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Abstract

The motivation at the origin of this note is the well known suffi-
cient condition for regularity of solutions to the evolution Navier-Stokes
equations, sometimes referred to in the literature as Ladyzhenskaya-
Prodi-Serrin’s condition. Such a condition requires that the velocity
field v , alone, satisfies sufficiently strong integrability requirements in
space-time. On the other hand, a relation like p ∼= |v|2 , with p pressure
field, is loosely suggested by the Navier-Stokes equations themselves.
In three papers published nearly twenty years ago we have considered
this problem. The results obtained there immediately suggest new
interesting questions. In this paper, we propose, and solve, some of
them, while many other related problems remain still open.

1 Introduction and main results.

This note concerns sufficient conditions of the so called Ladyzhenskaya–
Prodi–Serrin’s type (in the sequel simply denoted by LPS), for regularity of
weak solutions of the evolution Navier-Stokes equations

∂t v + (v · ∇) v − µ4v +∇π = f ,

∇ · v = 0 , in Ω× (0, T ] ;

v(x, 0) = v0(x) in Ω ,

v = 0, on Γ× (0, T ] ,

(1)
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where v0 ∈ H1
0 (Ω) is divergence free. Here Ω is a smooth open, bounded,

subset of Rn , n ≥ 3 , and Γ is its boundary. We assume that the reader
is familiar with the classical literature on these equations. In particular, we
will not recall the meaning of usual notation such as, for instance, Lebesgue
spaces, Sobolev spaces, and so on. Moreover, we shall skip the standard
proof of some peripheral results, and leave it to the reader the task of showing
the details.

Weak solutions are characterized by the property

v ∈ L∞(0, T ; L2(Ω) ∩ L2(0, T ; H1(Ω) ) ,

and by being weakly continuous with values in L2(Ω) .
The choice of boundary conditions plays an important role, since not all

extensions of LPS’s type conditions to more general functional spaces seem
to be possible, or at least quite difficult to prove, under different boundary
conditions. In particular, under the classical no-slip ones assumed here,
reflection techniques are not suitable.

Our aim is to propose, justify, discuss and solve some open problems
related to our old contributions [2], [3], and [4].

We start by briefly recalling the LPS condition. It states that weak
solutions v of (1) satisfying

v ∈ Lr(0, T ; Lq(Ω) ) ,
2

r
+
n

q
= 1 , q > n (2)

are strong. This means here that

v ∈ L∞(0, T ; H1(Ω) ) ∩ L2(0, T ; H2(Ω) ) . (3)

It is well known that strong solutions are smooth, if data and domain are
also smooth.

Obviously, in condition (2), as in many similar assumptions made later
on, we may replace ” = ” with ” ≤ ” . However, in our opinion, this
substitution may generate some confusion between sharp and non sharp
regularity results. See also the appendix.

Let’s come to our main problem. The well know ”interior” equation

−∆ p =

n∑
i,j= 1

∂i ∂j(vi vj ) (4)

roughly suggests the formal relation

p ∼= v2 . (5)

2



Actually, (4) suggests, more appropriately, p / v2 , rather than v2 / p .
However, the latter inequality is just the one related to the results proved
later on. Note that from p / v2 it merely would follow

|p|
1 + |v|

≤ |p|
|v|
≤ |v| ,

but not the reverse. So, at least formally, assumption (18) stated below
looks weaker than (2).

Formally, (5) may suggest the following generalization

|p|
(1 + |v|)θ

∼= | v |2− θ , (6)

even though the non-local character of the above relations should be con-
sidered.

Problem 1.1. Assume that a weak solution (v, p) of the Navier-Stokes
equations (1) satisfies

|p|
(1 + |v|)θ

∈ Lr(0, T ; Lq(Ω) ) , (7)

for some θ ∈ [0, 2] , where

2

r
+
n

q
= 2− θ . (8)

Question: Does (3) hold? If not, may one replace (8) by weaker, but signif-
icant, assumptions?

Definition 1.1. We say that a regularity result is sharp if weak solutions
(v, p) are strong under the couple of assumptions (7) and (8).

Note the difference between the meanings of ”strong solution” and ”sharp
result”.

In three papers published nearly twenty years ago, [2], [3], and [4], we
have considered the above kind of problems. The results proved there sug-
gest a positive answer to Problem 1.1, at least for θ < 1 . The answer
seems to be quite different in the case θ > 1 , see section 4. Hence, our
main interest here is to consider the case θ ≤ 1 . For θ = 1 , sharp regularity
was already shown in reference [4], where q > n was assumed (the result,
however, continue to hold also for q = n ).

Our main result, showed next, is the following.
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Theorem 1.1. Let v0 ∈ Ln(Ω) ∩ H1
0 (Ω) , be divergence free and f ∈

L1(0, T ; Ln(Ω) ). Assume that a weak solution of the Navier-Stokes equa-
tions (1) satisfies

|p|
(1 + |v|)θ

∈ Lr(0, T ; Lq(Ω) ) , (9)

where 0 ≤ θ ≤ 1 , and the exponents r, q ∈ (2, +∞) verify the condition

2

r
+
n

q
= 2− θ . (10)

If 2 ≤ q < n we also assume that

r ≤ (n− 2) q

n− q
≡ n− 2

(n/q)− 1
. (11)

Under the above hypothesis one has

v ∈ L∞(0, T ; Ln(Ω) ) ∩ Ln(0, T ; L
n2

n−2 (Ω) ) . (12)

Furthermore
∇|v|n/2 ∈ L2(0, T ; L2(Ω) ) . (13)

In particular, the solution is strong. Additional smoothness of solution fol-
lows from related smoothness of the data.

The particular cases in which r or q take one of the values 2 or +∞ ,
left to the interested reader, should be treated separately.

Note that if q ≥ n then r has the full range (2, ∞) . But for values q < n
the range of r shrinks as q decreases. For some considerations and examples
that may help a better understanding of the pair of assumptions (10), (11),
we reffer the reader to the appendix.

For further use we state here a corollary of theorem 1.1 in the case
r = q = γ . Assumption (11) holds in this case.

Corollary 1.1. Let v0 and f be as in Theorem 1.1. Assume that a weak
solution of the Navier-Stokes equations (1) satisfies

|p|
(1 + |v|)θ

∈ Lγ(QT ) = Lγ(0, T ; Lγ(Ω) ) , (14)

where 0 ≤ θ ≤ 1 , and the exponent γ ∈ (2, +∞) verifies the condition

n+ 2

γ
= 2− θ . (15)

Then, the solution v is strong.
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The basic idea of proof of Theorem 1.1 generalizes, by following the
same line of thought, the procedure introduced in reference [4], which has
also been used later on by other authors. The fundamental estimate (2.3)
in [4] (see (33) below, where α = n), was previously shown in reference [1],
in particular Lemmas 1.1 and 1.2. Actually, related, similar, estimates were
obtained earlier in [11], in a different context (set in equations (4) and (5)
there, q = α , g = 1 , and v = 0 ).

Notations in [1] and in [4] are different. The quantities denoted in [1] by
the symbols Nα(v) and Mα(v) are the α−powers of the quantities denoted
by the same symbols Nα(v) and Mα(v) in reference [4]. Here, see definitions
in (31) below, we follow the notation used in [4]. It is worth noting that
below we appeal to the results stated in [4] only for the particular value
α = n . So we denote here Nn(v) simply by N(v) , and so on.

The particular case θ = 0 (a condition on the pressure alone), is not
considered here. We just quote here the pioneering reference [7] and two
main references, [6] and [8], where the proofs generalized that in [4]; see [6]
also for a rather complete bibliographic reference. We also refer the reader
to [9] where, for the Cauchy problem in R3 , it is shown that weak solutions
are smooth if the pressure is non-negative (actually, the assumption is a
little more general).

In reference [8] the case θ > 1 is also considered, see section 4 below.

2 On some our old results.

In this section we briefly recall some results stated in references [2], [3], and
[4]. Even though not necessary to understand the proof of theorem 1.1, we
strongly encourage readers not skip this section.

We start by recalling Theorem 1.1 in [2]. As far as we know, this theorem
is the first result where assumptions of type (7) were considered. It is one of
the pioneering papers applying the truncation method to the Navier-Stokes
equations. The presence of pressure and divergence free fields make this
application non trivial.

Theorem 2.1. Let v be a weak solution to the Navier-Stokes equations (1),
where the initial data v0 is assumed to be bounded. Further, let

|p|
1 + |v|

∈ Lr(0, T ; Lq(Ω) ) , (16)

where
2

r
+
n

q
< 1 , q ∈ (n, ∞ ] . (17)
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Then v is bounded in QT ≡ Ω× (0, T ) . In particular v is smooth.

The classical sufficient condition for regularity (2) led us to investigate
whether in the above theorem one can replace assumption (17) with (19).
A positive answer was given in [4, Theorem 1], where the following result
was proved.

Theorem 2.2. Let v be a solution to the Navier-Stokes equations (1),
where, for some α > n , v0 ∈ Lα(Ω) , is divergence-free, with normal com-
ponent vanishing at Γ. Further, let

|p|
1 + |v|

∈ Lr(0, T ; Lq(Ω) ) , (18)

where
2

r
+
n

q
= 1 , q ∈ (n, ∞ ] . (19)

Then
v ∈ C(0, T ; Lα(Ω)) and | v |α/2 ∈ L2(0, T ; H1

0 (Ω) ) . (20)

In particular v is smooth in QT .

Notice that, as done in [4], in (20)1 we can equivalently replace Lα(Ω)
with Hα(Ω) , completion in the Lα(Ω)-norm of the subset of divergence free
vector fields belonging to C∞0 (Ω) , since, according to (20)2, the divergence
free vector field v vanishes on the boundary. We keep the notation Lα as
it is more consistent with the notation used in the papers quoted later on.

In [2] and [4] we have assumed that θ = 1 . In reference [3] θ ≤ 1
was allowed, and r = s was assumed. Furthermore, instead of Lebesgue
spaces Ls we have used weak−Ls spaces (also called Marcinkiewicz spaces,
or Lorentz spaces), denoted below by the symbol Ls∗ . Recall that, in a
bounded domain, and with obvious notation, one has

Lq+ε∗ ⊂ Lq ⊂ Lq−ε∗ , and equivalently, Lq+ε ⊂ Lq∗ ⊂ Lq−ε . (21)

Following [3] we set
N = n+ 2 . (22)

N is precisely the integrability exponent for which (8) holds for r = s = N .
As in [2], the proofs given in [3] made use of the truncation method,

but with a different approach. In [3, Theorem 1.1] the following result was
proved.
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Theorem 2.3. Let v0 ∈ L∞(Ω) ∩H1
0 (Ω) be a divergence field vector field,

and assume that (v, p) is a weak solution to the Navier-Stokes equations
(1). Assume that for some θ ∈ [0, 1) , and some

2 < γ < N , (23)

one has
|p|

(1 + |v|)θ
∈ Lγ∗(QT ) . (24)

Then
v ∈ Lµ∗ (QT ) , (25)

where

µ = (1− θ)
N γ

N − γ
. (26)

In particular the solution is smooth in QT if

2

γ
+
n

γ
< 2− θ , θ ∈ [0, 1] . (27)

In reference [3] the condition (27) was written in the equivalent form γ >
N/(2− θ) . Furthermore, it was formally assumed that γ > 2N/(2 θ+ (1−
θ)N) . This assumption is superfluous, as already explained in [3, Remark
1.5]. However it (implicitly) implied γ > 2 , a condition required in [3,
equation (2.4)], and claimed here in equation (23).

Smoothness under assumption (27) follows immediately from the first
part of the above theorem, as pointed out in [3, Remark 1.2]. In fact, in this
case one has µ > N in equation (25). Hence, thanks to (21), v ∈ Ls(QT ) ,
for any s satisfying N < s < µ . It then follows that the classical LPS
condition for regularity applies, leading to regularity of the weak solution.

The reader should compare the last statement in Theorem 2.3 with that
stated in the Corollary 1.1. Roughly speaking, we want to compare the re-
sults obtained by replacing the Marcinkiewicz spaces Lγ∗(QT ) and Lµ∗ (QT )
with the Lebesgue spaces Lγ(QT ) and Lµ(QT ) respectively, an idea sug-
gested by the inclusions (21). Note that, in the first case, the thesis is
weaker, but the assumption is weaker as well. So, to easily compare the two
results, it looks less rigorous but more useful to replace (27) by the limit
situation

2

γ
+
n

γ
= 2− θ , θ ∈ [0, 1] . (28)
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This condition is just the assumption (15) in the Corollary 1.1. The fact
that two completely methods of proof requires the same assumption lead us
to believe that the assumption is more than accidental.

The practical advantage of a Lebesgue-type approach is that smooth-
ness can be obtained under the equality sign ” = ” in assumption (27),
while in Marcinkiewicz spaces the equality sign is not known to yield regu-
larity. Hence, in the Marcinkiewicz framework, we were forced to appeal to
the LPS assumption in Lebesgue spaces, at the price of an arbitrary small
increment of the integrability exponent γ . Note that, if the LPS condition
for regularity also holds for Marcinkiewicz spaces (an open problem), then
the corresponding version of the regularity result would be stronger than the
sharp regularity version in Lebesgue spaces. Note that some results aimed
at extending the LPS condition to Marcinkiewicz spaces, are indeed known.
See for instance [5] and [12].

In conclusion to this section, we wish to recall [3, Corollary 1.7], even
though this result is marginal in our context, since it assumes θ = 0 . The
use of Marcinkiewicz spaces in the framework of the corollary was, at that
time, quite new, which provides a good reason to recall this old result.

Corollary 2.1. Let (v, p) be a weak solution to problem (1). Assume that

p ∈ Lγ∗(QT ) , (29)

for some γ ∈ (2, N) . Then

v ∈ Lµ∗ (QT ) , µ =
N γ

N − γ
. (30)

In particular, if p ∈ L
N/2
∗ (QT ) then v ∈ LN

∗ (QT ) , and if p ∈ L
γ/2
∗ (QT ) ,

γ > N , then v is smooth in QT .

3 Proof of Theorem 1.1.

We start by recalling some fundamental relations already proved in [4], to
which the reader is referred. In [4] we have considered dependence on a pa-
rameter α ≥ n . Actually this assumption was used only to obtain smooth-
ness of solutions, while the derivation of the equations only require α ≥ 2 .
Below we assume everywhere that α = n . Hence, we drop the symbol α = n
when unnecessary. For instance, we denote Nn(v) simply by N(v) , and so
on.
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Following [4, equation (2.1)], we set

N(v) =
( ∫

Ω
|∇ v|2 |v|n−2 dx

)1/n

M(v) =
( ∫

Ω

∣∣∇|v|n/2 ∣∣2 dx)1/n

(31)

Note that
M(v) ≤ N(v) . (32)

As in [4] and [1], the above two quantities play a leading role here.
The following lemma was shown in [1, Lemmas 1.1 and 1.2], and re-

covered in [4, Lemma 2.1]. As already remarked, related estimates were
obtained in the previous reference [11], to which the reader is referred.

Lemma 3.1. Let (v, p) be a regular solution to problem (1) in Ω× [0, T ] .
Then

1

n

d

dt
‖v‖nn +

µ

2
Nn(v) + 4µ

n− 2

n2
Mn(v) ≤

(n− 2)2

2µ

∫
Ω
p2 |v|n−2 dx+ ‖ f ‖n ‖ v ‖n− 1

n .

(33)

The next result is an immediate consequence of a Sobolev’s inequality,
see the Lemma 2.2 in reference [4].

Lemma 3.2. Let |v|n−2 belong to H1
0 (so, v vanishes on the boundary).

Then
‖v‖nn2

n−2

≤ c0M
n(v) . (34)

For convenience we set

B ≡
∫

Ω
p2 |v|n−2 dx . (35)

Clearly,

B ≤
∫

Ω
p2 (1 + |v|)n−2 dx =

∫
Ω
P 2 V n+2(θ−1) dx , (36)

where

P ≡ |p|
(1 + |v|)θ

, V ≡ 1 + |v| . (37)
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By appealing to Hőlder’s inequality with exponents q/2 and q/(q−2) , where
q ∈ (2, +∞) , one gets

B ≤ ‖P‖2q (38)

where
n̂ ≡ n+ 2(θ − 1) , (39)

and 0 ≤ θ ≤ 2 .

Lemma 3.3. Set

β =
n

2
− n

n

n̂

(1

2
− 1

q

)
. (40)

One has β ≥ 0 for all couple q, r ∈ [2, ∞).
On the other hand, β ≤ 1 if q ≥ n . If 2 ≤ q < n , then β ≤ 1 if and only
if r satisfies condition (11).

Proof. Assumption β ≥ 0 is equivalent to

n̂

n
≥ 1− 2

q
.

By appealing to (39) we prove equivalence to the condition

θ ≥ 1− n

q
. (41)

Further, from (10) it follows that

θ = (1− 2

r
) + (1− n

q
) ≥ (1− n

q
) , (42)

since r ≥ 2 . This shows (41).

On the other hand one easily shows that assumption β ≤ 1 is equivalent
to

1

2
− 1

n
≤ n

n̂

(1

2
− 1

q

)
.

By appealing to (39), straightforward calculations show equivalence to the
condition

θ ≤ 1 + n
(q − n)/ q

n− 2
. (43)

If q ≥ n this condition is obviously verified.

Assume now that q < n . By appealing to the equality relation stated in
(42), straightforward calculations show equivalence between (43) and

1

r
≥ 1

n− 2

n− q
q

.
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Since the right hand side is negative, this is equivalent to assumption (11).

The next interpolation result is an extension of a similar result proved
in [4].

Lemma 3.4. Let β be defined by (40). Then

B ≤ ‖P‖2q ‖V ‖n̂ (1−β)
n ‖V ‖n̂ βnn

n−2
. (44)

Furthermore, for r ∈ (2, +∞) and for arbitrary positive values of ε, one
has

B ≤ ε−
r
2 ‖P‖rq ‖V ‖

n̂ (1−β) r
2

n + ε
r

r− 2 ‖V ‖
n̂ β r

r−2

n2

n−2

. (45)

Proof. The term ‖P‖2q has no rule here. We merely interpolate in equation
(38) the norm ‖V ‖ q n̂

q−2
between ‖V ‖n and ‖V ‖ n2

n−2

, and note that the above

value of β satisfies the equation

q − 2

q n̂
=

(1− β)

n
+

β

n2/(n− 2)
.

Hence,
‖V ‖ q n̂

q−2
≤ ‖V ‖1−βn ‖V ‖β

n2

n−2

. (46)

The estimate (45) follows from (44) by Hőlder’s inequality with exponents
r/2 and r/(r − 2) .

The next lemma also holds for 0 ≤ θ ≤ 2 .

Lemma 3.5. Let be 0 ≤ θ ≤ 1 , and q, r > 2 . Then

n̂ β
r

r − 2
= n . (47)

Proof. By setting

λ ≡ n̂

n
= 1− 2 (1− θ)

n
, (48)

equation (47) reads

λβ = 1− 2

r
. (49)

By (40) it readily follows that (49) is equivalent to

λ = (1− 2

q
) + (1− 2

r
)

2

n
.

11



By appealing to the expression of λ shown in the right hand side of (48) it
follows, after some straightforward calculations, that equation (47) is equiv-
alent to (10).

Next we want to replace the second exponent in the right hand side of
equation (45) simply by n.

Lemma 3.6. One has
n̂ (1− β)

r

2
≤ n (50)

if and only if
θ ≤ 1 . (51)

Proof. By (47) and (48) we get

n̂ (1− β)
r

2
= n

( r
2

(λ− 1) + 1
)
. (52)

It readily follows that (50) is equivalent to λ ≤ 1 . Next, by the expression
of λ in (48), we show that (50) holds if and only if θ ≤ 1 .

The next result follows from equations (53) and (45).

Proposition 3.1. Let be 0 ≤ β ≤ 1 , q, r > 2 , 0 ≤ θ ≤ 1 . Then

1

n

d

dt
‖v‖nn +

µ

2
Nn(v) + 4µ

n− 2

n2
Mn(v) ≤

c0 ε
− r

2 ‖P‖rq ‖V ‖nn + c0 ε
r

r− 2 ‖V ‖nn2
n−2

+ ‖ f ‖n ‖ v ‖n− 1
n ,

(53)

where c0 = n−2)2

2µ .

In what follows by the the symbol C we denote positive constants, that
may depend on n, µ, r and q . The values of these constants can be easily
estimated.

Since ‖V ‖s ≤ |Ω|1/s + ‖v‖s , for arbitrary exponents s , we may replace
the ‖V ‖ norms by ‖v‖ norms, up to not significant terms. Furthermore,
due to (34), and by choosing a sufficiently small ε , we may drop the term
‖v‖ααn

n−2
on the right hand side of (53). It follows that

d

dt
‖v‖nn + ‖v‖nn2

n−2

+ Nn(v) + Mn(v) ≤ C ‖P‖rq ‖v‖nn + C ‖ f ‖n ‖ v ‖n− 1
n

+ C ‖P‖rq |Ω|+ C |Ω|
n−2
n .

(54)
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This estimate generalizes [[4], estimate (2.16)] to values θ < 1 . Theorem
1.1 follows easily.

Proof. The proof of the Theorem, based on the estimate (54), follows a
standard way. We start by appealing to Gronwall’s lemma, supported by
assumption (7), which shows that ‖P (t)‖rq ∈ L1(0, T ) . This leads to the
first claim in (12). The second claim follows from the integration in (0, T )
of the second term on the right hand side of (54). Equation (13) follows
from the integration in time of the M(v) term. Smoothness of solutions
follows by simply appealing to

v ∈ Ln(0, T ; L
n2

n−2 (Ω) ) ,

where
2

n
+

n
n2

n−2

= 1 .

Since
n2

n− 2
> n ,

the ”classical” LPS condition (2) shows smoothness.

4 Remarks on the case θ > 1 .

Let us make some consideration concerning the case θ > 1. Note that in
references [2], [3], and [4], one always has assumed θ ≤ 1. If θ > 1 there
is no evidence of a positive answer to Problem 1.1. Actually, the constraint
(51) imposed in Lemma 3.6 goes in the direction of a negative answer to
the equivalence p = v2 . Furthermore, the interesting results stated in [8]
still go in the direction of the same negative reply. Since the proofs follow
by closely using ideas introduced in reference [4], we guess that the results
are the best possible attainable by the present method. In reference [8],
Theorem 1, point (H3), the author shows (n = 3 ) that if the solution v
satisfies (7) for some θ ∈ [ 1, 5/3 ] , where

2

r
+

3

q
=

5

2
− 3

2
θ , (55)

with
6

5− 3θ
< q ≤ ∞ (56)
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then the solution is regular. For θ = 1 this result is in agreement with [4].
However, for θ > 1 it is weaker than the result proposed in Problem 1.1
since the right hand side of (56) is strictly smaller then that of (8). It would
be of interest to have an explanation to this “loss of regularity”.

5 Appendix.

Assume that the triad (q, r, θ) satisfies assumptions (10) and (11), and let
(q1, r1, θ1) be a triad such that q1 ≥ q , r1 ≥ r , and θ1 ≤ θ . It follows
that if a solution (v, p) satisfies

|p|
(1 + |v|)θ1

∈ Lr1(0, T ; Lq1(Ω) ) ,

then it is regular, since

|p|
(1 + |v|)θ

≤ |p|
(1 + |v|)θ1

∈ Lr1(0, T ; Lq1(Ω) ) ⊂ Lr(0, T ; Lq(Ω) ) .

This situatioin corresponds to having equation (10) with the sign “=” re-
placed by the sign “≤”. However this regularity result is not sharp. Actually,
it can be obtained as a consequence of sharp results and related proofs.

Let’s show a simple example concerning an application of condition (11).
Assume the main case n = 3. The values q = 5/2 (note that q < n), r = 10 ,
θ = 3/5 , verify (10) but not (11). This last condition requires r ≤ 5. So, if
we have in hands a θ = 3/5 case, we may assume, for instance, the above
value r = 5 , by setting q = 3 . If we want q = 5/2 (q < n) we may choose
r = 5/2 , θ = 3/2 .
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l’occasion de son 70. anniversaire; Gauthier-Villars, Paris (1998), 127-
138.

[4] H. Beirão da Veiga, A sufficient condition on the pressure for the regu-
larity of weak solutions to the Navier–Stokes equations, J.Math. Fluid
Mech. 2 (2000), 99–106.

[5] L.C. Berselli and R. Manfrin, On a theorem of Sohr for the Navier–
Stokes equations, J. Evol. Eq., 4 (2004), 193–211.

[6] L.C. Berselli and G.P. Galdi, Regularity criteria involving the pressure
for weak solutions to the Navier–Stokes equations, Proc. Am. Math.
Soc., 130 (2002), 3585–3595.

[7] S. Kaniel, A sufficient condition for smoothness of solutions of Navier–
Stokes equations, Israel J.Math., 6 (1969), 354–358.

[8] Y. Zhou, Regularity criteria in terms of pressure for the 3−D Navier–
Stokes equations, Math. Ann., 328 (2004), 173–192.

[9] G. Seregin and V. Sverak, Navier-Stokes equations with lower bounds
on the pressure, Arch. Rat. Mech. Anal.163 (2002), 65–86.

[10] C.L.M.H. Navier, Memoire sur les lois du mouvement des fluides,Mem.
Acad. Sci. Inst. de France (2),6 (1823), 389–440.

[11] S. Rionero and G.P. Galdi, The weight function approach to uniquiness
of viscous flows in unbounded domains, Arch. Rat. Mech. Anal., 69
(1979), 37–52.

[12] H. Sohr, Zur Regularitätstheorie der instationären Gleichungen von
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