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Abstract. We consider solutions u to the Navier-Stokes equations in the
whole space. We set ω = ∇×u, the vorticity of u. Our study concerns relations

between β−Hölder continuity assumptions on the direction of the vorticity and

induced integrability regularity results, a significant research field starting from
a pioneering 1993 paper by P. Constantin and Ch. Fefferman. Nowadays it is

know that if β = 1
2

then ω ∈ L∞(L2), a 2002 result by L.C. Berselli and the

author. This conclusion implies smoothness of solutions. Assume now that one
is able to prove that a strictly decreasing perturbation of β near 1

2
induces a

strictly decreasing perturbation for r near 2. Since regularity holds if merely
ω ∈ L∞(Lr), for some r ≥ 3

2
, the above assumption would imply regularity for

values β < 1
2
. The aim of the present note is to go deeper into this study and re-

lated open problems. The approach developed below reinforces the conjecture
on the particular significance of the value β = 1

2
.

1. Introduction. In the following we consider solutions u to the Navier-Stokes
equations 

ut + (u · ∇)u− 4u+∇p = 0 ,

∇ · u = 0 in R3 × (0, T ],

u(x, 0) = u0(x) in R3 .

(1)

We will not repeat well know notation as, for instance, Sobolev spaces notation,
and so on. For brevity, we set Ls(Lr ) = Ls(0, T ; Lr(R3) ) , and similar. Solutions
u ∈ L2(0, T ; H1(R3) ) ∩ L∞(0, T ; L2(R3) ) are defined in the well known Leray-
Hopf weak sense. We set ω = ∇× u , the vorticity of u .

We start by recalling some know results. The classical Ladyzhenskaya-Prodi-
Serrin sufficient condition for regularity (see for instance [24] and references therein)
states that if

u ∈ Ls(0, T ;Lq(Ω) ) , (2)

for some exponents s and q, 2 ≤ s < ∞ (so, 3 < q ≤ ∞) satisfying

λ(s, q) ≡ 2

s
+

3

q
= 1 , (3)

then u is regular.
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Next we consider sufficient conditions for regularity, again of integral type, but
concerning the vorticity ω = ∇× u . Solutions u of (1) are regular if

ω ∈ Ls(0, T ;Lr(Ω) ) (4)

for exponents s, r satisfying

µ(s, r) ≡ 2

s
+

3

r
= 2 , for some 1 ≤ s ≤ ∞ . (5)

If s ≥ 2 , this follows from the L-P-S condition by appealing to a Sobolev’s embed-
ding theorem. If 1 < s ≤ 2 , regularity follows from [2].

Next we define

θ(x, y, t)
def
= ∠(ω(x, t), ω(y, t)) ,

where the symbol “∠ ” denotes the amplitude of the angle between two vectors.
We are interested in studying possible regularization effects of β−Hölder continuity
assumptions on the direction of the vorticity, namely

sin θ(x, y, t) ≤ c |x− y|β (6)

in R3× R3× (0, T ) , for some β ∈ (0, 1/2] . For brevity, in the following, β−Hölder
continuity assumptions on the direction of the vorticity will be simply called β−
Hölder assumptions, or even β−assumptions.

It is known, see [9], that assumption (6) for β = 1
2 implies ω ∈ L∞(L2 ) . In

particular, u ∈ L∞(L6 ) follows. This shows that 1
2 −Hölder continuity implies

regularity for u , by the L-P-S condition. Now assume that a strictly decreasing
perturbation of β near 1

2 induces a strictly decreasing perturbation for r near
2 . Since, by the L-P-S condition, regularity holds if merely ω ∈ L∞(Lr ) , for
some r ≥ 3

2 , the above assumption would imply regularity for values β < 1
2 .

However this important consequence would be in contrast with a previous conjecture
supported by us which suggests that β = 1

2 is the smallest value enjoying (in some
non rigorous sense) the above strong regularization property. See section 6. The
aim of these notes is to go deeper in the study of the above problem by appealing to
a significant generalization of the main lines of proofs shown in previous references.
We argue as trying to prove that

ω ∈ L∞(0, T ; Lr(Ω) ) (7)

for some couple r , β satisfying r < 2 , and β < 1
2 . Our final conclusion will be

that, for any value r ∈ (1, 2] , the smallest value β which guarantees (7) is in all
cases β = 1

2 . This conclusion supports our conjecture about the main role played

by the 1
2−Hölder assumption.

Two words about the strategy followed in the sequel. In our proof model, namely
the proof of the Hilbertian case (β, r) = ( 1

2 , 2) , one started by proving a L∞(L2 )

estimate for ω , by leaving completely free the parameter β . The value β = 1
2

appears at the end of the proof as being the smallest β consistent with the proof
of the L∞(L2 ) estimate previously obtained (i.e., for which the proof still works).
Below we follow this same line, by replacing 2 by r. We start by proving a suitable
L∞(Lr ) estimate for ω , for all r ≤ 2 in a neighborhood of 2 , instead of merely
for r = 2, as in the classical case. Then we look for the smallest β = β(r)
consistent with the proof of the L∞(Lr ) estimate. It is worth noting that each
single manipulation in the proof is formally independent of the particular value of
the parameter r , and coincides with the “classical” proof for r = 2 . This guarantees
that a perturbation argument, near r = 2 , does not present a “discontinuity” at
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r = 2 . However, as for the classical case r = 2 , at the end of the proof only the
value β = 1

2 appears to be admissible.
Summing up, our attempt to feel out if the regularity result (38) may hold for

r < 2 under a β−Hölder continuity assumption on the direction of the vorticity, for
some β < 1

2 , has had here a negative reply. This conclusion supports the argument,

still defended in the appendix of [6], that if for some value β < 1
2 the β−Hölder

assumption implies regularity, than a proof seems not obtainable by appealing to
classical devices. A negative conclusion, not to be disregard.

Mostly to present a “positive” result we prove, in section 5, the following result.

Proposition 1. Assume that (6) holds in Ω × (0, T ) , for some β ∈ [0, 1/2] , and
that

ω ∈ L
4

1+ 2 β (0, T ;L2) . (8)

Then the solution u of the Navier-Stokes equations (1) is strong in (0, T ) and,
consequently, is regular.

In reference [3], Theorem 1.3, it was stated that if (6) holds in Ω × (0, T ) , for
some β ∈ [0, 1/2] , and if

ω ∈ L2(0, T ;L
3

β+1 ) , (9)

then the solution u is strong in (0, T ) and, consequently, is regular. We remark that
assumptions (8) and (9) have the same strength since

2

2
+

3
3

β+ 1

=
2
4

1+ 2 β

+
3

2
= 2 + β .

However assumption (8) is of greater interest since the spatial norm of the vorticity
is taken in the more significant energy space L2 .

Let us end this section by proposing the following problem.

Problem. Assume that a β−Hölder continuity assumption on the direction of the
vorticity holds for some value β < 1

2 . Show that (4) holds for a couple of exponents

s and r satisfying µ(s, r) = 2
s + 3

r <
5
2 .

Since µ(s, r) = 5
2 corresponds, formally, to the maximum regularity known for

generical weak solutions (proved for s = r = 2 ), the above result would show
additional regularity to weak solutions, in terms of integrability. The possibility of
this “transfer” of regularity from direction of vorticity to integrability looks quite
natural.

Remark. A first version of this paper was previously presented in reference [7].
We are pleased that, in the meantime, some authors appealed to our techniques to
obtain quite interesting new results.

2. A new estimate. In the following f(s) denotes a real continuous differentiable
function f : R+ → R+ . We set

F (s) =

∫ s

0

f(τ) dτ .

Hence F ′(s) = f(s) . By applying the curl operator to equation (1) we get the
well-known equation

ωt + (u · ∇)ω − ν∆ω = (ω · ∇)u .



4 HUGO BEIRÃO DA VEIGA

Scalar multiplication by f(|ω|2)ω , integration in R3 , and integrations by parts
easily show that

1

2

d

dt

∫
F (|ω|2) dx−

∫
f(|ω|2) ∆ω · ω dx =

∫
f(|ω|2) (ω · ∇)u · ω dx . (10)

Non-labeled integrals are over R3 . Straightforward calculations show that

−
∫

f(|ω|2) ∆ω · ω dx =

∫
f(|ω|2) |∇ω|2 dx+ 2

∫
f ′(|ω|2) |ω|2 |∇ω|2 dx .

Hence

1

2

d

dt

∫
F (|ω|2) dx+

∫
f(|ω|2) |∇ω|2 dx

≤ 2

∫
f ′(|ω|2) |ω|2 |∇ω|2 dx+

∫
f(|ω|2) (ω · ∇)u · ω dx .

(11)

In these notes we are interested in the particular case f(s) = s−α. In the Hilber-
tian case, in which α = 0 , many of the devices used in the sequel are superfluous.

It is useful to start by considering the approximation functions

fε(s) = (ε+ s)−α, (12)

where ε > 0 , and 0 ≤ α ≤ 1
2 . Note that f ′ε(s) < 0 . Straightforward calculations

show that the absolute value of the first integral on the right hand side of equation
(11) is bounded by α times the second integral on the left hand side of the same
equation. So, one has

1

2(1− α)

d

dt

∫
(ε+ |ω|2)1−α dx+ (1− 2α)

∫
(ε+ |ω|2)−α|∇ω|2 dx

≤
∫

(ε+ |ω|2)−α |K(x)| dx

(13)

where

K(x) ≡ ( (ω · ∇)u · ω) (x) . (14)

Next we estimate from below the second integral on the left hand side of equation
(13) (see [1] and [2] for similar manipulations). One has

(ε+ |ω|2)−α |∇ |ω| |2 =
1

(1− α)2

|ω|2α

(ε+ |ω|2)α
∣∣∇( |ω|1−α)

∣∣2 . (15)

Since | ∇ω| ≥ |∇ |ω| | , it follows from equation (13) that

1
2(1−α)

d
dt

∫
(ε+ |ω|2)1−α dx+ (1−2α)

(1−α)2

∫ |ω|2α
(ε+ |ω|2)α

∣∣∇( |ω|1−α)
∣∣2 dx

≤
∫

(ε+ |ω|2)−α |K(x)| dx .

By letting ε→ 0 one gets

1
2(1−α)

d
dt ‖ω‖

2(1−α)
2(1−α) + (1−2α)

(1−α)2 ‖∇( |ω|1−α)‖22

≤
∫
|ω|−2α |K(x)| dx

(16)
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which, for α = 0 , is precisely the estimate obtained in the Hilbertian case. Now
we apply the Sobolev’s embedding theorem ‖g‖6 ≤ c0 ‖∇ g‖2 to the function g =
|ω|1−α . After this device, equation (16) reads

d

dt
‖ω‖2(1−α)

2(1−α) + c1 ‖ω‖2(1−α)
6(1−α) ≤

∫
|ω|−2α |K(x)| dx . (17)

The symbol c , and similar, may denote distinct positive constants.

3. Estimating the nonlinear term by a Riesz potential. In this section we
estimate the right hand side of equation (17) by means of a related Riesz potential.
This is one of the main ideas introduced by Constantin and Fefferman in [18], and
took again in [8]. We follow here the presentation given in reference [6] (where
bounded domains are considered). See also [9].

Since −∆u = ∇× (∇× u)− ∇ (∇ · u) , it follows that

−∆u = ∇× ω in R3 , (18)

for each t. So, by Biot-Savart law, one has

u(x) =

∫
G(x, y) (∇× ω)(y) dy , (19)

where

G(x, y) =
1

4π |x− y|
.

In particular ∣∣∣∣∂2G(x, y)

∂ yk∂ xi

∣∣∣∣ ≤ c

|x− y|3
. (20)

Set, for each triad (j, k, l), j, k, l ∈ {1, 2, 3},

εijk =

 1 if (i, j, k) is an even permutation ,
−1 if (i, j, k) is an odd permutation ,
0 if two indexes are equal .

These are the components of the totally anti-symmetric Ricci tensor. One has

(a× b)j = εjkl ak bl , (∇× v)j = εjkl ∂kvl . (21)

The usual convention about summation of repeated indexes is assumed.
In particular ∣∣∣∣∂2G(x, y)

∂ yk∂ xi

∣∣∣∣ ≤ c

|x− y|3
. (22)

By considering in equation (19) a single component uj , and by appealing to (21),
an integration by parts yields

uj(x) =

∫
G(x, y) εjkl ∂k ωl(y) dy = −

∫
εjkl

∂ G(x, y)

∂ yk
ωl(y) dy .

Hence
∂ uj(x)

∂ xi
= −P.V.

∫
εjkl

∂2G(x, y)

∂ xi∂ yk
ωl(y) dy .

It readily follows that

K(x) = −
∫
εjkl

∂2G(x,y)
∂ yk∂ xi

ωi(x)ωj(x)ωl(y) dy .
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Since − εjkl ωj(x)ωl(y) =
(
ωj(x)× ωl(y)

)
k
, it follows that

K(x) = P.V.

∫
∂2G(x, y)

∂ yk ∂ xi
ωi(x)

(
ωj(x)× ωl(y)

)
k
dy .

By appealing to (22) one shows that

| K(x) | ≤
∫

c

|x− y|3
|ω(x)|2 |ω(y)| sin θ(x, y, t) dy . (23)

Now we appeal to the main assumption (6) where, for now, β ∈ [0, 1/2] is left free.
By appealing to (23) one gets

|K(x)| ≤ c |ω(x)|2 I(x) , (24)

where

I(x) =

∫
Ω

|ω(y)| dy

|x− y|3− β

is the Riesz potential in R3 . Recall that (see [33]) if 0 < β < 3 , and if ω ∈ Lr̂(Ω)
for some exponent r̂ satisfying

1 < r̂ < 3 , (25)

then I ∈ Lq(R3) , where

1/q = 1/r̂ − β/ 3 , (26)

and

‖I‖q ≤ c ‖ω‖r̂ . (27)

In particular, by (24), the right hand side of equation (17) satisfies the estimate∫
|ω|−2αK(x) dx ≤ c

∫
|ω|r I(x) dx , (28)

where r = 2(1− α) . So,

d

dt
‖ω‖rr + ‖ω‖r3r ≤ c

∫
|ω|r I(x) dx , (29)

for

1 < r ≤ 2 . (30)

From now on we eliminate the above parameter α by appealing to the new exponent
r . By appealing to (27), we write the basic estimate

d

dt
‖ω‖rr + ‖ω‖r3r ≤ c ‖ω‖r̂ ‖ω‖rq′r , (31)

where
1

q′
= 1− 1

r̂
+
β

3
. (32)

More precisely, by (16), we could write (not used in the sequel)

d

dt
‖ω‖rr + ‖∇ |ω| r2 ‖22 ≤ c ‖ω‖r̂ ‖ω‖rq′r . (33)

Note that from (31) it immediately follows that the exponents r̂ and q′ r should be
chosen less or equal to the exponent 3 r . The first condition holds by assumption
(25). The second one easily leads to the restriction

3

2− β
≤ r̂ < 3 . (34)
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In the classical case β = 1
2 one has r̂ ≥ 2 . Fortunately, if β decreases, the value

on the above left hand side also decreases, so the range of r̂ expands to the left of
the significant value 2.

4. Towards the final conclusion. The main task in this section is looking for
pairs r and β such that the estimate

‖ω‖r̂ ‖ω‖rq′r ≤ Cε ‖ω‖22 ‖ω‖rr + ε ‖ω‖r3r (35)

holds. By (31), this would lead to

d

dt
‖ω‖rr + ‖ω‖r3r ≤ Cε ‖ω‖22 ‖ω‖rr , (36)

for a sufficient large value of Cε . As usual, the meaning of the equation (35) is
that ε may be any positive, arbitrarily small real number, at the price of having
corresponding large values of Cε . The motivation for this requirement is standard.
Assume that (48) holds for some pair of values r and β. Then, by appealing to

‖ω(t)‖22 ∈ L1(0, T ) (37)

and to Gronwall’s lemma, we show that

ω ∈ L∞(0, T ;Lr(Ω) ) ∩ Lr(0, T ;L 3r(Ω) ) . (38)

Even though r 6= 2 , a central role in the right hand side of equation (35) is still
required to the integrability exponent 2 . The reason for this choice is that (37) is
the strongest known estimate for the vorticity of weak solutions.

Our aim is now to find pairs (r, β) ∈ (1, 2]× (0, 1/2 ] such that (35) holds. We
decompose both norms ‖ω‖r̂ and ‖ω‖q′r , present in the right hand side of (31),
by appealing to interpolation. To keep again the maximum generality, we give the
largest width to the range of the exponent r̂ , by interpolating r̂ between the values
r and 3r as suggested by the left hand side of (31), and by the right hand side of
(35).

Note that the restriction (34) does not prevent interpolation between spaces
outside the above range, for instance r and 3 r , as done below. The same motivation
and remarks apply to the exponent q′ r .

We start by considering parameters α, θ, γ and α′, θ′, γ′ , in the interval [0, 1] ,
satisfying α + θ + γ = α′ + θ′ + γ′ = 1 , and related to the exponents q′ r and r̂
by the following equations: 

1

q′r
=

α

r
+
θ

2
+

γ

3r
,

1

r̂
=

α′

r
+
θ′

2
+

γ′

3r
.

(39)

It follows, by interpolation, that{
‖ω‖q′r ≤ ‖ω‖αr ‖ω‖θ2 ‖ω‖

γ
3r ,

‖ω‖r̂ ≤ ‖ω‖α
′

r ‖ω‖θ
′

2 ‖ω‖
γ′

3r .
(40)

The values of the above parameters will be fixed in the sequel. One has

B ≡ ‖ω‖rq′r ‖ω‖r̂ ≤ ‖ω‖α
′+α r
r ‖ω‖θ

′+ θ r
2 ‖ω‖γ

′+ γ r
3r . (41)

Next, by appealing to Hölder’s inequality with dual exponents
r

γ′ + γ r
,

r

(1− γ)r − γ′
,
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we get

B ≤ Cε ‖ω‖
(α′+α r) r
(1− γ)r−γ′
r ‖ω‖

(θ′+θ r) r
(1− γ)r−γ′

2 + ε ‖ω‖r3r , (42)

where the meaning of ε and Cε is clear. We want

α′ + α r

(1− γ) r − γ′
= 1 ,

θ′ + θ r

(1− γ) r − γ′
=

2

r
, (43)

since this immediately leads to (48). By setting γ = 1−(α+θ) and γ′ = 1−(α′+θ′)
in the first equation (43), one easily shows that (43) is equivalent to θ′ + θ r = 1 ,

α′ + α r =
r

2
.

(44)

In addition, the exponents q′ and r̂ must also verify equation (32). This last
constraint will be satisfied since the parameter β is still free. In other words, (32)
determines the set of values of the Hölder exponent β = β(r) which lead to the
regularity result (38). Then we choose the minimal one. Let’s calculate these values.
By appealing to the equation (32) and to the second equation (39), one shows that
the first equation (39) can be written in the equivalent form

1− α′

r
− θ′

2
− γ′

3r
+
β

3
= α+

r

2
θ +

γ

3
.

Further, by replacing γ and γ′ respectively by 1 − (α + θ) and 1 − (α′ + θ′) ,
straightforward calculations lead to the desired expression of β(r) , namely

β(r) =
2

r
(α′ + α r) +

( 3

2
− 1

r

)
(θ′ + θ r)− 2 +

1

r
. (45)

Lastly, by appealing to (44) and (45), we realize, in agrement to our prediction
but also with some disappointment, that the exponent β obtained here does not
depend on r . In fact one gets

β =
1

2
. (46)

5. Proof of Proposition 1.

Proof. By setting r̂ = 2 in (32) it follows that q′ = 6
3+ 2 β . Hence, from (31),

d

dt
‖ω‖rr + ‖ω‖r3 r ≤ c ‖ω‖2 ‖ω‖r 6

3+ 2 β r
. (47)

Further, by interpolation, one gets

‖ω‖ 6
3+ 2 β r

≤ ‖ω‖νr , ‖ω‖1− ν3 r ,

where ν = 1+ 2 β
4 . Hence

d

dt
‖ω‖rr + ‖ω‖r3r ≤ c

(
‖ω‖2 ‖ω‖

1+ 2 β
4 r

r

)
‖ω‖

3− 2 β
4 r

3 r .

Next, by Young’s inequality,

d

dt
‖ω‖rr + ‖ω‖r3r ≤ Cε ‖ω‖

4
1+ 2 β

2 ‖ω‖rr + ‖ω‖r3r , (48)

for arbitrary ε > 0 . Since the exponent 4
1+ 2 β is independent of r , the strongest

result is obtained by setting r = 2 .
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6. On the “equal strength” of distinct assumptions. In a previous version
of these notes we have introduced a notion of equal strength, suitable to compare
distinct assumptions (see also the appendix of reference [6]). Roughly, it was a
kind of “continuity method with respect to a parameter”, where real continuity
is replaced by the formal independence of proofs with respect to parameters (a
clearly non rigorous concept). For instance, since the proof of the Ladyzhenskaya-
Prodi-Serrin sufficient condition for regularity is, formally, totally independent of
the particular values of the parameters s and q, we say that all the L-P-S sufficient
conditions for regularity have the same strength (clearly, the limit case (∞, 3) ,
see [23], is out of the above criterium of equal strength). We have applied the
above criterium of equal strength, based on independence of proofs with respect
to parameters, to other similar situations. We also included other two different
situations leading to “equal strength” claims, namely when two distinct sets of
conditions, depending on parameters, have an element in common, or when a sharp
Sobolev’s embedding theorem allows an equal strength claim. With this idea in
hands, we have deduced that all the regularity results refereed in the present notes
have the same strength. In particular, the β = 1

2 regularity assumption has the
same strength as any of the L-P-S conditions for regularity. Clearly, we can not
expect a “strong” equivalence between the integral assumption and the pointwise
assumption. However, the equivalence conclusion claimed by us, is sufficient to alert
authors that to prove smoothness of solutions (if true) under a β < 1

2 assumption
should be a quite hard matter.

7. Some particularly related known results. In this section we limit us to
describing some results which are strongly related to the author’s approach, and
to the present notes, by methods of proof. Other main references are given at the
end of the section, without any claim of completness. We begin by recalling the
fundamental pioneering paper [18], by P. Constantin and Ch. Fefferman, where the
authors prove, in particular, that solutions to the evolution Navier-Stokes equations
in the whole space are smooth if the direction of the vorticity is Lipschitz continuous
with respect to the space variables, namely assumption (6) for β = 1. This condi-
tion is assumed for almost all x and y in R3 , and almost all t in (0, T ) . Actually,
in [18], the assumption is merely required for points x and y where the vorticity at
both x and y is larger than a given, arbitrary constant k. This improvement was,
or can be, extended in the same way to many subsequent papers on the subject. It
is also easily show that assumption (6) can be restricted to couples of points x and
y satisfying |x− y| < δ, for an arbitrary positive constant δ.

In reference [8] L.C. Berselli and the author showed, in particular, that regularity
still holds in the whole space by replacing Lipschitz continuity by 1

2−Hölder conti-
nuity. This is, up to now, the strongest result in the literature. Actually, the above
reference has been a fundamental basis to the subsequent papers by the present
author. In reference [3] the result reported at the end of section 1, see (9), was
proved.

Concerning other related papers, we start by recalling reference [4] where the
above kind of results is extended to the half-space Ω = R3

+ , under the “stress-free”
slip boundary condition {

u · n = 0 ,

ω × n = 0 ,
(49)
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where n is normal to the boundary. In reference [9], L.C. Berselli and the au-
thor succeed in extending this result to the case in which Ω ⊂ R3 is an open,
bounded set with a smooth boundary, by appealing to suitable representation for-
mulas for Green’s matrices. In reference [10] regularity is proved by replacing con-
tinuity requirements on sin θ(x, y, t) by a smallness assumption. Essentially, it is
proved that there is a sufficiently small constant C1 such that regularity holds if
sin θ(x, y, t) ≤ C1 . Clearly, there are many very interesting papers, even crucial
papers, related to the present contribution. We recall here, without any claim of
completeness, references [5], [6], [11], [12], [13], [14],[15], [16], [17], [19], [20], [21],
[22], [25], [26], [27], [28], [29], [30] [31], [32], [34].
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Stokes in domini arbitrari Ann. Univ. Ferrara Sez. VII (N.S.), 34 (1988), 59–73.
[25] Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows

with infinite energy, Comm. Math. Phys., 303 (2011), 289–300.
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[27] Z. Grujić and R. Guberović, Localization of analytic regularity criteria on the vorticity and

balance between the vorticity magnitude and coherence of the vorticity direction in the 3D
NSE, Comm. Math. Phys., 298 (2010), 407–418.
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