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Abstract These notes concern existence, and suitable formulation, of meaningful
conditions on the direction of the vorticity which guarantee the regularity of the solu-
tions to the evolution Navier–Stokes equations. A main concern here is to compare the
different situations which appear in considering slip and no-slip boundary conditions.
The paper reviews mainly results obtained in some of the references cited.
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1 Introduction. Some general comments.

We start by recalling the evolution Navier–Stokes equations

⎧
⎪⎨

⎪⎩

ut + (u · ∇) u − ν �u + ∇ p = 0 ,

∇ · u = 0 in � × (0, T ],
u(x, 0) = u0(x) in �,

(1)

where u0 is divergence free. For simplicity, we assume that external force vanishes.
We assume that the initial data u0 belongs to the Sobolev space H1(�) , plus suitable
boundary conditions, depending on the problem. If we want solutions which are regular
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including the time t = 0 , then u0 should be assumed more regular, and satisfying
suitable compatibility conditions. This kind of problem is out of real interest here.

� may denote the whole space R3 , the half space R3+ , or an open, connected,
bounded subset of R3 , with a smooth boundary � = ∂ �. In this last case, equations
are supplemented, on � × (0, T ) , with the slip boundary condition (“stress-free”
boundary condition)

{
u · n = 0 ,

ω × n = 0 ,
(2)

or with the no-slip boundary condition

u = 0. (3)

Here ω = ∇ × u = curl u is the vorticity field, while n denotes the exterior unit
normal vector to the boundary. In the case of flat boundaries, the above condition (2)
coincides with the classical Navier boundary conditions without friction, see [28], and
also [31].

We will not repeat well know notation as, for instance, Sobolev spaces notation,
and so on. Solutions u ∈ L2(0, T ; H1(�) ) ∩ L∞(0, T ; L2(�) ) are defined here
in the well known Leray-Hopf weak sense, and are assumed to be weakly continuous
from the right at time t = 0. We say that a Leray-Hopf weak solution u is strong if
it belongs to L∞(0, T ; H1(�) ) ∩ L2(0, T ; H2(�) ). It is well known that strong
solutions are smooth, if data and domain are also smooth.

We look for significant, geometrical, conditions on the vorticity-direction which
guarantee that a given Leray-Hopf solution is regular on the domain of existence, as
long as our geometrical conditions hold. We set

θ(x, y, t)
de f= � (ω(x, t), ω(y, t)) ,

where the symbol “ � ” denotes the amplitude of the angle between two vectors. We
are interested in sufficient conditions on sin θ(x, y, t) to guarantee the regularity of
the solutions.

The following explanation should be clear to readers acquainted with the basic
theory of the Navier–Stokes equations. We claim that, in the sequel, we may argue
by assuming that solutions under consideration are smooth. In fact, it is well know
that each solution is strong (hence, smooth) in a “small” time interval (0, ε0) , where
ε0 > 0 depends on the H1 norm of u0 . On the other hand, in the following, we prove
that if a regular solution satisfies our geometrical conditions in some interval (0, t0) ,

then it necessarily belongs to L∞(0, t0; H1(�) ∩ L2(0, t0; H2(�) ). So such a
solution belongs, in particular, to C( [0, t0 ]; H1(�) ). Hence, roughly speaking, we
may start from u(t0) as a new “initial data”. It follows, as for t = 0 , that the solution
is unique and strong up to time t0 + ε , for some positive ε , which depends on the
H1 norm of u(t0). We also show that the H1 norm of our solution keeps bounded
from above in [0, T ] . The above picture shows that in proving the estimates below,
it is sufficient to deal with smooth solutions.
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In this section we appeal to the simplest situation, namely the whole space case, to
describe and discuss some general aspects of the basic theory, which do not depend
on boundary conditions. Then, in Sect. 2, we describe, and compare, the main obsta-
cles in the proofs under slip and no-slip boundary conditions. In Sect. 3 the above
considerations will be illustrate in more detail, by going inside the proofs.

We start from the very fundamental pioneering paper [16], by P. Constantin and
Ch. Fefferman, where the authors prove that solutions to the evolution Navier–Stokes
equations in the whole space are smooth if the direction of the vorticity is Lipschitz
continuous with respect to the space variables. More precisely, they show the following
result.

Theorem 1.1 Let be � = R3 , and let u be a weak solution of (1) in [ 0, T ) , with
u0 ∈ H1(R3) and ∇ · u0 = 0. If

sin θ(x, y, t) ≤ g(t) |x − y|

for some g(t, x) ∈ L12(0, T ; L∞(IR3) ) , then the solution u is regular. Clearly, the
result holds if g is a constant.

As in all the following results, conditions on sin θ(x, y, t) are assumed for almost all
x and y in �, and almost all t in (0, T ). Furthermore, these conditions are needed
merely for points x and y such that |x − y| < δ, for an arbitrary positive constant δ.

In reference [7], L.C. Berselli and the present author show that regularity still holds
in the whole space by replacing Lipschitz continuity by 1

2−Hőlder continuity. The
following theorem was proved.

Theorem 1.2 Let �, u , and u0 , be as in the previous theorem. Further, suppose
that there exists β ∈ [1/2, 1] and g ∈ La(0, T ; Lb(�)) , where

2

a
+ 3

b
= β − 1

2
with a ∈

[
4

2 β − 1
,∞

]

, (4)

such that

sin θ(x, y, t) ≤ g(t, x) |x − y|β (5)

holds in � × (0, T ). Then, the solution u is strong. In particular, the regularity result
holds if

sin θ(x, y, t) ≤ c |x − y|1/2. (6)

In the subsequent paper [2], we consider the case β ≤ 1
2 . The proof is simply a quite

obvious variant of the proof of theorem 1.2 in reference [7]. The result is the following.

Theorem 1.3 Let u be a weak solution of (1) in [ 0, T ) with u0 ∈ H1 and ∇ · u0 = 0.
Let β ∈ [0, 1/2] and assume that

sin θ(x, y, t) ≤ c|x − y|β (7)

holds in � × (0, T ). In addition, suppose that

ω ∈ L2(0, T ; Lr ), (8)
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where

r = 3

β + 1
. (9)

Then the solution u is strong in (0, T ) and, consequently, is regular. In particular
sin θ(x, y, t) ≤ c |x − y|1/2 is sufficient for regularity.

Following the aim of these notes, we like to recall separately references [6,9–11].
In particular, in reference [9], regularity is proved for the Cauchy problem, without
any continuity assumption on sin θ(x, y, t). This kind of condition is replaced by a
smallness assumption. Essentially, it is proved that there is a sufficiently small constant
C1 (an explicit estimate for C1 is given) such that regularity holds if

sin θ(x, y, t) ≤ C1.

Clearly, there are many very interesting papers related to our contributions. We recall
here, without any claim of completeness, the related papers [6,9,11–15,17–27,29,34],
and references therein.

Finally, in the appendix, we present some reflections upon the global structure and
significance of our results, taken as a whole.

2 Boundary value problems. Comparison between the slip and the no-slip cases

In reference [3] we consider the Navier–Stokes equations in [0, T ) × IR3+ , endowed
with the slip boundary condition (2), and prove the following result.

Theorem 2.1 Assume that u0 ∈ H1(IR3+) is divergence free, and tangential to the
boundary. Let u be a weak solution of the Navier–Stokes equations (1) in [0, T )× IR3+,
endowed with the slip boundary condition (2). Let β ∈ [0, 1/2] and assume that (7),
(8), and (9) hold. Then the solution u is strong in (0, T ) and, consequently, is regular.

In particular,

sin θ(x, y, t) ≤ c |x − y|1/2

is sufficient for regularity.

The last claim follows from the fact that weak solutions satisfy (8) for r = 2. Hence,
if β = 1/2 , assumption (8) is superfluous.

The Theorem 2.1 was proved in reference [3] by appealing, separately, to the clas-
sical Dirichlet and Neumann Green functions, in the half space. This can be done for
flat boundaries since the boundary conditions (2) can be written, on � , in the form

{
u3 = 0,
∂u j
∂x3

= 0, 1 ≤ j ≤ 2.
(10)

The third equation follows from ω1 = ω2 = 0 on � , plus differentiation of u3 = 0
with respect to the first to independent variables. As shown in Sect. 3, we will control
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the non-linear convective term, present in the vorticity equation (13), by treating the
boundary conditions via the related Green functions. Clearly, the independence, and
the classical form, of the boundary conditions imposed to the three components of the
velocity by Eq. (10), makes this task much easier.

Another basic tool in the Proof of Theorem 2.1 are the equations

{
ω1 = ω2 = 0,
∂ω3
∂x3

= 0
(11)

on �. The third equation follows from tangential differentiation of the first two equa-
tions together with ∇ · ω = 0.

The picture concerning the no-slip boundary condition (3) is, in a certain sense,
opposite to that concerning the slip boundary condition. In both cases the very starting
point is Eq. (13) below. The terms to be controlled are the integral involving nonlinear
terms (22) (which arises from integration by parts of a viscous term), and the non-
linear integral (which arises from the vortex stretching term). In the slip case, Eq.
(11) immediately shows that the boundary integral vanishes. On the contrary, in the
no-slip boundary case, the non zero viscosity prevent us from a suitable control of the
boundary integral (see [4]).

On the other hand, concerning the control of the integral involving nonlinear terms,
the situation is reversed. This control is easier under the no-slip boundary condition,
even in the half-space, since in this case appeal to the Green’s function for the Dirichlet
boundary value problem is clearly sufficient. The Green’s function for the Neumann
boundary value problem is not needed here. An even more crucial difference is that, in
the no-slip case, the half-space simplified approach followed in the Proof of Theorem
2.1 applies also for regular domains �. The reason is that independence of the three
boundary conditions, namely

u1 = u2 = u3 = 0 , (12)

holds also for non-flat boundaries. So, we simply apply to the Green function for the
Dirichlet problem, exactly as for the half-space case. On the contrary, in the case of
non-flat boundaries under the slip boundary condition, the separation present in Eq.
(10) is no more true, and the problem becomes much harder. As shown in reference
[8], appeal to Green functions theory is still possible, but particularly delicate. In fact,
in the above reference, Berselli and the author succeed in extending the Theorem 2.1
to the case in which � ⊂ R3 is an open, bounded set with a smooth boundary. Since
we can not appeal, separately, to the Dirichlet and the Neumann Green functions, as
in the Proof of Theorem 2.1, now we have to localize the problem, a not trivial and
quite technical matter. So, in the proof, the authors appeal to representation formulas
for Green’s matrices derived in Solonnikov’s fundamental work [32,33]. With the aid
of these explicit formulas, original local representation formulas for the velocity (in
terms of the vorticity) were introduced. In this way useful estimates for the vortex
stretching terms were proved. The proof is particularly involved.
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Remark 2.1 For β = 1 (the classical Lipschitz continuity assumption considered in
Constantin and Fefferman’s paper), a much simpler proof of the sharp result stated in
reference [8] is given in reference [5].

3 Inside the proofs

In this section we opt to consider the no-slip boundary condition (3) as being the “run-
ning assumption”, and to implement the argument with suitable remarks concerning
analogies and differences with the slip boundary condition. The very basic ideas are
similar in booth approaches, but substantially more complex to describe in the slip
case. Clearly, we took into account that our option precludes some interesting features,
peculiar to the slip boundary case. On the other hand, as already remarked, we are not
able to prove the final result under the no-slip boundary condition (this is still an open
problem), due to the stronger boundary-effect of viscosity under this last condition.
However, this fact turns into a factor of enrichment of our exposition.

In the following, when we consider the slip boundary conditions, the assumptions
are clearly that described in the Theorem 2.1 where, for simplicity, we assume the
main case β = 1

2 , namely

sin θ(x, y, t) ≤ c |x − y|1/2.

In the case of the no-slip boundary condition, the assumptions are the same, except
that the initial data u0 vanishes on the boundary. As already remarked, in the sequel
we mostly assume the no-slip boundary condition, except if a different situation is
explicitly indicated.

By applying the curl operator to equation (1) we get the well-known equation

ωt + (u · ∇) ω − ν �ω = (ω · ∇) u.

Scalar multiplication by ω , integration in � , and integrations by parts show that

1

2

d

dt
‖ω‖2

2 + ν‖∇ω‖2
2 − ν

∫

�

∂ω

∂n
· ω d� =

∫

�

(ω · ∇) u · ω dx . (13)

Set, for each triad ( j, k, l), j, k, l ∈ {1, 2, 3},

εi jk =
⎧
⎨

⎩

1 if (i, j, k) is an even permutation ,

−1 if (i, j, k) is an odd permutation ,

0 if two indexes are equal.

These are the components of the totally anti-symmetric Ricci tensor. One has

(a × b) j = ε jkl ak bl , (∇ × v) j = ε jkl ∂kvl . (14)

The usual convention about summation of repeated indexes is assumed.
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Since

−� u = ∇ × (∇ × u) − ∇ (∇ · u)

it follows that

{−� u = ∇ × ω in �,

u = 0 on � ,
(15)

for each t . Let now G(x, y) be the Green’s function for the Dirichlet boundary value
problem in �. Since the boundary � is regular, it is a classical result that

G(x, y) = 1

4 π |x − y| + γ (x, y) ,

where γ (x, y) is smooth. In particular

∣
∣
∣
∣
∂2 G(x, y)

∂ yk∂ xi

∣
∣
∣
∣ ≤ c

|x − y|3 . (16)

From (15) it follows that

u(x) =
∫

�

G(x, y)∇ × ω(y) dy , (17)

for x ∈ �.
By considering in equation (17) a single component u j , by appealing to (14), and

by taking into account that G(x, y) = 0 if y ∈ � , an integration by parts yields

u j (x) =
∫

�

G(x, y) ε jkl ∂k ωl(y) dy = −
∫

�

ε jkl
∂ G(x, y)

∂ yk
ωl(y) dy.

Hence

∂ u j (x)

∂ xi
= −P.V .

∫

�

ε jkl
∂2 G(x, y)

∂ xi∂ yk
ωl(y) dy.

It readily follows that

K(x) := ( (ω · ∇) u · ω) (x) = ∂ u j (x)

∂ xi
ωi (x)ω j (x)

= − ∫

�

ε jkl
∂2 G(x,y)
∂ yk∂ xi

ωi (x) ω j (x) ωl(y) dy.n
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Recall that (Eq. (13))

1

2

d

dt
‖ω‖2

2 + ν ‖∇ω‖2
2 − ν

∫

�

∂ω

∂n
· ω d� =

∫

�

K(x) dx .

Since − ε jkl ω j (x) ωl(y) = (
ω j (x) × ωl(y)

)

k , it follows that

K(x) = P.V .

∫

�

∂2 G(x, y)

∂ yk ∂ xi
ωi (x)

(
ω j (x) × ωl(y)

)

k dy.

By appealing to (16) one shows that

| K(x) | ≤
∫

�

c

|x − y|3 |ω(x)|2 |ω(y)| sin θ(x, y, t) dy.

Furthermore, by (6), one has

|K(x)| ≤ c |ω(x)|2
∫

�

|ω(y)| dy

|x − y|3− 1
2

= c |ω(x)|2 I (x) , (18)

where the Riesz potential I (x) satisfies

‖I‖3 ≤ c ‖ω‖2. (19)

Recall that, in general, if

I (x) =
∫

�

|ω(y)| dy

|x − y|n−β
,

where 0 < β < n and ω ∈ Lr (�) , for some 1 < r < n , then

‖I‖q ≤ c ‖ω‖r ,

where 1/q = 1/r − β / n. See [30].
From (18) and (19), one gets

∫

�

|K(x)| dx ≤ c
∫

�

|ω(x)|2 I (x) dx ≤ c ‖I‖3 ‖ω‖2 ‖ω‖6

≤ c ‖ω‖2
2 ( ‖∇ ω‖2 + ‖ω‖2 ) ≤ Cε ‖ω‖4

2 + c ‖ω‖3
2 + ε ‖∇ ω‖2

2. (20)
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So,

1

2

d

dt
‖ω‖2

2 + ν ‖∇ω‖2
2 − ν

∫

�

∂ω

∂n
· ω d� =

∫

�

K(x) dx

≤ C ( ‖ω‖2
2 + ‖ω‖2 ) · ‖ω‖2

2 + ε ‖∇ ω‖2
2. (21)

Unfortunately, under the slip boundary condition, we are not able to control the bound-
ary integral

ν

∫

�

∂ω

∂n
· ω d�. (22)

On the contrary, under the slip boundary condition in the half-space case, the above
boundary integral vanishes, as immediately follows from Eq. (11). Further, estimates
on K are the same also in the slip case. So, in this last case, we drop the boundary
integral in Eq. (21). Further, since weak solutions satisfy

‖ω(t)‖2
2 ∈ L1(0, T ) ,

it follows from Eq. (21), together with Gronwall’s lemma, that ω ∈ L∞(0, T ; L2(�))

∩ L2(0, T ; H1(�) ). Hence

u ∈ L∞(0, T ; H1(�) ) ∩ L2(0, T ; H2(�) ).

This shows the regularity of the solution under the slip boundary condition, since we
can prove that Eq. (21) also holds under this boundary assumption. See [3], equation
(70). However, the proof of (21) becomes quite more involved.

Appendix

As remarked at the end of the introduction, we present here some reflections upon the
global structure and significance of our results, taken as a whole.

As the reader has verified, the statements presented above are split into two families
of sufficient conditions for regularity, namely, β ≥ 1

2 and β ≤ 1
2 . In Theorem 1.2,

the advantage of assuming β > 1
2 is counterbalanced by replacing in Eq. (5) the

constant c by a function g ∈ La(0, T ; Lb(�)) . On the other hand, in Theorem 1.3,
we mitigate the penalizing situation β < 1

2 by assuming (8). This situation may
give the wrong idea that the two families of results are relatively independent. On the
contrary, the above formal separation is not substantial. In fact, the two families glue
perfectly at the intersection point β = 1

2 since the conclusion (namely, “condition (6)
implies regularity”) is the same in both cases. On the other hand, a step by step analysis
of the proofs given for each of the two above theorems, shows that, inside each class,
the results have the same “strength”, independently of the value of the parameter β.
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Since the two families “glue” at point 1
2 , we conclude that we have just one family

of strictly connected results, all having an equivalent “strength”.
We may also show the “equal strength” of the above sufficient conditions for regu-

larity by appealing to scaling techniques. Let us illustrate this possibility by showing
that the sufficient conditions for regularity sin θ(x, y, t) ≤ g(t, x)|x − y|β , as β

goes from 1
2 to 1 , enjoy the same strength.

Assume that ( (u(x, t), p(x, t) ) is a solution to the Navier–Stokes equations in
( 0, +∞ ) × R3 . Then

( (uλ(x, t), pλ(x, t) ) ≡ ( ( λ u( λx, λ2t), λ2 p( λx, λ2t) )

is a solution in the same domain. In particular

ωλ(x, t) ≡ curl uλ(x, t) = λ2 ω( λx, λ2t).

Set

θλ(x, y, t)
de f= � (ωλ(x, t), ωλ(y, t)).

Then, by appealing to

sin θ(x, y, t) = | ω(x, t) × ω(y, t) |
|ω(x, t)| |ω(y, t)| ,

it follows that

sin θλ(x, y, t) = sin θ(λ x, λ y, λ2 t).

Assume now that the solution u(x, t) satisfies

sin θ(x, y, t) ≤ g(t, x)|x − y|β ,

for some β ∈ [ 1
2 , 1 ], where g ∈ La(0, +∞; Lb(R3)) , and the exponents are

defined by Eq. (4). It follows that

sin θλ(x, y, t) ≤ gλ(x, t)|x − y|β ,

where the function gλ is given by

gλ(x, t)
de f= λβ g( λx, λ2t).

It follows that

‖ gλ ‖La( 0,+∞; Lb(R3) ) = λ
1
2 ‖ g ‖La( 0,+∞; Lb(R3) ),
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for all β ∈ [ 1
2 , 1 ]. The equivalence of the “strength” of the different sufficient

conditions for regularity follows from the independence of the exponent 1
2 with respect

to β . The reader may verify that weaker (resp. stronger) sufficient conditions for
regularity lead to larger (resp. smaller) exponents.

Finally we show that the above common strength is at the same level as a classical
“Prodi-Serrin” integrability conditions for regularity. In fact, for β = 0 , condition
(7) is superfluous, since it holds automatically. Furthermore, condition (8) simply
reads ω ∈ L2(0, T ; L3(�)) . This means u ∈ L2(0, T ; H1, 3(�)) , which is a class
of regularity, see [1]. This class is formally equivalent, in an obvious sense, to the
classical “Prodi-Serrin” condition u ∈ L2(0, T ; L∞(�)) .

The above argument lead us to call all the above family of β−dependent results,
sharp results. Note that, in Theorem 1.2, the weak regularity allowed by (4) to the coef-
ficients g(t, x) is fundamental to obtain sharp results. This is the reason why proving
the “minimal regularity” for the coefficients g(t, x) , is taken here into considerable
attention. A similar remark applies in relation to (9) and Theorem 1.3.
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