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1 Introduction
At the very beginning of the seventies we proved a set of results concerning nonlinear potential theory related
to the so-called p-Laplace operator. Following [3], here we use the symbol “t” instead of the nowadays more
common “p” to denote the leading integrability exponent (see (2.4)). In the 1972 paper [3] (see also [2]) we
considered, in a nonlinear setting, notions such as barriers, order preservation, capacitary potentials, regular
boundary points, and so on. This contribution seems almost forgotten in the subsequent literature. However
we believe that its topicality and interest still remain, or have even grown. In fact, the basic ideas onwhich the
theory is founded was emphasized by the original simplicity of the broad lines. In Part I, we turn back to the
results published in reference [3].Wekeep thepresentation as close aspossible to the original paper.However,
addition of suitable remarks, together with some changes in notation, may help the reader. By the way, we
warn the reader that [3] is full of small misprints, luckily very easy to single out and correct. In Part II we turn
back to an unpublished proof of a result stated in reference [3] (Theorem 7.3 below), and to a related result
proved in reference [5] (Theorem 7.4 below), both concerning regularity of boundary points for p-Laplacian
equations. The contribution of [5] to this last problem was to prove Hölder continuity of the solutions to the
obstacle problem in the lower dimensionN − 1. Belowwemerely prove the continuity of the above solutions,
since this weaker property is su�cient here.

Themain object of this work is the Dirichlet boundary value problem (2.7), whose prototype is the follow-
ing problem:

{
div(|∇u|t−2∇u) = 0 in Ø,

u = õ on àØ.
(1.1)

For t = 2 we get the classical Laplace equation. It is worth noting that the theory developed in references [3]
and [5] could have been extended to similar, but more general, equations. However, at that time, we were
only interested in the basic picture. Regular boundary points for the above Dirichlet problem is here the core
subject. In equation (2.7), arbitrary continuous boundary data õ are allowed. This leads us to consider two
distinct notions of solutions, generalized and variational.

We recall that a boundary point y is said to be regular if to each continuous boundary data õ the cor-
responding solution is continuous in y. Theorem 2.10 below (called Theorem A in reference [3]) states that
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a point y is regular if and only if there is at y a system of nonlinear barriers, see De�nition 2.8. By appealing
to this last result, we prove Theorem 2.13 (called Theorem B in reference [3]), which establishes that a point
y ∈ àØ is regular if and only if the t-capacitary potentials of the sets Eñ satisfy (2.24), for each positive realm,
and each su�ciently small radius ñ, where Eñ = (∁Ø)(y, ñ) denotes the complementary set of Ø with respect
to the closed ball I(y, ñ).

In Part II, by appealing to Theorem 2.13, we establish two explicit, geometrical, su�cient condition for
regularity. Let us brie�y illustrate these results.

Denote by

ò0(ñ) =
|Eñ|

|I(y, ñ)|
(1.2)

the density (with respect to the N-dimensional Lebesgue measure) of Eñ with respect to the sphere I(y, ñ).
In Theorem 7.3 it is stated that there is a positive constant Ë0 such that if

[ò0(ñ)]
tt−1 ≥ Ë0(log log ñ

−1)−1, (1.3)

for small positive values of ñ, then the boundary point y is regular. Note that

lim
ñ→0

ò0(ñ) = 0 (1.4)

is included, so the above condition is stronger than the usual N-dimensional, external, cone property, and
similar notions. This result was already stated in the introduction of reference [3] (due to a misprint, the
second exponent −1 in (1.3) was overlooked). At that time we did not publish the proof, since we had used
similar ideas in reference [5], where it was proved (still, appealing to Theorem 2.13) that a boundary point y is
regular if an (N − 1)-dimensional external cone property is satis�ed at the point y (a Lipschitz image of such
a cone being su�cient). See Theorem 7.4 below.

In fact, Theorems 7.3 and 7.4 are corollaries of the same result, Theorem 7.2, where it is proved that the
necessary and su�cient condition for regularity stated in Theorem 2.13 holds under the assumption (7.3). The
proofs of Theorems 7.2, 7.3 and 7.4 are shown in Part II below.

Our proofs do not require knowledge of particularly specialized results. They appeal, in particular, to
a suitable extension of De Giorgi’s truncation method to nonlinear variational inequalities with obstacles,
following in particular reference [2] (see also [1]). DeGiorgi’s truncationmethodwas also used in reference [11]
to obtain the following su�cient condition for regularity:

lim sup
ñ→0
cap(Eñ)ñ

t−N > 0, (1.5)

where cap ≡ capt denotes (here and in the sequel) the capacity of order t. Since |E|
N−tN ≤ C capt E, condition (1.5)

leads to
lim sup

ñ→0

|Eñ|
|I(y, ñ)|

> 0, (1.6)

which, basically, is equivalent to the N-dimensional external cone property, as well as the corkscrew condi-
tion, stated in [13, Theorem 6.31]. This treatise furnishes a wide-ranging excursion into the above and related
results. See, in particular, Section 9.

Readers interested in a quick overlook on the main results should go directly to De�nition 2.8 and Theo-
rem 2.10, to De�nitions 2.11 and 2.12, and Theorem 2.13, and, in Part II, to Theorems 7.3 and 7.4.

Part I

2 Some de�nitions and main results
We are concerned with the di�erential operator

Lu =: divA(∇u), (2.1)
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where A(p) denotes a continuous map from ℝN into itself, u is a real function de�ned on an open subset
ofℝN, and ∇u is its gradient. We assume the following conditions on A(p):

A(0) = 0, (2.2)
(A(p) − A(q)) ⋅ (p − q) > 0 if p ̸= q, (2.3)

A(p) ⋅ p ≥ a|p|t if |p| ≥ p0, (2.4)
|A(p)| ≤ a−1|p|t−1 if |p| ≥ p0, (2.5)

where a > 0,p0 ≥ 0, and t > 0 are constants. Further, |x| andx ⋅ ydenote, respectively, the normand the scalar
product inℝN. Note that the above assumptions imply A(p) ⋅ p > 0, for all p ∈ ℝN.

In the following, Ø is an open bounded subset of ℝN, with boundary denoted by àØ. We de�ne H1,t(Ø)
as the completion of C1(Ø) (or equivalently, Lip(Ø))with respect to the norm ‖v‖1,t = ‖v‖t + ‖∇v‖t. Here C1(Ø)
is the set of functions which belong to C0(Ø) and have continuous �rst order partial derivatives in Ø, which
can be extended continuously to Ø. Furthermore, H1,t

0 (Ø) denotes the closure in H1,t(Ø) of C1
0(Ø), the set of

the C1(Ø) functions with compact support in Ø. See, for instance [16]. Furthermore, H1,t
loc(Ø) denotes the set

consisting of functions de�ned in Ø whose restriction to any Ø� ⊂⊂ Ø belongs toH1,t(Ø�).
We recall here the following property. Let õ(t) be a real, Lipschitz continuous function of the real

variable t, with, at most, a �nite number of points of non-di�erentiability. Further, let v ∈ H1,t(Ø). Then
õ(v(x)) ∈ H1,t(Ø), moreover àiõ(v(x)) = õ�(v(x))àiv(x) a.e. in Ø. In particular

àimax{v(x), k} =
{
{
{

àiv(x) if v(x) ≥ k,
0 if v(x) ≤ k,

(2.6)

a.e. in Ø.
For convenience, we set

V = V(Ø) = H1,t(Ø), V0 = V0(Ø) = H1,t
0 (Ø),

and so on.
In the sequel we are interested in the Dirichlet problem

{
Lu = 0 in Ø,

u = õ on àØ,
(2.7)

whereLu is de�ned by (2.1), and õ ∈ C0(àØ). In the sequel we show that to each õ ∈ C0(àØ) there corresponds
a unique solution u ∈ H1,t

loc(Ø) ∩ C0(Ø) to problem (2.7), see Theorem 2.4. This solution will be called general-
ized solution.

Since A(p) may be merely continuous, local solutions of the problem Lu = 0 in Ø are understood in the
following, well-known, weak sense. One considers the form

a(v, ÷) := ∫
Ø

A(∇v) ⋅ ∇÷ dx, (2.8)

de�ned onV ×V, or onH1,t
loc(Ø) × D(Ø), and give the following de�nition.

De�nition 2.1. We say that a function u is a weak solution in Ø of the problem

Lu ≡ divA(∇u) = 0 (2.9)

if u belongs toH1,t
loc(Ø) and satis�es the condition

a(u, ÷) = 0 for all ÷ ∈ D(Ø). (2.10)

Note that it immediately follows that (2.10) holds for all ÷ ∈ H1,t(Ø) with compact support in Ø.
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The above de�nition does not take into account boundary values. The de�nition of a generalized solu-
tion to the boundary value problem (2.7), where õ ∈ C0(àØ), is given below, see De�nition 2.3. Generalized
solutions to the boundary value problem are de�ned as limits of suitable sequences of variational solutions.
In reference [3] we have used in both cases the term “solution”. However, for clarity, we decided to use in
these notes the two notions, “variational” and “generalized”, to denote related but distinct concepts.

Next, we recall the de�nition of a variational solution. Let õ ∈ V(Ø). We set

Võ(Ø) = {v ∈ V(Ø) : v − õ ∈ V0(Ø)}. (2.11)

Properties (i) to (iv) below are easily shown.
(i) a(v, v − u) − a(u, v − u) ≥ 0 for all pairs u, v ∈ V(Ø) (monotonicity).
(ii) a(u + tv, w) is a continuous function of the real variable t for all triads u, v, w ∈ V(Ø) (hemicontinuity).
(iii) a(v, v − u) − a(u, v − u) = 0 implies ∇u = ∇v in Ø. Moreover, if u − v ∈ V0(Ø), then u = v.
(iv) One has (coercivity)

lim
‖v‖1,t→∞ a(v, v)

‖v‖1,t
= +∞, (2.12)

where v ∈ Võ(Ø).
Existence and uniqueness of the solution to the following variational problem are well known:

u1 ∈ Võ(Ø), a(u1, v) = 0 for all v ∈ V0(Ø). (2.13)

Clearly, these solutions are weak solutions of (2.9) in Ø. All this was already classical in the sixties.

De�nition 2.2. The function u = u1 in (2.13) is, by de�nition, the variational solution to the Dirichlet prob-
lem (2.7) when the boundary data is de�ned by means of an element õ ∈ H1,t(Ø). In this case, u = õ on àØ
means that u − õ ∈ H1,t

0 (Ø).

In the sequel, our �rst step is to extend the notion of solution to all continuous boundary data õ. This will be
done as in reference [3]. Given õ ∈ C0(àØ), we consider an arbitrary sequence of functions õn ∈ C1(Ø), which
converge uniformly to õ on àØ, and we consider the sequence un(x) consisting of the variational solutions
to the Dirichlet problem (2.7), with boundary data õn. Then we prove (Theorem 4.4) that the sequence un(x)
converges uniformly inØ to a function u(x) ∈ H1,t

loc(Ø) ∩ C0(Ø). Moreover, we show that u(x) is a weak solution
inØ of problem (2.9), and also that it does not depend on the particular sequence õn. So, to each continuous
boundary data õ there corresponds a unique element u(x) ∈ H1,t

loc(Ø) ∩ C0(Ø), obtained by the above proce-
dure. The above argument leads to the following, natural, de�nition.

De�nition 2.3. Let õ ∈ C0(àØ) be given. By de�nition, the above, unique, element u(x) ∈ H1,t
loc(Ø) ∩ C0(Ø) is

the generalized solution to the Dirichlet problem (2.7) with the continuous boundary data õ.

We anticipate the following result.

Theorem 2.4. To each boundary value õ ∈ C0(àØ) there corresponds a unique generalized solution to the
Dirichlet problem (2.7).

It is worth noting that the auxiliary variational solutions un(x) used above are not necessarily continuous up
to the boundary, even though õn ∈ C

1(Ø). Even more, this negative situation holds for generalized solutions.
Hence, a crucial problem is to study the possible continuity up to a boundary point y of the solutions to the
Dirichlet problem. In this direction we give the following de�nition.

De�nition 2.5. We say that a point y ∈ àØ is regular with respect to Ø and L if given an arbitrary data
õ ∈ C0(àØ), the corresponding generalized solution u of Dirichlet problem (2.7) satis�es the condition

lim
x→y
x∈Ø

u(x) = õ(y). (2.14)

As proved in Theorem 6.2 below, the notion of regular point has a local character.
We remark that in the above de�nition, as in the following, we do not assume (in any sense) that the

continuous boundary data õ is the trace on àØ of an element ofH1,t(Ø).
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For the Laplace operator, A(p) = p, regular points have been characterized by Wiener; see [23, 24] and
Frostman [10]. For linear operators with discontinuous coe�cients,

A i(p) =∑
j
ai,j(x)pj,

where
∑
j
ai,j(x)îiîj ≥ í|î|

2,

í > 0, and ai,j ∈ L
∞(Ø), i, j = 1, . . . , N, such a characterizationwas given by Littman, Stampacchia, andWein-

berger in [16].
The following de�nitions are crucial to the theory (see [21, De�nition 1.1 and remarks]).

De�nition 2.6. Let Ò be an open, bounded, set and E ⊂ Ò be a measurable set. We say that v ∈ H1,t(Ò) satis-
�es the inequality v ≥ 0 on E in the H1,t(Ò) sense if there is a sequence vn ∈ C

1(Ò) convergent to v in H1,t(Ò)
and satisfying vn ≥ 0 on E. Similarly, we de�ne v ≤ 0 on E, in the H1,t(Ò) sense. Further, v = 0 on E if, simul-
taneously, v ≥ 0 and v ≤ 0. Finally, v ≥ w on E, in theH1,t(Ò) sense if v − w ≥ 0 on E, and so on.

Furthermore, we denote respectively by supE v and infE v the upper bound and the lower bound of v on E
in theH1,t(Ò) sense. Essential upper bounds and lower bounds (i.e., up to sets of zero Lebesgue measure) are
denoted by the symbols SupE v and InfE v, respectively.

It isworthnoting that the abovede�nition ismeaningless if the (N−2)-dimensionalmeasure of setE vanishes.
This claim is in general not true if we replaceN − 2 byN − 1. Let us consider the following speci�c example,
related to our results. Assume that E is an (N − 1)-dimensional truncated cone (see for instance (7.6)) con-
tained in a given sphere Ò. Since the elements v ∈ H1,t(Ò) do have a trace (for instance, in the usual Sobolev’s
spaces sense) on the surface E, it follows that if v ∈ H1,t(Ò) ∩ C0(Ò) satis�es v ≥ m > 0 on E, in the H1,t(Ø)
sense, then v ≥ m pointwisely on E. However, if E is an (N − 2)-dimensional cone and t < N, the result is not
true in general. For instance the continuous, constant, function v = 0 in Ò satis�es v ≥ m > 0 on E, in the
sense of De�nition 2.6.

To illustrate the results obtained in this work, we need additional de�nitions and results. Given a point
y ∈ RN and ñ > 0, we denote by I(y, ñ) the open sphere with center in y and radius ñ. If B ⊂ ℝN, we set
B(y, ñ) = B ∩ I(y, ñ). By ∁B and B we denote the complementary set and the closure of B in RN, respectively.

As in [3], we give the following de�nitions.

De�nition 2.7. We say that v ∈ H1,t
loc(Ø) is a supersolution (resp., a subsolution) in Ø with respect to the oper-

ator L if
a(v, ÷) ≥ 0 for all ÷ ∈ D(Ø), ÷ ≥ 0 (resp.÷ ≤ 0). (2.15)

Obviously, if v ∈ V = H1,t(Ø), then D(Ø) may be replaced by V0. Formally, a supersolution satis�es Lv ≤ 0
in Ø.

The following de�nition generalizes Perron’s notion of barrier (see for instance Perron [18] and Courant–
Hilbert [7, pp. 306–312 and 341 ]).

De�nition 2.8. Wesay that there is a systemofbarriers at apointy ∈ àØwith respect toL if, given twopositive
arbitrary reals ñ andm, there exist a supersolutionV ≥ 0 and a subsolutionU ≤ 0which belong toV ∩ C0(Ø)
and satisfy the following conditions:
(j) V ≥ m and U ≤ −m on (àØ) ∩ ∁I(y, ñ),
(jj) limx→y V(x) = limx→y U(x) = 0.

In De�nition 2.8, and in the sequel, inequalities likeV ≥ m,U ≤ −m, and so on, are to be intended in the sense
introduced in De�nition 2.6. Note that the above de�nition does not change by restriction of the range of the
radius ñ to values smaller than some positive ñ0(y).

Under suitable symmetry conditions, De�nition 2.8 may be simpli�ed as follows.

Remark 2.9. De�ne
B(p) = −A(−p). (2.16)
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The continuous function B(p) inherits the properties (2.2)–(2.5). Furthermore, consider the operator

Lw = div B(∇w).

The transformation w → −w maps solutions of (2.21), relative to one of the operators L or L, onto the so-
lutions of (2.22) relative to the other operator, and reciprocally. Further, the same transformation maps su-
persolutions, solutions, and subsolutions, relative to one of the operators onto, respectively, subsolutions,
solutions, and supersolutions, relative to the other operator.

In particular, if
A(−p) = −A(p), (2.17)

the transformation w → −wmaps supersolutions onto subsolutions, and reciprocally. In this case, it is su�-
cient in De�nition 2.8 to consider upper-solutions V.

Finally, if the function A(p) is positively homogeneous,

A(sp) = st−1A(p) for all s > 0, (2.18)

it is su�cient in De�nition 2.8 to consider the valuem = 1.

Main examples:A(p) = (1 + |p|2)
(t−2)2 p satis�es (2.17), andA(p) = |p|t−2p satis�es (2.17)–(2.18). The di�erential

equations associate to this functions are the Euler equations to the extremals of the integrals ∫(1 + |∇u|2)
t2 dx

and ∫ |∇u|t dx, respectively.
In Section 5 we prove the following result (see [3, Theorem A]):

Theorem 2.10. A point y is regular if and only if there is at y a system of barriers.

As in reference [3], the symbols Ø and Ò denote suitable open sets. However, in this rewriting, we make the
reading easier by a better use of the above symbols.

Let Ò be an open bounded set, E ⊂ Ò be a closed set, and m be a positive constant (the fact that Ò is
assumed to be a sphere is not necessary here). We introduce the following convex, closed, subsets ofV0(Ò):

Km(Ò) = {v ∈ V0(Ò) : v ≥ m on E}, (2.19)

and
K−m(Ò) = −Km(Ò) = {v ∈ V0(Ò) : v ≤ −m on E}. (2.20)

The inequalities are in theH1,t(Ò) sense.
Obviously, properties (i)–(iii) hold withØ replaced by Ò. Moreover, as easily shown, the coercivity prop-

erty (iv) holds by replacing v ∈ Võ(Ø) by v ∈ Km(Ò), or by v ∈ K−m(Ò). Hence, from properties (i)–(iv), to-
gether with well-known general theorems (see Hartman–Stampacchia [12] and J.-L. Lions [15]), existence and
uniqueness of solutions to the following two problems follow:

u2 ∈ Km(Ò), a(u2, v − u2) ≥ 0 for all v ∈ Km(Ò), (2.21)
u3 ∈ K−m(Ò), a(u3, v − u3) ≥ 0 for all v ∈ K−m(Ò). (2.22)

Next we introduce the t-capacitary potentials. The following de�nition is related to the notion of capacity
used by Serrin in [19].

De�nition 2.11. LetÒ be an open sphere,E ⊂ Ò be a closed set, andm be a positive real. The solutions to prob-
lems (2.21) and (2.22) are called t-capacitary potentials of the set E with respect to the nonlinear operator L,
the realm and the sphere Ò. Since t is �xed, we drop the label t.

In De�nition 2.11, the dependence on the particular �xed sphere Ò is without signi�cance. In particular, the
numerical values of the related capacities remain equivalent provided that the distances from the sets E to
the boundary àÒ have a positive, �xed, lower bound. From now on we �x, once and for all, a sphere

Ò = I(y0, 2R)

such that
Ø ⊂ I(y0, R).
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So
dist(Ø, àÒ) ≥ R.

Further, for each couple y, ñ, where y ∈ àØ and 0 < ñ < R
2 , we set

Eñ = (∁Ø) ∩ I(y, ñ). (2.23)

De�nition 2.12. We denote by um,ñ and u−m,ñ the capacitary potentials of the above sets Eñ relative to the
valuesm and −m respectively.

In Section 6 we prove the following result (see [3, Theorem B]):

Theorem 2.13. A point y ∈ àØ is regular if and only if the capacitary potentials of the sets Eñ are continuous
in y. More precisely, a point y ∈ àØ is regular if and only if

{{
{{
{

lim
x→y

um,ñ(x) = m,

lim
x→y

u−m,ñ(x) = −m,
(2.24)

for each couple ñ,m as above (or, equivalently, for a sequence (ñn, mn) such that (ñn, mn) → (0,+∞)).

From Theorem 2.13, together with the immersion ofH1,t(Ò) in C0,1−Nt (Ò), one gets the following result.

Corollary 2.14. Any boundary point is regular with respect to the operator L if t > N.

3 Maximum principles and related results
In this sectionwe state some results concerningmaximumprinciples, order preservation, and similar notions.
Related results may be found, for instance, in [9, 17, 20].

The section is divided into two subsections. The �rst one concerns variational solutions in Ø to the non-
linear boundary value problem (2.7). The second one concerns solutions to the variational inequalities (2.21)
and (2.22), which describe obstacle problems in Ò.

3.1 Variational solutions inØ

We denote by |B| the Lebesgue measure of a set B. By c, c0, c1, etc., we denote positive constants that depend,
at most, on t,N, a and p0. The same symbol may be used to denote di�erent constants of the same type.

One has the followingmaximum principle.

Lemma 3.1. The (variational) solution u = u1 of problem (2.13) satis�es the estimates

inf
àØ

õ ≤ Inf
Ø

u ≤ Sup
Ø

u ≤ sup
àØ

õ. (3.1)

Proof. We prove that SupØ u ≤ k, where k = supàØ õ. For convenience we set

A(k) = {x ∈ Ø : u(x) ≥ k}.

If |A(k)| = 0, the thesis is obvious. Assume that |A(k)| > 0, and set v = max{u − k, 0}. Since v ∈ H1,t
0 (Ø), it fol-

lows from (2.13) that
∫

A(k)

A(∇u) ⋅ ∇u dx = 0.

This equation, together with (2.2) and (2.3), shows that ∇u = 0 on A(k), so u = k on A(k). This proves our
thesis. A similar argument proves the �rst inequality (3.1).
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Lemma 3.2 (Order preserving). Let w be a subsolution, z a be supersolution, and assume that w ≤ z on àØ.
Then w(x) ≤ z(x) a.e. in Ø.

Proof. Set ç = min{0, z − w}. It follows that ç ∈ H1,t
0 (Ø), moreover ç(x) ≤ 0. By taking into account De�ni-

tion 2.7, we may write
∫
Ø

A(∇w) ⋅ ∇ç dx = ∫
{w≥z}

A(∇w) ⋅ ∇(z − w) dx ≥ 0 (3.2)

and
∫

{w≥z}

A(∇z) ⋅ ∇(z − w) dx ≥ 0, (3.3)

where {w ≥ z} = {x ∈ Ø : w(x) ≥ z(x)}. From (3.2) and (3.3) it follows that

∫
{w≥z}

(A(∇z) − A(∇w)) ⋅ (∇z − ∇w) dx ≤ 0. (3.4)

This inequality together with (2.17) implies ∇(w − z) = 0 on {w − z ≥ 0}. By appealing to the hypothesis
w − z ≤ 0 on àØ, the thesis follows.

Corollary 3.3. If u and v are two (variational) solutions which belong respectively toVõ andV÷, then

Sup
Ø

|u − v| ≤ sup
àØ

|õ − ÷|. (3.5)

Proof. Set ç = supàØ |õ − ÷|. The function w = v + ç is a variational solution in H1,t
÷+ç(Ø), moreover u ≤ w

on àØ. By Lemma 3.2 it follows that u ≤ w = v + ç a.e. in Ø, that is, u − v ≤ ç a.e. in Ø. Similarly, one proves
that v − u ≤ ç a.e. in Ø. These two relations yield the thesis.

3.2 Variational inequalities in Ò

In this subsection Ò, E andm are as in De�nition 2.11.

Lemma 3.4. Let u = u2 be the solution of problem (2.21). Then u(x) ≤ m a.e. in Ò. In particular, u = m on E.
Analogously, the solution u = u3 of (2.22) satis�es the inequality u(x) ≥ −m a.e. in Ò. In particular, u = −m

on E.

Proof. Let u = u2, and set v = min{u, m}. Since v ∈ Km(Ò), from (2.21) we get

∫
Ò

A(∇u) ⋅ ∇(v − u) dx ≥ 0,

that is,
∫
Bm A(∇u) ⋅ ∇u dx ≤ 0. (3.6)

From (3.6), (2.2), and (2.3) it follows that ∇u = 0 a.e. on the set {x ∈ Ò : u(x) ≥ m}. From this last property,
since u ∈ Km(Ò), it readily follows that u = m on E.

The second part of the lemma may be proved in a similar way, or as a consequence of the �rst part,
together with Remark 2.9.

Lemma 3.5. The solution u = u2 of problem (2.21) solves in Ò − E the problem

∫
Ò−E

A(∇u) ⋅ ∇v dx = 0 for all v ∈ H1,t
0 (Ò − E). (3.7)

Moreover, u2 is a super-solution in Ò. Similarly, the solution u = u3 of (2.22) solves in Ò − E problem (3.7) and is
a sub-solution in Ò.
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Proof. Equation (2.21) may be written in the form

∫
Ò

A(∇u) ⋅ ∇(w − u) dx ≥ 0 for all w ∈ Km(Ò). (3.8)

Given v ∈ H1,t
0 (Ò − E), denote by v the function equal to v in Ò − E, and vanishing on E. By the construction,

the functions u + v and u − v belong toKm(Ò). By replacing these functions in equation (3.8) we obtain (3.7).
Furthermore, u is a super-solution. In fact, let ÷ ∈ C∞

0 (Ø) be non-negative. Then the function w = u + ÷
belongs toKm(Ò). By using it as test function in equation (3.8), one proves (2.15).

The second part of the lemma may be obtain similarly or, alternatively, by appealing to Remark 2.9.

4 A convergence result. Proof of the existence Theorem 2.4
In this section we associate to each boundary data õ ∈ C0(àØ) a weak solution u inØ of equation (2.9). Recall
that, by de�nition, u is a weak solution of (2.9) in Ø if u ∈ H1,t

loc(Ø) satis�es (2.10), namely

∫
Ø

A(∇u) ⋅ ∇÷ dx = 0 for all ÷ ∈ D(Ø).

As already remarked, it immediately follows that (2.10) holds for all ÷ ∈ H1,t(Ø) with compact support in Ø.

Remark 4.1. Every L∞(Ø) solution to equation (2.10) necessarily belongs to C0(Ø).

In fact, the above solution is locally Hölder continuous in Ø, see Ladyzhenskaya–Ural’tseva [14]. Actually,
continuity may be proved by appealing to a simpli�cation of the argument used in Part II below.

Lemma 4.2. A family of solutions to equation (2.10) equi-bounded in L∞(Ø) is necessarily equi-bounded
inH1,t(Ø�) for each Ø� ⊂⊂ Ø.

Proof. From the properties of A(p) it immediately follows that

{
A(p) ⋅ p ≥ a|p|t − apt

0,

|A(p)| ≤ a−1|p|t−1 + d0,
(4.1)

whered0 is a non-negative constant. Let k > 0 and consider the familyF consisting of the solutions to (2.10) for
which SupØ |u(x)| ≤ k. Equi-boundedness of ‖u‖t,Ø is obvious. Let us proof the equi-boundedness of ‖∇u‖t,Ø.
Let Ë be an open set such that Ø� ⊂⊂ Ë ⊂⊂ Ø, and let õ be a regular function, 0 ≤ õ(x) ≤ 1, equal to 1 in Ø�

and vanishing on Ø − Ë. One easily shows that

∫
Ë

A(∇u) ⋅ (∇u)õt dx ≤ t∫
Ë

|A(∇u)||∇õ||u|õt−1 dx. (4.2)

By appealing to Hölder’s inequality one gets

∫
Ë

A(∇u) ⋅ (∇u)õt dx ≤ C(∫
Ë

|A(∇u)|
tt−1 õt dx)

t−1t
,

where C = tk‖∇õ‖t,Ë. The last inequality together with (4.1) leads to

a∫
Ë

|∇u|tõt dx ≤ C0(∫
Ë

|∇u|tõt dx)
t−1t
+ C1.

Since t−1
t < 1, it readily follows that the integral on the left hand side of the above inequality is bounded by

a constant C2. So
∫
Ø� |∇u|

t dx ≤ ∫
Ë

|∇u|tõt dx ≤ C2.

Brought to you by | De Gruyter / TCS
Authenticated | 46.30.84.116

Download Date | 4/16/14 4:27 AM



54 | H. Beirão da Veiga, On nonlinear potential theory, and regular boundary points

Lemma 4.3. Let {un} be a sequence of solutions to (2.10), equi-bounded in L∞(Ø) and uniformly convergent inØ
to a function u(x). Then u(x) is a solution to (2.10) .

Proof. Note that un ∈ C0(Ø), as follows from Remark 4.1. Lemma 4.2 shows that u ∈ H1,t(Ø�) for each Ø� as
above. Let u0 ∈ H1,t(Ø�) be the variational solution in Ø� of the problem Lu0 = 0 in Ø�, u0 − u ∈ H1,t

0 (Ø�).
By applying Corollary 3.3 to the functions u0 and un, it follows that

Sup
Ø� |un − u

0| ≤ sup
àØ� |un − u|. (4.3)

Since un(x) → u(x) uniformly in Ø, from (4.3) it follows that un(x) → u0(x) uniformly in Ø�. So, u0(x) = u(x)
in Ø�. In particular, Lu = 0 in Ø�. From the arbitrarity of Ø�, the thesis follows (note that local uniform con-
vergence in Ø would be su�cient here).

The following statement corresponds to [3, Theorem 2.4].

Theorem 4.4. To each õ ∈ C0(àØ) there corresponds a (unique) function u(x) such that the following holds:
Let {õn} be an arbitrary sequence of functions in C1(Ø) uniformly convergent to õ on àØ (it is well know

that these sequences exist). Further, denote by un(x) the variational solutions to the problemLun = 0, un ∈ Võn .
Then the sequence {un} converges uniformly in Ø to a function u(x). Moreover, the function u(x), which belongs
toH1,t
loc(Ø) ∩ C0(Ø), is a weak solution in Ø, i.e. u solves (2.10).

Proof. Let õ, õn and un be as in the above statement. The variational solutions un are continuous in Ø, see
Remark 4.1. Clearly, they are also equi-bounded. By Corollary 3.3 it follows that, for all couple of indexesm, n,

Sup
Ø

|un − um| ≤ sup
àØ

|õn − õm|. (4.4)

So the sequence {un(x)} is uniformly convergent in Ø to some u(x) ∈ C0(Ø). Lemma 4.3 shows that u(x) is
a weak solution in Ø. Moreover, by appealing to Lemma 4.2, we get u ∈ H1,t

loc(Ø). Furthermore, the limit u
is independent of the particular sequence {õn}, as follows from (4.4) applied to two distinct, arbitrary, se-
quences (õn, un) and (÷n, vn). This argument also proves the uniqueness of the solution u.

Theorem 4.4 justi�es De�nition 2.3 of generalized solution given in Section 2, and also proves the existence
and uniqueness Theorem 2.4.

It is worth noting that from De�nition 2.3, Lemma 3.1 and Corollary 3.3, it follows that if u and v are the
solutions corresponding to the continuous data õ and ÷, then

min
àØ

õ ≤ Inf
Ø

u ≤ Sup
Ø

u ≤ max
àØ

õ

and
Sup
Ø

|u − v| ≤ max
àØ

|õ − ÷|.

Minimum and maximum are used here in the very classical sense.

5 Proof of Theorem 2.10
In this sectionweprove Theorem 2.10.Wedenote byC1(àØ) the functional space consisting on the restrictions
to àØ of functions in C1(Ø).

Lemma 5.1. A point y ∈ àØ is regular if and only if condition (2.14) holds for each õ ∈ C1(àØ).

Proof. Let u be the solution corresponding to a given data õ ∈ C0(àØ), and let {õn} and {un} be as in Theo-
rem 4.4 (by the way, note that the solutions un are variational and generalized). De�ne un(x) by un(x) = un(x)
in Ø, un(y) = õn(y), and de�ne u(x) by u(x) = u(x) in Ø, u(y) = õ(y). The functions un(x) are, by assump-
tions, continuous inØ ∪ {y}, and uniformly convergent inØ ∪ {y} to the function u(x). So, u(x) is continuous
in Ø ∪ {y}.
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Proof of Theorem 2.10. Necessary condition: Assume that y ∈ àØ is regular. Given ñ and m, consider the
restriction to àØ of the function ℎ(x) = m |x−y|2

ñ2 . This function belongs to C1(àØ). Let V(x) be the solution
with ℎ(x) as boundary data. By construction, V(x) satis�es condition (j) in De�nition 2.8. Further, by the
de�nition of a regular point,V(x) satis�es condition (jj). Similarly, by considering the data −ℎ(x), one proves
the existence of the function U(x) required in De�nition 2.8.

Su�cient condition: Assume that, at the point y, there exists a system of barriers. By Lemma 5.1 we may
assume that k(x) ∈ C1(àØ). Let u(x) be the corresponding solution and set

M = sup
àØ

|k(x)|. (5.1)

Given å > 0, there is ñå > 0 such that

|k(x) − k(y)| <
å
2

if |x − y| < ñå, x ∈ àØ. (5.2)

Let V and U be barriers related to the values ñ = ñå andm =M. Then (see also [16])

V(x) ≥M and U(x) ≤ −M on (àØ) ∩ ∁I(y, ñ). (5.3)

By appealing to (5.1), (5.2), and (5.3), we show that

{{
{{
{

k ≤ k(y) +
å
2
+ V,

k ≥ k(y) −
å
2
+ U,

(5.4)

on àØ.
From (5.4) and Lemma 3.2 it follows that

{{
{{
{

u(x) ≤ k(y) +
å
2
+ V(x),

u(x) ≥ k(y) −
å
2
+ U(x),

(5.5)

a.e. inØ, since k(y) + å
2 + V(x) is a super-solution, etc. Furthermore, property (jj) in De�nition 2.8 implies the

existence of ñå > 0 such that

x ∈ Ø ∩ I(y, ñå) â⇒ |V(x)| ≤
å
2

and |U(x)| ≤
å
2
. (5.6)

From (5.5) and (5.6) we show that

x ∈ Ø ∩ I(y, ñå) â⇒ −å ≤ u(x) − ℎ(y) ≤ å.

So, limx→y u(x) = ℎ(y). Hence y is regular.

6 Proof of Theorem 2.13
We start with some preliminary results.

Lemma 6.1. The Lipschitz continuous function

u(x) = á|x − y| + â,

where á and â are constants, is a super-solution if á > 0, and u is a sub-solution if á < 0.

Proof. Without loss of generality we assume that u(x) = ár, where r = |x|. We start by assuming that A(p)
is inde�nitely di�erentiable. By taking into account themonotony assumptions, we easily show (for instance,
by appealing to the �rst order Taylor’s formula with Lagrange form of the remainder) that the Jacobian
matrix DA(p) of the transformation A(p) is positive semi-de�nite at each point p ∈ ℝN. So, for each unit
vector î ∈ ℝN,

DA(p)î ⋅ î ≤ trDA(p) for all î ∈ ℝN, (6.1)

since the trace coincides with the sum of the eigenvalues.
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Let us denote the generical element of the Jacobian matrixDA(p) by A ij(p). By setting p = ∇u one has

divA(∇u(x)) =∑
i,j

A ij(p)àipj. (6.2)

Since p = áxr−1, it follows that àipj = á r−1(äij − r
−2xixj). So, from (6.2) we get

divA(∇u(x)) = á r−1{trDA(áxr−1) − DA(áxr−1)(xr−1) ⋅ (xr−1)} (6.3)

for each x ̸= 0. From (6.3) and (6.1) it follows that divA(∇u(x)) has the sign of the constant á, for each x ̸= 0.
Let õ be a non-negative, inde�nitely di�erentiable function inℝN. Fix R > 0 such that

supp õ ⊂ I(0, R).

Next, �x a function ã(x) ∈ D(ℝN) such that 0 ≤ ã(x) ≤ 1, and ã(x) = 1 for |x| ≤ 1. To �x ideas, assume that
supp ã ⊂ I(0, 2). Further de�ne, for each s > 0,

ãs(x) = ã(s
−1x) and õs(x) = õ(x)(1 − ãs(x)).

Note that, for all s ∈ (0, R),
supp õs ⊂ I(0, R) − I(0, s).

Hence, by integration by parts,

á ∫
I(0,R)

A(∇u(x)) ⋅ ∇õs(x) dx = −á ∫
∁I(0,s)

divA(∇u(x))õs(x) dx ≤ 0,

where u(x) = ár. Note that, on the left hand side, we may replace I(0, R) byℝN. We want to show that

lim
s→0

∫
I(0,R)

A(∇u(x)) ⋅ ∇õs(x) dx = ∫
I(0,R)

A(∇u(x)) ⋅ ∇õ(x) dx. (6.4)

This proves that
á ∫
ℝN A(∇u) ⋅ ∇õ dx ≤ 0,

which is our thesis.
Straightforward calculations show that

∇õs(x) = (1 − ãs(x))∇õ(x) − s
−1õ(x)(∇ã)(s−1x). (6.5)

Since (1 − ãs(x))∇õ(x) converges point-wisely to ∇õ(x), x ̸= 0, as s → 0, it readily follows, by Lebesgue domi-
nated convergence theorem, that (6.4) holds by replacing, on the left hand side, ∇õs by (1 − ãs(x))∇õ(x).

Let us see that on the left hand side of (6.4) the contribution due to the second term on the right hand
side of (6.5) tends to zero. One has

s−1 ∫
I(0,R)

|õ(x)(∇ã)(s−1x)| dx ≤ s−1 ∫
I(0,2)

|õ(sy)(∇ã)(y)|sN dx

≤ 2NVNs
N−1‖õ‖L∞(ℝN)‖∇ã‖L∞(ℝN),

where VN denotes the volume of the unit sphere. Since A(∇u(x)) is uniformly bounded in I(0, R), the thesis
follows.

Assume now that A(p) is merely continuous. Let jå(ç) be, for each å > 0, a real, non-negative function,
inde�nitely di�erentiable with compact support contained in the sphere I(0, å) and integral equal to 1. Set

Aå(p) = ∫A(ç)jå(p − ç) dç.

These functions are inde�nitely di�erentiable. Furthermore,

Aå(p) − Aå(q) = ∫[A(p − î) − A(q − î)]jå(î) dî. (6.6)
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In particular, this last inequality implies thatAå(p) satis�es themonotonyhypothesis (2.3) (note that assump-
tions (2.2), (2.4), and (2.5) were not used here). From the �rst part of the proof it follows that

á∫Aå(∇u) ⋅ ∇õ dx ≤ 0 (6.7)

for all non-negative õ ∈ D(Ø). Further, since

Aå(p) − A(p) = ∫[A(ç) − A(p)]jå(p − ç) dç

and since A(p) is uniformly continuous on compact sets, it follows that Aå(p) → A(p) uniformly on compact
sets. So, letting å → 0 in equation (6.7), one gets the thesis.

The next result concerns the local character of the notion of a regular point.

Theorem 6.2. LetØ andË be two open bounded sets, and let y ∈ àØ ∩ àË. Assume, moreover, that there exists
a sphere I(y, r) such that

I(y, r) ∩ Ø = I(y, r) ∩ Ë. (6.8)

Then y is regular with respect to Ø if and only if it is regular with respect to Ë.

Proof. Due to Theorem 2.10, it is su�cient to show that there is a system of barriers with respect to Ë if and
only if there is a system of barriers with respect to Ø.

Let y be regular with respect to Ë. Assume, for the time being, that Ë ⊂ Ø. Given ñ and m, 0 < ñ < r
and 0 < m, let V(x) be the variational solution in Ø to problem (2.7) with boundary data given by

ℎ(x) = m|x − y|2ñ−2.

By construction, V(x) satis�es condition (j) in De�nition 2.8. Let us show that it also satis�es condition (jj).
Let

M ≥ max{1, m−1 Sup
Ø

|V(x)|},

and let V�(x) be the solution in Ëwith boundary data ℎ�(x) =Mm|x − y|2ñ−2. Clearly, V(x) is a solution in Ë.
Furthermore, from the de�nition of M it follows that V� ≥ V on àØ. From this last inequality, together with
Lemma 3.2, we show thatV�(x) ≥ V(x) a.e. inË. From this last assertion, together with the regularity of ywith
respect to Ë, it follows that

0 ≤ lim
x→y
x∈Ø

V(x) ≤ lim
x→y
x∈Ë

V�(x) = 0.

This proves condition (jj). By appealing to Theorem 2.10 we conclude that y is regular with respect to Ø.
The existence of the function U(x) referred in De�nition 2.8 may be shown by a similar argument, or by ap-
pealing to Remark 2.9.

Reciprocally, assume that y is regular with respect to Ø. Given ñ and m, 0 < ñ < r and 0 < m, we con-
struct below the corresponding barrier V(x) in Ë, according to De�nition 2.8. Let V(x) be the solution in Ø
with boundary data ℎ(x) = m|x − y|ñ−1 on àØ. The function V(x) is a solution in Ë and satis�es condition (ii)
since y is regular with respect to Ø and ℎ(x) = 0. Further, since V = ℎ on àØ and ℎ(x) is a sub-solution in Ø
(Lemma 6.1), it must be V(x) ≥ ℎ(x) a.e. in Ø. In particular, V ≥ ℎ, so V ≥ m on àË ∩ ∁I(y, ñ), as desired.

Finally, ifË is not contained inØ, consider the open setD = I(y, r) ∩ Ë = I(y, r) ∩ Ø,and take into account
thatD ⊂ Ë andD ⊂ Ø.

We end this section by proving Theorem 2.13.

Proof of Theorem 2.13. Necessary condition: Let y be regular. By Theorem 6.2 it follows that y is regular with
respect to Ò − Eñ. Since the capacitary potential uñ,m is the solution in Ò − Eñ (Lemma 3.5) with datam on àEñ
and 0 on àÒ (Lemma 3.4), the �rst equation (2.24) follows. A similar argument applies to uñ,−m.

Su�cient condition: We assume that the hypothesis (2.24) holds, and we prove the existence of a system
of barriers at y. Given ñ > 0 and m > 0, we construct the function V(x) referred in De�nition 2.8. Let R0 be
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such that Ò ⊂ I(y, R0), and de�ne k > 0 by

(k + 2m)ñ
2R0

= m. (6.9)

For convenience, we denote by u the capacitary potential u = u ñ2 ,−(m+k). Furthermore, we de�ne in Ò the func-
tion V = u + (m + k). Then V is a solution in Ò − E ñ2 (Lemma 3.5) and, in particular, it is a solution inØ. Since
limx→y u(x) = −(m + k), the function V satis�es condition (jj) in De�nition 2.8. Obviously V(x) ≥ 0 a.e. in Ò,
as follows from Lemma 3.4.

Next we prove condition (j). Consider in I(y, R0) the function f(x) = (k + 2m)R−10 |x − y| − (k + 2m). This
function is a sub-solution in I(y, R0) (Lemma 6.1) and, in particular, is a sub-solution in I(y, R0) − I(y,

ñ
2 ).

Since Ò ⊂ I(y, R0), it follows that f ≤ 0 on àÒ. Further, from (6.9) it follows that f = −(k +m) on àI(y, ñ2 ). So

f ≤ u on àI(y,
ñ
2
). (6.10)

By appealing to (6.10), to the inequality f ≤ 0 on àÒ, and to Lemma 3.2 applied in Ò − I(y, ñ2 ), it follows that
f(x) ≤ u(x) a.e. in this last set. So

V(x) ≥ f(x) + (m + k) ≥ m a.e. on Ò − I(y, ñ). (6.11)

In particular, (6.11) implies that V ≥ m on àØ − I(y, ñ), hence condition (j) holds.

Part II

7 Main results
We start by remarking that the proofs presented in Part II strongly rely on ideas and techniques used in ref-
erence [21], to which the reader is referred.

The aim of the second part of this work is to state su�cient conditions for regularity of a given boundary
point y. This task is done by appealing to Theorem 2.13. The su�cient conditions obtained here consist in
assumptions on the sets

Eñ = (∁Ø)(y, ñ), (7.1)

the complementary sets of Ø with respect to the closed balls I(y, ñ). They always concern su�ciently small
values of the radius ñ.

The cornerstone result of Part II, Theorem 7.2, has an “abstract” feature due to Assumption 7.1. However
we show that this assumption holds if simple geometrical conditions are ful�lled. This leads to the statements
in Theorems 7.3 and 7.4 below.

Assumption 7.1. Let y ∈ àØ be a given boundary point. There is a strictly positive function ò(ñ) such that, for
each positive ñ in an arbitrarily small neighborhood of zero, the estimate

|v(x)| ≤ ò(ñ)−1 ∫
I(y,ñ)

|∇v(z)|
|x − z|N−1

dz (7.2)

holds a.e. in I(y, ñ), for all v ∈ H1,t(I(y, ñ)) vanishing identically on Eñ.

The next theorem and the related Theorems 7.3 and 7.4 below are the main results in Part II.

Theorem 7.2. There is a constant Ë which depends only on t, N, a and p0 such that if Assumption 7.1 holds for
some ò(ñ) satisfying

[ò(ñ)]
tt−1 ≥ Ë(log log ñ−1)−1 (7.3)

for small positive values of ñ, then the point y ∈ àØ is regular with respect to the operator L.

Actually, the next two theorems are corollaries of Theorem 7.2.
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Theorem 7.3. There is a constant Ë0 which depends only on t,N, a and p0 such that if

(
|Eñ|

|I(y, ñ)|
)

tt−1
≥ Ë0(log log ñ

−1)−1

for small positive values of ñ, then the point y ∈ àØ is regular with respect to the operator L.

Note that this condition is stronger than the usual cone condition since the right hand side goes to zerowith ñ.
The next statement is [5, Theorem 5.5] (see also [3, p. 5]).

Theorem 7.4. A point y ∈ àØ is regular with respect to the operator L if y satis�es an (N − 1)-dimensional
external cone property. The (N − 1)-dimensional external cone property may be replaced by a generalized
(N − 1)-dimensional external cone property (see De�nition 7.7 below).

We end this section by proving that Assumption 7.1 follows from the geometrical assumptions required both
in Theorem 7.3 and in Theorem 7.4. So, as soon as this purpose is ful�lled, our task will be merely to present
the proof of Theorem 7.2. This proof is postponed to the next sections.

The proofs of the next lemma and corollary strictly follow [21, proof of Theorem 6.2]. We denote by S
the surface of the N-dimensional unit sphere. Further, if È ⊂ S, we denote by |∢È| the (N − 1)-dimensional
spherical measure of È,

|∢È| = ∫
È

dS.

Lemma 7.5. Set I = I(y, ñ), and let E = Eñ be given by (7.1). Furthermore, let a point x ∈ I, x ∉ E, be given, and
denote by S the surface of the unit sphere centered in x. Finally, consider the set

È = È(x) = {î ∈ S : there exists t = t(î) ∈ ℝ such that x + tî ∈ E}.

Then the estimate
|v(x)| ≤

1
|∢È(x)|

∫
I

|∇v(z)|
|x − z|N−1

dz

holds for any function v ∈ C1(I) vanishing on E.

Proof. Let î ∈ È and t(î) ∈ ℝ be such that x + t(î)î ∈ E. Since

|v(x + t(î)î) − v(x)| ≤
t(î)

∫
0

|∇v(x + rî)| dr

and |x − z|N−1 dSdr = dz, it follows that

|∢È||v(x)| = ∫
È

|v(x)| dS ≤ ∫
È

t(î)

∫
0

|∇v(x + rî)| drdS ≤ ∫
I

|∇v(z)|
|x − z|N−1

dz.

Corollary 7.6. Let v ∈ C1(I) vanish on E. Assume that

|∢È| ≡ inf
x

|∢È(x)| > 0. (7.4)

Then
|v(x)| ≤

1
|∢È|

∫
I

|∇v(z)|
|x − z|N−1

dz (7.5)

for all x ∈ I. Furthermore, if v ∈ H1,t(I) vanishes on E in theH1,t(I) sense, then (7.5) holds a.e. in I.

Note that the estimate (7.5) is obvious if x ∈ E. The last assertion in the corollary follows from well-known
results on the continuity of the linear map de�ned by convolution with the kernel |z|−(N−1). Actually, this map
is continuous from Lr to Lr∗ where 1/rr

∗
= 1/r − 1/n. See, for instance, [22, Chapter V].
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Further, the “volumetric” estimate (1/N)|∢È(x)|(diamI)N ≥ |E| shows that in equation (7.5) one has

|∢È| ≥
NVN
2N

|Eñ|
|I(y, ñ)|

.

Hence Assumption 7.1 holds for ò(ñ) given by the right hand side of the above inequality. So, Theorem 7.3
follows from Theorem 7.2.

Next, we prove Theorem 7.4. Some details are left to the reader. By “cone” (in any dimension) we mean
a right circular cone, truncated by a spherewith center the vertex of the cone. For instance, the (N − 1)-dimen-
sional “truncated cones” with vertex y = 0 have the form

Cñ,ø = {x ∈ ℝ
N : x1 ≥ 0, xN = 0, |x| ≤ ñ, |x|

2 ≤ (1 + ø)x1
2}, (7.6)

where ñ and ø are positive constants. Note that, by setting x = (x1, x
�, xN), the above condition means

that |x�|2 ≤ øx2
1.

De�nition 7.7. We say that a point y ∈ àØ satis�es an (N − 1)-dimensional external cone property if there ex-
ists an (N − 1)-dimensional coneCwith vertex at y and contained in ∁Ø. Similarly, we de�ne the generalized
(N − 1)-dimensional cone property at the point y, by replacing the cone C by a Lipschitz image of itself.

The proof of Theorem 7.4 follows immediately from Theorem 7.2 and Corollary 7.6, by a small modi�cation
of the argument used to prove Theorem 7.3. As above, we appeal to Corollary 7.6. Roughly speaking, as for
Theorem 7.3, we would like to show that there is a positive lower bound |∢È| for the values of the solid
angles |∢È(x)| fromwhich the set Eñ can be “watched” from points x ∈ I(y, ñ). Clearly, this is false in general,
since (for instance) x and Eñ may belong to an (N − 1)-dimensional hyperplane. However the same argument
applies here. Let us prove that equation (7.2) holds for a positive ò(ñ), independent of ñ. To show this claim,
note that geometry and estimates for a generical value ñ can immediately be brought back to the case ñ = 1,
by a suitable homothety. Next, note that the estimates in play are invariant under Lipschitz maps, up to mul-
tiplication by positive constants. So, we may fold up the original (N − 1)-dimensional cone into a “non �at”
(N − 1)-dimensional “twisted cone”, which contains N distinct pieces of surface, each one orthogonal to
a single xi-direction, i = 1, . . . , N. Now, from each point x ∈ I(y, 1), one “watches”, at least, one of the above
pieces of surface, from a positive solid angle |∢È(x)|. Moreover, the lower bound |∢È| of the values of solid
angles is positive. This proves Theorem 7.4.

Note that it would be su�cient to prove that the lower bounds behaves like ò(ñ) in equation (7.3), as ñ
goes to zero.

8 A recursive estimate for the local oscillation
In the sequel, to avoid unessential devices, we assume in equations (2.4) and (2.5) that p0 = 0. One easily
extends the proof to the general situation by appealing to (4.1). This leads to the appearance of “lower order”
terms, easy to control.

We prove Theorem 7.3 by showing that (2.24) holds.More precisely, we �x a couple of positive constants ñ0
andm, and prove that

lim
x→y

um,ñ0 (x) = m.

The proof of the second equation (2.24) is absolutely identical. Alternatively, we may appeal to Remark 2.9,
to refer the proof to that of the �rst equation.

In the sequel the “large” ball Ò, the point y ∈ àØ, and the positive constantsm and ñ0 are assumed to be
�xed, once and for all. The capacitary potential um,ñ0 (x) of Eñ0 will be simply denoted by u(x). Furthermore,
without loss of generality, we place the origin at y, so

y = 0.

We set I(r) = I(0, r). The following result is well known.
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Lemma 8.1. One has
‖v‖t∗ ,r ≤ c‖∇v‖t,r for all v ∈ H1,t

0 (r), (8.1)

where 1
t∗ = 1

t −
1
N .

We de�ne the sets
B(k, r) = {x ∈ Ø(y, r) : u(x) ≤ k} (8.2)

and introduce the cut-o� function

õ(x) =
{{{
{{{
{

1 if |x| ≤ ñ,
R−|x|
R−ñ if ñ ≤ |x| ≤ R,

0 if R ≤ |x|.

(8.3)

In the sequel, 0 < ñ < R < ñ0. For brevity, we set

B(k) = B(k, R).

The following kind of estimates is well known.

Lemma 8.2. Assume that 0 < ñ < R < R and 0 < ℎ < k. Let v ∈ H1,t(R). Then, the following estimates hold:

{{{{{{
{{{{{{
{

∫
B(ℎ,ñ)

(ℎ − u)t dx ≤ c((R − ñ)−t ∫
B(k)

(k − u)t dx + ∫
B(k)

|∇u|tõt dx)|B(k)|
tN ,

|B(ℎ, ñ)|(k − ℎ)t ≤ ∫
B(ℎ,ñ)

(k − u)t dx ≤ ∫
B(k)

(k − u)t dx.
(8.4)

For the proof of the �rst estimate see, for instance, [4, proof of the �rst inequality (6.12)]. The second esti-
mate (8.4) is obvious.

Theorem 8.3. Let õ be given by (8.3). Then, for each real k,

∫
B(k,R)

|∇u|tõt dx ≤ c(R − ñ)−t ∫
B(k,R)

|u − k|t dx. (8.5)

Proof. By the de�nition of um,ñ0 (x) one has

∫
Ò

(A(∇u), ∇(v − u)) dx ≥ 0 for all v ∈ Km(Ò), (8.6)

where (recall (2.19))
Km(Ò) = {v ∈ H

1,t
0 (Ò) : v ≥ m on Eñ0 }.

By setting v = u − õtmin(u − k, 0) in equation (8.6), it follows that

∫
B(k)

(A(∇u), ∇u)õt dx ≤ −t ∫
B(k)

(A(∇u), ∇õ)(u − k)õt−1 dx. (8.7)

From (8.7), by appealing to Hölder’s inequality and to properties enjoyed by õ and A(p), we show that

a ∫
B(k)

|∇u|tõt dx ≤ tat−1( ∫
B(k)

|∇u|tõt dx)
t−1t
( ∫
B(k)

|u − k|t|∇õ|t dx)
1t
. (8.8)

Equation (8.8) leads to
∫

B(k)

|∇u|tõt dx ≤ c ∫
B(k)

|u − k|t|∇õ|t dx.

Since |∇õ| ≤ (R − ñ)−1, the thesis follows.

Brought to you by | De Gruyter / TCS
Authenticated | 46.30.84.116

Download Date | 4/16/14 4:27 AM



62 | H. Beirão da Veiga, On nonlinear potential theory, and regular boundary points

The next result follows by appealing to Theorem 8.3 and Lemma 8.2.

Lemma 8.4. Assume that 0 < ñ < R, and 0 < ℎ < k. The following estimates hold:

{{{{{{
{{{{{{
{

∫
B(ℎ,ñ)

(ℎ − u)t dx ≤ c1|B(k)|
tN (R − ñ)−t ∫

B(k)

(k − u)t dx,

|B(ℎ, ñ)|(k − ℎ)t ≤ ∫
B(k)

(k − u)t dx.
(8.9)

For brevity we set
{{{
{{{
{

u(ℎ, ñ) = ∫
B(ℎ,ñ)

(ℎ − u)t dx,

b(ℎ, ñ) = |B(ℎ, ñ)|.

(8.10)

So, equation (8.4) takes the form

{
{
{

u(ℎ, ñ) ≤ c1b(k, R)
tN (R − ñ)−tu(k, R),

b(ℎ, ñ)(k − ℎ)t ≤ u(k, R).
(8.11)

Next, we de�ne
÷(ℎ, ñ) = u(ℎ, ñ)è

Nt b(ℎ, ñ), (8.12)

where
è =

1
2
+ √

1
4
+

t
N
> 1.

Straightforward calculations show that

÷(ℎ, ñ) ≤ c
Nt è
1

1
(R − ñ)Nè

1
(k − ℎ)t

÷(k, R)è. (8.13)

Note that t
N + è = è

2. We point out that the above choice of è is the only choice possible to get an estimate of
the form (8.13).

Lemma 8.5. Let 0 < r0 ≤
ñ0
2 , k0 ∈ ℝ and d > 0. De�ne, in correspondence to each non-negative integer m, the

following quantities:

{{
{{
{

rm =
r0
2
+

r0
2m+1

,

km = k0 − d +
d
2m

,
(8.14)

{{{
{{{
{

am = |B(km, rm)|,

um = ∫
B(km ,rm)

(km − u)
t dx, (8.15)

and
÷m = u

èNt
m bm. (8.16)

Then !!!!!!!
B(k0 − d,

r0
2
)
!!!!!!!
= 0 (8.17)

if

d ≥ c
Nèt2
1

2
âèt

(2r0)
Nèt ÷

è−1t
0 ≡ C

÷
è−1t
0

r
Nèt
0

. (8.18)

Proof. Note that am, um and ÷m are non-increasing sequences. By setting, in equation (8.13), (k, R) = (km, rm)
and (ℎ, ñ) = (km+1, rm+1), one shows that

÷m+1 ≤ c
Nt è
1

1
dt

1
(2r0)Nè 2

(m+1)(t+Nè)÷è
m. (8.19)
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We want to prove, by induction, that

÷m ≤
÷0

2âm
for allm ≥ 0, (8.20)

where
â =

t +Nè
è − 1

.

For m = 0, (8.20) is obvious. Assume it for some m ≥ 0. By appealing to (8.19) and (8.20) straightforward
calculations show that

÷m+1 ≤ c
Nt è
1

1
dt

2âè

(2r0)Nè÷
è−1
0

÷0

2â(m+1)
. (8.21)

This proves (8.20) under the assumption (8.18). In particular, ÷m → 0 asm →∞. Since

!!!!!!!
B(k0 − d,

r0
2
)
!!!!!!!
{ ∫
B(k0−d, r02 )

((k0 − d) − u)
t dx}

èNt
≤ ÷m,

the thesis of the theorem follows.

Corollary 8.6. There is a constant C, independent of r0 and k0, such that

Inf
I( r02 )

u ≥ k0 − C{
1
rN0

∫
B(k0 ,r0)

(k0 − u)
t dx}

1t
{

1
rN0

|B(k0, r0)|}
è−1t

. (8.22)

In particular,

Inf
I( r02 )

u ≥ k0 − C{
1
rN0

∫
B(k0 ,r0)

(k0 − u)
t dx}

1t
. (8.23)

The proof of the �rst estimate follows immediately from (8.17), by taking into account that the C term on the
right hand sice of (8.22) is equal to the C term on the right hand side of (8.18). The second estimate follows
from the �rst one (here, we change the value of the constantC). SinceC does not depend on r0 and k0, we drop
the index 0. Further, we de�ne

i(r) = Inf
I(r)

u, s(r) = Sup
I(r)

u, ø(r) = s(r) − i(r).

By setting, in (8.23), k = i(2r) + çø(2r), where ç > 0, and by taking into account that for x ∈ B(k, r) one has

0 ≤ k − u(x) ≤ çø(2r),

it follows that

i(
r
2
) ≥ i(2r) + çø(2r) − C{

1
rN

|B(k, r)|}
1t
çø(2r).

Hence,

ø(
r
2
) ≤ {1 − ç[1 − C(

1
rN

|B(k, r)|)
1t
]}ø(2r).

For convenience we replace r by 2r in the next result.

Proposition 8.7. Let k = i(4r) + çø(4r). Then

ø(r) ≤ {1 − ç[1 − C(
1
rN

|B(k, 2r)|)
1t
]}ø(4r). (8.24)

Remark 8.8. In [4, equation (6.21)] it was proved that

|B(ℎ, ñ)|(k − ℎ)t ≤ c((R − ñ)−t ∫
B(k)

(k − u)t dx + ∫
B(k)

|∇u|tõt dx)|B(ℎ, ñ)|
tN . (8.25)
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This estimate, together with (8.5), shows that

|B(ℎ, ñ)|1−
tN (k − ℎ)t ≤ c1(R − ñ)−t ∫

B(k)

(k − u)t dx. (8.26)

If we appeal to this estimate (instead of appealing to the second estimate (8.9)), we get (8.22) with the expo-
nent è−1

t replaced by 1
Nè1 , where t

N−t + è1 = è
2
1 .

9 Proof of Theorem 7.2
We start this section by stating a well-known potential theory result.

Lemma 9.1. Let ì be a compact supported, bounded variation measure inℝN, and let

Uì
1 (x) = ∫

dì(z)
|x − z|N−1

(9.1)

be the potential of order 1 generated by ì. Then there is a positive constant c such that

|{x ∈ ℝN : |Uì
1 (x)| ≥ ó}| ≤ (

c∫ |dì|
ó

)

NN−1
(9.2)

for each ó > 0.

For potentials of order 2, the above result is essentially due to E. Cartan, see [6, Lemma 4]. The result is easily
extended to potentials of arbitrary order á. For á = 1, it asserts that

cap∗1 {x ∈ ℝ
N : |Uì

1 (x)| ≥ ó} ≤
2N−1 ∫ |dì|

ó

for each ó > 0, where cap∗1 (E) denotes the internal capacity of order 1 of the set E. Equation (9.2) follows by
appealing to the classical estimate

|E| ≤ c(N)(cap∗1 (E))
NN−1 .

Next we prove the following result.

Lemma 9.2. Let 0 ≤ ℎ < k ≤ m, and 0 < r < ñ0
2 . Then

|B(ℎ, 2r)|
t(N−1)N(t−1) ≤ c[(k − ℎ)ò(2r)]− tt−1 (|B(k, 2r)| − |B(ℎ, 2r)|)((2r)−t ∫

B(k,4r)

|u − k|t dx)
1t−1
. (9.3)

Proof. Set

v =
{{{
{{{
{

k − ℎ if u ≤ ℎ,
k − u if ℎ ≤ u ≤ k,
0 if k ≤ u,

and

ì(z) =
{
{
{

|∇v(z)| on I(0, 2r),

0 on (∁I)(0, 2r).
(9.4)

Since v vanishes on E2r, from Assumption 7.1 it follows |v(x)| ≤ cò(2r)−1Uì
1 (x) on I(2r). Hence, by Lemma 9.1,

we show that

|{x ∈ I(2r) : |v(x)| ≥ ó}| ≤ c((ò(2r)ó)−1 ∫
I(2r)

|∇v(z)| dz)
NN−1

(9.5)

for each ó > 0. Let ó = k − ℎ − å, where å > 0.
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By appealing to the de�nition of v, we prove that

|B(ℎ, 2r)| ≤ |{x ∈ I(2r) : v(x) ≥ ó}|

≤ c([ò(2r)(k − ℎ − å)]−1 ∫
B(k,2r)−B(ℎ,2r)

|∇v(z)| dz)
NN−1
.

Further, by letting å → 0 in the last equation, and by appealing to Hölder’s inequality, we obtain the estimate

|B(ℎ, 2r)|
N−1N ≤ c([ò(2r)(k − ℎ)]−1( ∫

B(k,2r)

|∇u|t dx)
1t
⋅ (|B(k, 2r)| − |B(ℎ, 2r)|)

t−1t ). (9.6)

Finally, by raising both terms of the last equation to the power t
t−1 and by appealing to Theorem 8.3

(with ñ = 2r and R = 4r), the thesis follows.

Theorem 9.3. Let 0 < r < 4−1ñ0. There is a constant C1 which depends at most on a, p0, d, t and N such that
if n0 = n0(r) satis�es (9.13) below, then

ø(r) ≤ (1 − 2−1çn0 )ø(4r), (9.7)
where

çn0 = 2−(n0+1).
Proof. Let l = i(4r), ø = ø(4r), and set, for each non-negative integer j,

{
{
{

çj = 2
−(j+1),

kj = i(4r) + çjø(4r),
(9.8)

and bj = |B(kj, 2r)|. By Lemma 9.2 with k = kj and ℎ = kj+1, we obtain

bj+1
t(N−1)N(t−1) ≤ c[2−(j+2)øò(2r)]− tt−1 (bj − bj+1) ⋅ [(2r)−tVN(4r)

N(2−(j+1)ø)t]
1t−1 .

Straightforward calculations show that

bj+1
t(N−1)N(t−1) ≤ crN−tt−1 ò(2r)− tt−1 (bj − bj+1), (9.9)

where, for convenience, the value of the constant cmay change from equation to equation (clearly, it depends
only on �xed quantities likeN, t, etc.).

Denote by n0 = n0(r) an arbitrary positive integer to be �xed later on. From (9.9) it follows that

bn0 t(N−1)N(t−1) ≤ bj+1 t(N−1)N(t−1) ≤ crN−tt−1 ò(2r)− tt−1 (bj − bj+1)
for each j, 0 ≤ j ≤ n0 − 1. Consequently,

n0bn0 t(N−1)N(t−1) ≤ crN−tt−1 ò(2r)− tt−1 n0−1
∑
j=0

(bj − bj+1)

≤ c0ò(2r)
− tt−1 (2r) t(N−1)t−1 .

Hence,

(
bn0

(2r)N
)

1t
≤ Cn0

− N(t−1)t2(N−1) ò(2r)− Nt(N−1) . (9.10)

On the other hand, from (8.24), one has

ø(r) ≤ {1 − 2−(n0+1)[1 − C(bn0
rN

)
1t
]}ø(4r). (9.11)

Finally, from (9.10) and (9.11),

ø(r) ≤ {1 − 2−(n0+1)[1 − C0n0
− N(t−1)t2(N−1) ò(2r)− Nt(N−1) ]}ø(4r). (9.12)

Next, we want to single out an index n0 = n0(r) such that the expression under square brackets is less than or
equal to 1

2 for each positive (small) radius r. This leads to

n0(r) ≥ C1ò(2r)
− tt−1 , (9.13)
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where C1 is a constant which depends at most on a, p0, d, t and N. In the sequel we denote by n0(r) the
smallest integer for which (9.13) holds. Hence

C1ò(2r)
− tt−1 ≤ n0(r) < 1 + C1ò(2r)

− tt−1 . (9.14)

The proof is complete.

Lemma 9.4. Let C1 be the constant in equation (9.13). If

[ò(r)]
tt−1 ≥ C1(log 2)(log log(r

−1))−1 (9.15)

for each positive r in an arbitrarily small neighborhood of zero (clearly, r < 1 is assumed), then

lim
r→0

ø(r) = 0. (9.16)

In particular, the boundary point y is regular.

Proof. Fix a positive r0 such that

ø(r) ≤ (1 − 4−1çn0 )ø(4r) for all r < r0. (9.17)

This choice is possible by (9.7). Further, de�ne, for each non-negative index i,

ri = 4
−ir0. (9.18)

Furthermore, set n0(i) = n0(ri). From (9.17) it follows that ø(ri) ≤ (1 − 4−1çn0(i))ø(ri−1) for each i ≥ 1, so

ø(ri) ≤
i

∏
k=1

(1 − 4−1çn0(k))ø(r0). (9.19)

From (9.14) and (9.15) it follows that

n0(r) < 1 + (log 2)
−1 log(log(2r)−1).

Hence
2n0(k)+1 ≤ 4elog(log(2r)−1) = 4 log(2r)−1,

where r = rk. It follows that
çn0(k) ≥ 4−1(log(2rk)−1)−1 for all k ≥ 1. (9.20)

Further, by appealing to (9.18), one gets

çn0(k) ≥ 1
4(k log 4 − log(2r0))

. (9.21)

Since log(1 − x) ≤ −x, we get
log(1 − 4−1çn0(k)) ≤ −1

42(k log 4 − log(2r0))
.

So
+∞
∑
k=1
log(1 − 4−1çn0(k)) = −∞.

Hence
+∞
∏
k=1

(1 − 4−1çn0(k)) = 0. (9.22)

Equation (9.16) follows from (9.19) and (9.22) .

Remark 9.5. In the more general situation (2.3)–(2.5), one has to appeal to (4.1). In this case (9.7) is replaced
by

ø(r) ≤ (1 − 2−1)ø(4r) + (c + ç−1n0 )r. (9.23)

So, in the proof of Lemma 9.4, one has to consider also the event of the non-existence of a positive r0 for
which (9.17) holds.
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Proof of Theorem 7.2. From Lemma 9.4 we conclude that the capacitary potentials uñ,m(x) are continuous at
the pointy. Since uñ,m = m onEñ0 , and |Eñ| > 0 for each positive ñ, itmust be uñ,m(y) = m. The continuity of the
potentials uñ,−m(x) at y, and uñ,−m(y) = −m, are proved in a totally similar way or, alternatively, by appealing
to Remark 2.9.

Finally, the regularity of the boundary point y follows from Theorem 2.13.
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