
J. Math. Fluid Mech. 15 (2013), 55–63
c© 2012 Springer Basel AG
1422-6928/13/010055-9
DOI 10.1007/s00021-012-0099-9

Journal of Mathematical
Fluid Mechanics

Direction of Vorticity and Regularity up to the Boundary: On the Lipschitz-Continuous
Case

Hugo Beirão da Veiga

Abstract. In their famous 1993 paper, Constantin and Fefferman consider the evolution Navier–Stokes equations in the whole
space R3 and prove, essentially, that if the direction of the vorticity is Lipschitz continuous in the space variables, during a
given time-interval, then the corresponding solution is regular. Since Lipschitz-continuity is a very natural, basic, property,
it looks interesting to go further in this particular direction. In this paper, we consider the initial-boundary value problem
for the Navier–Stokes equations in a regular, bounded, domain under a slip boundary condition, and prove regularity of
the solution, up to the boundary, under a weakened Lipschitz-continuity assumption on the direction of the vorticity. The
interest of our result highly relies on the fact that the Lipschitz-continuity coefficient g(x, t) is sharp. This means, in a
sense, that our finding possesses the same level of accuracy as that of the classical “Prodi-Serrin” type conditions; see the
introductory section. It should be remarked that a similar result was already obtained in the 2009 paper by Beirão da Veiga
and Berselli. In the latter, the proof of an analogous sharp result was shown under the assumption of 1

2
-Hőlder continuity

on the direction of vorticity. The authors also claimed, correctly, that by the same ideas the proof of such a result could
be extended to Hőlder exponents β ∈ ] 0, 1 ]. However the proofs would be extremely involved. On the contrary, the proof
followed in this paper treat the Lipschitz case is definitely more elementary than any other proof, even if restricted to the
whole space case.

1. Introduction and Statement of the Main Result

In this paper we consider the initial value problem for the 3D Navier–Stokes equations
⎧
⎪⎨

⎪⎩

ut + (u · ∇)u − �u + ∇p = 0 in Ω×]0, T ],

∇ · u = 0 in Ω×]0, T ],

u(x, 0) = u0(x) in Ω,

(1)

where the unknowns are the velocity u and the pressure p. For simplicity, we assume that the external
force vanishes and set the kinematic viscosity equal to 1. The open, bounded, set Ω ⊂ R3 has a smooth
boundary ∂Ω, say of class C2,α, for some α > 0.

We supplement the initial value problem with the following “stress-free” boundary conditions
{

u · n = 0 on ∂Ω×]0, T ],

ω × n = 0 on ∂Ω×]0, T ],
(2)

where ω = curl u is the vorticity field, while n denotes the exterior unit normal vector. In the case of flat
boundaries, the above conditions coincide with the classical Navier boundary conditions without friction;
see, e.g., the classical reference Serrin [17].

In the present paper we consider the problem of the regularity, up to the boundary, of weak solu-
tions as a consequence of a (particularly meaningful non-uniform) Lipschitz continuity assumption on
the vorticity-direction.

By θ(x, y, t) we shall denote the angle between the vorticity ω at two distinct points x and y, at the
same time t:

θ(x, y, t)
def
= ∠(ω(x, t), ω(y, t)). (3)
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Clearly

sin θ(x, y, t) =
|ω(x, t) × ω(y, t) |
|ω(x, t)| |ω(y, t)| . (4)

Lp := Lp(Ω), 1 ≤ p ≤ ∞ denotes the usual Lebesgue spaces equipped with norm ‖. ‖p. Further,
Hk := Hk(Ω), are the classical Sobolev spaces. We use the same symbol for both scalar and vector
function spaces, and set ∂i = ∂

∂xi
. Moreover

Lp
T (X)

def
= Lp(0, T ; X(Ω) ),

where X = X(Ω) is a generic Banach space, and 1 ≤ p ≤ ∞. Arbitrary positive constants are
denoted simply by c. We say that a Leray-Hopf weak solution u is strong if u ∈ L∞(0, T ; H1(Ω) ∩
L2(0, T ; H2(Ω) ). It is well known that strong solutions are regular.

We start with an overview on some results particularly related to the one we are going to prove. We
assume everywhere that the initial data u0 ∈ H1(Ω) is divergence free. We denote by u a weak solution
to (1)–(2) in [0, T ]. The meaning of Ω (open bounded set, whole space, or half-space)will be clear from
the particular statement under consideration.

The study of conditions involving the direction of vorticity, and its physical-geometric interpretation,
started with Constantin and Fefferman celebrated paper [11], who first derived some exact formulas and
employed them in order to prove regularity in the whole of R3. In [11] the authors show that if

sin θ(x, y, t) ≤ g(t) |x − y|, a.e. x, y ∈ R3, a.e. t ∈]0, T [, (5)

for some g(t) ∈ L12(0, T ; L∞(Ω) ), then the solution u is strong. The above result has been improved in
reference [5], by replacing the Lipschitz condition by a 1/2-Hölder condition. If

sin θ(x, y, t) ≤ c |x − y|1/2, a.e. x, y ∈ R3, a.e. t ∈]0, T [, (6)

then the solution u is strong. The proof employs a number of fundamental ideas introduced in [11]. Actu-
ally, the authors of [5] consider a family of sufficient conditions which contain (6) as a particular case.
A weak solution u is a strong solution if there exists β ∈ [1/2, 1] and g ∈ La(0, T ;Lb(R3)),

2
a

+
3
b

= β − 1
2

with a ∈
[

4
2β − 1

,∞
]

, (7)

such that

sin θ(x, y, t) ≤ g(x, t)|x − y|β , a.e. x, y ∈ R3, a.e. t ∈]0, T [. (8)

More recently, in [2], we extended the 1/2-Hölder condition in the whole of R3 to solutions to the boundary
value problem (2) in the half-space case by showing that if for some β ∈]0, 1/2]

sin θ(x, y, t) ≤ c|x − y|β , a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

and, in addition,

ω ∈ L2(0, T ;Ls(Ω)), with s =
3

β + 1
, (9)

then u is a strong solution. This result is proved by means of a different method with respect to that
used in all previously referenced articles. In fact, to treat the presence of the boundary we exploit directly
the classical Dirichlet and Neumann Green’s functions in the half space. This can be done since, for flat
boundaries, conditions (2) may be split as follows:

ω1 = ω2 = 0 ;
∂ ω3

∂ x3
= 0. (10)

Note that in [5] the advantage of assuming β > 1
2 is counterbalanced by replacing in (8) the constant c

by a function g ∈ La(0, T ;Lb(Ω)). On the other hand, in [2] we mitigate the penalizing situation β < 1
2

by assuming (9).
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The fact that condition (6) alone implies regularity may be viewed as a particular case of each of the
two families of results formerly recalled. In fact, if we consider β = 1

2 as a particular case of β ∈ [ 1
2 , 1 ],

if follows by (8) that a = b = ∞, which corresponds to the constant c in Eq. (6). On the other hand, if we
consider β = 1

2 as a particular case of β ∈ [ 0, 1
2 ], regularity holds since, by (9) it follows s = 2, and weak

solutions necessarily satisfy ω ∈ L2(0, T ;L2(Ω)). This argument shows that the two families of results,
from above and from below, match perfectly at β = 1

2 . On the other hand, going through the proofs
of the above two families of results, given in [6] and [2], respectively, one finds that the single results
obtained for the distinct values β ∈ ] 0, 1 ] have the same formal level of “strength”. Furthermore, in the
borderline case β = 0, the Hölder’s condition disappears, and (9) simply reads ω ∈ L2(0, T ;L3(Ω)). As
shown in [1], this result corresponds exactly to the classical, so called, “Prodi-Serrin” conditions. These
facts lead us to call the above family of β dependent results, β ∈ [ 0, 1 ] sharp results. In particular the
borderline Lipschitz-continuous case, which states that regularity holds if

sin θ(x, y, t) ≤ g(x, t)|x − y|, a.e. x, y ∈ R3, a.e. t ∈]0, T [, (11)

for some g ∈ La(0, T ;Lb(R3)), where
2
a

+
3
b

=
1
2

with a ∈ [ 4, ∞] , (12)

is a sharp result. In the sequel we show a very elementary proof of this last result, up to the boundary,
under the slip boundary condition (see the Theorem 1.2 below). In this respect, it is worth noting that
in reference [6] the following result was claimed.

Theorem 1.1 ([6]). Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω, say of class C3,α,
for some α > 0. Suppose that u0 ∈ H1(Ω), ∇ · u0 = 0, and u is a weak solution to (1)–(2) in [0, T ]. In
addition, suppose either that there exist β ∈ [1/2, 1] and g ∈ La(0, T ;Lb(Ω)), with a, b given in (7), such
that

sin θ(x, y, t) ≤ g(x, t)|x − y|β , a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

or that there exists β ∈]0, 1/2] such that

sin θ(x, y, t) ≤ c|x − y|β , a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

and that (9) holds. Then, the solution u is strong in [0, T ], and hence smooth. In particular, this result
holds if

sin θ(x, y, t) ≤ c |x − y|1/2, a.e. x, y ∈ Ω, a.e. t ∈]0, T [. (13)

However, in [6], the proof is presented only for the main case β = 1
2 . Since the boundary is not flat,

one has to localize the problem, a not trivial and quite technical matter. Moreover, one can not use
separately the classical Dirichlet and Neumann Green’s functions, as in the half space case, since the
boundary conditions do not split as in (10). So, in their proof, the authors employ the representation
formulas for Green’s matrices derived in Solonnikov’s fundamental work [18,19]. With the aid of these
explicit formulas, original local representation formulas for the velocity (in terms of the vorticity) were
introduced and, as a result, useful estimates for the vortex stretching terms were proved. The proof is
particularly involved. Its extension to all the values of the parameter β considered in references [5] and [2],
namely β ∈ (0, 1 ], is feasible, but hard. This led us to look for a much simpler proof under the original,
and mathematically quite natural, Constantin and Fefferman’s Lipschitz condition β = 1. Actually, our
proof furnishes regularity up to the boundary under the slip boundary condition, and allow a sharp
coefficients g(x, t) as in (8). More precisely, we present a really straightforward proof of the following
result.

Theorem 1.2. Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω, say, of class C2, α, for
some α > 0. Suppose that u0 ∈ H1(Ω), ∇ · u0 = 0, and u is a weak solution to (1)–(2) in [0, T ]. In
addition, suppose that there exists g ∈ La(0, T ;Lb(Ω)), where

2
a

+
3
b

=
1
2
, with a ∈ [4, ∞] , (14)
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and a positive δ(x, t), such that, for almost all t ∈]0, T [, one has

sin θ(x, y, t) ≤ g(x, t) |y − x|, (15)

for a.a. x, y ∈ Ω, satisfying |y − x| < δ(x, t). Then, the solution u is a strong solution, and hence it is
smooth, in [0, T ].

For instance, g ∈ L4(0, T ;L∞(Ω)), or g ∈ L∞(0, T ;L6Ω)), are sufficient for regularity.
Actually, the Theorem 1.2 is a little more more general then that stated for β = 1 in Theorem 1.1,

since it does not require a positive lower bound for δ(x, t) ). The present result also extends, and simplifies,
the classical proof given in [11].

We conclude this section with a bibliographical remark. Since the 1993 Constantin and Fefferman
pioneering paper [11], many other interesting papers on the relation between direction of vorticity and
regularity for 3-D Navier–Stokes equations appeared. After the 2002 improvement [5], and besides the
works already referred above, see, for instance, [3,7,9,10,12–16,20], and [21]. In [4] and [8] suitable con-
ditions on the angle between velocity and vorticity are studied.

2. A Dimensional Analysis

In this section, by simple dimensional analysis techniques, we show that the sufficient condition for reg-
ularity described in the Theorem 1.2 (where β = 1) and the main sufficient condition (6) (where β = 1

2 )
enjoy the same “strength”. These two conditions are included in condition (8), the first for β = 1, the
last for β = 1

2 . Roughly speaking they are continuously connected by condition (8), as β moves from 1
2

to 1. In the following, we show that all this family of results enjoy the same “strength”.
Assume that ( (u(x, t), p(x, t) ) is a solution to the Navier–Stokes equations in ] 0, +∞ [×R3. Then

( (uλ(x, t), pλ(x, t) ) ≡ ( (λ u(λx, λ2t), λ2p(λx, λ2t) )

is a solution in the same domain. In particular

ωλ(x, t) ≡ curl uλ(x, t) = λ2 ω(λx, λ2t).

If

θλ(x, y, t)
def
= ∠(ωλ(x, t), ωλ(y, t))

then, by (4),

sin θλ(x, y, t) = sin θ(λ x, λ y, λ2 t).

Assume now that the solution u(x, t) satisfies (8) (here T = +∞) for some β = 1
2 , where g ∈

La(0, +∞ ;Lb(R3)), and (7) holds. Then (as the reader will check with no pain)

sin θλ(x, y, t) ≤ gλ(x, t)|x − y|β ,

where the function gλ, given by

gλ(x, y)
def
= λβ g(λx, λ2t),

belong to the functional space La(0, +∞ ;Lb(R3)), moreover

‖ gλ ‖La( 0, +∞; Lb(R3) ) = λ
1
2 ‖ g ‖La( 0, +∞; Lb(R3) ). (16)

Our claim of “equivalent strength” follows here from the fact that the exponent 1
2 in Eq. (16) does not

depend on the particular value β ∈ [12 , 1]. Weaker (resp. stronger) sufficient conditions lead to larger
(resp. smaller) exponents.
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3. Preliminaries

The following argument is well know, so that we leave the details to the reader. The assumption
u(0) = u0 ∈ H1(Ω), the existence of a corresponding unique, smooth, solution on a positive time interval
] t0, t0 + ε [, if u(t0) ∈ H1(Ω), and the higher regularity in ] 0, t0 ] × Ω of weak solutions u ∈
L∞(0, t0;H1(Ω)), allow us prove Theorem 1.2 merely by showing that smooth solutions in ] 0, t0 [, which
enjoy the hypotheses of the theorem in the interval ] 0, t0 [, necessarily satisfy ω ∈ L∞(0, t0;L2(Ω)). This
shows that u ∈ L∞(0, t0;H1(Ω)) (see, for instance, the Lemma 2.7 in [6]). In the following we replace,
without loosing generality, t0 by T .

We shall often drop in the notation the time variable t, since time is assumed to be frozen. We start
by recalling some results proved in [6].

Denote by εijk the components of the totally anti-symmetric Ricci tensor.
The following result was proved in [6], Lemma 2.2. We repeat here the proof.1

Lemma 3.1. Assume that u is divergence-free, that u · n = 0, and that ω × n = 0 on ∂Ω. Then

− ∂ω

∂n
· ω = (ε1jk ε1βγ + ε2jk ε2βγ + ε3jk ε3βγ)ωj ωβ ∂knγ . (17)

In particular,

−
∫

Ω

�ω · ω dx ≥
∫

Ω

|∇ω|2 dx − c

∫

∂Ω

|ω|2 dS. (18)

Proof. The vorticity ω is parallel to the normal unit vector on ∂Ω. Hence ∂τ (ω × n) = 0, for each vector
field τ tangential to the boundary. Since on the boundary ω is orthogonal to tangent vectors, it follows
that ω×∇[ (ω×n)i ] ≡ 0 for i = 1, 2, 3, on ∂Ω. In more explicit coordinates we can write, for i, α = 1, 2, 3,

εijk εαβγ ωj ∂k(ωβ nγ) = 0, on ∂Ω. (19)

Hence, by considering Eq. (19) for (i, α) equal to (1, 1), (2, 2), and (3, 3) we get, respectively:
⎧
⎪⎨

⎪⎩

n3 ω2 ∂3ω2 + n2 ω3 ∂2ω3 − n2 ω2 ∂3ω3 − n3 ω3 ∂2ω2 + ε1jk ε1βγ ωj ωβ ∂knγ = 0,

n1 ω3 ∂1ω3 + n3 ω1 ∂3ω1 − n3 ω3 ∂1ω1 − n1 ω1 ∂3ω3 + ε2jk ε2βγ ωj ωβ ∂knγ = 0,

n2 ω1 ∂2ω1 + n1 ω2 ∂1ω2 − n1 ω1 ∂2ω2 − n2 ω2 ∂1ω1 + ε3jk ε3βγ ωj ωβ ∂knγ = 0.

(20)

Next, by adding term-by-term, Eq. (20) together with

(n2 ω2 ∂2 ω2 − n2 ω2 ∂2 ω2) + (n3 ω3 ∂3 ω3 − n3 ω3 ∂3 ω3)
+(n1 ω1 ∂1 ω1 − n1 ω1 ∂1 ω1) = 0,

we show that

ni ωk ∂iωk − (ωi ni)(∂kωk) + (ε1jk ε1βγ + ε2jk ε2βγ + ε3jk ε3βγ)ωj ωβ ∂knγ = 0

on ∂ Ω. Finally, since ∇ · ω = 0 we show that (17) holds. In particular, Eq. (18) follows as a consequence
of the well known Green’s formula

−
∫

Ω

�ω · ω dx =
∫

Ω

|∇ω|2 dx −
∫

∂Ω

∂ω

∂n
· ω dS, (21)

since (17) shows that there exists c = c(Ω) > 0 such that
∣
∣
∣
∣
∂ω(x)

∂n
· ω(x)

∣
∣
∣
∣ ≤ c |ω(x)|2, ∀x ∈ ∂Ω. (22)

�
We next observe that (17) immediately leads to the following result.

1 We assume summation over repeated indices.
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Lemma 3.2. Under the assumptions of Lemma 3.1, it follows that

− ∂ω

∂n
· ω = κ2 |ω1 |2 + κ1 |ω2 |2 (23)

on Γ. Here κj , j = 1, 2, denote the principal curvatures, and the ωj are the coordinates of ω with respect
to the τj, the unit tangent vectors to the principal directions. In particular, if Ω is convex, the boundary
integral in Eq. (21) is less or equal to zero.

Proof. Note that, with respect to the orthogonal system of coordinates {τ1, τ2, n }, the third component
ω3 vanishes.

The three “ε-terms” on the right-hand side of (17) have the same common value δj β δk γ − δj γ δk β .
So

− ∂ω

∂n
· ω = 3

( |ω |2 ∂knk − ( ∂knj )ωk ωj

)
. (24)

Denote by ∇n the 3× 3, self-adjoint, matrix with entries ∂knγ . With respect to the system of coordinates
{τ1, τ2, n }, defined in a suitable neighborhood of Γ, the matrix ∇n is diagonal, with diagonal elements
given by κ1, κ2, 0. So (23) follows from (24). �

Next, by applying the curl operatoron both sides of (1) we get the well-known equation
{

ωt + (u · ∇)ω − Δω = (ω · ∇)u in Ω×]0, T ],

∇ · ω = 0 in Ω×]0, T ].
(25)

By taking the scalar product of both sides of the first Eq. (25) with ω, by integrating in Ω, and by
appealing to Eq. (18) one gets (see [6], Lemma 2.6)

1
2

d

dt

∫

Ω

|ω|2dx +
∫

Ω

|∇ω|2 dx ≤ c

∫

∂ Ω

|ω|2 dS +

∣
∣
∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ω dx

∣
∣
∣
∣
∣
∣
. (26)

This easily leads to the main estimate (see [6], equation (23))

1
2

d

dt

∫

Ω

|ω|2dx +
1
2

∫

Ω

|∇ω|2 dx ≤ c(Ω)
∫

Ω

|ω|2dx +

∣
∣
∣
∣
∣
∣

∫

Ω

(ω · ∇)u · ω dx

∣
∣
∣
∣
∣
∣
. (27)

For an alternative proof see the Appendix.
The next section is dedicated to estimate the last integral on the right-hand side of Eq. (27).

4. Proof of Theorem 1.2

Lemma 4.1. Under the assumption (15), for almost all x ∈ Ω one has

|ωl ∂j ωk − ωk ∂j ωl | ≤ g(x, t) |ω |2, (28)

for each triplet of indexes {i, j, k }.
Proof. By setting y = x + h, where h < δ(t, x), from assumption (15) one shows that for almost all
x ∈ Ω,

|ω(x) × ω(x + h) | ≤ g(x, t) |h ||ω(x) | |ω(x + h) |,
for sufficiently small h. So,

∣
∣
∣ ω(x) × ω(x + h) − ω(x)

|h |
∣
∣
∣ ≤ g(x, t) |ω(x) | |ω(x + h) |. (29)

In particular, by letting h → 0, one gets
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|ω(x) × ∂j ω(x) | ≤ g(x, t) |ω(x) |2, (30)

for each j = 1, 2, 3. This implies that (28) holds for k �= l. For k = l the result is obvious. �

Lemma 4.1 allows us to get a simple bound for the second integral on the right-hand side of (27). In
fact,

∫

Ω

(ω · ∇)u · ω dx = −
∫

Ω

(∂j ωk)ωj uk dx −
∫

Ω

(∇ · ω) (u · ω) dx

+
∫

∂ Ω

(ω · u) (ω · n) dΓ.

Hence
∫

Ω

(ω · ∇)u · ω dx = −
∫

Ω

(
(∂j ωk)ωj − (∂j ωj)ωk

)
uk dx.

So, from (28) one gets
∣
∣
∣

∫

Ω

(ω · ∇)u · ω dx
∣
∣
∣ ≤

∫

Ω

g(x, t) |u| |ω|2 dx.

By Hőlder’s inequality
∣
∣
∣

∫

Ω

(ω · ∇)u · ω dx
∣
∣
∣ ≤ ‖ g ‖ 6

α
‖u ‖ 6

2− α
‖ω ‖2 ‖ω ‖6,

for each α ∈ [0, 1]. Hence, by (27), the immersion H1(Ω) ⊂ L6(Ω), and the interpolation inequality

‖u ‖2
6

2− α
≤ ‖u ‖1+ α

6 ‖u ‖1− α
2 ,

one gets
1
2

d

d t
‖ω‖2

2 +
1
4

‖∇ω‖2
2 ≤ c

(
1 + ‖ g ‖2

6
α

‖u ‖1+ α
6 ‖u ‖1− α

2

) ‖ω ‖2
2. (31)

Using one more time Hőlder’s inequality, now with respect to the time variable, we show that
T∫

0

( ‖ g(t) ‖2
6
α

‖u(t) ‖1+ α
6 ‖u(t) ‖1− α

2

)
dt

≤ ‖ g ‖2

L
4

1− α ( 0, T ; L
6
α (Ω) )

‖u ‖1+ α
L2( 0, T ; L6(Ω) ) ‖u ‖1− α

L∞( 0, T ; L2(Ω) ). (32)

If we set

a =
4

1 − α
, b =

6
α

,

we then get
T∫

0

( ‖ g(t) ‖2
6
α

‖u(t) ‖1+ α
6 ‖u(t) ‖1− α

2

)
dt

≤ ‖ g ‖2
La( 0, T ; Lb ) ‖u ‖2− 4

a

L2( 0, T ; L6(Ω) ) ‖u ‖ 4
a

L∞( 0, T ; L2(Ω) ), (33)

where now the parameters a and b are related by (14).
From (31) and (33) it follows that

‖ω ‖2
L∞( 0, T ; L2(Ω) ) ≤ ‖ω(0)‖2

exp
{

c
(
t + ‖ g ‖2

La( 0, T ; Lb ) ‖u ‖2− 4
a

L2( 0, T ; L6(Ω) ) ‖u ‖ 4
a

L∞( 0, T ; L2(Ω) )

) }
. (34)
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The boundedness of u in L∞( 0, T ; H1(Ω) ), hence regularity in ] 0, T ], follows. Theorem 1.2 is proved.
Turning back to (26), and employing to (34), we get a suitable estimate for ‖∇ω ‖2

L2( 0, T ; L2(Ω) ).
Estimates for ‖u ‖2

L∞( 0, T ; H1(Ω) ) and ‖u ‖2
L2( 0, T ; H2(Ω) ) follow easily.

5. Appendix

Here we give an alternative proof of (26). Set f = curl ω and g = ω in the identity
∫

Ω

(curl f) · g dx =
∫

Ω

f · (curl g ) dx +
∫

Γ

(n × f) · g dΓ. (35)

By taking into account that the mixed product (n × curl ω) · ω vanishes on Γ, it readily follows that

−
∫

Ω

(Δω ) · ω dx =
∫

Ω

| curl ω |2 dx,

where we have used the identity

Δ ω = −curl curl ω.

So, by dot-multiplying both sides of (25) by ω, and integrating by parts over Ω, we immediately infer
that

1
2

d

d t
‖ω‖2

2 + ‖ curl ω ‖2
2 =

∫

Ω

(
(ω · ∇)u

) · ω dx. (36)

As ∇· ω = 0 in Ω and ω × n = 0 on Γ, one has ‖∇ω ‖2
2 ≤ c (‖ curl ω ‖2

2 + ‖ω ‖2
2 ). Equation (26) follows.

An interesting, related, estimate follows by starting from the well-known equation

ωt − Δω + curl (ω × u ) = 0.

Scalar multiplication by ω, followed by integration over Ω plus suitable integration by parts lead to
1
2

d

d t
‖ω‖2

2 + ‖ curl ω ‖2
2 =

∫

Ω

u × ω · curl ω dx, (37)

since n × (ω × u ) · ω = 0.
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