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Abstract. In this notes we consider the stationary Stokes system in a bounded, connected, three-dimensional smooth domain,
with homogeneous Dirichlet boundary condition. Proofs also apply to the n-dimensional case, and to other boundary
conditions, like Navier-slip ones. We say here that a solution is classical if all derivatives appearing in the equations are
continuous up to the boundary. It is well known, for long time, that solutions of the Stokes system are classical if the
external forces belong to the Hőlder space C0, λ(Ω) . It is also well known that, in general, solutions are not classical in the
presence of continuous external forces. Hence, a very challenging problem is to find Banach spaces, strictly containing the
Hőlder spaces C0, λ( Ω) , such that solutions to the Stokes problem corresponding to forces in the above space are classical.

We prove this result for external forces in a suitable functional space, denoted C∗(Ω) , introduced in references Beirão da
Veiga (On the solutions in the large of the two-dimensional flow of a non-viscous incompressible fluid, 1982) and Beirão da
Veiga (J Differ Equ 54(3):373–389, 1984) in connection with the Euler equations.
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1. Introduction and Main Results

We begin to introduce some notation. Ω is an open, bounded, connected set in R
3 , locally situated on

one side of its boundary Γ . We assume that Γ is of class C2, λ(Ω) , for some λ , 0 < λ ≤ 1 .
C(Ω) denotes the Banach space of all real continuous functions defined in Ω , with norm

‖ f ‖ ≡ sup
x∈ Ω

| f(x) |.

We also need the classical spaces C1(Ω) and C2(Ω) , with norm

‖u ‖1 ≡ ‖u ‖ +
n∑

i= 1

‖ ∂iu ‖ , ‖u ‖2 ≡ ‖u ‖ +
n∑

i, j= 1

‖ ∂iju ‖ ,

respectively. Further, for each λ ∈ (0, 1 ] , we define de semi-norm

[ f ]0, λ ≡ sup
x, y∈ Ω ; x�= y

|f(x) − f(y) |
|x − y |λ , (1.1)

and consider the Hőlder space C0, λ(Ω) ≡ { f ∈ C(Ω) : [ f ]0, λ < ∞} , normed by

‖ f ‖0, λ = ‖ f ‖ + [ f ]0, λ.

Clearly, C0, 1(Ω) is the space of Lipschitz continuous functions in Ω . Further, C∞(Ω) denotes the set
of all restrictions to Ω of indefinitely differentiable functions in R

3 .
Boldface symbols refer to vectors, vector spaces, and so on. Components of a generic vector u is

indicated by ui , with similar notation for tensors. Norms in function spaces, whose elements are vector
fields, are defined in the usual way by means of the corresponding norms of the components.
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The quantities c, c0 , c1, . . . , denote positive constants depending at most on Ω . For simplicity, we
may use the same symbol c to denote different constants.

In what follows we consider the Stokes system (see, for instance, [8,11,19])
⎧
⎨

⎩

−Δu + ∇ p = f in Ω ,
∇ · u = 0 in Ω ,
u = 0 on Γ.

(1.2)

If f ∈ C(Ω) , this problem has a unique solution (u, p ) ∈ C1(Ω) × C(Ω) , p up to a constant.
Furthermore, the solution is given by

ui(x) =
∫

Ω

Gi j(x, y) fj(y) dy , p(x) =
∫

Ω

gj(x, y) fj(y) dy , (1.3)

where G and g are respectively the Green’s tensor and vector associated with the above boundary value
problem. Furthermore, the following estimates hold.

|Gi j(x, y) | ≤ C

|x − y| ,

∣∣∣
∂ Gi j(x, y)

∂ xk

∣∣∣ ≤ C

|x − y|2 , | gj(x, y) | ≤ C

|x − y|2 ,

∣∣∣
∂2 Gi j(x, y)

∂ xk ∂ xl

∣∣∣ ≤ C

|x − y|3 , | ∂ gj(x, y)
∂ xk

| ≤ C

|x − y|3 ,

(1.4)

where the positive constant C depends only on Ω . A detailed treatment of the above properties can be
found, for instance, in chapter 3 of the classical Ladyzhenskaya’s famous treatise [11], where the author
gives a quite complete overview on the classical theory of hydrodynamical potentials (due to Lichtenstein
[12], and to Odqvist [14]). Furthermore, the author shows how to construct the Green functions G and
g (Sect. 4, Chapter 3). The estimates (1.4) are contained in equations (46) and (47). They may also
be found in Solonnikov’s paper [15]; see also [7], [8] section IV.6, and [20]. The estimates (1.4) are a
particular case of a set of much more general results, due to many authors. See, for instance, [2] and [16].

The study of minimal, explicit conditions on f in order to guarantee the continuity up to the boundary
of all derivatives appearing in Eq. (1.2) is a classical, and extremely natural problem. It is well known, even
in the simplest scalar case Δ u = f in Ω , u = 0 on Γ , that f ∈ C(Ω) does not imply ∇2 u ∈ C(Ω) . On
the contrary, Hőlder continuity is sufficient, since ∇2 u ∈ C0, λ(Ω) if f ∈ C0, λ(Ω) . The above picture
leads us to look for Banach spaces C∗(Ω) satisfying

C0, λ(Ω) ⊂ C∗(Ω) ⊂ C(Ω) , (1.5)

with strict inclusions, and such that the solutions (u, p) to problem (1.2) satisfy ∇2 u ∈ C(Ω) , and
∇ p ∈ C(Ω) .

The following is the main result of our paper. For the definition of C∗(Ω) see the next section.

Theorem 1.1. For every f ∈ C∗(Ω) the solution (u, p) to the Stokes system (1.2) belongs to C2(Ω) ×
C1(Ω). Moreover, there is a constant c0, depending only on Ω , such that the estimate

‖u ‖2 + ‖∇ p ‖ ≤ c0 ‖f ‖∗ , ∀f ∈ C∗(Ω) , (1.6)

holds.

Remark 1.1. Estimates (1.4) are the key tool in the proof of Theorem 1.1. Since they also hold under
boundary conditions other than Dirichlet’s, like, for instance, Navier-slip ones (see [17,18], and [6]),
Theorem 1.1 continues to hold in these cases as well. It should be not particularly difficult to extend
Theorem 1.1 to any solution to the corresponding Navier-Stokes equations, in the case of dimension less
or equal to 3. For arbitrarily large dimensions the situation changes dramatically, as explained in the
deep introduction of reference [9]
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Remark 1.2. We introduced the functional space C∗(Ω) in [4] and [5], where we proved the existence of
a classical solution u ∈ C( R;C1(Ω) ) to the initial-boundary value problem for the 2-D Euler equations
with data u(0) = u0 ∈ C∗(Ω) and f ∈ L1(R; C∗(Ω) ) . In the above references the main properties of
this functional space were already stated. Actually, results and proofs published in [5] were previously
presented in a preparatory and more complete manuscript [3]. In fact, all results given in the following
sections were already proved in [3], the only difference being that, instead of the Stokes system (1.2)
considered here, we dealt with boundary value problems for second order elliptic (scalar) equations. The
proofs concerning the latter problem remained unpublished until now. In fact, in reference [5] we merely
stated Theorem 1.1 for the particular problem −Δu = f in Ω , u = 0 on Γ (see Theorem 4.5 in
[5]), since this result was sufficient to treat the 2-D Euler equations, which, at that time, was our focus.
Furthermore, just after the statement of the above theorem, we claimed that we were able to prove the
result for uniformly elliptic second-order equations under regular boundary value conditions. Here we
turn back to the unpublished proof of this last result, by adapting it to the Stokes system (1.2).

Concerning the 2-D Euler equations, we remark that our results and proofs have been rediscovered,
after many years, by other authors.

Remark 1.3. In [3] we have also introduced a second functional space B∗(Ω) , strictly containing C∗(Ω) ,
for which some of the regularity results proved for elliptic boundary value problems, and for the 2-D
Euler equations, still apply by replacing C∗(Ω) by B∗(Ω) . More precisely, the Theorem 3.1 holds for
data in B∗(Ω) . However we do not know whether Theorem 1.1 holds under this condition. In the final
section of this paper we define B∗(Ω) and give some comment on this, and related, matter.

2. The Banach Space C∗(Ω). Definition and Main Properties

To define and study the vector field case C∗(Ω) , it is clearly sufficient to consider the scalar case C∗(Ω) .
Algebraic properties and norms are defined by appealing to the single components.

We set

I(x; r) = { y : |y − x| ≤ r } , Ω(x; r) = Ω ∩ I(x; r) , Ωc(x; r) = Ω − Ω(x; r).

For f ∈ C(Ω) , and each r > 0 we set

ωf (r) ≡ sup
x, y∈ Ω ; 0< |x− y|≤ r

| f(x) − f(y) |. (2.1)

Clearly, ω(f+ g)(r) ≤ ωf (r) + ωg(r) , and |ωf (r) − ωg(r) | ≤ ω(f− g)(r).
As in [4], we use the notation

[ f ]∗ = [ f ]∗, R ≡
R∫

0

ωf (r)
dr

r
. (2.2)

It is worth noting that R may be replaced by any positive constant δ . In fact, if 0 < δ < R , one has
(with obvious notation)

[ f ]∗, δ ≤ [ f ]∗, R ≤ [ f ]∗, δ + 2
(

log
R

δ

)
‖ f ‖. (2.3)

It follows that norms, obtained by addition of ‖ f ‖ (see [2.5]), are equivalent. In particular, we will use
the symbol [ f ]∗ also to denote the quantity [ f ]∗, δ , where δ > 0 is related to the geometry of Ω .

In the literature, the condition
δ∫

0

ωf (r)
dr

r
< +∞
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is called Dini’s continuity condition, see [10], equation (4.47). In [10], problem 4.2, it is remarked that if
f satisfies Dini’s condition in the whole space R

n , then its Newtonian potential is a C2 function in R
n .

Definition 2.1. We set

C∗(Ω) ≡ { f ∈ C(Ω) : [ f ]∗ < ∞}. (2.4)

It is immediate to verify that C∗(Ω) is a linear space, and that the quantity [ · ]∗ is a semi-norm. We
endow C∗(Ω) with the norm

‖ f ‖∗ ≡ [ f ]∗ + ‖ f ‖. (2.5)

Note that

[ f ]∗ ≤ Rλ

λ
[ f ]0, λ , (2.6)

for each f ∈ C0, λ(Ω) , where λ ∈ (0, 1] .
The following simple remark looks quite significant.

Remark 2.1. Alternatively, we may define C∗(Ω) in a totally equivalent form, by replacing in Eq. (2.4)
the quantity |x − y| ≤ r simply by |x − y| = r .

Next we show that the normed space C∗(Ω) is complete.

Theorem 2.1. The space C∗(Ω) endowed with the norm ‖ f ‖∗ is a Banach space.

We start by proving the following partial result.

Proposition 2.1. Let fn be a Cauchy sequence in C∗(Ω) , and let f be the uniform limit of this sequence.
Then, f ∈ C∗(Ω) . Moreover,

[ f ]∗ ≤ lim
n→ + ∞[ fn ]∗ , (2.7)

where the existence of the limit is part of the statement.

Proof. Assume that

lim
m, n→ ∞ ‖ fn − fm ‖∗ = 0.

Clearly, there is a (unique) f ∈ C(Ω) such that fn → f , uniformly in Ω . In particular,

|ωfn
(r) − ωf (r) | ≤ 2 ‖ fn − f ‖.

So, for each r ∈ ( 0, R) , the pointwise limit

ωf (r) = lim
n→ + ∞ ωfn

(r) (2.8)

exists. It is worth noting that (2.8) follows merely from the uniform convergence.
On the other hand

∣∣∣∣∣∣

R∫

0

ωfn
(r)

dr

r
−

R∫

0

ωfm
(r)

dr

r

∣∣∣∣∣∣
= | [ fn ]∗ − [ fm ]∗ | ≤ [ fn − fm ]∗.

This shows that the limit in Eq. (2.9) below exists, since the sequence of integrals is a Cauchy sequence
in R . By appealing to (2.8) and to Fatou’s lemma, we prove that
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R∫

0

ωf (r)
dr

r
≤ lim

n→ ∞

R∫

0

ωfn
(r)

dr

r
. (2.9)

�
We are now in a position to prove Theorem 2.1.

Proof. By replacing the couple (fn, f) by (fn − f, 0) , we assume, without loosing generality, that
f = 0 .

Let ε > 0 be given. Fix an integer nε such that [ fn − fm ]∗ < ε whenever m, n ≥ nε , and choose a
real Rε ∈ (0, R ] such that

Rε∫

0

ωfnε
(r)

dr

r
< ε.

Further, let mε be an integer such that

‖ fn ‖ <
(

2 log(R/Rε)
)− 1

ε ,

for all n ≥ mε .
If n > max {nε, mε } one has

[ fn ]∗ ≤
Rε∫

0

ω(fn− fnε )(r)
dr

r
+

Rε∫

0

ωfnε
(r)

dr

r
+

R∫

Rε

ωfn
(r)

dr

r
.

From the above estimates, it readily follows that [ fn ]∗ ≤ 3 ε . Hence, fn → 0 in C∗(Ω) . �

Note that if a sequence fn converges uniformly to some f ∈ C(Ω) , and [ fn ]∗ ≤ k , then f ∈ C∗(Ω) ,
and [ f ]∗ ≤ k .

Theorem 2.2. The embedding

C∗(Ω) ⊂ C(Ω)

is compact.

Proof. Let fn ∈ C∗(Ω) be a sequence of functions such that

‖ fn ‖∗ ≤ k ,

for n = 1, 2, . . .. Let ε > 0 be given, set δ = R e− k
ε , and assume that |x − y | < δ.

Clearly,
R∫

δ

ωfn
(r)

dr

r
≤ k.

Since ωfn
(r) is a non-decreasing function of r , it follows that

ωfn
(δ) log

R

δ
≤ k.

By tacking into account the definition of δ , it follows that ωfn
(δ) ≤ ε , for each index n . This proves

the equi-continuity required by Ascoli-Arzelà’s theorem. �
Next we consider the problem of the extension of functions f ∈ C∗(Ω) outside their initial domain,

without losing their basic properties. We set

Ωδ ≡ {x : dist(x, Ω) < δ},

where δ > 0 . We show the following result.
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Theorem 2.3. There is a δ > 0 such that the following holds. There is a linear continuous map T from
C(Ω) to C(Ωδ) , and from C∗(Ω) to C∗(Ωδ) , such that T f(x) = f(x) , for each x ∈ Ω .

Proof. It is well known that, for a sufficiently small positive δ , which depends only on Ω , we can construct
a system of parallel surfaces Γr , 0 ≤ r ≤ δ , such that the surface Γr lies outside Ω , at a distance r
from Γ0 = Γ . For convenience, we set R = δ in Definition (2.2).

For each x ∈ Ωδ − Ω , we denote by x the orthogonal projection of x upon the boundary Γ . We
define the extension T f = f̃ as follows.

f̃(x) =
{

f(x) , if x ∈ Ω ,
f(x) , if x ∈ Ωδ − Ω.

(2.10)

Since Γ is smooth and compact, the map x → x is Lipschitz continuous. This leads to the existence of
the positive constant k considered below. The map Tf = f̃ is clearly linear continuous from C(Ω) to
C(Ωδ) . Next we define, for each r ∈ (0, δ ) ,

ωf̃ , δ( r) = sup
x, y∈ Ωδ; |x− y|< r

| f̃(x) − f̃(y) | ,

and we show that

ωf̃ , δ( r) ≤ ωf ( k r). (2.11)

Assume |x − y| ≤ δ . If x ∈ Ωc and y ∈ Ω , then

| f̃(x) − f̃(y) | = | f(x) − f(y) | , and |x − y| ≤ k |x − y|.
If x, y ∈ Ωc , then

| f̃(x) − f̃(y) | = | f(x) − f(y) | , and |x − y| ≤ k |x − y|.
Note that, in a neighborhood of a flat portion of Γ, one has k = 1 . Equation (2.11) follows easily.
Finally,

[ f ]∗, δ =

δ∫

0

ωf̃ , δ(r)
dr

r
≤

k δ∫

0

ωf (ρ)
dρ

ρ
= [ f ]∗, k δ.

�

We could also start the above proof by a preliminary localization procedure. We consider a suitable
partition of unity φr , r = 1, . . . , M , subordinated to an open covering Or of Γ , r = 1, . . . ,M . Given
f ∈ C∗(Ω) , it is sufficient to prove the extension theorem for each single product fr = φr f , since
products by regular functions φ preserve the C∗(Ω) estimates enjoyed by f . This is guaranteed by the
following result.

Lemma 2.4. If φ and f belong to C∗(Ω) then φ f ∈ C∗(Ω) . Furthermore,

[φ f ]∗ ≤ ‖φ ‖ [ f ]∗ + ‖ f ‖ [φ ]∗. (2.12)

The following density theorem is a fundamental tool in the proof of Theorem 1.1.

Theorem 2.5. The set C∞(Ω) is dense in C∗(Ω) .

The proof of this result follows immediately from Theorem 2.3 together with the following Lemma.

Lemma 2.6. Let f ∈ C∗(Ωδ) . There is family of functions fε ∈ C∞(Ω) , convergent in the C∗(Ω)-norm,
as ε → 0 , to the restriction of f to Ω .
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Proof. For each ε ∈ (0, δ) define the Friedrich mollifiers

fε(x) ≡
∫

| z |< ε

jε(z) f(x − z) dz , ∀x ∈ Ωδ , (2.13)

where jε(z) ∈ C∞(Rn) is defined in the standard way (see, for instance, [13], Chapter 2, section 1.3, or
[1], section 1). In particular jε(z) = 0 for | z | ≥ ε , and

∫
jε(z) dz = 1.

For convenience, assume in (2.13) that f(x) = 0 outside Ωδ . It is well known that

lim
ε→ 0

‖ fε − f ‖C(Ω) = 0. (2.14)

In the sequel we assume that x, y ∈ Ω , and r ≤ δ . From

( fε − f )(x) =
∫

| z |< ε

jε(z) ( f(x − z) − f(x) ) dz

we show that the quantity

ωfε
(r) = sup

0< |x− y|≤ r; x, y∈ Ω

∣∣
∫

jε(z)
[
f(x − z) − f(y − z)

]
dz

∣∣

satisfies the estimate ωfε
(r) ≤ ωf, δ(r) . It follows that

ω(fε− f)(r) ≤ ωf (r) + ωfε
(r) ≤ 2ωf (r; δ). (2.15)

On the other hand, by appealing to (2.14), one shows that

lim
ε→ 0

ω(fε− f)(r) = 0 , (2.16)

for each r < δ . Hence, By Lebesgue’s dominated convergence theorem,

lim
ε→ 0

[ fε − f ]∗ = lim
ε→ 0

δ∫

0

ω(fε− f)(r)
dr

r
= 0.

Note that the right hand side of (2.15) is integrable in ( 0, δ ) with respect to dr/r . �

As for the proof of Theorem 2.3, it would be sufficient to prove the thesis for the single products
fr = φr f .

3. Lipschitz Continuity of the First Order Derivatives

In this section we set C∗(Ω) = C∗(Ω) × C∗(Ω) × C∗(Ω) . We prove the following result.

Theorem 3.1. Let f ∈ C∗(Ω) , and let u be the solution to problem (1.2). Then the first order derivatives
of the velocity u , and the pressure p , are Lipschitz continuous in Ω . Furthermore, the estimate

‖u ‖1, 1 + ‖ p ‖0, 1 ≤ c0 ‖f ‖∗ (3.1)

holds.

Proof. Let x0 ∈ Ω be fixed, and define the auxiliary system
⎧
⎨

⎩

−Δv(x) + ∇ q(x) = f(x0) in Ω ,
∇ · v = 0 in Ω ,
v = 0 on Γ.

(3.2)
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Note that the external force field is constant. Clearly, v and q are smooth. We start by showing that

‖v ‖1, 1 + ‖ q ‖0, 1 ≤ K ‖f‖ , (3.3)

where the constant K is independent of f(x0) .
Denote by e1 the constant vector field e1 = (1, 0, 0) and, similarly, define e2 and e3 . Further,

denote by (v(i), q(i)) the solution to problem (3.2) with f(x0) replaced by ei. So,

⎧
⎨

⎩

−Δv(i)(x) + ∇ q(i)(x) = ei in Ω ,
∇ · v(i) = 0 in Ω ,
v(i) = 0 on Γ.

(3.4)

Define K ≥ 0 by setting

K2 =
3∑

i= 1

( ‖v(i) ‖2
1, 1 + ‖ q(i) ‖2

0, 1

)
.

One has

v(x) =
3∑

i= 1

fi(x0)v(i)(x) , and q(x) =
3∑

i= 1

fi(x0) q(i)(x).

It readily follows that

‖v ‖1, 1 + ‖ q ‖0, 1 ≤ K |f(x0) | ≤ K ‖f ‖ ,

as desired.
Next we set

w(x) ≡ u(x) − v(x) , and t(x) ≡ p(x) − q(x).

Clearly,

wi(x) =
∫

Ω

Gi j(x, y) ( fj(y) − fj(x0) ) dy ,

and

t(x) =
∫

Ω

gj(x, y) ( fj(y) − fj(x0) ) dy.

We start by considering the velocity. One has

∂k wi(x) − ∂k wi(x0) =
∫

Ω

(
∂k Gi j(x, y) − ∂k Gi j(x0, y)

)
( fj(y) − fj(x0) ) dy ,

where ∂k stands for differentiation with respect to xk and, clearly, ∂k wi(x0) means ∂k wi(x) at point
x = x0 . It follows that

| ∂k wi(x) − ∂k wi(x0) | ≤
∫

Ω

| ∂k Gi j(x, y) − ∂k Gi j(x0, y) | | fj(y) − fj(x0) | dy.

Set ρ = |x − x0| . One has

| ∂k wi(x) − ∂k wi(x0) | ≤
∫

Ω(x0; 2 ρ)

| ∂k Gi j(x, y) − ∂k Gi j(x0, y) | | fj(y) − fj(x0) | dy

+
∫

Ωc(x0; 2 ρ)

| ∂k Gi j(x, y) − ∂k Gi j(x0, y) | | fj(y) − fj(x0) | dy

≡ I1 + I2. (3.5)
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By appealing to (1.4), we show that

I1 ≤ 6 ‖ f‖

⎛

⎜⎝
∫

Ω(x0; 2 ρ)

C

|x − y|2 dy +
∫

Ω(x0; 2 ρ)

C

|x0 − y|2 dy

⎞

⎟⎠

≤ 6C ‖ f‖

⎛

⎜⎝
∫

I(x; 3 ρ)

dy

|x − y|2 +
∫

I(x0; 2 ρ)

dy

|x0 − y|2

⎞

⎟⎠ . (3.6)

Hence

I1 ≤ c ρ‖ f ‖ .

On the other hand, by appealing to the mean-value theorem and to (1.4), we get

| ∂k Gi j(x, y) − ∂k Gi j(x0, y) | ≤ C ρ |x′ − y|−3 ≤ C ρ 23 |x0 − y|−3 ,

for each y ∈ Ωc(x0; 2 ρ) , where the point x′ belongs to the straight segment joining x0 to x. Consequently,

I2 ≤ c ρ

∫

Ωc(x0; 2 ρ)

ωf (|y − x0|) dy

|x0 − y|3 ≤ c ρ

R∫

2 ρ

ωf (r)
dr

r
.

It follows that

I2 ≤ c ρ‖f ‖∗.

Next, by appealing to Eq. (3.9), and to the estimates proved above for I1 and I2 , we show that

|∇w(x) − ∇w(x0) | ≤ c ρ‖f ‖∗.

Consequently,

|∇u(x) − ∇u(x0)| ≤ |∇w(x) − ∇w(x0) | + |∇v(x) − ∇v(x0) |
≤ c ρ‖f ‖∗ + K ρ‖f ‖.

So,

|∇u(x) − ∇u(x0)|
|x − x0| ≤ c ‖ f ‖∗ , ∀x, x0 ∈ Ω, x 
= x0. (3.7)

Furthermore, by (1.4),

|∇u(x)| ≤ c ‖f‖
∫

Ω

C

|x − y|2 dy ≤ c ‖f‖ , ∀x ∈ Ω.

Hence

‖∇u‖ ≤ c ‖f‖. (3.8)

This equation, together with (3.11), proves (3.1) for the velocity u .
Next we consider the pressure. As above,

| t(x) − t(x0) | ≤
∫

Ω

| gj(x, y) − gj(x0, y) | | fj(y) − fj(x0) | dy.
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Hence,

| t(x) − t(x0) | ≤
∫

Ω(x0; 2 ρ)

| gj(x, y) − gj(x0, y) | | fj(y) − fj(x0) | dy

+
∫

Ωc(x0; 2 ρ)

| gj(x, y) − gj(x0, y) | | fj(y) − fj(x0) | dy ≡ I3 + I4. (3.9)

By appealing to (1.4), we show that I3 ≤ c ρ‖ f ‖, since

I3 ≤ 2 ‖ f‖

⎛

⎜⎝
∫

Ω(x0; 2 ρ)

C

|x − y|2 dy +
∫

Ω(x0; 2 ρ)

C

|x0 − y|2 dy

⎞

⎟⎠

≤ 2C ‖ f‖

⎛

⎜⎝
∫

I(x; 3 ρ)

dy

|x − y|2 +
∫

I(x0; 2 ρ)

dy

|x0 − y|2

⎞

⎟⎠ . (3.10)

On the other hand, by the mean-value theorem and (1.4), we get

| ∂k gj(x, y) − ∂k gj(x0, y) | ≤ C ρ |x′ − y|−3 ≤ C ρ 23 |x0 − y|−3 ,

for each y ∈ Ωc(x0; 2 ρ) , where the point x′ belongs to the straight segment joining x0 to x. Consequently,

I4 ≤ c ρ

∫

Ωc(x0; 2 ρ)

ωf (|y − x0|) dy

|x0 − y|3 ≤ c ρ

R∫

2 ρ

ωf (r)
dr

r
≤ c ρ‖f ‖∗.

By appealing to (3.9), and to the estimates proved for I3 and I4 , we show that

| t(x) − t(x0) | ≤ c ρ‖f ‖∗.

Consequently,

| p(x) − p(x0)| ≤ | t(x) − t(x0) | + | q(x) − q(x0) |
≤ c ρ‖f ‖∗ + K ρ‖f ‖.

So,

| p(x) − p(x0)|
|x − x0| ≤ c ‖ f ‖∗ , ∀x, x0 ∈ Ω, x 
= x0. (3.11)

Further, by (1.4),

| p(x)| ≤ c ‖f‖
∫

Ω

C

|x − y|2 dy ≤ c ‖f‖ , ∀x ∈ Ω.

Hence

‖ p‖ ≤ c ‖f‖. (3.12)

This equation, together with (3.11), proves (3.1) for the pressure p . �

4. Proof of Theorem 1.1

Due to Theorem 3.1, it is sufficient to show that the second order derivatives of u(x) and the first order
derivatives of p(x) exist and are continuous in Ω.
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By Theorem 2.5, there exists a sequence of vector fields fm ∈ C∞(Ω) such that fm → f in C∗(Ω) .
Consider the solutions (um, pm ) of problems

⎧
⎨

⎩

−Δum(x) + ∇ pm(x) = fm(x) in Ω ,
∇ · um = 0 in Ω ,
um = 0 on Γ.

(4.1)

It is well know that um ∈ C2(Ω) and pm ∈ C1(Ω) . Furthermore, by applying the result stated in
Theorem 3.1 to the system

⎧
⎨

⎩

−Δ(um − un ) + ∇ ( pm − pn ) = fm − fn in Ω ,
∇ · (um − un) = 0 in Ω ,
um − un = 0 on Γ ,

we show that ‖ ∂2
i ju

m − ∂2
i ju

n ‖ + ‖ ∂ip
m − ∂ip

n ‖ ≤ c0 ‖fm − fn ‖∗ . This proves that ∂2
i ju

m and
∂ip

m are Cauchy sequences in C(Ω) and C(Ω) , respectively. Hence, there are elements ũi j , p̃i ∈ C(Ω)
such that the sequences ∂2

i ju
m and ∂ip

m are uniformly convergent in Ω to ũi j and p̃i respectively. on
the other hand, from (1.2), (4.1), and (3.8), it follows that ‖ ∂i um − ∂i u ‖ ≤ c ‖fm − f ‖ . Hence ∂i um

converges uniformly in Ω to ∂i u . The above picture shows that the second order derivatives ∂2
i j u must

coincide with the continuous functions ũij , for i, j = 1, 2, 3 . A similar argument shows that the first
order derivatives ∂i p are given by p̃i , for i = 1, 2, 3 .

5. The Space B∗(Ω)

As already remarked at the end of the introduction, we wonder whether there are functional spaces B∗(Ω)
such that the inclusions C∗(Ω) ⊂ B∗(Ω) ⊂ C(Ω) are proper, and Theorem 1.1 still holds with C∗(Ω)
replaced by B∗(Ω) . Having this goal in mind, in [3] we have defined and study a functional space B∗(Ω)
as follows. Set

ωf (x; r) = sup
y∈ Ω(x; r)

| f(x) − f(y) | , (5.1)

fix a positive real δ > 0 , and define semi-norms

px(f) ≡
δ∫

0

ωf (x; r)
dr

r
, (5.2)

for each x ∈ Ω . Note that continuity of f at single points x follows necessarily from finiteness of the
integral in Eq. (5.1). To avoid unnecessary technical arguments, we assume that f ∈ C(Ω) .

We set

〈 f 〉∗ = sup
x∈ Ω

δ∫

0

ωf (x; r)
dr

r
= sup

x∈ Ω

px(f) , (5.3)

and define

B∗(Ω) ≡ { f ∈ C(Ω) : 〈 f 〉∗ < +∞}. (5.4)

The space B∗(Ω) , endowed with ‖ f ‖∗ ≡ ‖ f ‖ + 〈 f 〉∗ , is a normed linear space. Since

[ f ]∗ =

δ∫

0

sup
x∈ Ω

ωf (x; r)
dr

r
, (5.5)

one has 〈 f 〉∗ ≤ [ f ]∗ . The inclusion C∗(Ω) ⊂ B∗(Ω) is strict. We exhibit explicit functions which do
not belong to C∗(Ω) (due to strong oscillations), but still belong to B∗(Ω) .
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In [3], we have shown that Theorem 3.1 holds with C∗(Ω) replaced by B∗(Ω) . Finally, by adapting
the proofs developed in [5], we may prove that solutions to the 2D-Euler equations, with initial data in
B∗(Ω) and vanishing external forces, satisfy u ∈ C( R;C0, 1(Ω) ) .

On the other hand, we did not succeed in proving or disproving Theorem 1.1 for data in B∗(Ω) .
Theorem 2.3 still holds, but the extension of Theorem 2.5 to B∗(Ω) could be false. This remains a
challenging open problem. We will turn back to this matter in the forthcoming publication [3].

It is worth noting that other significant candidates could be obtained by replacing, in the definitions
of C∗(Ω) or B∗(Ω) , the quantity ωf (x; r) defined in Eq. (5.1), by

ω̃f (x; r) =
∣∣∣ f(x) − |Ω(x; r) |−1

∫

Ω(x; r)

f(y) dy
∣∣∣ , (5.6)

and similar variants.
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