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Abstract
This work concerns the sufficient condition for the regularity of solutions to the evolu-
tion Navier–Stokes equations known in the literature as Prodi–Serrin condition. H.-O.
Bae and H. J. Choe proved in 1997 that, in the whole space R3, it is sufficient that
two components of the velocity satisfy the above condition in order to guarantee the
regularity of solutions. In 2017, H. Beirão da Veiga extended this result (Beirão da
Veiga, J Math Anal Appl 453:212–220, 2017) to the half-space case Rn+ under slip
boundary conditions by assuming that the velocity components parallel to the bound-
ary enjoy the above condition. It remained open whether the flat boundary geometry
is essential. Below, we prove that, under physical slip boundary conditions imposed
in cylindrical boundaries, the result still holds.
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1 Introduction. Related results. Themain problem

To explain motivation, setting, and interest of the problem studied below, we start by
recalling some well-known results. A sketch is sufficient to this purpose, since we
assume that readers are acquainted with the main lines of the subject. Some results
that are referred to below also hold for dimensions n > 3. For simplicity, since we are
interested in the case n = 3 below, we do not refer to extensions to larger dimensions,
except if strongly connected to our specific problem.

Consider the Navier–Stokes equations described in Cartesian coordinates

{
∂tu + (u · ∇)u − ν ∇2u + ∇π = 0,

∇ · u = 0 in Ω × (0, T ], (1.1)

whereΩ ⊂ R3 is an open, smooth set. Below, weak solutions are considered in the so-
called Leray–Hopf sense, see Leray [24], Hopf [18], and Kiselev and Ladyzhenskaya
[19], and also Lions [25]. Solutions are called strong if

u ∈ L∞(0, T ; W 1,2(Ω)) ∩ L2(0, T ; W 2,2(Ω)). (1.2)

A main point in the theory of the 3D Navier–Stokes equations is that strong solutions
are unique and smooth if data and domain are smooth as well. The result holds in a
very large class of domains Ω if suitable boundary conditions, or behavior at infinity,
are prescribed. To prove, or disprove, that weak solutions are necessarily strong (or
unique) under reasonable but general assumptions, is one of themost challenging open
mathematical problems.

In this context, a remarkable and classical sufficient condition for uniqueness and
regularity is the so-called strict Prodi–Serrin (P–S) condition, namely

u ∈ Lq(0, T ; L p(Ω)),
2

q
+ 3

p
= 1, p > 3. (1.3)

Weak solutions satisfying the P–S condition (1.3) are known to be strong and unique.
Assumption (1.3) was firstly considered by Prodi in his paper [28] of 1959. He

proved uniqueness under assumption (1.3), see also Foias [13]. Furthermore, Serrin,
see [30,31], particularly proved interior spatial regularity under the stronger (non-
strict) assumption

u ∈ Lq(0, T ; L p(Ω)),
2

q
+ 3

p
< 1, p > 3. (1.4)

Concerning the above problems, see also Ladyzenskaya’s contributions [22,23]. The
above setup led to the nomenclature Prodi–Serrin condition.

Complete proofs of the strict regularity result (i.e. under assumption (1.3)) were
given by Sohr in [32], von Wahl in [34], and Giga in [16]. A simplified version of the
proof was given in [15].We additionally recommend the references in the bibliography
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Two components condition for regularity of the 3D Navier–Stokes equations…

of this last paper. For a quite complete overview on the initial-boundary value problem
see contribution [14].

More recently, Escauriaza et al., see [12], extended the regularity result to the case
(q, p) = (∞, 3).

We strongly recommend [29,31] as sources for information on the historical context
of the P–S condition by the initiators themselves.

A significant improvement of the P–S conditionwas obtained byBae andChoe. This
is the main subject of our paper. These authors succeeded in proving that regularity
also holds under the weaker assumption

u ∈ Lq(0, T ; L p(R3)),
2

q
+ 3

p
≤ 1, p > 3, (1.5)

where u is a vector consisting of two arbitrary components of u. A complete proof of
this result was shown in a preprint from 1997 by Bae and Choe, see also [1].

Furthermore, in contribution [8], this result was extended to the half-space Rn+
under slip boundary conditions. In this case, the truncated (n−1)-dimensional vector
field u cannot be chosen arbitrarily. The omitted component has to be normal to the
boundary.

u = (u1, u2, ..., un−1, 0).

The challenging question whether the assumption of a flat boundary was a crucial
element for the proof remained open. In order to study this problem, we will consider,
below, a cylindrical three-dimensional domain, periodic in the axial direction, see
Sect. 2. Equations are studied in cylindrical coordinates (ξ1, ξ2, ξ3) = (r , ϑ, z) with
obvious notation. Hence, the velocity’s component normal to the lateral boundary ∂ lΩ

of the cylinder is represented by u1, and u = (0, u2, u3) consists of the angular and
the axial components of the velocity field. In order to better highlight the common
features in the two approaches, Cartesian and cylindrical, we keep the same notation
in both systems of coordinates. For instance, u and π denote velocity and pressure,
respectively, in both systems.

Our main result is Theorem 2.2 below. For definitions and notation, see Sect. 2.
After the contribution by Bae and Choe, related papers appeared that particularly

concerned assumptions on two components of velocity or vorticity, see [2,5,8,9,11].
There are also many papers dedicated to sufficient conditions for regularity which
depend merely on one component, see, for instance [10,17,21,27,35,36].

Next, we briefly consider the Prodi–Serrin condition for (q, p) = (∞, n). It
deserves a separate treatment. Consult [12,26] for full results, and [4,20] for previous
results. Concerning contributions in which the restricted P–S condition

u ∈ L∞(0, T ; Ln(Ω)) (1.6)

is assumed, we refer to [5,9]. In both cases, Ω = Rn .

In contribution [5], it was shown that solutions are regular even under the condition
that the norm ‖u(t)‖n admits a sufficiently small discontinuity from the left. In other
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words, they cannot exist. More precisely, it was proved that there is a positive constant
C(n) such that the solution is smooth in (0, T ] if

sup
τ∈(0,T ]

((
lim sup
t→τ−0

‖u(t)‖n
n

)
− ‖u(τ )‖n

n

)
≤ C(n) νn . (1.7)

In particular, by setting τ = 0, it follows that ‖u‖L∞(0,T ;Ln(Rn)) ≤ C(n) ν implies
regularity. In contribution [9], the author replaced the space Ln(Rn) by the weak
Ln-Marcinkiewicz space Ln

w(Rn), endowed with the canonical quasi-norm [v]n, and
essentially proved that there is a positive constant C such that a weak solution u is
smooth in (0, T ] if it satisfies ‖u‖L∞(0,T ;Ln

w(Rn)) ≤ C .

For the reader’s convenience, we briefly describe the main points of the classical
proof of the sufficiency of the P–S condition for regularity in Sect. 3. The aim of this
sketch is merely to provide additional assistance in comprehensively reading the more
complicated situation that involves cylindrical coordinates. In this sense, it may be
skipped by the reader.

2 The Navier–Stokes equations in cylindrical coordinates.
The restricted P–S condition. Themain result

In the sequel, we are interested in the evolution Navier–Stokes equations in the open
bounded cylinder Ω ⊂ R3, defined by

Ω := (ρ0, ρ1) × [0, 2π) × (0, 1),

under the classical Navier slip boundary condition without friction, see below. It is
convenient to study these equations in cylindrical coordinates (ξ1, ξ2, ξ3), where the
radial coordinate ξ1 has range

0 < ρ0 < ξ1 < ρ1, (2.1)

the angular coordinate ξ2 is 2π -periodic, and the component in axial direction ξ3 is
1-periodic. We write

u = u1 · e1 + u2 · e2 + u3 · e3,

where ek, k = 1, 2, 3, are the unit vectors in radial, angular and axial (orthogo-
nal) directions, respectively. We use the ∇-symbol in the following manner, where
v : Ω → R3 is a vector field and g : Ω → R is a scalar field:

123

Author's personal copy



Two components condition for regularity of the 3D Navier–Stokes equations…⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · v := 1

ξ1
∂1 (ξ1v1) + 1

ξ1
(∂2v2) + ∂3v3,

∇g := (∂1g) · e1 + 1

ξ1
(∂2g) · e2 + (∂3g) · e3,

∇2g := 1

ξ1
∂1 (ξ1∂1g) + 1

ξ21

(
∂22 g
)

+
(
∂23 g
)

,

∇2v :=
(

∇2v1 − 2

ξ21
∂2v2 − v1

ξ21

)
· e1

+
(

∇2v2 + 2

ξ21
∂2v1 − v2

ξ21

)
· e2

+
(

∇2v3

)
· e3,

v · ∇g :=v1(∂1g) + v2

ξ1
(∂2g) + v3(∂3g).

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

Note that

v · (∇g) = (v · ∇)g = v1(∂1g) + v2

ξ1
(∂2g) + v3(∂3g). (2.3)

The three-dimensional evolution Navier–Stokes equations in cylindrical coordinates,
see [3, p. 602], are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 := ∂t u1 + N1 − ν

(
∇2u1 − 2

ξ21
∂2u2 − u1

ξ21

)
+ ∂1π = 0,

E2 := ∂t u2 + N2 − ν

(
∇2u2 + 2

ξ21
∂2u1 − u2

ξ21

)
+ 1

ξ1
∂2π = 0,

E3 := ∂t u3 + N3 − ν
(
∇2u3

)
+ ∂3π = 0.

(2.4)1

(2.4)2

(2.4)3

The fluid’s incompressibility is expressed by

∇ · u = 1

ξ1
∂1 (ξ1u1) + 1

ξ1
(∂2u2) + (∂3u3) = 0. (2.5)

N1, N2 and N3 denote the three components of the non-linear term (u · ∇)u in
cylindrical coordinates, namely
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N1 := u · ∇u1 − u2
2

ξ1
= u1(∂1u1) + u2

ξ1
(∂2u1) + u3(∂3u1) − u2

2

ξ1
,

N2 := u · ∇u2 + u1u2

ξ1
= u1(∂1u2) + u2

ξ1
(∂2u2) + u3(∂3u2) + u1u2

ξ1
,

N3 := u · ∇u3 = u1(∂1u3) + u2

ξ1
(∂2u3) + u3(∂3u3).

(2.6)1

(2.6)2

(2.6)3

On the lateral boundary of the cylinder,

∂ lΩ := {(ξ1, ξ2, ξ3) : ξ1 = ρ0, ρ1; ξ2 ∈ [0, 2π); ξ3 ∈ (0, 1)} , (2.7)

we impose slip boundary conditions defined by requiring that the normal component
of u vanishes, i.e. u1 ≡ 0, and that the tangential components of the stress vector
vanish, too. By appealing to the tangent vector fields e2 and e3 on ∂ lΩ and to the
stress vector

[−π + 2 (∂1u1)] · e1+
[
(∂2u1)

ξ1
+ξ1

(
∂1

u2

ξ1

)]
· e2+[(∂3u1)+(∂1u3)] · e3, (2.8)

we get ⎧⎪⎪⎨
⎪⎪⎩

u1 = 0,

∂1
u2

ξ1
= 0,

∂1u3 = 0

(2.9)1

(2.9)2

(2.9)3

on ∂ lΩ, because of ∂2u1 ≡ ∂3u1 ≡ 0 on ∂ lΩ.

Note that we may assume Ω being a ξ3-periodic cylinder, and so do not consider
its base and top as parts of the boundary.

For a mathematical treatment of quite general physical slip boundary conditions
imposed on smooth, but generic, boundaries, with applications to stationary (classical
and generalized) Stokes systems, see reference [6]. See also [33]. Further, in reference
[7], applications to evolution problems of the results shown in [6] are illustrated by
some significant examples.

Definition 2.1 Let u be a weak solution of the Navier–Stokes equations given by
(2.4)–(2.6). Set

u = (0, u2, u3).

We say that u satisfies the restricted Prodi–Serrin condition if

u ∈ Lq(0, T ; L p(Ω)),
2

q
+ 3

p
≤ 1, p > 3, (2.10)

holds.

In the sequel, we prove the following result.
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Theorem 2.2 Let u be a weak solution of the Navier–Stokes equations given by (2.4)–
(2.6) in the cylinder Ω , subject to the slip boundary conditions (2.9). Furthermore,
assume that u satisfies the restricted P–S condition (2.10). Then, u is a strong solution

u ∈ L∞(0, T ; W 1,2(Ω)) ∩ L2(0, T ; W 2,2(Ω)). (2.11)

Strong solutions are smooth provided that data and domain are smooth as well.

3 Remarks on the whole- and half-space cases

The proof of Theorem 2.2 is quite intricate, particularly due to the appearance of many
“lower order terms”. We believe that an anticipatory knowledge of the main lines of
the proof, in a simpler case, could help readers to follow the complete proof of the
Theorem shown in the next sections. We try to accomplish this purpose by briefly
describing the main points in the classical proof of the P–S condition’s sufficiency for
regularity, in the simplest case, namely Ω = Rn, in Cartesian coordinates. Our aim
is merely to assist in the understanding of the more complicated situation involving
cylindrical coordinates. In this sense, this section may be fully skipped by the reader.

To better highlight the common features in the two approaches, Cartesian and
cylindrical, we stick to the same notation (u, π). Hence, we write

{
∂tu + (u · ∇)u − ν ∇2u + ∇π = 0,

∇ · u = 0 in Ω × (0, T ]. (3.1)

In this simplified case, the proof of (2.11) has the following structure.Bydifferentiating
both sides of the first equation in (3.1) with respect to xk, k = 1, 2, 3, by taking the
scalar product with ∂ku, and by summing up over k, one shows that

1

2

d

dt

∫
|∇u|2 dx + ν

∫ ∣∣∣∇2u
∣∣∣2 dx = −

∫
∇[(u · ∇)u] · ∇u dx, (3.2)

where obvious integrations by parts have been done, and ∇ · u = 0 was taken into
account. On the other hand, an integration by parts yields∣∣∣∣

∫
∇[(u · ∇)u] · ∇u dx

∣∣∣∣ ≤ c(n)

∫
|u| |∇u|

∣∣∣∇2u
∣∣∣ dx . (3.3)

From (3.2) and (3.3), it follows that

1

2

d

dt

∫
|∇u|2 dx + ν

∫ ∣∣∣∇2u
∣∣∣2 dx ≤ c(n)

∫
|u| |∇u|

∣∣∣∇2u
∣∣∣ dx . (3.4)

Hence,

1

2

d

dt

∫
|∇u|2 dx + ν

∫ ∣∣∣∇2u
∣∣∣2 dx ≤ c(n) ‖|u| ∇u‖2

∥∥∥∇2u
∥∥∥
2
. (3.5)
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By Hölder’s inequality, one has

‖|u| ∇u‖2 ≤ ‖u‖p ‖∇u‖ 2p
p−2

.

Furthermore, by interpolation and by Sobolev’s embedding theorem,

‖∇u‖ 2p
p−2

≤ ‖∇u‖1−
n
p

2 ‖∇u‖
n
p
2∗ ≤ c ‖∇u‖1−

n
p

2

∥∥∥∇2u
∥∥∥ n

p

2
,

since (p − 2)/(2p) = (1 − n/p)/2 + (n/p)/2∗. Here, 2∗ = 2n/(n − 2) is the
well-known exponent in Sobolev’s embedding theorem. Consequently,

‖|u| ∇u‖2
∥∥∥∇2u

∥∥∥
2

≤ c ‖u‖p ‖∇u‖1−
n
p

2

∥∥∥∇2u
∥∥∥1+ n

p

2
.

Hence, by Young’s inequality,

‖|u| ∇u‖2
∥∥∥∇2u

∥∥∥
2

≤ C(ε) ‖u‖q
p ‖∇u‖22 + ε

∥∥∥∇2u
∥∥∥2
2
. (3.6)

From (3.5) and (3.6), we get, for t ∈ (0, T ],

1

2

d

dt
‖∇u‖22 + ν

2

∥∥∥∇2u
∥∥∥2
2

≤ C(ε) ‖u‖q
p ‖∇u‖22 + ε

∥∥∥∇2u
∥∥∥2
2
. (3.7)

Finally, (2.11) is proved by appealing to Gronwall’s Lemma, since, by the classical
version of the P–S condition,

‖u‖q
p ∈ L1(0, T ).

The crucial contribution of Bae and Choe was to succeed in replacing, in the right
hand side of (3.3), the term |u| simply by |u| , where u = (u1, u2, ..., un−1, 0). So

∣∣∣∣
∫

∇[(u · ∇)u] · ∇u dx

∣∣∣∣ ≤ c(n)

∫
|u| |∇u|

∣∣∣∇2u
∣∣∣ dx (3.8)

holds instead of the weaker estimate (3.3). The reader immediately verifies that all
the above calculations hold simply by replacing u by u in the appropriate places. In
particular, the inequality (3.7) holds with ‖u‖q

p replaced by ‖u‖q
p . This leads to the

generalized P–S condition

‖u‖q
p ∈ L1(0, T ). (3.9)
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4 Structure andmethod of proof of Theorem 2.2

In order to prove Theorem 2.2, we start from the integral identities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1,1 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1E1)] ·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 = 0,

I1,2 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1E2)] ·
[
∂1

u2

ξ1

]
· ξ1 dξ1dξ2dξ3 = 0,

I1,3 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1E3] · [∂1u3] · ξ1 dξ1dξ2dξ3 = 0,

I2,1 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂2E1] · [∂2u1] · ξ1 dξ1dξ2dξ3 = 0,

I2,2 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂2E2] · [∂2u2] · ξ1 dξ1dξ2dξ3 = 0,

I2,3 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂2E3] · [∂2u3] · ξ1 dξ1dξ2dξ3 = 0,

I3,1 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂3E1] · [∂3u1] · ξ1 dξ1dξ2dξ3 = 0,

I3,2 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂3E2] · [∂3u2] · ξ1 dξ1dξ2dξ3 = 0,

I3,3 (E) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂3E3] · [∂3u3] · ξ1 dξ1dξ2dξ3 = 0

(4.1)1,1

(4.1)1,2

(4.1)1,3

(4.1)2,1

(4.1)2,2

(4.1)2,3

(4.1)3,1

(4.1)3,2

(4.1)3,3

which follow immediately from Eq. (2.4). To exploit incompressibility, we have to
combine the above equations in the following manner:

I j,1 (E) + I j,2 (E) + I j,3 (E) = 0, j = 1, 2, 3. (4.2)

Note that Ek, k = 1, 2, 3, consist of four distinct terms, time, non-linear, viscous,
and pressure, respectively. This leads to the following decomposition of the integrals
appearing in Eq. (4.1).
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I j,k (E) = I j,k (N ) + I j,k (π) + I j,k (ν) + I j,k (∂t) . (4.3)

The integrals on the right hand side will be studied separately. Just at the end of this
paper, we will put all together by appealing to the core identity

∑
j,k=1,2,3

I j,k (E) = 0 . (4.4)

Roughly, we will prove in the next sections that the time terms give rise to the first
term in the left hand side of (3.5), the viscous terms generate the second term, the
pressure terms vanish, and the non-linear terms give rise to the right hand side of
(3.5), obviously with |u| replaced by |u|. This leads to (3.7), with ‖u‖q

p replaced by
‖u‖q

p . However, in our cylindrical setting, this identification is possible only up to the
appearance of a large number of negligible terms, see below.

Convention 4.1 In the sequel, claiming that some quantity H(t) is negligible means
that one can show,without appealing to the restricted P–S condition (2.10), that, given
an arbitrary ε > 0, there is a real function bε(t) ∈ L1(0, T ), such that

|H(t)| ≤ bε(t)
(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥∥D2u
∥∥∥2
2
, (4.5)

a.e. in (0,T). We will also call a quantity h(t) negligible, if

1∫
0

2π∫
0

ρ1∫
ρ0

|h(t)| dξ1dξ2dξ3

is negligible, and such quantities may, thus, be eliminated from equations.
If an equality or an estimate holds up to negligible terms, we will write � or ,

respectively.

Due to the integrability of the function bε(t), negligible terms H(t) are trivially con-
trolled by our main left hand side by appealing to Gronwall’s Lemma. Equation (3.7)
shows the typical situation where now the above term |H(t)| appears on the left hand
side.

The above convention is useful, since it allows us to avoid many similar calcula-
tions and unnecessarily long equations as the verification of the negligibility of many
quantities becomes routine and may be left to the reader.

We could give simple expressions, case by case, for the above functions bε(t), see
Lemma 4.2 below for examples. However, by appealing to a generic bε, we invite the
reader to retrace these simple calculations on his own.

Note that the above convention is quite significant in the context of the P–S condition
as it separates terms requiring this extra assumption from terms that can be treated
without appealing to it.
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Lemma 4.2 Terms of the following forms are negligible:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u3,

u2(∂u),

u2(∂2u),

u(∂u)2, and

(∂u)(∂2u)

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

Furthermore,

‖u · Du‖2 ≤ c (‖u‖2 + ‖Du‖2)3/2
(

‖Du‖1/22 +
∥∥∥D2u

∥∥∥1/2
2

)
. (4.7)

Products of functions that are bounded by terms in (4.6) are still negligible.

Proof The integral of the absolute value of the term (4.6e) is clearly bounded by the
right hand side of (4.5) with bε(t) = ε−1. The integral of the absolute value of the
term (4.6d) can be estimated by appealing to Hölder’s inequality with exponents 3, 2,
and 6, and to Sobolev’s embedding theorem W 1,2 ⊂ L6 applied to Du. It follows that

1∫
0

2π∫
0

ρ1∫
ρ0

|u| · |∂u| · |∂u| dξ1dξ2dξ3 ≤ c ‖u‖3 ‖Du‖2 ‖Du‖6

≤ c ‖u‖3 ‖Du‖2
(
‖Du‖2 +

∥∥∥D2u
∥∥∥
2

)
≤ c ‖u‖3 ‖Du‖22 + c

ε
‖u‖23 ‖Du‖22 + ε

∥∥∥D2u
∥∥∥2
2
.

The coefficient ‖u‖23 ≤ c ‖u‖26 ∈ L1(0, T ) satisfies condition (4.5) without
appealing to the restricted P–S condition (2.10) as Leray-Hopf solutions belong to
L2(0, T ; W 1,2(Ω)). Similarly, the integral of the absolute value of the term (4.6c)
may be bounded as follows.

1∫
0

2π∫
0

ρ1∫
ρ0

|u| · |u| ·
∣∣∣∂2u

∣∣∣ dξ1dξ2dξ3 ≤ c ‖u‖3 ‖u‖6
∥∥∥D2u

∥∥∥
2

≤ c ‖u‖3 (‖u‖2 + ‖Du‖2)
∥∥∥D2u

∥∥∥
2

≤ c

ε
‖u‖23

(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥∥D2u
∥∥∥2
2
.

The integrals of the absolute values of the terms (4.6a) and (4.6b) are bounded by
c ‖u‖3

(‖u‖22 + ‖Du‖22
)
.

123

Author's personal copy



H. Beirão da Veiga et al.

Equation (4.7) will be used much later only. Since the proof follows the same ideas,
it seems appropriate to state it right away for the reader’s convenience. By Hölder’s
inequality with exponents 3 and 3/2, one shows that ‖u · Du‖2 ≤ ‖u‖6 ‖Du‖3 . Fur-
thermore, by interpolation, we obtain the relation ‖Du‖23 ≤ ‖Du‖2 ‖Du‖6 . On the
other hand, ‖u‖6 ≤ c(‖u‖2 + ‖Du‖2), similarly for ‖Du‖6 . The estimate (4.7) now
follows easily. The last claim in the Lemma is obvious. ��
Note that, with regard to the boundary condition for u2 that we consider, the quantity
‖Du‖2 is merely a semi-norm. This led to the addition of ‖u‖2 .

It is worth noting that Hölder and Sobolev theorems, due to (2.1), hold in Ω in the
context of cylindrical coordinates, formally as for Cartesian coordinates, at most with
an obvious adaptation.

5 Contribution of the non-linear terms

We start by remarking that the role of the non-linear terms is central here, since the
P–S condition is necessary especially because of these terms.

In this section, we study the integrals obtained by restricting the terms E1, E2, E3
in (4.1) to their non-linear parts, i.e. N1, N2, and N3, respectively. Thus, we consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1,1 (N ) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1N1)] ·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (N ) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1N2)] ·
[
∂1

u2

ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (N ) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1N3] · [∂1u3] · ξ1 dξ1dξ2dξ3,

I j,k (N ) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[
∂ j Nk

] · [∂ j uk
] · ξ1 dξ1dξ2dξ3, j =2, 3, k =1, 2, 3.

(5.1)1,1

(5.1)1,2

(5.1)1,3

(5.1) j,k

We start by investigating the integrands

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1,1 := [∂1 (ξ1N1)] ·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1,

N1,2 := [∂1 (ξ1N2)] ·
[
∂1

u2

ξ1

]
· ξ1,

N1,3 := [∂1N3] · [∂1u3] · ξ1,

N j,k := [∂ j Nk
] · [∂ j uk

] · ξ1, j = 2, 3, k = 1, 2, 3,

(5.2)1,1

(5.2)1,2

(5.2)1,3

(5.2) j,k
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and by replacing the quantities Nk, k = 1, 2, 3, by their definitions from (2.6). In
this way, each N j,k appears as a sum of single terms which are trilinear in u, possibly
with coefficients consisting of powers of ξ1. This claim is obvious. Hence, we may
decompose each N j,k in the following manner:

N j,k = B j,k + K j,k + R j,k, j, k = 1, 2, 3, (5.3)

where, up to negligible terms (cf. Remark 5.1), B j,k denotes the summation of all terms
having a factor of the form u(∂u)(∂∂u), and K j,k consists of all terms containing a
factor of the form (∂u)(∂u)(∂u). It is worth noting that the really significant terms are
the B j,k- and the K j,k-terms, since they are characterized by three differentiations.
The sums of all other terms which have, at most, two differentiations, are denoted by
R j,k, j, k = 1, 2, 3.

Remark 5.1 In the sequel, some negligible terms will be dropped from the expressions
of the B j,k- and the K j,k-terms without changing notation. However, the definition
(5.7) is strict due to the equality required in (5.9). On the contrary, the definition of the
K j,k-terms shown in (5.8) is neither strict nor particularly significant. To this extent,
note that, in (5.14), one has a -sign.

We now proceed to prove the negligibility of R j,k-terms.

Proposition 5.2 The R j,k-terms, j, k = 1, 2, 3, are negligible.

Proof Since every term in N j,k, j, k = 1, 2, 3, is trilinear in u, the residual terms R j,k

must fall into one of the five categories of terms given in (4.6), possibly multiplied by
an integer power of ξ1. Due to this particular form, these coefficients remain in the very
same class after differentiation. Furthermore, coefficients in this class are bounded,
cf. (2.1). The Proposition becomes immediate by appealing to (4.6a)–(4.6d): The
negligibility of these expressions has been shown in Lemma 4.2. ��

Clearly, in order to eliminate the ε-term from the right hand side of estimates like

(3.6), we need a suitable estimate of the term
∥∥D2u

∥∥2
2 , present on the left hand side

of (3.4). This crucial estimate will be obtained from the viscous ν-terms in Sect. 7.
Next, note that, in Eq. (2.6), the terms u2

2/ξ1 and (u1u2)/ξ1 give rise to negligible
terms. Thus, we drop these terms from the expression of N1 and N2 :

Nk � (u · ∇)uk, k = 1, 2, 3. (5.4)

Suitable expressions for the B j,k- and the K j,k-terms can easily be obtained as
follows. One starts by noting that, in Eq. (5.2), each time we differentiate a coefficient
with respect to ξ1, we obtain a negligible term. Thus,

N j,k � (∂ j Nk
) (

∂ j uk
)
ξ1 � [∂ j (u · ∇uk)

] (
∂ j uk

)
ξ1, (5.5)
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where we also have appealed to the equivalence (5.4). Hence,

N j,k � [u · ∇ (∂ j uk
)] (

∂ j uk
)
ξ1

+
[(

∂ j u1
)
(∂1uk)+

(
∂ j

u2

ξ1

)
(∂2uk)+

(
∂ j u3

)
(∂3uk)

] (
∂ j uk

)
ξ1

� ξ1

2
u · ∇

[(
∂ j uk

)2]
+
[(

∂ j u1
)
(∂1uk)+ 1

ξ1

(
∂ j u2

)
(∂2uk)+

(
∂ j u3

)
(∂3uk)

] (
∂ j uk

)
ξ1,

(5.6)

where we have appealed to (2.3) and to the fact that ∂ jξ
−1
1 gives rise to a negligible

term (which vanishes if j �= 1).
The first term on the right hand side of (5.6) denotes the explicit form of the B j,k-

terms:

B j,k = ξ1

2
u · ∇

[(
∂ j uk

)2]
. (5.7)

To fix ideas, we choose the second term in (5.6) as being the explicit form of the
K j,k-terms,

K j,k = [ξ1 (∂ j u1
)
(∂1uk)+

(
∂ j u2

)
(∂2uk)+ξ1

(
∂ j u3

)
(∂3uk)

] (
∂ j uk

)
. (5.8)

We nowprove that the B j,k -terms do not contribute to the integrals (5.1). The following
identity holds.

Proposition 5.3 One has

1∫
0

2π∫
0

ρ1∫
ρ0

B j,k dξ1dξ2dξ3 = 0, j, k = 1, 2, 3. (5.9)

The result follows from the following statement.

Lemma 5.4 Let g be a scalar field that is 2π -periodic with respect to ξ2 and 1-periodic
with respect to ξ3. Then, there holds

1∫
0

2π∫
0

ρ1∫
ρ0

(u · ∇g) · ξ1 dξ1dξ2dξ3 = 0. (5.10)
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Proof Integration by parts yields

1∫
0

2π∫
0

ρ1∫
ρ0

u1(∂1g) · ξ1 dξ1dξ2dξ3 =
1∫

0

2π∫
0

ρ1∫
ρ0

(ξ1u1)(∂1g) dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1(ξ1u1)g dξ1dξ2dξ3,

since the corresponding boundary integral vanishes due to the boundary condition
u1 = 0 on the lateral boundary.

Similarly,

1∫
0

2π∫
0

ρ1∫
ρ0

u2

ξ1
(∂2g) · ξ1 dξ1dξ2dξ3 = −

1∫
0

2π∫
0

ρ1∫
ρ0

(∂2u2)g dξ1dξ2dξ3,

and

1∫
0

2π∫
0

ρ1∫
ρ0

u3(∂3g) · ξ1 dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

ξ1(∂3u3)g dξ1dξ2dξ3,

since the boundary integrals vanish due to periodicity in ξ2 or ξ3, respectively.
Adding up the three above equations, it follows that

1∫
0

2π∫
0

ρ1∫
ρ0

(u · ∇) g · ξ1 dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

(∇ · u) · g · ξ1 dξ1dξ2dξ3 = 0,

and Eq. (5.10) is proved. ��
The reader should take note that the main ingredient for the estimate of the B j,k-terms
was the incompressibility of the velocity u. The weak P–S condition was not used. It
will be used, though, while considering the K j,k-terms in order to prove the following
result.

Proposition 5.5 One has∣∣∣∣∣∣∣
1∫

0

2π∫
0

ρ1∫
ρ0

K j,k dξ1dξ2dξ3

∣∣∣∣∣∣∣  c ·
1∫

0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣∣D2u

∣∣∣ · ξ1 dξ1dξ2dξ3, j, k = 1, 2, 3, (5.11)

where u may denote the angular component u2 or the axial component u3 of the
velocity.

Proof For arbitrary but fixed j, k = 1, 2, 3, the three parts of K j,k have the particular
form

a(ξ1) (∂ j ui ) (∂i uk) (∂ j uk), i = 1, 2, 3, (5.12)
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where a(ξ1) = 1 or a(ξ1) = ξ1.Hence, in order to prove Proposition 5.5, it is sufficient
to show that

∣∣∣∣∣∣
1∫

0

2π∫
0

ρ1∫
ρ0

a(ξ1) (∂ j ui ) (∂i uk) (∂ j uk) dξ1dξ2dξ3

∣∣∣∣∣∣
 c ·

1∫
0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣∣D2u

∣∣∣ · ξ1 dξ1dξ2dξ3 (5.13)

for each triad of indices i, j, k.

Assume that the term ∂2u2 is present in the left hand side of (5.13). Then, after
integrating by parts with respect to the angular variable ξ2, one gets

1∫
0

2π∫
0

ρ1∫
ρ0

a(ξ1) (∂ j ui ) (∂i uk) (∂ j uk) dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

a(ξ1) ∂2 [(∂∗u∗)(∂∗u∗)] u2 dξ1dξ2dξ3,

since the corresponding boundary integral vanishes due to ξ2-periodicity. Take note
that the factor (∂∗u∗)(∂∗u∗) must be of the the form (∂2uk)(∂2uk), (∂ j u2)(∂ j u2), or
(∂2ui )(∂i u2). This already proves (5.13) with u = u2 (and c = ρ1 or c = a(ρ1)).

A similar proof applies if we assume that the term ∂3u3 is present in the left hand
side of (5.13). In this case, we appeal to the ξ3-periodicity.

Next, assume that the term ∂1u1 is present in the left hand side of (5.13). As u is
incompressible, we may now replace ∂1u1 by

−u1

ξ1
− ∂2u2

ξ1
− ∂3u3.

The expression coming from u1/ξ1 is negligible. The other two are treated as above.
If the left hand side of Eq. (5.13) does not fall into one of the above three cases,

then, necessarily, the three indices i, j, k are pairwise distinct. One easily verifies that,
in this case, at least one of the two terms ∂2u3 or ∂3u2 must be present. In the first case,
we integrate by parts with respect to ξ2, and we end up with u = u3 in Eq. (5.13). The
boundary integral vanishes due to ξ2-periodicity. The second case is similar and the
argumentation reads as above if we interchange the indices 2 and 3. ��

Equation (5.3) and Propositions 5.2, 5.3 and 5.5 lead to the following result.
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Proposition 5.6 One has

∣∣I j,k (N )
∣∣ =

∣∣∣∣∣∣
1∫

0

2π∫
0

ρ1∫
ρ0

N j,k dξ1dξ2dξ3

∣∣∣∣∣∣
 c ·

1∫
0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣∣D2u

∣∣∣ · ξ1 dξ1dξ2dξ3, j, k = 1, 2, 3,

(5.14)

where u may denote the angular component u2 or the axial component u3 of the
velocity.

By arguing as in the proof of (3.6) with |u| replaced by |u|, we prove the following
result.

Theorem 5.7 One has

∣∣I j,k (N )
∣∣  C(ε) ‖u‖q

p ‖Du‖22 + ε

∥∥∥D2u
∥∥∥2
2
, j, k = 1, 2, 3. (5.15)

Recall that, due to Convention 4.1, we may replace in (5.15) the-sign by the≤-sign,
and add bε(t)

(‖u‖22 + ‖Du‖22
)
to the right hand side of (5.15).

6 Contribution of the pressure terms

In this section, we study the integrals obtained by restricting the terms E1, E2, and
E3 in (4.1) to their pressure parts, i.e. ∂1π, 1

ξ1
∂2π , and ∂3π, respectively. Thus, we

consider
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1,1 (π) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1π)] ·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (π) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (∂2π)] ·
[
∂1

u2

ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (π) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (∂3π)] · [∂1u3] · ξ1 dξ1dξ2dξ3,

I j,2 (π) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[
∂ j

(
1

ξ1
∂2π

)]
· [∂ j u2

] · ξ1 dξ1dξ2dξ3, j =2, 3,

I j,k (π) :=
1∫

0

2π∫
0

ρ1∫
ρ0

[
∂ j (∂kπ)

] · [∂ j uk
] · ξ1 dξ1dξ2dξ3, j =2, 3, k =1, 3.

(6.1)1,1

(6.1)1,2

(6.1)1,3

(6.1) j,2

(6.1) j,k

In order to handle the pressure terms, we consider the three sums

I j (π) := I j,1 (π) + I j,2 (π) + I j,3 (π) , j = 1, 2, 3.

This crucial device allows us to exploit the incompressibility of the velocity field u.
With the help of straightforward calculations, by appealing to the boundary condi-

tions, and with suitable integrations by parts, we show that

I1(π) = −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1π ] · ∂1 [∇ · u] · ξ1 dξ1dξ2dξ3 + I̊1,1 (π) , (6.2)

where

I̊1,1 (π) :=
1∫

0

2π∫
0

[ξ1∂1π ] ·
[
1

ξ1
∂1 (ξ1u1)

]∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

The volume integral on the right hand side of (6.2) vanishes due to ∇ · u ≡ 0. Hence,

I1(π) = I̊1,1 (π) ,

and we are left to study the boundary integral I̊1,1 (π) .

Similar calculations show that

I2(π) = I3(π) = 0.
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We now turn to treating the remaining boundary integral I̊1,1 (π) .

Lemma 6.1 The boundary integral

I̊1,1 (π) =
1∫

0

2π∫
0

[∂1π ] · [∂1 (ξ1u1)]

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

is negligible in the sense that there holds

∣∣∣ I̊1,1 (π)

∣∣∣ ≤ bε(t) · ‖Du‖22 + ε ·
∥∥∥D2u

∥∥∥2
2
.

Proof According to Eqs. (2.4)1 and (2.6)1, we have

∂1π = −∂t u1 − u · ∇u1 + u2
2

ξ1
+ ν

(
∇2u1 − 2

ξ21
∂2u2 − u1

ξ21

)
.

First, we evaluate this equation for ξ1 = ρ0, ρ1, using the boundary condition u1 = 0,
and, thus, as a consequence, that also the tangential derivatives ∂i u1, ∂i∂ j u1,

i, j = 2, 3, vanish for ξ1 = ρ0, ρ1. Hence, we get

∂t u1 = 0, u · ∇u1 = 0, and ∇2u1 = 1

ξ1
∂1 (ξ1∂1u1) ,

and that leads to

∂1π = ν · 1

ξ1
∂1 (ξ1∂1u1) − ν

2

ξ21
∂2u2 + u2

2

ξ1
on ∂ lΩ.

Since ξ1∂1u1 = ∂1 (ξ1u1) − u1 and ∇ · u = 0, we get

1

ξ1
∂1 (ξ1∂1u1) = 1

ξ1
∂1 (−∂2u2 − ξ1∂3u3 − u1)

= − 1

ξ1
· ∂2 (∂1u2) − 1

ξ1
· ∂3u3 − 1

ξ1
· ξ1 · ∂3∂1u3 − 1

ξ1
· ∂1u1.

Now, we use the boundary conditions for u2 and u3 and get

∂3∂1u3 = 0, and ∂2∂1

(
u2

ξ1

)
= 0.

This leads to

1

ξ1
∂1 (ξ1∂1u1) = − 1

ξ21
(∂2u2) − 1

ξ1
(∂3u3) − 1

ξ1
(∂1u1), (6.3)
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and, because ∂1u1 = 1

ξ1
∂1 (ξ1u1) with u1 = 0, the right-hand side of (6.3) equals

− 1

ξ1
∇ · u and, therefore, vanishes. So we finally arrive at

∂1π = −2ν

ξ21
∂2u2 + u2

2

ξ1
.

The second factor in the integrand is

∂1 (ξ1u1) = −∂2u2 − ξ1∂3u3,

hence, we have

I̊1,1 (π) =
1∫

0

2π∫
0

[
−2ν

ξ21
∂2u2 + u2

2

ξ1

]
· [−∂2u2 − ξ1∂3u3]

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

We now expand the product and consider the four appearing summands.
For the integrals over |∂2u2|2 and ∂2u2 · ∂3u3, we use Gagliardo’s trace theorem

and get

1∫
0

2π∫
0

|Du|2
∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3 ≤ c
∥∥∥ |Du|2

∥∥∥
1,1

≤ c
(
‖Du‖22 +

∥∥∥ |Du|
∣∣∣D2u

∣∣∣ ∥∥∥
1

)
≤ c ‖Du‖22 + C(ε) · ‖Du‖22 + ε ·

∥∥∥D2u
∥∥∥2
2
.

(6.4)

Here, ‖·‖1,1 denotes the W 1,1(Ω)-norm.
The integral with the integrand

1

ξ1
u2
2 (∂2u2)

vanishes because

u2
2 (∂2u2) = 1

3
∂2

(
u3
2

)
,

and we can integrate by parts with respect to ξ2.
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Finally, we consider

−
1∫

0

2π∫
0

(
1

ξ1
· u2

2

)
· (ξ1∂3u3)

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
u2
2 · (∂3u3)

]
dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

2u2(∂1u2)(∂3u3) dξ1dξ2dξ3 −
1∫

0

2π∫
0

ρ1∫
ρ0

u2
2∂3∂1u3 dξ1dξ2dξ3.

The first integral is of type (4.6d), and the second integral is of type (4.6c). Integrals
of these types have been treated in Lemma 4.2. ��
The above Lemma and the fact that all volume integrals, if summed up suitably, vanish
identically lead to the following result.

Theorem 6.2 All pressure terms I j,k (π) are negligible.

7 Contribution of the viscous terms

To estimate the contribution of the viscous terms in equations (4.1), we consider the
nine integrals obtained by restricting the terms E1, E2, E3 to their respective viscous
parts. For instance,

I1,1 (ν) := −ν

1∫
0

2π∫
0

ρ1∫
ρ0

∂1

[
ξ1

(
∇2u1 − 2

ξ21

∂2u2 − u1
ξ21

)]
·
[

1

ξ21

∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3. (7.1)1,1

The two “lower order terms” in the expression

∇2u1 − 2

ξ21
∂2u2 − u1

ξ21

clearly generate negligible quantities. Thus, we drop these two terms in Eq. (7.1)1,1
and instead investigate the integral

I1,1
(
∇2
)

:=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
ξ1 · ∇2u1

]
·
[

1

ξ21

∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3

=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
∂1 (ξ1∂1u1) + 1

ξ1
∂22u1 + ξ1∂

2
3u1

]
·
[

1

ξ21

∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3. (7.2)1,1
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In the same way, we obtain integrals I j,k
(∇2

)
, j, k = 1, 2, 3, that we will refer to

with equation numbers (7.2) j,k, j, k = 1, 2, 3.

In order to obtain integrands of the form
∣∣∂i∂ j u1

∣∣2 , i, j = 1, 2, 3, we separate the
three terms which make up the right hand side of Eq. (7.2)1,1. Hence, we write

I1,1
(
∇2
)

= I 11,1

(
∇2
)

+ I 21,1

(
∇2
)

+ I 31,1

(
∇2
)

,

where the upper index l = 1, 2, 3 indicates that, in the right hand side of (7.2)1,1, we
have only considered the l-th term of the decomposition of the expression ξ1(∇2u1).

Subsequently, we integrate by parts: the first term with respect to ξ1, the second one
with respect to ξ2, and the third one with respect to ξ3. We start with the ξ1-term:

I 11,1

(
∇2
)

:=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1 [∂1 (ξ1∂1u1)] ·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1u1)] · ∂1

[
1

ξ1
∂1 (ξ1u1)

]
dξ1dξ2dξ3 (7.3)1

because the boundary integral

1∫
0

2π∫
0

[∂1 (ξ1∂1u1)] ·
[
1

ξ1
∂1 (ξ1u1)

]∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

disappears, since the first factor vanishes identically. We have already established this
fact whilst deriving Eq. (6.3).

For the second part of the Laplacian, we get

I 21,1

(
∇2
)

:=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
1

ξ1
∂22u1

]
·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
1

ξ1
∂2u1

]
·
[
1

ξ1
∂2 (∂1 (ξ1u1))

]
dξ1dξ2dξ3 (7.3)2

because the boundary integral vanishes due to periodicity in ξ2.
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Integration by parts with respect to ξ3 yields

I 31,1

(
∇2
)

:=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
ξ1∂

2
3u1

]
·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1 [ξ1∂3u1] ·
[
1

ξ1
∂3 (∂1 (ξ1u1))

]
dξ1dξ2dξ3 (7.3)3

because u is periodic in ξ3.
From (7.3), it looks clear that

I l
1,1

(
∇2
)

� −
1∫

0

2π∫
0

ρ1∫
ρ0

|∂l∂1u1|2 dξ1dξ2dξ3 � −c ‖∂l∂1u1‖22 , l = 1, 2, 3.

We can argue similarly to show the following result.

Proposition 7.1 One has

I l
j,k

(
∇2
)

� −c
∥∥∂l∂ j uk

∥∥2
2 , j, k, l = 1, 2, 3.

Proof The integral (7.2)1,1 has already been considered. The other eight integrals
can be handled in the same manner. After a decomposition of each integral in three
summands, the respective first summands should be integrated by parts with respect
to ξ1, the respective second summands with respect to ξ2, and the respective third
summands with respect to ξ3. Integrating by part with respect to ξ2 or ξ3 does not lead
to boundary integrals due to the periodicity in the corresponding variables. Therefore,
we only check the remaining eight first summands that contain an integration by parts
with respect to ξ1. One has

I 11,2

(
∇2
)

:=
1∫

0

2π∫
0

ρ1∫
ρ0

∂1 [∂1 (ξ1∂1u2)] ·
[
∂1

u2

ξ1

]
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1u2)] · ∂1

[
ξ1∂1

u2

ξ1

]
dξ1dξ2dξ3

because the boundary integral

1∫
0

2π∫
0

[∂1 (ξ1∂1u2)] ·
[
ξ1∂1

u2

ξ1

]∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

vanishes, since ∂1
u2

ξ1
≡ 0 on ∂ lΩ.
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The terms I 11,3
(∇2

)
, I 12,1

(∇2
)
, and I 13,1

(∇2
)
lead to boundary integrals that vanish

for the same reason, namely ∂1u3 ≡ ∂2u1 ≡ ∂3u1 ≡ 0 on ∂ lΩ.

I 12,2
(∇2

)
and I 13,2

(∇2
)
lead to boundary integrals that contain first order derivatives

only. In fact,

I 12,2

(
∇2
)

:= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [∂1u2] · ∂1 [∂2u2] · ξ1 dξ1dξ2dξ3

+
1∫

0

2π∫
0

∂2 [∂1u2] · [∂2u2] · ξ1

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

However, due to the fact that

∂1u2 = ξ1 ·
(

∂1
u2

ξ1

)
+ u2

ξ1
(7.4)

and ∂1
u2
ξ1

≡ 0 on ∂ lΩ, we obtain the identity ∂2 (∂1u2) = ∂2u2

ξ1
on ∂ lΩ and arrive at

a boundary integral that is quadratic in a first order derivative.
More precisely, we get

I 12,2

(
∇2
)

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [∂1u2] · ∂1 [∂2u2] · ξ1 dξ1dξ2dξ3

+
1∫

0

2π∫
0

|∂2u2|2
∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3. (7.5)

The boundary integral in (7.5) is negligible; this was shown in (6.4).
The term I 13,2

(∇2
)
can be treated in the exact same manner, simply by replacing

∂2 by ∂3 in each step.
Regarding I 12,3

(∇2
)
, after an integration by parts, we arrive at

I 12,3

(
∇2
)

:= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [ξ1∂1u3] · ∂1 [∂2u3] dξ1dξ2dξ3,

since the boundary integral, namely

1∫
0

2π∫
0

∂2 [ξ1∂1u3] · [∂2u3]

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

vanishes due to the condition ∂2 (∂1u3) ≡ 0 on ∂ lΩ in the integrand’s first factor.
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Considering I 13,3
(∇2

)
, we can argue in the very same manner if we appeal to the

condition ∂3 (∂1u3) ≡ 0 on ∂ lΩ. Hence,

I 13,3

(
∇2
)

:= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂3 [ξ1∂1u3] · ∂1 [∂3u3] dξ1dξ2dξ3

since, as mentioned before, the boundary integral,

1∫
0

2π∫
0

∂3 [ξ1∂1u3] · [∂3u3]

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

vanishes. ��
The proof of Proposition 7.1 shows that the following result holds.

Theorem 7.2 One has

∑
j,k

I j,k (ν) � ν

∥∥∥D2u
∥∥∥2
2
, (7.6)

uniformly in t for almost all t ∈ (0, T ).

8 Contribution of the time derivatives

In this section, we study the integrals obtained by restricting the terms E1, E2, and E3
in (4.1) to the time derivatives, ∂t uk, k = 1, 2, 3, of the velocity.

Hence, we consider

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1,1 (∂t ):=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂t u1)]·
[
1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (∂t ):=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂t u2)]·
[
∂1

u2

ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (∂t ):=
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (∂t u3)]·[∂1u3]· ξ1 dξ1dξ2dξ3,

I j,k (∂t ):=
1∫

0

2π∫
0

ρ1∫
ρ0

[
∂ j (∂t uk)

]·[∂ j uk
]· ξ1 dξ1dξ2dξ3, j =2, 3, k =1, 2, 3.

(8.1)1,1

(8.1)1,2

(8.1)1,3

(8.1) j,k
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Except for the consideration of (8.1)1,1 and (8.1)1,2, this leads to integrals of the form

I j,k (∂t ) = 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∂ j uk
∣∣2 · ξ1 dξ1dξ2dξ3, (8.2) j,k

and these are the quantities that we need in the main inequality (3.7) (with ‖u‖q
p

replaced by ‖u‖q
p).

Straightforward calculations show that the integrand of (8.1)1,1 reads

1

2

d

dt

[
ξ21 (∂1u1)

2 + 2ξ1u1(∂1u1) + u2
1

] 1

ξ1

= 1

2

d

dt

[
(∂1u1)

2
]
ξ1 + 1

2

d

dt

[
(∂1(u

2
1)
]

+ 1

2

d

dt

1

ξ1
u2
1. (8.3)

The first term on the right hand side of (8.3) gives the integral

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂1u1|2 · ξ1 dξ1dξ2dξ3,

and this is of the form that we need in (3.7) (with ‖u‖q
p replaced by ‖u‖q

p).
The integral of the second term in (8.3),

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

[
∂1(u

2
1)
]
dξ1dξ2dξ3,

vanishes as we can integrate by parts with respect to ξ1 and use the boundary condition
u1 = 0 on ∂ lΩ for all t ∈ (0, T ).

We have proved that

I1,1 (∂t ) � 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂1u1|2 · ξ1 dξ1dξ2dξ3 + 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
1

ξ1
dξ1dξ2dξ3, (8.4)

where the second term on the right hand side is the integral of the third term in (8.3).
We note that, in the sequel, this term will appear on the left hand side of our equation
of type (3.7). Further, in Sect. 9, the application of Gronwall’s Lemma in the proof of
the main theorem will give the additional conclusion u1 ∈ L∞(0, T ; L2(Ω)).

The integral (8.1)1,2 must be treated differently because, now, the integrand differs
from (1/2)∂t (∂1u2)

2 by terms that cannot be handled in the way above. Therefore, we
proceed in the following way:
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∂1 (ξ1∂t u2) = ∂t

[
∂1

(
ξ21 · u2

ξ1

)]
= ∂t

[
2ξ1 · u2

ξ1
+ ξ21

(
∂1

u2

ξ1

)]
,

and the integrand of (8.1)1,2 can be rewritten in the form

[∂1 (ξ1∂t u2)] ·
[
∂1

u2

ξ1

]
· ξ1 = 1

2
∂t

(∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2
)

· ξ31 + 2(∂t u2)(∂1u2) − 2

ξ1
(∂t u2)u2.

Thus, we have

I1,2 (∂t ) = 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

· ξ31 dξ1dξ2dξ3

+ 2

1∫
0

2π∫
0

ρ1∫
ρ0

(∂t u2)(∂1u2) dξ1dξ2dξ3

− d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2 · 1

ξ1
dξ1dξ2dξ3 =: I 11,2 (∂t ) + 2I 21,2 (∂t ) − I 31,2 (∂t ) . (8.5)

The term I 31,2 (∂t ) will be easily estimated, since it is integrable on (0, T ) because the
weak solution belongs to L2(0, T ; L2(Ω)).

Proposition 8.1 The term I 21,2 (∂t ) is negligible.

Proof In order to estimate I 21,2 (∂t ) , we replace ∂t u2 according to the equation of
motion (2.4)2:

∂t u2 = − (u · ∇) u2 − u1u2

ξ1
+ ν

(
∇2u2 + 2

ξ21
∂2u1 − u2

ξ21

)
− 1

ξ1
∂2π. (8.6)

An integration of (∂t u2)(∂1u2) then leads to integrals of typeswhichwe already treated
in Lemma 4.2, except for the integral that contains the pressure:

−
1∫

0

2π∫
0

ρ1∫
ρ0

[
1

ξ1
∂2π

]
·
[
∂1

u2

ξ1

]
dξ1dξ2dξ3 ≤ c ‖∇π‖2 ‖Du‖2 . (8.7)

On the other hand, by scalar multiplication of E1 · e1 + E2 · e2 + E3 · e3 = 0 by ∇π,

we get

〈∇π,∇π〉 = − 〈∂tu,∇π〉 − 〈N (u),∇π〉 + 〈ν(u),∇π〉 . (8.8)
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When, subsequently, integrating (8.8) over Ω , we note that the first summand on the
right hand side vanishes:

1∫
0

2π∫
0

ρ1∫
ρ0

〈∂tu,∇π〉 · ξ1 dξ1dξ2dξ3

=
1∫

0

2π∫
0

ρ1∫
ρ0

{
[(∂t u1) · ∂1π ] +

[
(∂t u2) · ∂2π

ξ1

]
+ [(∂t u3) · ∂3π ]

}
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂t u1) + ∂2 (∂t u2) + ξ1∂3 (∂t u3)] · π · ξ1 dξ1dξ2dξ3 = 0

because ∇ · (∂tu) = 0. Note that the boundary integrals vanish, again, since, when
integrating with respect to ξ1, we can exploit ∂t u1 = 0 on ∂ lΩ and, when integrating
with respect to ξ2 and ξ3, we can draw on the periodicity in these variables.

Therefore, we have

‖∇π‖2 ≤ c (‖N (u)‖2 + ‖ν(u)‖2) . (8.9)

So,

‖∇π‖2 ‖Du‖2 ≤ c (‖N (u)‖2 + ‖ν(u)‖2) ‖Du‖2  c ‖N (u)‖2 ‖Du‖2
as ‖ν(u)‖2 ‖Du‖2  c

∥∥D2u
∥∥
2 ‖Du‖2 is negligible. By appealing to (4.7), it follows

that

‖∇π‖2 ‖Du‖2  c ‖Du‖5/22

∥∥∥D2u
∥∥∥1/2
2

.

By Young’s equality with exponents 4/3 and 4, we obtain

‖∇π‖2 ‖Du‖2  C(ε) ‖Du‖4/32 ‖Du‖22 + ε

∥∥∥D2u
∥∥∥2
2
.

The desired result follows as Du ∈ L2(0, T ; L2(Ω)) ⊂ L4/3(0, T ; L2(Ω)). ��
We have proved that

I1,2 (∂t ) � 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

(
∂1

u2

ξ1

)2

· ξ31 dξ1dξ2dξ3

− d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2 · 1

ξ1
dξ1dξ2dξ3. (8.10)
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From (8.2) j,k , (8.4), and (8.10), we get the following result.

Theorem 8.2 For the time terms, one gets, with I j,k (∂t ) as in (8.2) j,k ,

∑
j,k=1,2,3

I j,k (∂t ) �
∑

( j,k) �=(1,2)

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∂ j uk
∣∣2 · ξ1 dξ1dξ2dξ3

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

ξ31 dξ1dξ2dξ3

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
1

ξ1
dξ1dξ2dξ3 − d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2

ξ1
dξ1dξ2dξ3.

9 The core estimate. Related remarks

The aim of this section is twofold: We give the core estimate, actually, in more than
one explicit form, and we also explain how, and why, we will proceed in the sequel.
These explanations should be helpful for the readers.

The integrals I j,k (E) of the basic identities (4.1) have been split up according
to (4.3) into four distinct parts: time, pressure, non-linear and viscous terms. These
quantities have been estimated in Sect. 5–8, cf. Theorems 5.7, 6.2, 7.2, and 8.2. Adding
up these inequalities according to (4.4) gives the following main result.

Theorem 9.1 The estimate

∑
( j,k) �=(1,2)

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∂ j uk
∣∣2 · ξ1 dξ1dξ2dξ3

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

ξ31 dξ1dξ2dξ3

+ ν

∥∥∥D2u
∥∥∥2
2
+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
1

ξ1
dξ1dξ2dξ3 − d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2 · 1

ξ1
dξ1dξ2dξ3

≤ C(ε) ‖u‖q
p ‖Du‖22 + bε(t)

(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥∥D2u
∥∥∥2
2

(9.1)

holds for almost all t ∈ (0, T ).

Note that, by inserting, on the right hand side, the bε-term, we were allowed to replace
the symbol “” by “≤”. Equation (9.1), up to secondary terms, enjoys the canonical
structure of Eq. (3.7). In view of the application of Gronwall’s lemma, an apparent
main difference is that, on the left hand side of (9.1), one has
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1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

· ξ31 dξ1dξ2dξ3 (9.2)

instead of

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

(∂1u2)
2 · ξ1 dξ1dξ2dξ3, (9.3)

but, on the right hand side of the same inequality, one must have

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

· ξ31 dξ1dξ2dξ3 (9.4)

instead of
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1u2)
2 · ξ1 dξ1dξ2dξ3 . (9.5)

We overcome this obstacle by appealing to the following result.

Lemma 9.2 One has the following equivalence up to negligible terms.

1∫
0

2π∫
0

ρ1∫
ρ0

(
∂1

u2

ξ1

)2

· ξ31 dξ1dξ2dξ3 �
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1 u2)
2 · ξ1 dξ1dξ2dξ3 . (9.6)

The proof follows immediately from the identity

(∂1(u2/ξ1))
2 ξ31 = (∂1u2)

2ξ1 − 2u2(∂1u2) + u2
2/ξ1 . (9.7)

Since the two terms in (9.4) and (9.5) are equivalent, and ‖∂1u2‖22 still appears on the
right hand side of (9.1), we may add ‖∂1(u2/ξ1)‖22 to this same right hand side. So we
will show, by appealing to Gronwall’s Lemma, that

∂1
u2

ξ1
∈ L∞(0, T ; L2(Ω)).

Using Lemma 9.2 once more, we will obtain, in particular, that

∂1u2 ∈ L∞(0, T ; L2(Ω)),

which is the desired result.
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Therefore, we define, in addition to ‖Du‖22 , the quite similar quantity

∥∥∥D̃u∥∥∥2
2

=
∑

( j,k) �=(1,2)

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∂ j uk
∣∣2 · ξ1 dξ1dξ2dξ3

+
1∫

0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1 u2

ξ1

∣∣∣∣
2

ξ31 dξ1dξ2dξ3 .

(9.8)

By appealing to (9.7), one shows that∣∣∣∣ ∥∥∥D̃u∥∥∥22 − ‖Du‖22
∣∣∣∣ ≤ c

(
‖u‖2

∥∥∥D̃u∥∥∥
2
+ ‖u‖22

)
≤ c

(∥∥∥D̃u∥∥∥2
2
+ ‖u‖22

)
, (9.9)

where we may replace, on the right hand side, D̃u by Du. The core argument is that
(9.9) leads to the crucial estimate

‖u‖q
p ‖Du‖22 ≤ ‖u‖q

p

∥∥∥D̃u∥∥∥2
2
+ c

(
‖u‖q

p

∥∥∥D̃u∥∥∥2
2
+ ‖u‖22

)
. (9.10)

It is worth noting that, in the sequel, the equivalence would be not sufficient.
By setting ε = ν/2 in Eq. (9.1), and by taking into account Eq. (9.10), it readily

follows that

1

2

d

dt

∥∥∥D̃u∥∥∥2
2
+ ν

2

∥∥∥D2u
∥∥∥2
2

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
1

ξ1
dξ1dξ2dξ3 − d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2

ξ1
dξ1dξ2dξ3

≤ B(t)

(
‖u‖22 +

∥∥∥D̃u∥∥∥2
2

)
, (9.11)

where, from now on, B(t) denotes any generical non-negative real function satisfying

B(t) ∈ L1(0, T ) .

Basically, Eq. (9.11) is well prepared to apply Gronwall’s Lemma. However, there
are two minor obstacles. The first one is the presence of the two last terms on the left
hand side of (9.11), especially the one with the negative sign (actually, the other one is
even helpful). The second point is that, in some cases of axial symmetry ofΩ, see [6],
the quantities ‖u‖22 + ‖Du‖22 and ‖Du‖22 are not equivalent. In the present case, this
concerns the third component. Hence, in order to control the term ‖u‖22 on the right
hand side of (9.1) by means of Gronwall’s Lemma, we will add its time derivative to
the left hand side, which is obtained from an energy type estimate. This additional
term also allows us to control the above integral with the minus sign in front of it.
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10 The energy inequality

According to (2.4), we define E j (∂t ), E j (N ), E j (ν), and E j (π), j = 1, 2, 3, through
the following identity

E j = E j (∂t ) + E j (N ) + E j (ν) + E j (π), j = 1, 2, 3. (10.1)

Note that E j (N ) = N j , cf. (2.6), and E j (∂t ) = ∂t u j .

A full energy inequality is obtained by time integration of the main identity:

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

E j · (ξ1u j ) dξ1dξ2dξ3 = 0. (10.2)

Since integrations by parts with respect to ξ2 and ξ3 always lead to vanishing
boundary integrals due to periodicity, we will not treat these integrals explicitly.

Lemma 10.1 We have

1∫
0

2π∫
0

ρ1∫
ρ0

E j (∂t ) · (ξ1u j ) dξ1dξ2dξ3 = 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣u j
∣∣2 · ξ1 dξ1dξ2dξ3. (10.3)

Proof Obvious. ��
Lemma 10.2 We have

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

E j (π) · (ξ1u j ) dξ1dξ2dξ3 = 0. (10.4)

Proof For j = 1, we obtain

1∫
0

2π∫
0

ρ1∫
ρ0

E1(π) · (ξ1u1) dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

π · ∂1(ξ1u1) dξ1dξ2dξ3,

since the boundary integral vanishes due to u1 = 0 on ∂ lΩ . For j = 2, 3,weproceed in
an analogousmanner. Now, the boundary integrals vanish due to periodicity. Summing
up, we draw on the velocity’s divergence-free property to obtain the desired result. ��
Lemma 10.3 We have

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

E j (N ) · (ξ1u j ) dξ1dξ2dξ3 = 0. (10.5)
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Proof One easilly shows that, for each j = 1, 2, 3,

(u · ∇u j ) (ξ1u j ) = 1

2

(
u · ∇u2

j

)
· ξ1 .

Hence, the integral of each of the above terms vanishes according to Lemma 5.4. It
follows that the integral on the left hand side of Eq. (10.5) consists merely of the two
“lower order terms” appearing in (2.6)1 and (2.6)2. These terms cancel each other due
to their opposite signs. ��

Next, we consider the viscous terms. We start by the “higher order terms”. From
(2.2c), one has

∇2u j = 1

ξ1
∂1(ξ1∂1u j ) + 1

ξ21

(
∂22u j

)
+
(
∂23u j

)
. (10.6)

Hence,

1∫
0

2π∫
0

ρ1∫
ρ0

(∇2u j ) · (ξ1u j ) dξ1dξ2dξ3 =
1∫

0

2π∫
0

ρ1∫
ρ0

∂1(ξ1∂1u j ) · u j dξ1dξ2dξ3

+
1∫

0

2π∫
0

ρ1∫
ρ0

(
∂22u j

)
· u j

ξ1
dξ1dξ2dξ3 +

1∫
0

2π∫
0

ρ1∫
ρ0

(
∂23u j

)
· u j · ξ1 dξ1dξ2dξ3.

(10.7)

By suitable integrations by parts, one shows that, for each j = 1, 2, 3,

1∫
0

2π∫
0

ρ1∫
ρ0

(∇2u j ) · (ξ1u j ) dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1u j )
2 · ξ1 dξ1dξ2dξ3

−
1∫

0

2π∫
0

ρ1∫
ρ0

(∂2u j )
2 · 1

ξ1
dξ1dξ2dξ3

−
1∫

0

2π∫
0

ρ1∫
ρ0

(∂3u j )
2 · ξ1 dξ1dξ2dξ3

+
1∫

0

2π∫
0

(∂1u j ) · u j · ξ1

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

For j = 1, the boundary integral vanishes due to u1 ≡ 0 on ∂ lΩ. For j = 3, the
boundary integral vanishes, since ∂1u3 ≡ 0 on ∂ lΩ. Furthermore, for j = 2, due to
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boundary condition (2.9)2, one has ∂1u2 = u2/ξ1 on ∂ lΩ. Hence,

1∫
0

2π∫
0

(∂1u2) · u2 · ξ1

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3 =
1∫

0

2π∫
0

u2
2

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

It readily follows that

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

(∇2u j ) · (ξ1u j ) dξ1dξ2dξ3

= −
3∑

j=1

1∫
0

2π∫
0

ρ1∫
ρ0

[
(∂1u j )

2 · ξ1 + (∂2u j )
2 · 1

ξ1
+ (∂3u j )

2 · ξ1

]
dξ1dξ2dξ3

+
1∫

0

2π∫
0

u2
2

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

(10.8)

where the first integral is the principal part of the ν-term.
The boundary integral can be estimated by appealing to Gagliardo’s trace theorem.

This immediately shows that

∣∣∣∣∣∣
1∫

0

2π∫
0

u2
2

∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

∣∣∣∣∣∣
≤ C ·

∥∥∥u2
2

∥∥∥
1,1

≤ C ·
⎛
⎝ 1∫

0

2π∫
0

ρ1∫
ρ0

u2
2 dξ1dξ2dξ3 +

1∫
0

2π∫
0

ρ1∫
ρ0

|u2 · Du2| dξ1dξ2dξ3
⎞
⎠

≤ C ·
(
‖u‖22 + ‖u‖2 ‖Du‖2

)

(10.9)

which is clearly a negligible term because

C ·
(
‖u‖22 + ‖u‖2 ‖Du‖2

)
≤ Cε · ‖u‖22 + ε · ‖Du‖22 . (10.10)

Next, we consider the “lower order terms” which are present for j = 1, 2, cf. (2.4)1
and (2.4)2. All these terms are clearly negligible. Hence, for the purpose of proving
our main result, the reader does not have to take these terms into account. However, it
might still by interesting for the reader to study their contribution in order to obtain a
stringent energy inequality in the current context. Instead of appealing to negligibility,
we might, therefore, note that the contribution of the “lower order terms” that have
not been taken into account yet is bounded by the left hand side of (10.10), as can be
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easily verified by the reader. Hence, with an obvious ε-notation, one has, by appealing
to (10.8), (10.9), and (10.10), the following statement.

Lemma 10.4 We have

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

E j (ν) · (ξ1u j ) dξ1dξ2dξ3

≥ ν

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

[
(∂1u j )

2 · ξ1 + (∂2u j )
2 · 1

ξ1
+ (∂3u j )

2 · ξ1

]
dξ1dξ2dξ3

− ν ·
(

Cε · ‖u‖22 + ε · ‖Du‖22
)

.

(10.11)

From the main identity 10.2, by appealing to Lemmata 10.1–10.4, one obtains the
following energy inequality.

Theorem 10.5 One has

1

2

d

dt
‖u‖2 + ν

2
‖Du‖22 ≤ Cν ‖u‖22 . (10.12)

In particular,

u ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)). (10.13)

11 Proof of Theorem 2.2.

It looks convenient to write the Eq. (10.12) in the more explicit form

1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

3∑
j=1

∣∣u j
∣∣2 · ξ1 dξ1dξ2dξ3 + ν

2
‖Du‖22 ≤ Cν ‖u‖22 . (11.1)

Addition, side by side, of Eq. (9.11) with Eq. (11.1) multiplied by a suitable positive
constant α (to control the previous integral with a minus sign in front of it), leads to
the estimate
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1

2

d

dt

∥∥∥D̃u∥∥∥2
2
+ ν

2

∥∥∥D2u
∥∥∥2
2
+ α

ν

2
‖Du‖22

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
1

(
α ξ1 + 1

ξ1

)
dξ1dξ2dξ3

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

u2
2

(
α ξ1 − 2

ξ1

)
dξ1dξ2dξ3

+ 1

2

d

dt

1∫
0

2π∫
0

ρ1∫
ρ0

|u3|2 α · ξ1 dξ1dξ2dξ3

≤ B(t)

(
‖u‖22 +

∥∥∥D̃u∥∥∥2
2

)
,

(11.2)

which is clearly suitable for the application of Gronwall’s Lemma, up tominor obvious
adaptations. Note that the right hand side of (11.1) has been incorporated in the right
hand side of (11.2) by replacing B(t) + Cνα simply by B(t).

Next, fix α such that αρ0 = 1 + 2/ρ1. Since ρ0 ≤ ξ1 ≤ ρ1, it follows that,

α ξ1 − 2

ξ1
≥ 1 .

For convenience, let us denote the three explicit space integrals on the left hand side
of (11.2) by, respectively, K 2

1 , K 2
2 , and K 2

3 , and let us introduceK2 = K 2
1+K 2

2+K 2
3 .

Due to the above choice of α, one has K 2
j � ∥∥u j

∥∥2
2 , for j = 1, 2, 3, which means

K2 � ‖u‖22 . It follows that,

1

2

d

dt

(∥∥∥D̃u∥∥∥2
2
+K2

)
+ ν

2

∥∥∥D2u
∥∥∥2
2
+α

ν

2
‖Du‖22 ≤ B(t)

(∥∥∥D̃u∥∥∥2
2
+K2

)
. (11.3)

Aclassical argument, basedon integrationwith respect to timeof (11.3) andGronwall’s
Lemma, shows that

(∥∥∥D̃u∥∥∥2
2
+ K2

)
∈ L∞(0, T ), and

∥∥∥D2u
∥∥∥2
2

∈ L1(0, T ) .

This is obviously equivalent to (2.11), namely

u ∈ L∞(0, T ; W 1,2(Ω)) ∩ L2(0, T ; W 2,2(Ω)).

Theorem 2.2 is proved.

123

Author's personal copy



Two components condition for regularity of the 3D Navier–Stokes equations…

References

1. Bae, H.-O., Choe, H.J.: A regularity criterion for the Navier–Stokes equations. Commun. Partial Differ.
Equations 32, 1173–1187 (2007)

2. Bae, H.-O., Wolf, J.: A local regularity condition involving two velocity components of Serrin-type
for the Navier–Stokes equations. C. R. Acad. Sci. Paris Ser. I(354), 167–174 (2016)

3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)
4. Beirão da Veiga, H.: Remarks on the smoothness of the L∞(0, T ; L3) solutions of the 3-D Navier–

Stokes equations. Port. Math. 54, 381–391 (1997)
5. Beirão da Veiga, H.: On the smoothness of a class of weak solutions to the Navier–Stokes equations.

J. Math. Fluid Mech. 2, 315–323 (2000)
6. Beirão da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous

slip-type boundary conditions. Adv. Differ. Equations 9, 1079–1114 (2004)
7. Beirão da Veiga, H.: Remarks on the Navier–Stokes equations under slip type boundary conditions

with linear friction. Port. Math. 64, 377–387 (2007)
8. Beirão daVeiga, H.: On the extension to slip boundary conditions of a Bae andChoe regularity criterion

for the Navier-Stokes equations. The half space case. J. Math. Anal. Appl. 453, 212–220 (2017)
9. Berselli, L.C.: A note on regularity of weak solutions of the Navier-Stokes equations in Rn . Jpn. J.

Math. 28, 51–60 (2002)
10. Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. IndianaUniv.

Math. J. 57, 2643–2661 (2008)
11. Chae, D., Choe, H.-J.: Regularity of solutions to the Navier–Stokes equation. Electron. J. Differ.

Equations 05, 1–7 (1999)
12. Escauriaza, L., Seregin, G., Šverák, V.: L3,∞-Solutions to the Navier–Stokes equations and backward

uniqueness. Russ. Math. Surv. 58, 211–250 (2003)
13. Foias, C.: Une remarque sur l’unicité des solutions des équations de Navier-Stokes en dimension n..

Bull. Soc. Math. Fr. 89, 1–8 (1961)
14. Galdi,G.P.:An Introduction to theNavier–Stokes initial-boundary value problems. In:Galdi,G.P.,Hey-

wood,M.I., Rannacher, R. (eds.) Fundamental Directions inMathematical FluidMechanics. Advances
in Mathematical Fluid Mechanics, pp. 1–70. Birkhäuser, Basel (2000)

15. Galdi, G.P.,Maremonti, P.: Sulla regolarità delle soluzioni deboli al sistema di Navier–Stokes in domini
arbitrari. Ann. Univ. Ferrara Sez. VII. Sci. Mat. 34, 59–73 (1988)

16. Giga, Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the
Navier–Stokes system. J. Differ. Equations 62, 186–212 (1986)

17. He, C.: Regularity for solutions to the Navier–Stokes equations with one velocity component regular.
Electron. J. Differ. Equations 29, 1–13 (2002)

18. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr.
4, 213–231 (1951)

19. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of the solution of the nonsta-
tionary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 21, 655–680
(1957)

20. Kozono, H., Sohr, H.: Regularity criterion on weak solutions to the Navier–Stokes equations. Adv.
Differ. Equations 2, 2924–2935 (2007)

21. Kukavica, I., Ziane, M.: Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48,
2643–2661 (2007)

22. Ladyzhenskaya, O.A.: On uniqueness and smoothness of generalized solutions to the Navier–Stokes
equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185 (1967)

23. Ladyzhenskaya, O.A.: La théorie mathématique des fluides visqueux incompressibles. Moscou (1961)
[English edition. 2nd edn. Gordon & Breach, New York (1969)]

24. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. ActaMath. 63, 193–248 (1934)
25. Lions, J.L.: Sur l’existence de solutions des équations de Navier–Stokes. C. R. Acad. Sci. Paris 248,

2847–2849 (1959)
26. Mikhailov, A.S., Shilkin, T.N.: L3, ∞-solutions to the 3D-Navier–Stokes system in a domain with a

curved boundary. J. Math. Sci. (N. Y.) 143, 2924–2935 (2007)
27. Neustupa, J., Penel, P.: Anisotropic and geometric criteria for interior regularity of weak solutions

to the 3D Navier–Stokes equations. In: Neustupa, J., Penel, P. (eds.) Mathematical Fluid Mechanics.
Advances in Mathematical Fluid Mechanics, pp. 237–265. Birkhäuser, Basel (2001)

123

Author's personal copy



H. Beirão da Veiga et al.

28. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182
(1959)

29. Prodi, G.: Résultats récents et problèmes anciens dans la théorie des équations de Navier-Stokes. In:
Les Équations aux Dérivées Partielles, pp. 181–196. Éditions du CNRS, Paris (1962)

30. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration.
Mech. Anal. 9, 187–195 (1962)

31. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear
Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

32. Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier–Stokes. Math. Z. 184,
359–375 (1983)
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