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Abstract: Let L be a second order uniformly elliptic operator, and consider the equation Lu = f under the
boundary condition u = 0. We assume data f in generical subspaces of continuous functions Dω character-
ized by a givenmodulus of continuityω(r), and show that the second order derivatives of the solution u belong
to functional spaces Dω̂, characterized by amodulus of continuity ω̂(r) expressed in terms of ω(r). Results are
optimal. In some cases, as for Hölder spaces, Dω̂ = Dω. In this case we say that full regularity occurs. In par-
ticular, full regularity occurs for the new class of functional spaces C0,λα (Ω) which includes, as a particular
case, the classical Hölder spaces C0,λ(Ω) = C0,λ0 (Ω). Few words, concerning the possibility of generalizations
and applications to non-linear problems, are expended at the end of the introduction and also in the last
section.
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1 Introduction

The proofs and results shown below are essentially contained in ArXiv reference [7] (see also [6]). We start
with some notation. By Ω we denote an open, bounded, connected set in ℝn, locally situated on one side of
its boundary Γ. To simplify, we assume that the boundary Γ is of class C3. The notation Ω0 ⊂⊂ Ω means that
the open set Ω0 satisfies the property Ω0 ⊂ Ω.

By C(Ω) we denote the Banach space of all real continuous functions f defined in Ω. The “sup” norm is
denoted by ‖f‖. We also appeal to the classical spaces Ck(Ω) endowed with their usual norms ‖u‖k, and to the
Hölder spaces C0,λ(Ω), endowed with the standard semi-norms and norms. The space C0,1(Ω), sometimes
denoted by Lip(Ω), is the space of Lipschitz continuous functions in Ω. We set

I(x; r) = {y : |y − x| ≤ r}, Ω(x; r) = Ω ∩ I(x; r).

Symbols c and C denote generical positive constants. We may use the same symbol to denote different con-
stants.

We start by recalling an old, but related, result. In [3] (dedicated to the two-dimensional Euler equations,
see also [8]) we were led to the study of the auxiliary problem

{
Lu = f in Ω,
u = 0 on Γ,

(1.1)
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where
L =

n
∑
i,j=1

aij(x)∂i∂j , (1.2)

is a second order, uniformly elliptic operator. Without loss of generality, we assume that the matrix of coef-
ficients aij(x) is symmetric. To avoid conditions depending on the single case, we assume once and for all
that the operator’s coefficients are Lipschitz continuous in Ω. Lower order terms can be considered without
difficulty.

In [3]we looked for Banach spaces C∗(Ω) ⊂ C(Ω),as large as possible, forwhich the following result holds
([3, Theorem 4.5]).

Theorem 1.1. Let f ∈ C∗(Ω) and let u be the solution of problem (1.1). Then u ∈ C2(Ω), moreover,

‖∇2u‖ ≤ c‖f‖∗.

This result was stated for constant coefficients operators, however the proof applies without any modifi-
cation to variable coefficients case, since it depends only on the behavior of the related Green’s function
(by following the same ideas we have shown, see [4], that the solution (u, p) to the Stokes system belongs
to C2(Ω) × C1(Ω) if f ∈ C∗(Ω)).

For convenience we recall the definition and main properties of C∗(Ω) (see [3] and, for complete
proofs, [4]). Define, for f ∈ C(Ω), and for each r > 0,

ωf (r) ≡ sup
x,y∈Ω, 0<|x−y|≤r

|f(x) − f(y)|, (1.3)

and consider the semi-norm

[f]∗ = [f]∗,R ≡
R

∫
0

ωf (r)
dr
r
, (1.4)

where R > 0 is fixed. The finiteness of the above integral is known as Dini’s continuity condition. We define
the functional space

C∗(Ω) ≡ {f ∈ C(Ω) : [f]∗ <∞}

normalized by ‖f‖∗ = [f]∗ + ‖f‖. Norms defined for two distinct values of R are equivalent. We have shown
that C∗(Ω) is a Banach space, that the embedding C∗(Ω) ⊂ C(Ω) is compact, and that the set C∞(Ω) is dense
in C∗(Ω).

The regularity Theorem 1.1 for data in C∗(Ω) raise a number of new questions. Contrary to the case of
Hölder continuity, where full regularity is restored (∇2u and f has the same regularity), no significant addi-
tional regularity is obtained for data in C∗(Ω), besidesmere continuity of∇2u. So, we are here in the presence
of two totally opposite behaviors. This picture leads us to study regularity in the framework of general Banach
spaces Dω(Ω), characterized by a given modulus of continuity function ω(r). For clearness, when the space
Dω(Ω) plays the particular role of f data space, we will use the symbol Dω(Ω). In this last case Dω̂(Ω) denotes
the corresponding regularity space (i.e., the space to which the second order derivatives of solutions belong).
To each suitable ω(r) there corresponds a ω̂(r) such that ∇2u ∈ Dω̂ for f ∈ Dω, see Theorem 3.2. This general
regularity result is always optimal, in the sharp sense introduced in Definition 3.3. Clearly, ω(r) ≤ cω̂(r), for
some c > 0. If a reverse inequality ω̂(r) ≤ cω(r) holds, then full regularity occurs, see Theorem 3.4. This is
the situation for data in Hölder spaces. However intermediate regularity (between mere continuity and full
regularity) may also occur. This holds, for instance, for data in Log spaces D0,α(Ω), simply defined by replac-
ing in the expression of the classical modulus of continuity of α-Hölder spaces the quantity 1/|x − y| by
log(1/|x − y|). Log spaces are significant also for arbitrarily large values of α. The related regularity result
is the following. If f ∈ D0,α, for some α > 1, then ∇2u ∈ D0,α−1.

In other cases, as forHölder spaces, full regularity occurs. This is themore interesting situation.Avery sig-
nificant case is that of the new family of functional spaces C0,λα (Ω), 0 ≤ λ < 1, α ∈ ℝ, called hereHölog spaces.
For λ > 0 and α = 0, C0,λ0 (Ω) = C0,λ(Ω), is a Hölder classical space. For λ = 0 and α > 0, C0,0α (Ω) = D0,α(Ω)
is a Log space. Main point is that, for λ > 0, ∇2u and f enjoy the same C0,λα (Ω) regularity (full regularity).
See Theorem 9.2.
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The assumptions on the data spaces Dω(Ω) required in Theorems 3.2 and 3.4 can be substantially
weakened. However, explicit statements in this direction would not add particularly significant features, at
the cost of more involved manipulations.

Concerning generalizations, it looks clear that the same type of results can be proved for derivatives of
order higher than two, and extended to more general elliptic boundary value problems. Clearly, specific
and significant variations are expected, as already happens in the sequel. Such a program should start by
imitating the classical main lines followed, for long time, in the framework of Hölder spaces. Concerning
applications to non-linear problems, see a couple of remarks in the last section.

Looking for references, we realized that other authors, see [1, 12, 17, 19], have previously stated related
results, in general obtained by quite different methods (like, for instance, harmonic analysis). Below we
simply appeal to very classical potential theory. We hope that results, particularly complete presentation,
and detailed proofs, are of real interest to many readers.

2 The spaces Dω(Ω). General properties
In this section we define the spaces Dω(Ω) and state some general properties. We consider real, continuous,
non-decreasing functions ω(r), defined for 0 ≤ r < R, for some R > 0. Furthermore, ω(0) = 0, and ω(0) > 0
for r > 0. These three conditions are assumed everywhere in the sequel. The functions ω(r)will be used here
to measure the uniform continuity of functions. To abbreviate, we mostly use the term oscillations instead of
modulus of continuity.

Recalling (1.3), we set
[f]ω = sup

0< r<R

ωf (r)
ω(r)

.

Hence,
ωf (r) ≤ [f]ωω(r) for all r ∈ (0, R). (2.1)

Further, we define the linear space

Dω(Ω) = {f ∈ C(Ω) : [f]ω <∞}.

One easily shows that [f]ω is a semi-norm in Dω(Ω). We introduce a norm by setting

‖f‖ω = [f]ω + ‖f‖.

Twonormswith distinct values of the parameter R are equivalent, due to the addition of ‖f‖ to the semi-norms.
It is worth noting that, beyond the three conditions on ω(r) introduced above, any other property

assumed in the sequel is merely needed in an arbitrarily small neighborhood of the origin. This fact may
be used without a continual reference. In the sequel, to avoid continual specification, we introduce the
following definitions.

Definition 2.1. We say that ω(r) is concave if it is concave in a neighborhood of the origin, and say that ω(r)
is differentiable if it is point-wisely differentiable (not necessarily continuously differentiable), for each r > 0,
in a neighborhood of the origin.

Next we establish some useful properties of the above functional spaces.

Proposition 2.2. If
0 < k0 ≤

ω(r)
ω0(r)
≤ k1 < +∞, (2.2)

for r in some neighborhood of the origin, then Dω(Ω) = Dω0 (Ω), with equivalent norms.

The proof is immediate.

Lemma 2.3. If ‖fn‖ω ≤ C0, and fn → f in C(Ω), then ‖f‖ω ≤ C0.

The proof is immediate.
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Theorem 2.4. The space Dω(Ω) is a Banach space.

Proof. Let fn be a Cauchy sequence in Dω(Ω). It follows, in particular, that fn → f in C(Ω), where f ∈ Dω(Ω).
On the other hand, for |x − y| = r,

|(f(x) − fn(x)) − (f(y) − fn(y))
ω(r)

= lim
m→∞

|(fm(x) − fn(x)) − (fm(y) − fn(y))
ω(r)

≤ lim sup
m→∞

[fm − fn]ω .

Hence
[f − fn]ω ≤ lim sup

m→∞
[fm − fn]ω .

From the Cauchy sequence hypothesis it readily follows that

lim
n→∞

[f − fn]ω = 0.

Next we consider compact embedding properties.

Theorem 2.5. If
lim
r→0

ω(r)
ω1(r)
= 0 (2.3)

holds, then the embedding
Dω(Ω) ⊂ Dω1 (Ω)

is compact.

Proof. By assumption,
‖fn‖ω = [fn]ω + ‖fn‖ ≤ C0 for all n.

From (2.3) it follows that ω(r) ≤ ω1(r) for r ∈ (0, R0), for some R0 > 0. For r ∈ (R0, R) one has

ω(r) ≤ ω(R)
ω1(R0)

ω1(r).

So there is a positive constant C such that

ω(r) ≤ Cω1(r) for all r ∈ (0, R).

By the Ascoli–Arzela Theorem, the embedding

Dω(Ω) ⊂ C(Ω)

is compact. Hence, by appealing to Lemma2.3, one shows that there is a subsequence, still denoted fn, which
converges uniformly to some f ∈ Dω(Ω). Without loss of generality, we assume that f = 0.

Let |x − y| = r. One has
|fn(x) − fn(y)|

ω1(r)
=

|fn(x) − fn(y)|
ω(r)

ω(r)
ω1(r)

for all n.

Given ϵ > 0, it follows from (2.3) that there is R0(ϵ) > 0 such that

0 < r ≤ R0(ϵ) â⇒
ω(r)
ω1(r)
< ϵ.

Hence, for 0 < |x − y| ≤ R0(ϵ),
|fn(x) − fn(y)|

ω1(r)
≤ C0ϵ for all n. (2.4)

On the other hand, if r ∈ (R0(ϵ), R), one has
|fn(x) − fn(y)|

ω1(r)
≤

2
ω1(R0(ϵ))

‖fn‖.

Since the sequence ‖fn‖ converges to zero, there is an index N(ϵ) such that, for each n > N(ϵ), the right-
hand side of the last inequality is smaller than ϵ. This fact, together with (2.4), shows that (2.4) holds for
0 < |x − y| ≤ R and n > N(ϵ) (increase the constant C0, if necessary). So,

lim
n→+∞

[fn]ω = 0.
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Lemma 2.6. Assume that ω is concave. Then

ω(kr) ≤ kω(r) for all k ≥ 1.

The proof is immediate. Recall that ω(0) = 0.

Theorem 2.7. Assume that ω(r) is concave and that (2.3) holds. Then Dω(Ω) is not dense in Dω1 (Ω).

Proof. We assume that the origin belongs to Ω, and argue in a neighborhood I = I(0, δ) ⊂ Ω. Define f
by setting f(x) = ω1(|x|). We show that [f − g]ω1 ≥ 1, for each g ∈ Dω(Ω). It is sufficient to consider the
one-dimensional case. One has

|(f(x) − g(x)) − (f(0) − g(0))|
ω1(|x|)

=
!!!!!!!
1 − g(x) − g(0)

ω1(|x|)
!!!!!!!
.

Hence [f − g]ω1 ≥ 1 follows if we show that

lim
x→0

g(x) − g(0)
ω1(|x|)

= 0.

Let us prove this last inequality. One has, as x → 0,

lim g(x) − g(0)
ω1(|x|)

= lim g(x) − g(0)
ω(|x|)

⋅ lim ω(|x|)
ω1(|x|)

= 0.

Note that in the above proof we did not explicitly appeal to the concavity assumption. This assumption is
introduced here merely to guarantee that f(x) = ω1(|x|) belongs to Dω1 in a neighborhood of the origin. This
holds if

ω1(s) ≤ ω1(r) + cω1(s − r) for 0 < r < s < ρ, (2.5)

for some constant c ≥ 1, and some ρ > 0. Concave oscillations satisfy (2.5) with c = 1.

The above result shows, in particular, that C0,μ(Ω) is not dense in C0,λ(Ω) for 1 ≥ μ > λ > 0. In particular,
Lip(Ω), hence C1(Ω), is not dense in C0,λ(Ω) (a result sometimes appealed in the literature).

We end this section by stating an extension theorem, where Ωδ ≡ {x : dist(x, Ω) < δ}.

Theorem 2.8. Assume that Ω is convex or, alternatively, that ω(r) is concave (concavity may be replaced by
condition (3.9)). Then there is a δ > 0 such that the following holds. There is a linear continuous map T from
C(Ω) to C(Ωδ), and from Dω(Ω) to Dω(Ωδ), such that Tf(x) = f(x), for each x ∈ Ω.

The proof follows by appealing to the argument used to prove [4, Theorem 2.3]. Note that the classical proof
of approximation of functions on compact subsets of Ω by appealing to mollification does not work here.
Otherwise, the density property refused by Theorem 2.7 would hold.

3 Spaces Dω(Ω) and Dω̂(Ω), and regularity. The main theorems
In this section we state Theorems 3.2 and 3.4. Recall that we use the symbol Dω(Ω) when the space Dω(Ω)
plays the role of f data space. In this case, we use the symbol Dω̂(Ω) to denote the corresponding regularity
space, to which belong the second order derivatives of solutions.

From now on we assume that the modulus of continuity ω(r) satisfy the condition

R

∫
0

ω(r)dr
r
≤ CR , (3.1)

for some constant CR. Assumption (3.1) is equivalent to the inclusion Dω(Ω) ⊂ C∗(Ω). This assumption is
almost necessary to obtain ∇2u ∈ C(Ω).
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We put each suitable oscillation ω(r) in correspondence with a unique, related oscillation ω̂(r) defined
by setting ω̂(0) = 0, and

ω̂(r) =
r

∫
0

ω(s)ds
s

for 0 < r ≤ R. Hence, to a functional space Dω(Ω) there corresponds a well-defined functional space Dω̂(Ω).
Obviously, ω̂ satisfies all the properties described in section 2 for generical oscillations. In particular, Banach
spaces

Dω̂(Ω) = {f ∈ C(Ω) : [f]ω̂ <∞}

turn out to be well defined.
Next we discuss some additional restrictions on the data spaces Dω(Ω). We start by excluding Lip(Ω) as

data space since this singular case, largely considered in literature, is borderline. So, we impose the strict
limitation

Lip(Ω) ⊂ Dω(Ω) ⊂ C∗(Ω).
Exclusion of Lip(Ω) means that ω(r) does not verify ω(r) ≤ cr, for any positive constant c. Hence we obtain
lim sup(ω(r)/r) = +∞, as r → 0. We simplify, by assuming that

lim
r→0

ω(r)
r
= +∞. (3.2)

In particular, the graph of ω(r) is tangent to the vertical axis at the origin (as for Hölder and Log spaces). It
follows that concavity of the graph is here a quite natural assumption. Concavity implies that left and right
derivatives are well defined, for r > 0. By also taking into account that ω(r) is non-decreasing, we realize
that pointwise differentiability of ω(r), for r > 0, is not a particularly restrictive assumption. This last claim is
reenforced by the equivalence result for norms, under condition (2.2). This equivalence allows regularization
of oscillations ω(r), staying inside the same original functional space Dω(Ω). Summarizing, differentiability
and concavity (recall Definition 2.1) are natural assumptions here.

If ω(r) is concave, not flat, and differentiable, it follows that
ω(r)
rω�(r)
> 1,

for r > 0. This justifies the assumption

lim
r→0

ω(r)
rω�(r)
= C1 > 1, (3.3)

where C1 = +∞ is admissible. Assumption (3.3) is reenforced by the particular situation in Lipschitz, Hölder,
and Log cases. The limit exists and is given by, respectively, 1, 1

λ , and +∞. As expected, the Lipschitz case
stays outside the admissible range. Note that, basically, the larger is the space, the larger is the limit.

The above consideration allow us to assume in Theorems 3.2 and 3.4 that oscillations ω(r), are concave,
differentiable, and satisfy conditions (3.1), (3.2), and (3.3).

Note that, due to a possible loss of regularity, it could happen that a Dω̂(Ω)-space is not contained
in C∗(Ω), as happens in Theorem 8.2 if 1 < α < 2. In other words, ω̂(r) does not necessarily satisfy (3.1).

Next, we define the quantity

B(r) =:
r ∫Rr

ω(s)
s2 ds

∫r0
ω(s)
s ds

.

The following result holds.

Lemma 3.1. Assume that ω(r) is concave and satisfies assumptions (3.1), (3.2) and (3.3). Then

lim
r→0

B(r) = 1
C1 − 1

. (3.4)

In particular, there is a positive constant C2 such that

B(r) ≤ C2 (3.5)

in some neighborhood of the origin.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 18.04.16 13:13



H. Beirão da Veiga, Moduli of continuity, functional spaces, elliptic boundary value problems | 7

Proof. By appealing to (3.1), (3.2) and to a de L’Hôpital’s rule one shows that

lim
r→0

1
r

r

∫
0

ω(s)
s

ds = +∞. (3.6)

On the other hand

lim
r→0

B(r) = lim
r→0

∫Rr
ω(s)
s2 ds

1
r ∫

r
0
ω(s)
s ds

. (3.7)

Equation (3.6) shows that the denominator g(r) of the fraction on the right-hand side of (3.7) goes to +∞ as
r goes to zero. Furthermore, its derivative

g�(r) = 1
r2

(ω(r) −
r

∫
0

ω(s)
s
ds)

is strictly negative for positive r in a neighborhood of the origin, as follows from the inequality

ω(r) −
r

∫
0

ω(s)
s

ds < 0,

for r > 0, which we are going to show. Since the left-hand side of the inequality goes to zero with r, it is
sufficient to show that its derivative is strictly negative for r > 0. This follows easily by appealing to (3.3).
The above results allow us to apply to the limit (3.7) one of the well-known forms of de L’Hôpital’s rule.
Straightforward calculations, together with (3.3), show (3.4).

Next we state our main results, Theorems 3.2 and 3.4. In the first theorem constant coefficients are assumed.

Theorem 3.2. Assume that the coefficients of the operator L are constant. Further, let the concave and differen-
tiable oscillation ω(r) satisfy conditions (3.1), (3.2), and (3.3). Assume that Ω0 ⊂⊂ Ω, f ∈ Dω(Ω), and let u be
the solution of problem (1.1). Then ∇2u ∈ Dω̂(Ω0) and

‖∇2u‖ω̂,Ω0 ≤ C‖f‖ω ,

for some positive constant C = C(Ω0, Ω). The result is optimal in the sharp sense, see Definition 3.3 below.
Regularity holds up to flat boundary points.

A point x ∈ ∂Ω is said to be a flat boundary point if the boundary is flat in a neighborhood of the point. The
meaning of sharp optimality is the following (our abbreviate notation seems clear).

Definition 3.3. We say that a given regularity statement of type ω → ω̂ is sharp if any regularity state-
ment ω → ω̂0, obtained by replacing ω̂ by any other ω̂0, implies the existence of a constant c for which
ω̂(r) ≤ cω̂0(r).

The sharp regularity claimed in Theorem 3.2 will be proved in Section 10.
Much stronger results hold if the constant C1 in equation (3.3) is positive and finite. In this case one has

Dω̂(Ω) = Dω(Ω). (3.8)

In fact, by the de l’Hôpital rule, one shows that

lim
r→0

ω̂(r)
ω(r)
= lim
r→0

ω(r)
rω�(r)

if the second limit exists. Hence, under this last hypothesis, identity (3.8) holds if (actually, and only if) the
limit is positive and finite. Clearly, (3.8) holds bymerely assuming the inequality required in Proposition 2.2.
In this case the operator L can have variable coefficients, and full regularity occurs up to the whole (regular)
boundary. More precisely, one has the following result.
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Theorem 3.4. Assume that the oscillation ω(r), concave and differentiable, satisfies conditions (3.1), (3.2),
and (3.3) for some C1 < +∞. Let f ∈ Dω(Ω), and let u be the solution of problem (1.1). Then ∇2u ∈ Dω(Ω) and

‖∇2u‖ω ≤ C‖f‖ω ,

for some positive constant C.

Regularity in the sharp sense follows trivially from full regularity. But it is quite significant in dealing with
intermediate regularity results, like in Theorem 3.2. See the example shown in Section 8, in the framework
of Log spaces D0,α(Ω).

The set of conditions imposed in the above statements can be weakened as follows.We start by replacing
the concavity assumption by the existence of a constant k1 > 1 such that

ω(k1r) ≤ c1ω(r) (3.9)

for some positive constant c1, and for r in a neighborhood of the origin. We take into account that, if (3.9)
holds, then given k2 > 1, there is a positive constant c2 such that

ω(k2r) ≤ c2ω(r), (3.10)

for r in some δ0-neighborhood of the origin. The proof is obvious, by a bootstrap argument. Take into account
that, if k2 > k1, there is an integer m such that k2 ≤ km1 . If ω(r) is concave Lemma 2.6 shows (3.9) for
k2 = c2 = 1. It would be interesting to show that assumption (3.9) does not necessarily imply the existence
of some convex oscillation ω0(r) equivalent, in the (2.2) sense, to the given, non-convex, ω(r).

Actually, in the proof of Theorem 3.2 shown bellow, concavity, differentiability, and assumptions (3.1),
(3.2), and (3.3), are replaced by the more general set of assumptions (3.1), (3.2), (3.9), and (3.5). The same
holds for Theorem 3.4, by adding assumption (6.1).

4 A Hölder–Korn–Lichtenstein–Giraud inequality

In this section we prove Theorem 4.1 below. The proof is an adaptation of that developed in [11] to prove
the so-called Hölder–Korn–Lichtenstein–Giraud inequality (see [11, Part II, Section 5, Appendix 1]) in the
framework of Hölder spaces. Following [11], we considered singular kernelsK(x) of the form

K(x) = σ(x)
|x|n

, (4.1)

where σ(x) is infinitely differentiable for x ̸= 0, and satisfies the properties σ(tx) = σ(x), for t > 0, and

∫
S

σ(x) dS = 0,

where S = {x : |x| = 1}. We denote by |‖σ|‖ the sum of the L∞-norms of σ and of its first order derivatives on S.
It follows easily that, for 0 < ρ1 < ρ2,

∫
ρ1<|x|<ρ2

K(x) dx = ∫
ρ1<|x|

K(x) dx = ∫K(x) dx = 0, (4.2)

where the last integral is in the Cauchy principal value sense.
For continuous functions ϕ with compact support, the convolution integral

(K ∗ ϕ)(x) = ∫K(x − y)ϕ(y) dy, 5

extended to the whole spaceℝn, exists as a Cauchy principal value and is finite.
We set I(ρ) = {x : |x| ≤ ρ}, Dω(ρ) = Dω(I(ρ)), and do the same for other functional spaces, norms, and

semi-norms labeled by ρ.
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Theorem 4.1. LetK(x) be a singular kernel enjoying the properties described above. Further, assume that the
oscillation ω satisfies (3.1), (3.2), (3.9), and (3.5). Let ϕ ∈ Dω(ρ), vanish for |x| ≥ ρ. ThenK ∗ ϕ ∈ Dω̂(ρ). Fur-
thermore, in the sphere I(ρ), one has

[(K ∗ ϕ)]ω̂ ≤ C‖ϕ‖ω , (4.3)

where C = C(n, ω, |‖σ|‖).

Proof. Belowwe use the simplified notation ω(r) = ωϕ(r), themodulus of continuity of ϕ in I(ρ), recall (1.3).
Let x0, x1 ∈ I(ρ), 0 < |x0 − x1| = δ < δ0 ≤ ρ. The positive constant δ0 is fixed here in correspondence to

the choice k2 = 3 in (3.10). In the concave case (assumed, for clearness, in the statements of Theorems 3.2
and 3.4), we may set k2 = 1.

From (4.2) it follows that

(K ∗ ϕ)(x) = ∫ (ϕ(y) − ϕ(x))K(x − y) dy.

Hence, with abbreviated notation,

(K ∗ ϕ)(x0) − (K ∗ ϕ)(x1) = ∫{(ϕ(y) − ϕ(x0))K(x0 − y) − (ϕ(y) − ϕ(x1))K(x1 − y)} dy

= ∫
|y−x0|<2δ

{. . .} dy + ∫
2δ<|y−x0|<δ0

{. . .} dy + ∫
δ0<|y−x0|

{. . .} dy ≡ I1 + I2 + I3. (4.4)

Since
{y : |y − x0| < 2δ} ⊂ {y : |y − x1| < 3δ},

it follows that

∫
|y−x0|<2δ

|ϕ(y) − ϕ(x1)||K(x1 − y)| dy ≤ ∫
|y−x1|<3δ

|ϕ(y) − ϕ(x1)||K(x1 − y)| dy

≤ ‖σ‖
3δ

∫
0

ω(r)
r

dr ≤ ‖σ‖[ϕ]ω
3δ

∫
0

ω(r)
r

dr, (4.5)

where we appealed to polar-spherical coordinates with r = |x1 − y|, to the fact that σ is positive homogeneous
of order zero, to (4.1), and to definition (2.1).

A similar, simplified, argument shows that equation (4.5) holds by replacing x1 by x0 and 3δ by 2δ. So,

|I1| ≤ 2‖σ‖[ϕ]ω
3δ

∫
0

ω(r)
r

dr ≤ c‖σ‖[ϕ]ω
δ

∫
0

ω(r)
r

dr,

where we have appealed to (3.10) for k2 = 3. Hence,

|I1| ≤ c‖σ‖[ϕ]ωω̂(δ). (4.6)

On the other hand

I2 = ∫
2δ<|y−x0|<δ0

(ϕ(x1) − ϕ(x0))K(x0 − y) dy + ∫
2δ<|y−x0|<δ0

(ϕ(y) − ϕ(x1))(K(x0 − y) −K(x1 − y)) dy.

The first integral vanishes, due to (4.2). Hence,

|I2| ≤ ∫
2δ<|y−x0|<δ0

|ϕ(y) − ϕ(x1)||K(x0 − y) −K(x1 − y)| dy.

Further, by the Mean-Value Theorem, there is a point x2, between x0 and x1, such that

|K(x0 − y) −K(x1 − y)| ≤ |∇K(x2 − y)|δ.
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Since
∂iK(x) = 1

|x|n+1
[(∂iσ)(

x
|x|)
− n xi

|x|
σ(x)],

it readily follows that

!!!!K(x0 − y) −K(x1 − y)!!!! ≤ c|‖σ|‖
δ

|y − x2|n+1
≤ c|‖σ|‖ δ

|y − x0|n+1
. (4.7)

Note that, for |x0 − y| > 2δ, one has

|x0 − y| ≤ 2|x2 − y| ≤ 4|x0 − y|.

On the other hand, for 2δ < |x0 − y|,
|x1 − y| ≤ 3|x0 − y|.

So,
|ϕ(y) − ϕ(x1)| ≤ [ϕ]ωω(3|x0 − y|).

The above estimates show that

|I2| ≤ c|‖σ|‖[ϕ]ωδ
δ0

∫
2δ

ω(3r)r−2 dr ≤ c|‖σ|‖[ϕ]ωδ
δ0

∫
2δ

ω(r)r−2 dr,

where we appealed to (3.10) for k2 = 3. Finally, by (3.5), it readily follows that

|I2| ≤ c|‖σ|‖[ϕ]ωω̂(δ) (4.8)

for δ ∈ (0, δ0).
Finally we consider I3. By arguing as for I2, in particular by appealing to (4.2) and (4.7), one shows that

|I3| ≤ Cδ|‖σ|‖ ∫
|y−x0|>δ0

|ϕ(y) − ϕ(x1)!!!!
|y − x0|n+1

dy ≤ Cδ|‖σ|‖‖ϕ‖ ≤ C|‖σ|‖‖ϕ‖ω̂(δ). (4.9)

Note that, by a de l’Hôpital rule, one shows that (3.2) holds with ω(r) replaced by ω̂(r). From equation (4.4),
by appealing to (4.6), (4.8), and (4.9), one shows that

|(K ∗ ϕ)(x0) − (K ∗ ϕ)(x1)| ≤ C|‖σ|‖‖ϕ‖ωω̂(δ),

for each couple of points x0, x1 ∈ I(ρ) such that 0 < |x0 − x1| ≤ δ0. Hence (4.3) holds.
We may easily estimate |(K ∗ ϕ)(x0) − (K ∗ ϕ)(x1)| for pairs of points x0, x1 for which δ0 < |x0 − x1| < ρ.

However, this is superfluous, since δ0 is fixed “once and for all”.

5 The interior regularity estimate in the constant coefficients case

In this section we apply Theorem 4.1 to prove the basic interior regularity result for solutions of the elliptic
equation (1.1) in the framework of Dω data spaces. In this section L ia a constant coefficients operator. The
proof is inspired by that developed in Hölder spaces in [11, Part II, Section 5]. For convenience, assume
that n ≥ 3.

By a fundamental solution of the differential operator L one means a distribution J(x) inℝn such that

LJ(x) = δ(x). (5.1)

The celebrated Malgrange–Ehrenpreis Theorem states that every non-zero linear differential operator with
constant coefficients has a fundamental solution (see, for instance, [20, Chapter VI, Section 10]). We recall
that the analogue for differential operatorswhose coefficients are polynomials (rather than constants) is false,
as shown by a famous Hans Lewy’s counterexample.
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In particular, for a second order elliptic operator with constant coefficients and only higher order terms,
one can construct explicitly a fundamental solution J(x) which satisfies properties (i), (ii), and (iii), claimed
in [11], namely,
(i) J(x) is a real analytic function for |x| ̸= 0.
(ii) For n ≥ 3

J(x) = σ(x)
|x|n−2

, (5.2)

where σ(x) is positive homogeneous of degree 0.
(iii) Equation (5.1) holds. In particular, for every sufficiently regular, compact supported, function v, one has

v(x) = ∫ J(x − y)(Lv)(y)dy.

For a second order elliptic operator as above, one has

J(x) = c(∑ Aijxixj)
2−n
2 ,

where Aij denotes the cofactor of aij in the determinant |aij|.
Following [11], we denote by S the operator

(Sϕ)(x) = ∫ J(x − y)ϕ(y) dy = (J ∗ ϕ)(x).

Note that, in the constant coefficients case, the operator T introduced in reference [11] vanishes.
Point (iii) above (see also [11, “Lemma” A]) shows that if v is compact supported and sufficiently regular

(for instance of class C2), then
v = SLv. (5.3)

Due to the structure of the function σ(x) appearing in equation (5.2), it readily follows that second order
derivatives of (Sϕ)(x) have the form ∂i∂jSϕ = Kij ∗ ϕ, where the Kij enjoy the properties described for
singular kernelsK in Section 4.

We write, in abbreviated form,

∇2Sϕ(x) = ∫K(x − y)ϕ(y) dy, (5.4)

whereK(x) enjoys the properties described at the beginning of section 4. From (5.4) it follows that

∇2SLv = ∫K(x − y)Lv(y) dy.

Hence, by Theorem 4.1, one gets
[∇2SLv]ω̂;2ρ ≤ C[Lv]ω;2ρ . (5.5)

By appealing to (5.3) we get the following result.

Proposition 5.1. Assume that the differential operator L has constant coefficients and that the oscillation ω
satisfies assumptions (3.1), (3.2), (3.9), and (3.5). Let v ∈ C2(2ρ) be a support compact function such that
Lv ∈ Dω(2ρ). Then

[∇2v]ω̂;2ρ ≤ C[Lv]ω;2ρ . (5.6)

One has the following interior regularity result. For brevity we have consider two spheres of radius ρ and R,
R > ρ, in the particular case R = 2ρ.

Theorem 5.2. Assume that the hypothesis of Proposition 5.1 hold. Let u ∈ C2(2ρ) be such that Lu ∈ Dω(2ρ).
Then ∇2u ∈ Dω̂(ρ), moreover

[∇2u]ω̂;ρ ≤ C[Lu]ω,2ρ + c(θ)(
‖u‖
ρ3
+
‖∇u‖
ρ2
+
‖∇2u‖
ρ )

|x − y|
ω(|x − y|)

, (5.7)

for some positive constant C, independent of ρ. In particular,

[∇2u]ω̂;ρ ≤ C[Lu]ω,2ρ +
c(θ)
ρ3

‖u‖C2(2ρ). (5.8)
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Proof. Fix a non-negative C∞ function θ, defined for 0 ≤ t ≤ 1 such that θ(t) = 1 for 0 ≤ t ≤ 1
3 , and θ(t) = 0

for 2
3 ≤ t ≤ 1. Further fix a positive real ρ, for convenience 0 < ρ <

1
2 , and define

ζ(x) =
{{
{{
{

1 for |x| ≤ ρ,

θ( |x| − ρρ ) for ρ ≤ |x| ≤ 2ρ.

Next we consider ζ(x) for points x such that ρ ≤ |x| ≤ 2ρ, and leave to the reader different situations. Due to
symmetry, it is sufficient to consider the one-dimensional case

ζ(t) = θ( t − ρρ ) for ρ ≤ t ≤ 2ρ.

Hence
ζ �(t) = θ�( t − ρρ )

1
ρ
,

and
ζ ��(t) = θ��( t − ρρ )

1
ρ2
.

Further,
ρ2|ζ ��(t2) − ζ ��(t1)| ≤

!!!!!!!
θ��( t2 − ρρ ) − θ��( t1 − ρρ )

!!!!!!!
,

where !!!!!!!
t2 − ρ
ρ
−
t1 − ρ
ρ

!!!!!!!
=
!!!!!!!
t2 − t1
ρ

!!!!!!!
≤
1
3 < 1.

So
|ζ ��(t2) − ζ ��(t1)| ≤

1
ρ3

[θ��]Lip|t2 − t1|, (5.9)

where [ ⋅ ]Lip denotes the usual Lipschitz semi-norm.
Set

v = ζu. (5.10)

Note that Lv ∈ Dω(2ρ), moreover the support of v is contained in |x| < 2ρ.
On the other hand,

Lv = ζLu + N. (5.11)

One has

|(ζLu)(x) − (ζLu)(y)| ≤ ‖ζ‖[Lu]ωω(|x − y|) + ‖∇ζ‖‖Lu‖|x − y| ≤ [Lu]ωω(|x − y|) + c‖θ�‖
1
ρ
‖∇2u‖|x − y|.

Hence,
[ζLu]ω ≤ [Lu]ω + c‖θ�‖

1
ρ
‖∇2u‖ |x − y|

ω(|x − y|)
. (5.12)

Next we prove that

[N]ω ≤ c(θ)(
‖u‖
ρ3
+
‖∇u‖
ρ2
+
‖∇2u‖
ρ )

|x − y|
ω(|x − y|

. (5.13)

One has
N ≅ (∇2ζ)u + (∇ζ)(∇u) ≡ A + B.

By appealing in particular to (5.9), straightforward calculations show that

|A(x) − A(y)| ≤ ‖∇u‖‖∇2ζ‖|x − y| + ‖u‖ 1
ρ3

[θ��]Lip|x − y| ≤ (
1
ρ2

‖θ��‖‖∇u‖ + 1
ρ3

[θ��]Lip‖u‖)|x − y|.

Hence
[A]ω ≤ c(θ)(

‖u‖
ρ3
+
‖∇u‖
ρ2

)
|x − y|
ω(|x − y|

. (5.14)

Similar manipulations show that

[B]ω ≤ c(θ)(
‖∇u‖
ρ2
+
‖∇2u‖
ρ )

|x − y|
ω(|x − y|

. (5.15)

Equation (5.13) follows from (5.14) and (5.15).
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Lastly, from (5.11), (5.12), and (5.13) one shows that

[Lv]ω ≤ [Lu]ω + c(θ)(
‖u‖
ρ3
+
‖∇u‖
ρ2
+
‖∇2u‖
ρ )

|x − y|
ω(|x − y|

. (5.16)

In the following not labeled norms concern the domain I(2ρ).
From (5.10), (5.3), (5.5), and (5.16) one gets

[∇2u]ω̂;ρ ≤ [∇2v]ω̂ ≤ C[Lv]ω ≤ C[Lu]ω + c(θ)(
‖u‖
ρ3
+
‖∇u‖
ρ2
+
‖∇2u‖
ρ )

|x − y|
ω(|x − y|

,

where 0 < 2ρ < 1.

6 The interior regularity estimate in the variable coefficients case

In this section we extend estimate (5.7) to uniformly elliptic operators with variable coefficients

L =
n
∑
i,j=1

aij(x)∂i∂j .

To avoid non-significant manipulations we assume that the coefficients aij(x) are Lipschitz continuous
in I(2ρ), with Lipschitz constants bounded by a constant A. Following the same belief, we left to the reader
the introduction of lower order terms.

We assume that
ω(r) ≤ k1ω̂(r), (6.1)

for some positive constant k1, and r in some neighborhood of the origin. This yields Dω(Ω) = Dω̂(Ω), recall
Proposition 2.2. Assumption (6.1) holds if in equation (3.3) the constant C1 is finite. In fact,

lim
r→0

ω(r)
ω̂(r)
= lim
r→0

rω�(r)
ω(r)
=

1
C1

if the second limit exists.
In the following we appeal to the constant coefficients operator

L0 =
n
∑
i,j=1

bij∂i∂j ,

where bij = aij(0). Clearly,
L0v(x) = Lv(x) + (L0 − L)v(x). (6.2)

One has

(L0 − L)v(x) − (L0 − L)v(y) = (bij − aij(x))(∂2ijv(x) − ∂
2
ijv(y)) + (aij(y) − aij(x))(∂

2
ijv(y)), (6.3)

where, for convenience, summation on repeated indexes is assumed. Straightforward calculations easily lead
to the following pointwise estimate:

|(L0 − L)v(x) − (L0 − L)v(y)| ≤ cA(2ρ[∇2v]ω + ‖∇2v‖ |x − y|
ω(|x − y|)

)ω(|x − y|),

where norms and semi-norms concern the sphere I(0, 2ρ).
Next assume that v ∈ C2(2ρ) has compact support in I(0, 2ρ), and Lv ∈ Dω(2ρ). Then, by (6.2), (6.3),

and (5.6) it follows that

[∇2v]ω̂;2ρ ≤ C[Lv]ω;2ρ + Cρ[∇2v]ω;2ρ + C‖∇2v‖ |x − y|
ω(|x − y|)

.
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In particular,
[∇2v]ω̂;2ρ ≤ C[Lv]ω;2ρ + Cρ[∇2v]ω;2ρ + C‖∇2v‖.

Now, from (6.1), one gets
(1 − Ck1ρ)[∇2v]ω;2ρ ≤ C([Lv]ω;2ρ + ‖∇2v‖).

Next we set
v = ζu

andargueasdone toprove (5.7). This proves the following result, in the case of variable coefficients operators.

Theorem 6.1. Assume that the oscillation ω satisfies conditions (3.1), (3.2), (3.9), (3.5), and (6.1). Further,
assume that

0 < ρ ≤ 1
2Ck1

,

and let Lu ∈ Dω(2ρ), for some u ∈ C2(2ρ). Then ∇2u ∈ Dω̂(ρ), and

[∇2u]ω̂;ρ ≤ C[Lu]ω,2ρ +
C
ρ3

‖u‖C2(2ρ), (6.4)

for suitable positive constants C, independent of ρ.

7 Proof of Theorems 3.2 and 3.4

The local estimates (estimates in Ω0, Ω0 ⊂⊂ Ω) claimed in Theorems 3.2 and 3.4 follow immediately from
the interior estimates, by appealing to the classical method consisting in covering Ω0 by a finite number of
sufficiently small spheres. For brevity, we may estimate the quantities originated by the terms ‖u‖C2(2ρ), see
the right-hand sides of equations (5.8) and (6.4), simply by appealing to Theorem 1.1, which shows that
solutions u satisfy the estimate

‖u‖C2(Ω) ≤ c‖f‖∗.

Concerning regularity up to the boundary one proceeds as follows. The main point, the extension of the inte-
rior regularity estimate (5.8) from spheres to half-spheres, is obtained by following the argument described
in [11, Part II, Section 5.6]. One starts by showing that the interior estimate in spheres also hold for half-
spheres, under the zero boundary condition on the flat part of the boundary. One appeals here to “reflection”
of u in the orthogonal direction through the flat boundary, from the half to the whole sphere, as an odd func-
tion. In this way the half-sphere problem goes back to an whole-sphere problem, absolutely similar to that
considered in Section 5, see [11]. Note that it is sufficient, and simpler, to appeal to the above extension
to half-spheres merely for constant coefficient operators. The regularity result “up to flat boundary points”,
claimed for constant coefficients operators in Theorem 3.2, follows.

Concerning the variable coefficients case considered in Theorem 3.4, we argue as follows. Extension of
the half-sphere’s estimate, from constant coefficients to variable coefficients operators, is obtained exactly as
done in Section 6 for whole spheres, by appealing to the fundamental assumption (6.1). Then, sufficiently
small neighborhoods of boundary points are regularly mapped, one to one, onto half-spheres, by appealing
to suitable local changes of coordinates. This procedure allows extension of the local estimate to solutions u
defined on sufficiently small neighborhoods of boundary points, vanishing on the boundary. A well-known
finite covering argument leads to the thesis of Theorem 3.4.

Remark. Since the above extension to non-flat boundary points requires local changes of coordinates, even
constant coefficients operators are transformed in variable coefficients operators.Hence our proof of local reg-
ularity up to non-flat boundary points requires, even for constant coefficients operators, assumption (6.1).
This is the reason why regularity up to non-flat boundary points is not claimed in Theorem 3.2. The cor-
respondent extension remains a challenging open problem, even in the framework of Log spaces (where
counterexamples may also be tried).
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8 The Log spaces D0,α(Ω). An intermediate regularity result

The following is a significant example of functional space Dω(Ω) which yields intermediate (not full) regu-
larity, based on the well-known formulae

∫
(− log r)−α

r
dr = 1

α − 1 (− log r)
1−α , (8.1)

where 0 < α < +∞ (for α = 1 the right-hand side should be replaced by − log(− log r)). Equation (8.1) shows
that the C∗(Ω) semi-norm (1.4) is finite if, for some α > 1 and some constant C > 0,

ωf (r) ≤ C(− log r)−α for all 0 < r < 1.

This led to define the semi-norm
[f]α ≡ sup

r∈(0,1)

ωf (r)
ωα(r)

, (8.2)

where the oscillation ωα(r) is defined by setting

ωα(r) = (− log r)−α .

Hence [f]α is the smallest constant for which the estimate

|f(x) − f(y)| ≤ [f]α ⋅ (log
1

|x − y|)
−α

(8.3)

holds for all couple x, y ∈ Ω such that |x − y| < 1. Note that we have merely replaced, in the definition of
Hölder spaces C0,α(Ω), the quantity 1

|x−y| by log
1

|x−y| , and allow α to be arbitrarily large.

Definition 8.1. For each real positive α, set

D0,α(Ω) ≡ {f ∈ C(Ω) : [f]α <∞}.

A norm is introduced in D0,α(Ω) by setting ‖f‖α ≡ [f]α + ‖f‖.

We call these spaces Log spaces. We remark that in reference [7] we have called these spaces H-log spaces.
The restriction |x − y| < 1 in equation (8.3) is due to the behavior of the function log r, for r ≥ 1. Note that,

by replacing 0 < |x − y| < 1 by 0 < |x − y| < ρ in equation (8.2), for some 0 < ρ < 1, it follows that

[f]α;ρ ≤ [f]α ≤ [f]α;ρ +
2

(− log ρ)−α ‖f‖,

where the meaning of [f]α;ρ seems clear. Hence, the norms ‖f‖α and ‖f‖α;ρ are equivalent. We may also avoid
the restriction |x − y| < 1 by replacing in the denominator of the right hand side of (8.2) the quantity r by r

R ,
where R = diamΩ, and by letting r ∈ (0, R). We rather prefer the first definition, since the second one implies
more ponderous notation.

For 0 < β < α, and 0 < λ ≤ 1, the (compact) embedding

D0,α(Ω) ⊂ D0,β(Ω) ⊂ C(Ω)

hold. Furthermore, for 1 < α, one has the (compact) embedding D0,α(Ω) ⊂ C∗(Ω). Note that D0,1(Ω) ⊈ C∗(Ω).
It is worth noting that in reference [7] we claimed, and left the proof to the reader, that C∞(Ω) is dense in

D0,α(Ω). Actually, as shown in Theorem 2.7, this result is false.

Theorem 8.2. Let Ω0 ⊂⊂ Ω, f ∈ D0,α(Ω) for some α > 1, and u be the solution of problem (1.1), where L has
constant coefficients. Then ∇2u ∈ D0,α−1(Ω0), moreover

‖∇2u‖α−1,Ω0 ≤ C‖f‖α , (8.4)

for some positive constant C = C(α, Ω0, Ω). The regularity result holds up to flat boundary points. Moreover, it is
optimal in the sharp sense. In particular, for β > α − 1, ∇2u ∈ D0,β(Ω0) is false in general.
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Theorem 8.2 is a particular case of Theorem 3.2. In fact, the oscillation ωα(r) is concave and differentiable
for r > 0, satisfies (3.1) for α > 1, and (3.2) holds. Further, condition (3.3) follows from

lim
r→0

ωα(r)
rω�

α(r)
= +∞.

In [7] the above regularity result was claimed up to the boundary. However the proof is not complete, since
extension to non-flat boundary points would require here estimates for variable coefficients operators. The
reason for this requirement was explained in Section 7.

Next we illustrate, by means of a simple example, the practical meaning of sharp optimality, recall Def-
inition 3.3. Sharp optimality is not confined to the particular family of spaces under consideration, but is
something stronger. Let us illustrate the distinction. Set ω(r) = ω∇2u(r). Theorem 8.2 claims that

ω(r) ≤ Cf (− log r)−(α−1), (8.5)

for each f ∈ D0,α(Ω). Optimality of this result, restricted to the Log spaces’ family, means that

ω(r) ≤ Cf (− log r)−β (8.6)

is false in general, for any β > α − 1. This does not exclude that (for instance) for all f ∈ D0,α(Ω) the oscillation
ω(r) of ∇2u satisfies the estimate

ω(r) ≤ Cf [log(log
1
r )]
−1

⋅ (− log r)−(α−1),

which is weaker than (8.6), but stronger than (8.5).
Sharp optimality avoids the above, and similar, possibilities. This fact is significant in all cases in which

full regularity is not reached, as in Theorem 8.2. This is the meaning giving here to the sharpness of a regu-
larity result.

Concerning references related to Log spaces (mostly for n = 1, or α = 1), we refer the reader to the
treatise [13] (see, in particular, Definition 2.2 in this reference), and to [14, 16, 18, 21–23].

9 Hölog spaces C0,λα (Ω) and full regularity
If, for some λ > 0, one has ω(r) = λω̂(r) in a neighborhood of the origin, then there is a constant k > 0 such
that ω(r) = krλ. This fact could suggest that Hölder spaces could be the unique full regularity class inside our
framework. However, full regularity is also enjoyed by other spaces. The following is a particularly interesting
case. Consider oscillations

ωλ,α(r) = rλ(− log r)−α ,

where 0 ≤ λ < 1 and α ∈ ℝ, and define the semi-norm

[f]λ,α ≡ sup
r∈(0,R)

ωf (r)
ωλ,α(r)

,

for some R > 0 (for instance, R = diamΩ). Hence [f]λ,α is the smallest constant for which the estimate

|f(x) − f(y)| ≤ [f]λ,α(log
1

|x − y|)
−α

⋅ |x − y|λ

holds for all couple x, y ∈ Ω, |x − y| < R.

Definition 9.1. For each 0 ≤ λ < 1 and each α ∈ ℝ, set

C0,λα (Ω) ≡ {f ∈ C(Ω) : [f]α <∞}.

A norm is introduced in C0,λα (Ω) by setting ‖f‖λ,α ≡ [f]λ,α + ‖f‖.

We call these spaces Hölog spaces.
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For λ = 0 and α > 0we re-obtain the Log space D0,α(Ω), for λ > 0 and α = 0we re-obtain C0,λ(Ω). Further-
more,

C0,λα (Ω) ⊂ C0,λβ (Ω) for α > β > 0,

and
C0,λ2 (Ω) ⊂ C0,λα (Ω) ⊂ C0,λ(Ω) ⊂ C0,λ−α (Ω) ⊂ C0,λ1 (Ω) for 0 < λ1 < λ < λ2 < 1 and α > 0.

Theorem 2.5 shows that all the above inclusions are compact.
Note that the set

⋃
λ,α
C0,λα (Ω)

is a totally ordered set, in the set’s inclusion sense. Roughly speaking, in the chain merely consisting of clas-
sical Hőlder spaces, each C0,λ space can be replaced by the infinite chain C0,λα , α ∈ ℝ. The resulting chain is
still totally ordered.

To abbreviate notation, we set in this section

ω(r) ≡ ωλ,α(r), [f]ω ≡ [f]λ,α , and ‖f‖ω ≡ ‖f‖λ,α .

The following full regularity result holds.

Theorem 9.2. Let f ∈ C0,λα (Ω) for some λ ∈ (0, 1) and some α ∈ ℝ. Let u be the solution of problem (1.1), where
the differential operator L may have variable coefficients. Then ∇2u ∈ C0,λα (Ω). Moreover,

‖∇2u‖λ,α ≤ C‖f‖λ,α ,

for some positive constant C. The result is optimal, in the sharp sense.

Note that full regularity ωλ,α → ωλ,α could be a little surprising here. In fact, at the light of Theorem 8.2,
we could merely expected the intermediate regularity result ωλ,α → ωλ,α−1.

Proof. We appeal to Theorem 3.2. Assumptions (3.1) and (3.2) are trivially verified. Let us prove (3.3). Set

L(r) = log 1
r
.

Straightforward calculations show that

ω�(r) = rλ−1L(r)−α(λ + αL(r)−1)

and that
ω��(r) = −rλ−2L(r)−α(λ(1 − λ) − (2λ − 1)αL(r)−1 − α(α + 1)L(r)−2). (9.1)

Equation (9.1) shows that ω��(r) < 0 in a neighborhood of the origin, since limr→0 L(r) = +∞. Hence ω is
concave. Furthermore, (3.3) holds since

lim
r→0

ω(r)
rω�(r)
=
1
λ
> 1. (9.2)

To prove full regularity we appeal to the de l’Hôpital rule and to (9.2) to show that

lim
r→0

ω̂(r)
ω(r)
= lim
r→0

ω(r)
rω�(r)
=
1
λ
.

In particular. (2.2) holds for r in some neighborhood of the origin. Hence Proposition 2.2 applies.

It would be interesting to study higher order regularity results in the framework of Hölog spaces.

10 Sharpness of the regularity results

In this section we prove the sharpness of our regularity results (a simple example was shown at the end of
Section 8). The proof is quite adaptable to different situations, local and global results, etc. We merely show
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the main argument. We construct a counterexample, which concerns constant coefficients operators (we
could easily deny case by case), which shows that any stronger regularity result can not occur. We start by
considering the Laplace operator ∆. We remark that the argument applies to the regularity results stated in
Theorems 3.2 and 3.4. However, in the second theorem, the conclusion is obvious, due to full regularity.

For convenience, we assume that ω(r) is differentiable, and that there is a positive constant C such that
ω(r)
rω�(r)
≥ C > 0, (10.1)

for r > 0, in a neighborhood of the origin. Note that (10.1) holds, with C = 1, if ω(r) is concave.

Proposition 10.1. Assume thatω(r) satisfies the above hypothesis, and let ω̂0(r) be a given oscillation. Assume
that the results stated in Theorem 3.2 hold by replacing ω̂ by ω̂0. Then there is a constant c for which
ω̂(r) ≤ cω̂0(r).

Wemay say that any regularity result better than (8.4) is false.

Proof. For simplicity, we start by assuming that L = ∆. Consider the function

u(x) = ω̂(|x|)x1x2, (10.2)

defined inℝn , n ≥ 2. Actually, we are merely interested in the behavior near the origin (see (10.4) below).
Straightforward calculations show that

∆u(x) = (n + 2) x1x2
|x|2

ω(x) + x1x2
|x|2

|x|ω�(|x|).

In particular, ∆u(0) = 0. By appealing to (10.1) one shows that

|∆u(x) − ∆u(0)| = |∆u(x)| ≤ Cω(|x|).

Hence, in a neighborhood of the origin, f(x) = ∆u(x) belongs to Dω.
On the other hand, straightforward calculations show that

∂1∂2u(x) = ω̂(|x|) +
1
|x|2

(x21 + x
2
2 − 2

x21x
2
2

|x|2
) ⋅ ω(|x|) +

x21x
2
2

|x|4
⋅ (|x|ω�(|x|)). (10.3)

In particular, ∂1∂2u(0) = 0, and
|∂1∂2u(x) − ∂1∂2u(0)| ≥ ω̂(|x|)

for 0 < |x| ≪ 1, since in equation (10.3) the coefficients of ω(|x|) and of |x|ω�(|x|) are nonnegative. On the
other hand, if ω̂0(r) regularity holds, one has

|∂1∂2u(x) − ∂1∂2u(0)| ≤ (c‖f‖ω)ω̂0(|x|)

for some c > 0. Hence ω̂(r) ≤ c0ω̂0(r), for r > 0, in a neighborhood of the origin.
If L is given by (1.2), we replace (10.2) by

u(x) = ω̂(|x|) ∑
i,j=1

1nbijxixj ,

where B ̸= 0 is symmetric and
n
∑
i,j=1

aijbij = 0.

In particular, if a specific coefficient akl vanishes, wemay simply choose u(x) = ω̂(|x|)xkxl, as done in (10.2).
We localize the above result as follows. Assume that 0 ∈ Ω, and consider the function

u(x) = ψ(|x|)ω̂(|x|)x1x2, (10.4)

where ψ(r) is non-negative, indefinitely differentiable, vanishes for r ≥ ρ > 0, and is equal to 1 for |x| < ρ2 .
The radius ρ is such that I(0, ρ) is contained in Ω. The above truncation allows us to assume homogeneous
boundary conditions in Ω (we may consider combinations of functions as above, centered in different points
in Ω, with distinct radius, and distinct cut-off functions).
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It is worth noting that in the above argument the specific expressions of the coefficients ofω(|x|) and |x|ω�(|x|)
are secondary (even if the non-negativity of these coefficients was exploited). They are homogeneous func-
tions of degree zero, without particular influence on the minimal regularity. The crucial point is that the
second order derivative ∂1∂2u(x), due to the term x1x2 in (10.2), leaves unchanged the “bad term” ω̂(|x|).
This does not occur for derivatives ∂2i u(x), hence does not occur for ∆u(x).

It looks interesting to note that the “bad term” ω̂(|x|) can not be eliminated by the other two terms which
are present in the right hand side of (10.3). Evenwhen full regularity occurs (like inHölder andHölog spaces),
the “bad term” ω̂(|x|) is still not eliminated. It simply is as regular as the other two terms,ω(|x|) and |x|ω�(|x|).

11 Further properties. Non-linear problems

Applications to non-linear problems requires, besides the linear theory, some main ingredients like product
and composition properties. Concerning these two points we merely recall here some main properties. Set

(ω1 ∨ ω2)(r) = sup{ω1(r), ω2(r)},

and assume for simplicity that f and g are scalar fields in Ω. It readily follows

f ∈ Dω1 , g ∈ Dω2 â⇒ fg ∈ Dω1∨ω2 ,

and also ‖fg‖ω1∨ω2 ≤ ‖f‖ω1‖g‖ω2 . In particular, Dω spaces are Banach algebras.
Concerning composition of functions, if F ∈ Lip(ℝ;ℝ) and u ∈ Dω, then

[F(u)]ω ≤ [F]Lip[u]ω .

In the particular case of Hölog spaces, the following extension to Hölder functions F may be useful. Assume
that F ∈ C0,θ(ℝ;ℝ), 0 < θ ≤ 1, and that u ∈ C0,λα (Ω). Then

[F(u)]θλ,θα ≤ [F]θ[u]λ,α .

Let us end this paper by proposing the study of a non-linear problem which lies outside the above main
lines. Let us recall the following well-known old problem (see the pioneering papers [15] and [2], and also
the revision paper [5]). One looks for local geometrical conditions on the boundary which guarantee the
continuity at a point x0 ∈ Γ of the solutions to the boundary value problem

{
∇ ⋅ (|∇u|p−2∇u) = 0 in Ω,

u = ϕ on ∂Ω,
(11.1)

for each given ϕ ∈ C(Γ). For p = 2, the above p-Laplace operator is simply the classical Laplace operator.
Clearly, in this linear case, the problem is even much older. It would be interesting to study, systematically,
the following kind of related problem. Assume, for simplicity, that Γ − {x0} is smooth. We want to establish
local geometrical conditions on the boundary, in the neighborhood of a point x0 ∈ Γ, which guarantee that
solution u to (11.1) belong to some fixed Dω2 (Ω), for each ϕ in a given boundary space Dω1 (Γ).

References
[1] J. Bae and M. Kassman, Shauder estimates in generalized Hölder spaces, preprint (2015), http://arxiv.org/abs/1505.

054980.
[2] H. Beirão da Veiga, Punti regolari per una classe di operatori ellittici non lineari, Ric. Mat. 21 (1972), 1–14.
[3] H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid,

J. Differential Equations 54 (1984), no. 3, 373–389.
[4] H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions

problem, J. Math. Fluid Mech. 16 (2014), 539–550.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 18.04.16 13:13

http://arxiv.org/abs/1505.054980
http://arxiv.org/abs/1505.054980


20 | H. Beirão da Veiga, Moduli of continuity, functional spaces, elliptic boundary value problems

[5] H. Beirão da Veiga, On nonlinear potential theory, and regular boundary points, for the p-Laplacian in N space variables,
Adv. Nonlinear Anal. 3 (2014), 45–67.

[6] H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundry value problems, preprint
(2015), http://arxiv.org/abs/1503.04173.

[7] H. Beirão da Veiga, On classical solutions to elliptic boundary value problems. The full regularity spaces C0,λα (Ω), preprint
(2015), http://arxiv.org/abs/1510.04926.

[8] H. Beirão da Veiga, On some regularity results for the stationary Stokes system, and the 2-D Euler equations, Port. Math.
72 (2015), 285–307.

[9] H. Beirão da Veiga, Classical solutions to the two-dimensional Euler equations and elliptic boundary value problems,
an overview, in: Recent Progress in the Theory of the Euler and Navier–Stokes Equations, London Math. Soc. Lecture Note
Ser. 430, Cambridge University Press, Cambridge (2016), 1–21.

[10] H. Beirão da Veiga, Elliptic boundary value problems in spaces of continuous functions, Discrete Contin. Dyn. Syst. Ser. S 9
(2016), no. 1, 43–52.

[11] L. Bers, F. John and M. Schechter, Partial Differential Equation, John Wiley & Sons, New York, 1964.
[12] C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations, J. Differential Equations 30 (1978),

308–323.
[13] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Springer, New York,

2013.
[14] L. Diening, Maximal function on generalized Lebesgue spaces Lp(⋅) ,Math. Inequal. Appl. 7 (2004), no. 2, 245–253.
[15] V. G. Maz’ja, On the continuity at a boundary point of the solutions of quasilinear elliptic equations (in Russian), Vestnik

Leningrad Univ. 25 (1970), 42–55; translation in Vestnik Leningrad Univ. Math. 3 (1976), 225–242.
[16] S. Samko, Convolution type operators in Lp(x), Integral Transforms Spec. Funct. 7 (1998), no. 1–2, 123–144.
[17] V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier–Stokes equations, Trans. Amer. Math.

Soc. 216 (1976), 61–79.
[18] I. I. Sharapudinov, The basis property of the Haar system in the space Lp(t)[0, 1], and the principle of localization in the

mean,Math. USSR Sb. 58 (1987), 279–287.
[19] X.-J. Wang, Schauder estimates for elliptic and parabolic equations, Chin. Ann. Math. Ser. B 27 (2006), 637–642.
[20] K. Yosida, Functional Analysis, 2nd ed., Springer, Berlin, 1968.
[21] V. V. Zhikov, On the homogenization of nonlinear variational problems in perforated domains, Russ. J. Math. Phys. 2

(1994), no. 3, 393–408.
[22] V. V. Zhikov, On Lavrentiev’s phenomenon, Russ. J. Math. Phys. 2 (1995), no. 3, 249–269.
[23] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), no. 1, 105–116.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 18.04.16 13:13

http://arxiv.org/abs/1503.04173
http://arxiv.org/abs/1510.04926

	Moduli of continuity, functional spaces, and elliptic boundary value problems. The full regularity spaces $C^{0,\lambda}_\alpha(\overline{\Omega})$
	1 Introduction
	2 The spaces $D_\omega (\overline{\Omega})$. General properties
	3 Spaces $D_{\overline{\omega}} (\overline{\Omega})$ and $D_{\hat\omega} (\overline{\Omega})$, and regularity. The main theorems
	4 A Hölder–Korn–Lichtenstein–Giraud inequality
	5 The interior regularity estimate in the constant coefficients case
	6 The interior regularity estimate in the variable coefficients case
	7 Proof of Theorems 3.2 and 3.4
	8 The Log spaces $D^{0, \alpha}(\overline{\Omega})$. An intermediate regularity result
	9 Hölog spaces $C^{0, \lambda}(\overline{})$ and full regularity
	10 Sharpness of the regularity results
	11 Further properties. Non-linear problems


