strong under reasonable but general assumptions, where strong means that

u ∈ L∞(0, T;H1(Ω)) ∩ L2(0, T;H2(Ω)) . (1.2)
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In this context, a remarkable and classical su�cient condition for uniqueness and regularity is the so-called
Prodi-Serrin condition, P-S in the sequel, namely

u ∈ Lq(0, T; Lp(Ω)) , 2
q + 3

p = 1 , p > 3 . (1.3)

Concerning condition (1.3), we transcribe from [5], Section 1, the following considerations: Assumption
(1.3) was �rstly considered by G. Prodi in his paper [6] of 1959. He proved uniqueness under this last assump-
tion. See also C. Foias, [7]. Furthermore, J. Serrin, see [8, 9], particularly proved interior spatial regularity
under the stronger (non-strict) assumption

u ∈ Lq(0, T; Lp(Ω)), 2
q + 3

p < 1, p > 3. (1.4)

Concerning the above problems, see also O.A. Ladyzhenskaya’s contributions [10, 11]. The above setup led to
the nomenclature Prodi-Serrin condition.

Complete proofs of the strict regularity result (i.e. under assumption (1.3)) were given by H. Sohr in [12],
W. von Wahl in [13], and Y. Giga in [14]. A simpli�ed version of the proof was given in reference [15], to which
we refer also for bibliography. For a quite complete overviewon themainpoints, and references, on the initial-
boundary value problem for Navier-Stokes equations we strongly recommend Galdi’s contribution [16]. Fur-
ther,we refer to [9, 17], as sources for information on thehistorical context of theP-S conditionby the initiators
themselves.

Finally, we recall that L. Escauriaza, G. Seregin, and V. Šverák, see [18], extended the regularity result to
the case (q, p) = (∞, 3).

A signi�cant improvement of the P-S conditionwas obtained byH.-O. Bae andH.J. Choe [19], see also [20].
They proved, in thewhole space case, that it is su�cient for regularity of solutions that two components of the
velocity satisfy the above condition (1.3). For convenience we call here this situation as being the restricted P-
S condition. In 2017, one of the authors, see [21], extended this result to the half-spaceR3

+ under slip boundary
conditions. In this case, the truncated 2-dimensional vector �eld ū cannot be chosen arbitrarily. The omitted
component has to be the normal to the boundary.

Very recently, in reference [5], the result was extended to a cylindrical type three-dimensional domain,
consisting on the complement set between two co-axial circular cylinders, with radius ρ0 and ρ1 , 0 < ρ0 <
ρ1, periodic in the axial direction, under the physical slip boundary condition

u · n = 0 , [D(u)n] · τ = 0 , on ∂Ω , (1.5)

where D(u) = ∇u+(∇u)T
2 is the shear stress. The above exclusion of an interior cylinder was done to avoid

the radial coordinate singularities on the symmetry axis, which consideration is out of interest in our con-
text. Below we obtain a similar result, extended to domains with general non-�at boundaries, but under the
slip boundary condition (2.1). The two boundary conditions coincide just on �at portions of the boundary.
Otherwise, a reciprocal reduction between the two results looks not obvious. This claim is shown in the last
section.

Again by following [5] we recall that after the contribution by H.-O. Bae and H.J. Choe, related papers
appeared that particularly concerned assumptions on two components of velocity or vorticity, see [21–25].
There are also many papers dedicated to su�cient conditions for regularity which depend merely on one
component, see, for instance, [26–31].

Before going on we want to motivate the particular choice of the domain made below. It takes into ac-
count that the real signi�cance of the result has essentially a local character. First of all, a global regular (i.e.,
without singularities) system of coordinates, two of them parallel and the third orthogonal to the boundary,
does not exist in general, even in an arbitrarily thin neighbourhood of the full boundary, as in the case of a
sphere and even in the case of a spherical corona. In fact, singularities typically appear, like on the above two
cases, and even in full cylinders (due to the symmetry axis). The cylindrical case considered in reference [5]
is an exception (see below) due to the removal of a neighbourhood of the symmetry axis.
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Luckily, the above type of coordinates’ system exists in su�cient small neighbourhoods of any regular
boundary point. Hence, to illustrate the full signi�cance of our thesis in a simple, but still convincing way, it
looks su�cient to prove it near any “small” piece of smooth boundary with an arbitrary geometrical shape.
This is our aim below. The restrictions on the domain Ω below are made in accordance with these lines, a
choice which covers the very basic situation, in the simplest way.

2 Main Results
In the sequel we assume the slip boundary condition

u · n = 0 , ω × n = 0 on ∂Ω , (2.1)

where ω = ∇ × u is the vorticity, n is the outward normal of ∂Ω, and Ω ∈ R3 is a smooth domain satisfying
the following condition:

Assumption 2.1. There exists a curvilinear orthogonal system of coordinates

q(x) = (q1(x), q2(x), q3(x))

such that Ω can be transited into

Ω̂ , {(q1, q2, q3) : 0 ≤ q1 < 1, 0 ≤ q2 < 1, 0 < ρ0 ≤ q3 ≤ ρ1} ,

where the axis q3 direct to the outward normal on the boundary ∂Ω̂1 := {(q1, q2, q3) : q3 = ρ1} (the inward
normal on the boundary ∂Ω̂0 := {(q1, q2, q3) : q3 = ρ0}, respectively), and q1, q2 are periodic.

Remark 2.1. The above "small" piece of a generical smooth boundary is here represented by q3 = ρ0 , and
q3 = ρ1 .

Remark 2.2. It is worth noting that the slip boundary condition (2.1) is equivalent to

u · n = 0 , [D(u)n] · τ = −κτ u · τ , (2.2)

where τ stands for any arbitrary unit tangential vector on ∂Ω , and κτ is the principal curvature in the τ
direction, positive if the center of curvature lies inside Ω .

The above claim follows immediately by appealing to equation (5.2) in [32], namely

[D(u)n] · τ = 1
2 (ω × n) · τ − κτ u · τ . (2.3)

For a mathematical treatment of some aspects related to slip boundary conditions imposed on smooth, but
generic, boundaries see also [33], and the pioneering paper [34].

Next we recall some facts on curvilinear coordinates. The Lamé coe�cients (scale factors) of the transition to
the system of coordinates q are denoted by the letters Hi

Hi(q) =

 3∑
j=1

( ∂xj
∂qi

)2
 1

2

, i = 1 , 2 , 3.

Let êi = 1
Hi

∂x
∂qi , i = 1 , 2 , 3. Note that |êi| = 1 and êi ·∇ = 1

Hi
∂
∂qi . One can write

u(x) = û(q) = û1(q)ê1 + û2(q)ê2 + û3(q)ê3

and
ω(x) = ω̂(q) = ω̂1(q)ê1 + ω̂2(q)ê2 + ω̂3(q)ê3.
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It is well known (see for example [35, 36]) that

∇ · u = 1
H1H2H3

(
∂(û1H2H3)

∂q1
+ ∂(û2H1H3)

∂q2
+ ∂(û3H1H2)

∂q3

)
(2.4)

and

∇ × u = 1
H2H3

(
∂(û3H3)
∂q2

− ∂(û2H2)
∂q3

)
ê1

+ 1
H1H3

(
∂(û1H1)
∂q3

− ∂(û3H3)
∂q1

)
ê2

+ 1
H1H2

(
∂(û2H2)
∂q1

− ∂(û1H1)
∂q2

)
ê3.

(2.5)

We state our main result as follows.

Theorem 2.2. Let Ω satisfy Assumption 2.1, and suppose that there exist two positive constants c and C such
that

c ≤ Hi ≤ C and
∣∣∣∣ ∂2xi
∂qi∂qj

∣∣∣∣ , ∣∣∣∣ ∂3xi
∂qi∂qj∂qk

∣∣∣∣ ≤ C , (2.6)

for any i , j , k = 1 , 2 , 3. Let u be a weak solution of the system (1.1) under the boundary condition (2.1), and set
ū = û1 ê1 + û2 ê2. If ū satis�es

ū ∈ Lq(0, T; Lp(Ω)) , 2
q + 3

p ≤ 1, p > 3 , (2.7)

then the solution u is strong, namely,

u ∈ L∞(0, T;H1(Ω)) ∩ L2(0, T;H2(Ω)) .

Note that assumption (2.6) implies |∂iHj| , |∂ijHk| ≤ C .
It is worth noting that our proof applies to a more general set of geometrical situations. let’s just give

some hint in this direction.

Remark 2.3. Theabove statement doesnot contain the result proved in reference [5], due to thedistinct bound-
ary conditions, see Section 4. On the other hand, wemay replace the two circular, vertical, cylinders by more
general vertical cylinders where the external circle q3 = ρ1 is replaced by a smooth Jordan curve γ1 , and the
internal circle q3 = ρ0 by a parallel Jordan curve γ0 , at a su�cient small distance δ > 0 from γ1 . The coor-
dinate θ is now an arc length coordinate on γ1. All points in the same orthogonal segment to γ0 and γ1 enjoy
the same θ coordinate. The coordinate r ∈ (0, δ) is given by the distance to γ1. The “vertical" coordinate
z preserves his periodic character. Clearly, the role played by the above Jordan curve may be immediately
extended to much more general situations.

Another signi�cant application is obtained by replacing the above two cylindrical boundaries by two
torus of revolution, generated by revolving two concentric circles γ0 and γ1 about an axis coplanar with
the circles, which does not touch the circles (roughly, we obtain the complement set between two closed
tubes). Now z ∈ [0, 2 π) is an angular periodic coordinate, the toroidal coordinate. The result still applies
by replacing the two circles by two parallel Jordan curves.

Let’s propose the following benchmark problem:

Problem 2.3. Consider two concentric spheres ΩR and Ωρ , of radius respectively ρ and R, 0 < ρ < R . Let
u be a weak solution in ΩR × (0, T] of (1.1) under one of the above slip boundary conditions. Further, assume
that the restricted P-S condition holds in (ΩR − Ωρ) × (0, T] with respect to the tangential components of the
velocity, and holds in Ωρ × (0, T] with respect to two arbitrary components of the velocity. Problem: To prove
that u is a strong solution in ΩR × (0, T] .
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3 Proof of Theorem 2.2
Proof. We start by reducing the system (1.1) under the boundary condition (2.1) into the classical vorticity
form 

∂tω + u ·∇ω − ω ·∇u − ∆ω = 0 , in Ω × (0, T] ,
∇ · u = 0 , in Ω × (0, T] ,
u · n = 0 , ω × n = 0 , on ∂Ω .

Then we take the scalar product with ω, and integrate by parts. One easily gets

1
2∂t

∫
Ω

|ω|2dx +
∫
Ω

|∇ω|2dx =
∫
∂Ω

n ·∇ω · ωdS +
∫
Ω

ω ·∇u · ωdx := I1 + I2 . (3.1)

Next, we focus on the estimates of I1 and I2.
Control of I1: First, it follows from (2.1) that

û3 = 0 , ω̂1 = ω̂2 = 0 , as q3 = ρ0 , ρ1 . (3.2)

Let ∂Ωl = ∂Ω̂l := {(q1, q2, q3) ∈ Ω̂ : q3 = ρl } , where l = 0 , 1. One can deduce from (3.2) that

(2l − 1)
∫
∂Ωl

n ·∇ω · ωdS =(2l − 1)
∫
∂Ωl

n ·∇
(
|ω|2

2

)
dS

=
1∫

0

1∫
0

[
∂q3

(
|ω̂|2

2

)
H1H2H−1

3

] ∣∣∣
q3=ρl

dq1dq2

=
1∫

0

1∫
0

[
(∂q3 ω̂3) ω̂3H1H2H−1

3

]
|q3=ρldq1dq2

=
1∫

0

1∫
0

[
∂q3

(
H1H2ω̂3

)
H−1

3 ω̂3
]
|q3=ρldq1dq2

−
1∫

0

1∫
0

[
∂q3 (H1H2)H−1

3 ω̂2
3

]
|q3=ρldq1dq2 .

(3.3)

Since∇ · ω = 0, from (2.4) one gets

∂(ω̂1H2H3)
∂q1

+ ∂(ω̂2H1H3)
∂q2

+ ∂(ω̂3H1H2)
∂q3

= 0 ,

which gives
1∫

0

1∫
0

[
∂q3

(
H1H2ω̂3

)
H−1

3 ω̂3
]
|q3=ρldq1dq2

= −
1∫

0

1∫
0

[
∂q1

(
H2H3 ω̂1

)
H−1

3 ω̂3
]
|q3=ρldq1dq2 −

1∫
0

1∫
0

[
∂q2

(
H1H3ω̂2

)
H−1

3 ω̂3
]
|q3=ρldq1dq2

= 0 ,

since ω̂1 = ω̂2 = ∂q1 ω̂1 = ∂q2 ω̂2 = 0 on ∂Ω̂l . Hence, one obtains

(2l − 1)
∫
∂Ωl

n ·∇ω · ωdS = −
1∫

0

1∫
0

[
∂q3 (H1H2)H−1

3 ω̂2
3

]
|q3=ρldq1dq2.
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By appealing to (2.6) one shows that∣∣∣∣∣∣
∫
∂Ω

n ·∇ω · ωdS

∣∣∣∣∣∣ ≤ C
∫
∂Ω

|ω|2dS ≤ ‖ |ω |2‖W1, 1(Ω) ,

where we have used Gagliardo’s trace theorem, see [37]. See also [38], Theorem 4.2 (for an English recent text
see, for example, the Theorem III.2.21 in [39]). It follows that∣∣∣∣∣∣

∫
∂Ω

n ·∇ω · ωdS

∣∣∣∣∣∣ ≤ C(ϵ)‖ω‖2
L2(Ω) + ϵ ‖∇ω‖2

L2(Ω) , (3.4)

for all 0 < ϵ < 1 .
Control of I2: First, one has∫

Ω

ω ·∇u · ωdx =
∑
i,j,k

∫
Ω̂

ω̂iH−1
i ∂qi

(
ûj êj

)
· (ω̂k êk)H1H2H3dq1dq2dq3

=
∑
i,j,k

∫
Ω̂

ûjω̂iω̂k(∂qi êj · êk)H−1
i H1H2H3dq1dq2dq3

+
∑
i,j

∫
Ω̂

ω̂i (∂qi ûj ) ω̂jH−1
i H1H2H3dq1dq2dq3

:=I21 + I22 .

For I21, from (2.6), one has

|I21| ≤C
∫
Ω

|u| |ω|2 dx

≤C ‖u‖L2(Ω)‖ω‖
2
L4(Ω)

≤C ‖u‖L2(Ω)‖ω‖
1
2
L2(Ω)(‖ω‖L2(Ω) + ‖∇ω‖L2(Ω))

3
2

≤C ‖u‖L2(Ω)‖ω‖
2
L2(Ω) + C ‖u‖L2(Ω)‖ω‖

1
2
L2(Ω)‖∇ω‖

3
2
L2(Ω)

≤C ‖u‖L2(Ω)‖ω‖
2
L2(Ω) + C(ϵ)‖u‖4

L2(Ω)‖ω‖
2
L2(Ω) + ϵ ‖∇ω‖2

L2(Ω) .

(3.5)

For I22, we consider separately the three cases j ≠ 3; j = 3 and i ≠ 3; i = j = 3.
Case I: j ≠ 3. By integration by parts, one has∫

Ω̂

ω̂i (∂qi ûj ) ω̂jH−1
i H1H2H3dq1dq2dq3

= −
∫
Ω̂

ûj (∂qi ω̂i) ω̂jH−1
i H1H2H3dq1dq2dq3 −

∫
Ω̂

ûjω̂i (∂qi ω̂j)H−1
i H1H2H3dq1dq2dq3

−
∫
Ω̂

ûjω̂iω̂j∂qi
(
H−1
i H1H2H3

)
dq1dq2dq3 .

(3.6)

Case II: j = 3 and i ≠ 3. From (2.5) one has

ω̂3 = 1
H1H2

(
∂(û2H2)
∂q1

− ∂(û1H1)
∂q2

)
.
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Hence, by integration by parts, it follows that∫
Ω̂

ω̂i (∂qi û3) ω̂3H−1
i H1H2H3dq1dq2dq3

=
∫
Ω̂

ω̂i (∂qi û3)
(
∂q1 (H2û2) − ∂q2 (H1û1)

)
H−1
i H3dq1dq2dq3

= −
∫
Ω̂

û2 ∂q1

(
ω̂i (∂qi û3)H−1

i H3
)
H2dq1dq2dq3

+
∫
Ω̂

û1∂q2

(
ω̂i (∂qi û3)H−1

i H3
)
H1dq1dq2dq3 .

(3.7)

Case III: i = j = 3. Note that, due to∇ · u = 0, it follows

∂(û1H2H3)
∂q1

+ ∂(û2H1H3)
∂q2

+ ∂(û3H1H2)
∂q3

= 0 . (3.8)

One has ∫
Ω̂

ω̂3 (∂q3 û3) ω̂3H1H2dq1dq2dq3

=
∫
Ω̂

ω̂3∂q3

(
H1H2û3

)
ω̂3dq1dq2dq3 −

∫
Ω̂

ω̂3û3ω̂3∂q3 (H1H2)dq1dq2dq3

= −
∫
Ω̂

ω̂3∂q1

(
H2H3û1

)
ω̂3dq1dq2dq3 −

∫
Ω̂

ω̂3∂q2

(
H1H3û2

)
ω̂3dq1dq2dq3

−
∫
Ω̂

ω̂3û3ω̂3∂q3 (H1H2)dq1dq2dq3

=
∫
Ω̂

û1∂q1

(
ω̂2

3

)
H2H3dq1dq2dq3 +

∫
Ω̂

û1∂q2

(
ω̂2

3

)
H1H3dq1dq2dq3

−
∫
Ω̂

û3ω̂2
3∂q3 (H1H2)dq1dq2dq3 ,

(3.9)

where the �rst equality is an identity, the second is obtained by appealing to (3.8), and the third one follows
by integration by parts. From (3.6), (3.7), (3.9) and the assumption (2.6), one can obtain

|I22| ≤ C
∫
Ω

|ū||∇u||∇2u|dx + C
∫
Ω

|u||∇u|2dx + C
∫
Ω

|u|2|∇u|dx .

It is easy to get that∫
Ω

|u|2|∇u|dx ≤‖u‖L2(Ω)‖u‖L4(Ω)‖∇u‖L4(Ω)

≤‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + ‖∇u‖2

L4(Ω)

≤‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + ‖∇u‖

1
2
L2(Ω)(‖∇u‖L2(Ω) + ‖∇2u‖L2(Ω))

3
2

≤‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + C(ϵ)‖∇u‖2

L2(Ω) + ϵ‖∇2u‖2
L2(Ω) ,

and similarly to the proof of (3.5)∫
Ω

|u||∇u|2dx ≤ C ‖u‖L2(Ω)‖∇u‖
2
L2(Ω) + C(ϵ)‖u‖4

L2(Ω)‖∇u‖
2
L2(Ω) + ϵ ‖∇2u‖2

L2(Ω) .
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Hence, one has

|I22| ≤C
∫
Ω

|ū||∇u||∇2u|dx + C‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + C(ϵ)‖∇u‖2

L2(Ω)

+ C ‖u‖L2(Ω)‖∇u‖
2
L2(Ω) + C(ϵ)‖u‖4

L2(Ω)‖∇u‖
2
L2(Ω) + Cϵ ‖∇2u‖2

L2(Ω) .

(3.10)

By Hölder’s inequality, interpolation, and a Sobolev’s embedding theorem, one can easily show that∫
Ω

|ū||∇u||∇2u|dx

≤‖|ū|∇u‖L2(Ω)‖∇
2u‖L2(Ω)

≤‖ū‖Lp(Ω)‖∇u‖
L

2p
p−2 (Ω)

‖∇2u‖L2(Ω)

≤‖ū‖Lp(Ω)‖∇u‖
1− 3

p
L2(Ω)‖∇u‖

3
p
L6(Ω)‖∇

2u‖L2(Ω)

≤C‖ū‖Lp(Ω)‖∇u‖
1− 3

p
L2(Ω)(‖∇u‖L2(Ω) + ‖∇2u‖L2(Ω))

3
p ‖∇2u‖L2(Ω)

≤C
(
‖ū‖Lp(Ω)‖∇u‖L2(Ω)‖∇

2u‖L2(Ω) + ‖ū‖Lp(Ω)‖∇u‖
1− 3

p
L2(Ω)‖∇

2u‖
1+ 3

p
L2(Ω)

)
≤C(ϵ)

(
‖ū‖

2p
p−3
Lp(Ω) + ‖ū‖2

Lp(Ω)

)
‖∇u‖2

L2(Ω) + ϵ ‖∇2u‖2
L2(Ω) .

(3.11)

Collecting (3.1) and the estimates (3.4), (3.5), (3.10) and (3.11), one obtains

1
2∂t

∫
Ω

|ω|2dx +
∫
Ω

|∇ω|2dx ≤C(ϵ)
(

1 + ‖u‖L2(Ω) + ‖u‖4
L2(Ω) + ‖ū‖

2p
p−3
Lp(Ω) + ‖ū‖2

Lp(Ω)

)
‖∇u‖2

L2(Ω)

+ C‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + Cϵ ‖∇2u‖2

L2(Ω) .

On the other hand, the following well known estimates (see for instance Theorem IV.4.8 and Theorem
IV.4.9 in [39]), hold:

‖∇u‖L2(Ω) ≤ C‖ω‖L2(Ω) , ‖∇2u‖L2(Ω) ≤ C
(
‖u‖L2(Ω) + ‖ω‖H1(Ω)

)
. (3.12)

Therefore, from equation (3.12), by letting ϵ be su�ciently small, one has

∂t
∫
Ω

|ω|2dx +
∫
Ω

|∇ω|2dx ≤C
(

1 + ‖u‖L2(Ω) + ‖u‖4
L2(Ω) + ‖ū‖

2p
p−3
Lp(Ω) + ‖ū‖2

Lp(Ω)

)
‖ω‖2

L2(Ω)

+ C‖u‖2
L2(Ω)‖u‖

2
L4(Ω) + C‖u‖2

L2(Ω) .

Finally (1.2) follows by taking into account equations (2.7) (q ≥ 2p
p−3 > 2) and (3.12), and by appealing to a

well known argument, which is based on Gronwall’s inequality. Recall that weak solutions verify ‖u‖L2(Ω) ∈
L∞(0, T) and ‖u‖2

L6(Ω) ∈ L
1(0, T). Hence we have proved that u is a strong solution.

4 On related slip boundary conditions.
In this section we present a �rst attempt to prove the statement of Theorem 2.2 with the slip boundary condi-
tion (2.1) replaced by the slip boundary condition (1.5) (assumed in reference [5]) by means of a simple modi-
�cation of our proof. This attempt fails. Hence this signi�cant problem remains open to further investigation.
This leads us to brie�y show our calculations.

Let’s start by explaining our guess. As still shown in Remark 2.2 condition (1.5) is equivalent to

u · n = 0 , (ω × n) · τ = 2 κτ u · τ , on ∂Ω . (4.1)
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We may replace the arbitrary tangent vector τ simply by a couple of independent vectors like, for instance,
the principal direction’s vectors τ1 and τ2 . In this case κ1 = κτ1 and κ2 = κτ2 are the maximum and the
minimum principal curvatures.

A more natural choice here is to consider the couple of tangent, orthogonal, vectors ê1 and ê2 . In this
case κ1 and κ2 are the related curvatures. This second choice easily leads to the couple of linear equations{

ω̂2 = 2 κ1 û1 ,
ω̂1 = −2 κ2 û2 .

(4.2)

Hence to replace the slip boundary condition (2.1) by [D(u)n] · τ = 0 means to replace assumption (3.2) by

û3 = 0 , ω̂1 = −2 κ2û2 , ω̂2 = 2 κ1 û1 , as q3 = ρ0 , ρ1 . (4.3)

To prove our main statement with the boundary condition (2.1) replaced by the boundary condition (4.1) we
have to control some new boundary integrals, which no longer vanish since now ω̂1 and ω̂2 do not van-
ish. However, by (4.2), ω̂1 and ω̂2 can be expressed in terms of the (lower order) velocity components û2
and û1 . Well known inverse trace theorems allow us to control boundary-norms of these two components
by suitable internal norms. Since our P-S assumption guarantees additional regularity just for these two ve-
locity components, one could expect that the above internal norms could be estimated in a convenient way.
Unfortunately this device seems not su�cient to prove our goal. So this interesting problem remains open.

Next we pass to showing our calculations. Let’s turn back to equation (3.3), by taking into account that
now we can not apply to ω̂1 = ω̂2 = 0 . One has

(2l − 1)
∫
∂Ωl

n ·∇ω · ωdS =(2l − 1)
∫
∂Ωl

n ·∇
(
|ω|2

2

)
dS

=
1∫

0

1∫
0

[
∂q3

(
|ω̂|2

2

)
H1H2H−1

3

] ∣∣∣
q3=ρl

dq1dq2

=
1∫

0

1∫
0

∑
j

(∂q3 ω̂j) ω̂jH1H2H−1
3

 ∣∣∣
q3=ρl

dq1dq2 .

Wewill drop termswhich could be easilymanipulated, called here "lower order terms". Dropping lower order
terms and also cancelling non signi�cant multiplication coe�cients, lead us to introduce the symbols ” ' ”
and ” � ” , which have a clear meaning here.

One has

(∂q3 ω̂j) ω̂j H1H2H−1
3 = ∂q3

(
H1H2ω̂j

)
H−1

3 ω̂j − ∂q3 (H1H2)H−1
3 ω̂2

j � ∂q3

(
H1H2ω̂j

)
H−1

3 ω̂j . (4.4)

Since∇ · ω = 0, from (2.4) one gets

∂(ω̂1H2H3)
∂q1

+ ∂(ω̂2H1H3)
∂q2

+ ∂(ω̂3H1H2)
∂q3

= 0 ,

which gives, on ∂Ω̂ ,

∂q3

(
H1H2ω̂3

)
H−1

3 ω̂3 = − ∂q1

(
H2H3 ω̂1

)
H−1

3 ω̂3 − ∂q2

(
H1H3ω̂2

)
H−1

3 ω̂3 .

Under the newboundary conditionswe cannot apply to ω̂1 = ω̂2 = ∂q1 ω̂1 = ∂q2 ω̂2 = 0 on ∂Ω̂l to claim the
cancellation of the above right hand side. By noting that the two terms on the right hand side are symmetric,
with respect to the index 1 and 2, we may consider just the �rst one.

One has

∂q1

(
H2H3 ω̂1

)
H−1

3 ω̂3 = (∂q1 ω̂1)ω̂3 H2 − ω̂1 ω̂3 ∂q1 (H2H3)H−1
3 ' (∂q1 ω̂1)ω̂3 .
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Note that the smooth coe�cients Hj, as their derivatives, are not signi�cant on our estimate below. Further,
since ∂q1 is a tangential derivative,wemayapply to the second equality (4.2) to assume that ∂q1 ω̂1 ' −∂q1 û2
on ∂Ω̂ . Hence

1∫
0

1∫
0

[
∂q1

(
H2H3 ω̂1

)
H−1

3 ω̂3
]
|q3=ρldq1dq2 '

1∫
0

1∫
0

(∂q1 û2 ) ω̂3|q3=ρldq1dq2 . (4.5)

By appealing to Gagliardo’s theorem we show that the above right hand side is bounded by C(ϵ) ‖∇u ‖2 +
ϵ ‖∇2 u ‖2 , which is su�cient to our purposes.

Let’s now consider in equation (4.4) the terms ∂q3 (H1H2ω̂j)H−1
3 ω̂j , for j = 1, 2 . Assume, for instance,

j = 1 . One has ∂q3 (H1H2ω̂1)H−1
3 ω̂1 ' (∂q3 ω̂1)û2 . Hence we need to control the integral

1∫
0

1∫
0

(∂q3 ω̂1 ) û2|q3=ρldq1dq2 . (4.6)

Roughly speaking the above integrand has the same order as that on the right hand side of (4.5). However in
(4.6) the derivation symbol ∂q3 appears now in the “bad position". A suitable control of the above integral
turns out to be not obvious.
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