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Abstract These notes concern the study of sufficient conditions on the direction of the
vorticity to guarantee regularity of solutions to the evolution Navier–Stokes equations. We
emphasize here some thread lines of the research, taken as a whole. Interdependence among
distinct results and techniques is discussed. We end by a sketch of the proof of a quite recent
result.
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1 The Whole Space Results

We consider the 3D Navier–Stokes equations

⎧
⎨

⎩

ut + (u · ∇)u − �u + ∇p = 0,

∇ · u = 0 in Ω × (0, T ),

u(x,0) = u0(x) in Ω,

(1)

where the velocity u and the pressure p are the unknowns. For brevity we assume that
external force vanishes, and the kinematic viscosity is equal to one. Ω may denote the
whole space R3, the half space R3+, or an open, connected, bounded subset of R3, with a
smooth boundary Γ = ∂Ω . In this last case, equations are mostly supplemented with the
“stress-free” boundary conditions

{
u · n = 0,

ω × n = 0 on Γ × (0, T ], (2)
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where ω = ∇ × u = curlu is the vorticity field, and n denotes the exterior unit normal
vector to the boundary. In the case of flat boundaries, the above conditions coincide with the
classical Navier boundary conditions without friction, see [28]. See also [30].

In the sequel Lp := Lp(Ω), 1 ≤ p ≤ ∞ denotes the usual Lebesgue spaces equipped
with norm ‖.‖p . Further, Hk := Hk(Ω), are the classical Sobolev spaces. We use the same
symbol for both scalar and vector function spaces. Moreover

L
p

T (X)
def= Lp

(
0, T ;X(Ω)

)
,

where X = X(Ω) is a generical Banach space, and 1 ≤ p ≤ ∞. Arbitrary positive constants
are denoted simply by c.

Solutions u ∈ L2(0, T ;H 1(Ω)) ∩ L∞(0, T ;L2(Ω)) are defined here in the well known
Leray–Hopf weak sense, and are assumed to be weakly continuous from the right
at time t = 0. We say that a Leray–Hopf weak solution u is strong if it belongs to
L∞(0, T ;H 1(Ω)) ∩ L2(0, T ;H 2(Ω)). It is well known that strong solutions are smooth, if
data and domain are also smooth.

We consider the problem of global existence of smooth solutions, under suitable hypothe-
ses on the vorticity-direction. We set

θ(x, y, t)
def= ∠

(
ω(x, t),ω(y, t)

)
,

where the symbol “∠” denotes the amplitude of the angle between two vectors. We are in-
terested in sufficient conditions on sin θ(x, y, t) to guarantee the regularity of the solutions.

It is right starting from the fundamental 1993 pioneering paper [16], by P. Constantin
and Ch. Fefferman, where these authors prove that solutions to the evolution Navier–Stokes
equations in the whole space are smooth if the direction of the vorticity is Lipschitz contin-
uous with respect to the space variables. More precisely, they proved the following result.

Theorem 1 Let be Ω = R3, and let u be a weak solution of (1) in [0, T [, with u0 ∈ H 1(R3)

and ∇ · u0 = 0. If

sin θ(x, y, t) ≤ g(t)|x − y|
for some g(t, x) ∈ L12(0, T ;L∞(R3)), then the solution u is strong. Clearly, the result holds
if g is a constant.

As in all the following theorems, conditions on sin θ(x, y, t) are assumed for almost all
x and y in Ω , and almost all t in (0, T ). Furthermore, these conditions are needed merely
for points x and y such that |x − y| < δ, for an arbitrary positive constant δ.

In Ref. [7], by following an approach similar to that introduced in [16], L.C. Berselli
and the author show that regularity still holds in the whole space by replacing Lipschitz
continuity by 1

2 -Hölder continuity. The following theorem was proved.

Theorem 2 Let Ω , u, and u0, be as in the previous theorem. Further, suppose that there
exists β ∈ [1/2,1] and g ∈ La(0, T ;Lb(Ω)), where

2

a
+ 3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞

]

, (3)

such that

sin θ(x, y, t) ≤ g(t, x)|x − y|β (4)
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holds in Ω × (0, T ). Then, the solution u is regular. In particular, the regularity result holds
if

sin θ(x, y, t) ≤ c|x − y|1/2. (5)

In a subsequent paper, see [1], we consider the case β ≤ 1
2 . This extension is useful since,

as sketched below, it helps a better understanding of the whole set of results. However the
proof is simply a quite obvious variant of the proof of Theorem 2 in Ref. [7], and could be
considered as an appendix to this last reference. The result is the following.

Theorem 3 Let u be a weak solution of (1) in [0, T ) with u0 ∈ H 1 and ∇ · u0 = 0. Let
β ∈ [0,1/2] and assume that

sin θ(x, y, t) ≤ c|x − y|β (6)

holds in Ω × (0, T ). Moreover, suppose that

ω ∈ L2
(
0, T ;Lr

)
, (7)

where

r = 3

β + 1
. (8)

Then the solution u is strong in (0, T ) and, consequently, is regular. In particular
sin θ(x, y, t) ≤ c|x − y|1/2 is sufficient for regularity.

The couple (2, r) defined by Eq. (8) may be replaced by a larger family of couples of
coefficients, by obvious modifications in the proof.

Next we made some general comments, which are independent from the presence or
absence of initial or boundary conditions. In Ref. [7], the advantage of assuming β > 1

2 is
counterbalanced by replacing in (4) the constant c by a function g ∈ La(0, T ;Lb(Ω)). On
the other hand, in [1], we mitigate the penalizing situation β < 1

2 by assuming (7). So, the
above statements are formally split into two families of sufficient conditions for regularity.
However this distinction is not substantial. In fact, the two families perfectly glue at the
intersection point β = 1

2 since the conclusion (namely, “condition (5) implies regularity”) is
the same in both cases. Actually, we have just one family of strictly connected results.

Furthermore, all conditions (this means, for β ∈ [0,1]) have, in some sense, an equivalent
strength. This can be shown by a step by step analysis of the proofs, and also by appealing to
scaling techniques. Further, this “strength” is “maximal”, in the sense that it is equivalent to
the strength of the Prodi–Serrin’s sufficient conditions for regularity u ∈ L2(0, T ;L∞(Ω)).
This equivalence holds only in the presence of the minimal regularity required to the co-
efficients g(t, x) by (3). This is the reason why this point is taken by us into considerable
attention.

For a detailed discussion on the above argument, we refer the reader to [4], and also to
Sect. 1 and Appendix, in Ref. [6].

Following the spirit of this presentation, we like to recall separately Refs. [5, 9, 10], and
[11]. In particular, in Ref. [9], regularity is proved for the Cauchy problem, without any
continuity assumption on sin θ(x, y, t). This kind of condition is replaced by a smallness
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assumption. Essentially, it is proved that there is a sufficiently small constant C1 (an explicit
estimate for C1 is given) such that regularity holds if

sin θ(x, y, t) ≤ C1.

Clearly, there are many very interesting papers related to our contributions. See, for instance,
[12–15, 17–27, 29, 33], and references therein.

2 The Slip Boundary Condition

In Ref. [2] we consider the Navier–Stokes equations in [0, T [×R
3+, endowed with the slip

boundary condition, and prove the following result.

Theorem 4 Assume that u0 ∈ H 1(R3+) is divergence free, and tangent to the boundary. Let
u be a weak solution of the Navier–Stokes equations (1) in [0, T ) × R

3+, endowed with the
slip boundary condition (2). Let β ∈ [0,1/2] and assume that (6), (7), and (8) hold. Then
the solution u is strong in (0, T ] and, consequently, is regular.

In particular,

sin θ(x, y, t) ≤ c|x − y|1/2

is sufficient for regularity.

The last claim follows from the fact that weak solutions satisfy (7) for r = 2. Hence, if
β = 1/2, assumption (7) is superfluous.

In Ref. [2] Theorem 4 is proved by appealing, separately, to the classical Dirichlet and
Neumann Green functions, in the half space. This can be done for flat boundaries since the
boundary conditions (2) can be written in the following separate form

⎧
⎪⎨

⎪⎩

u3 = 0,

∂uj

∂x3
= 0, 1 ≤ j ≤ 2.

(9)

The third equation follows from ω1 = ω2 = 0 on Γ , plus differentiation of u3 = 0 with
respect to the first to independent variables.

The favorable circumstance given by Eqs. (9) is no more true if the boundary is not flat.
This fact, lead Berselli and the author to try to extend the result to non-flat boundaries,
again by appealing to Green’s function theory. This non trivial achievement was done in
[8]. In this last reference the authors extend Theorem 4 to the case in which Ω ⊂ R3 is
an open, bounded set with a smooth boundary. Since the boundary is not flat, we can not
appeal, separately, to the Dirichlet and the Neumann Green functions, as in the proof of The-
orem 4. So the authors appeal to the representation formulas for Green’s matrices derived
in Solonnikov’s fundamental work [31, 32]. With the aid of these tools, original local rep-
resentation formulas for the velocity (in terms of the vorticity) were obtained. In this way,
useful estimates for the vortex stretching terms were proved. The proof is quite involved. To
contemplate, in the same proof, all the range of values of the parameter β , was undoubtedly
feasible but, may be, not attractive to readers. So, in [8], the proof is presented only for the
main case β = 1

2 . The above picture leads us to look for simpler proofs of the sharp results
stated in Ref. [8] for non-flat boundaries. This aim was achieved in Ref. [4] for the particular
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case β = 1. This is just the original Constantin and Fefferman’s Lipschitz condition, a very
classical and mathematical significant assumption. In Sect. 4 below we give a sketch of the
proof of the main result stated in [4]. Before treating this argument, we present, in Sect. 3,
a comparison between some aspects of the proofs in the slip and the non-slip cases.

3 Slip and Non-slip Boundary Conditions. A Comparison

The situation concerning the non-slip boundary condition

u|∂Ω = 0 (10)

is, in a certain sense, opposite to that concerning the slip boundary condition. The starting
point is, in both cases, Eq. (15) below. Obviously, the terms to be controlled in this last
equation are the boundary and the non-linear integrals. In the slip boundary case, with flat
boundary, one has

⎧
⎪⎨

⎪⎩

ω1 = ω2 = 0,

∂ω3

∂x3
= 0,

(11)

on Γ . The third equation follows from tangential differentiation of the first two equations
together with ∇ · ω = 0. Clearly, as for (9), Eq. (11) follow from (2) only on flat portions
of the boundary. Equation (11) shows that the boundary integral in Eq. (15) vanishes in the
case of flat boundaries. Actually, a smart appeal to the totally anti-symmetric Ricci tensor,
see [8], leads to Lemma 1 below. This lemma allows the control of the boundary integral,
even for non-flat boundaries. On the contrary, in the non-slip boundary case, the non zero
viscosity prevent us from a suitable control of the boundary integral (see [3]) even in the
presence of flat boundaries.

Concerning the control of the non-linear integral in Eq. (15), the situation is reversed.
This control is easier under the non-slip boundary condition, even in the half-space case,
since in this case appeal to the Green’s function for the Dirichlet boundary value problem
is clearly sufficient. The Green’s function for the Neumann boundary value problem is not
needed here. However, an even more crucial difference is that, in the non-slip case, the half-
space simplified approach followed in the proof of Theorem 4 applies for any regular Ω .
The reason is that the independence of the three boundary conditions

u1 = u2 = u3 = 0, (12)

holds also for non-flat boundaries. So, we may apply to the Green function for the Dirichlet
problem exactly as for the half-space case.

4 The Lipschitz Continuous Case. A Sketch of the Proof

As already anticipated at the end of Sect. 2, the extension of Theorem 4 to non-flat bound-
aries is extremely delicate. In Ref. [4] we present a really straightforward proof of the desired
result in the particular case β = 1, the original Constantin and Fefferman’s Lipschitz con-
dition, a very classical and mathematical significant assumption. In Ref. [4] the following
result is proved.
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Theorem 5 Let Ω ⊂ R3 be an open, bounded set with a smooth boundary Γ . Assume that
u0 ∈ H 1(Ω) is divergence free and tangent to the boundary. Let u be a weak solution to (1)–
(2) in [0, T ).

In addition, assume that there exist g ∈ La(0, T ;Lb(Ω)), where

2

a
+ 3

b
= 1

2
with a ∈ [4,∞], (13)

and also a positive δ(x, t), such that

sin θ(x, y, t) ≤ g(t, x)|y − x|, (14)

for x, y ∈ Ω , satisfying |y − x| < δ(x, t). Then u is a strong solution in (0, T ), hence it is
smooth in Ω × (0, T ].

Note that (3), for the parameter’s value β = 1, coincides with (13).
Next we present a sketch of the proof of Theorem 5. By applying the curl operator to

Eq. (1) we get the well-known equation

ωt + (u · ∇)ω − ν
ω = (ω · ∇)u.

Scalar multiplication by ω, and integration in Ω followed by suitable integrations by parts,
show that

1

2

d

dt
‖ω‖2

2 + ν‖∇ω‖2
2 − ν

∫

Γ

∂ω

∂n
· ωdΓ =

∫

Ω

(ω · ∇)u · ωdx. (15)

Next, we appeal to the following result, proved in [8] (see Eq. (14) in this last reference).

Lemma 1 Assume that u is divergence-free, that u · n = 0, and that ω × n = 0 on Γ . Then
there is a constant c = c(Ω) > 0 such that

∣
∣
∣
∣
∂ω(x)

∂n
· ω(x)

∣
∣
∣
∣ ≤ c

∣
∣ω(x)

∣
∣2

, ∀x ∈ Γ. (16)

The proof is based on a smart appeal to the totally anti-symmetric Ricci tensor.
From (15) and (16) it follows that

1

2

d

dt

∫

Ω

|ω|2 dx + 1

2

∫

Ω

|∇ω|2 dx ≤ c(Ω)

∫

Γ

|ω|2 dS +
∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ωdx

∣
∣
∣
∣. (17)

This easily leads to the estimate

1

2

d

dt

∫

Ω

|ω|2 dx + 1

4

∫

Ω

|∇ω|2 dx ≤ c(Ω)

∫

Ω

|ω|2 dx +
∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ωdx

∣
∣
∣
∣. (18)

Further, integration by parts leads to
∫

Ω

(ω · ∇)u · ωdx = −
∫

Ω

(
(∂jωk)ωj − (∂jωj )ωk

)
uk dx +

∫

Γ

(ω · u)(ω · n)dΓ. (19)

On the other hand, from assumption (14), by setting y = x + h, one shows that the estimate
∣
∣ω(x) × ω(x + h)

∣
∣ ≤ g(t, x)|h|∣∣ω(x)

∣
∣
∣
∣ω(x + h)

∣
∣
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holds for sufficiently small h. So,

∣
∣
∣
∣ω(x) × ω(x + h) − ω(x)

|h|
∣
∣
∣
∣ ≤ g(t, x)

∣
∣ω(x)

∣
∣
∣
∣ω(x + h)

∣
∣. (20)

In particular, by letting h → 0, one gets

∣
∣ω(x) × ∂jω(x)

∣
∣ ≤ g(t, x)

∣
∣ω(x)

∣
∣2

, (21)

for each j = 1,2,3. It readily follows, by considering the expressions of the single compo-
nents of ω(x) × ∂jω(x), that

∣
∣ωl∂jωk − ωk∂jωl

∣
∣ ≤ g(t, x)|ω|2, (22)

for k �= l. Furthermore, for k = l, inequality (22) is obvious. So (22) holds for each tern of
indexes {i, j, k}. This estimate, together with Eq. (19), easily leads to the estimate

∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ωdx

∣
∣
∣
∣ ≤ c

∫

Ω

g(t, x)|u||ω|2 dx.

To simplify the calculations, we set, in Eq. (13), a = ∞ and b = 6. So,

g ∈ L∞(0, T ;L6(Ω)).

By Hölder’s inequality

∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ωdx

∣
∣
∣
∣ ≤ ‖g‖6‖u‖6‖ω‖2‖ω‖6.

It follows, by appealing to (18), and to the immersion H 1(Ω) ⊂ L6(Ω), that

1

2

d

dt
‖ω‖2

2 + 1

4
‖∇ω‖2

2 ≤ c
(
1 + ‖g‖2

6‖u‖2
6

)‖ω‖2
2. (23)

Hence
∫ T

0

(‖g(t)‖2
6‖u(t)‖2

6

)
dt ≤ ‖g‖2

L∞(0,T ;L6(Ω))
‖u‖2

L2(0,T ;L6(Ω))
. (24)

This shows that
(
1 + ‖g‖2

6‖u‖2
6

) ∈ L1(0, T ).

The boundedness of u in L∞(0, T ;H 1(Ω)), hence its regularity follows from (23), by Gron-
wall’s lemma.

Remark 1 It is worth noting that Eq. (16) can be full detailed, as remarked in [4], Lemma 3.2.
We take this occasion to correct a quite evident mistake in this lemma. Equation (24) in
[4] is correct. However, we have set in this equation ω3 = 0, which is clearly wrong, in-
stead of setting ω1 = ω2 = 0, as follows from the second boundary condition (2). It follows
that Eq. (23) in [4] should be replaced by Eq. (25) below. Hence, the correct version of
Lemma 3.2 in Ref. [4] is the following (numbering concerns the present paper, not [4]).
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Lemma 2 Under the assumptions of Lemma 1, one has

−∂ω

∂n
· ω = 3(κ1 + κ2)|ω|2 (25)

on Γ . Here κj , j = 1,2, denote the principal curvatures, and the ωj are the coordinates of
ω with respect to the τj , the unit tangent vectors to the principal directions. In particular, if
Ω is convex, the boundary integral − ∫

Γ
∂ω
∂n

· ωdΓ in Eq. (15) is greater or equal to zero.
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