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a b s t r a c t

We consider the Dirichlet boundary value problem for nonlinear N-systems of partial
differential equations with p-growth, 1 < p ≤ 2, in the n-dimensional case. For clearness,
we confine ourselves to a particularly representative case, the well known p-Laplacian
system.

We are interested in regularity results, up to the boundary, for the second order
derivatives of the solution. We prove W 2,q-global regularity results, for arbitrarily large
values of q. In turn, the regularity achieved implies the Hölder continuity of the gradient of
the solution. It is worth noting that we cover the singular case µ = 0. See Theorem 2.1.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We are concerned with the regularity problem for solutions of nonlinear systems of partial differential equations with
p-structure, p ∈ (1, 2], under Dirichlet boundary conditions. In order to emphasize the main ideas we confine ourselves to
the following representative case, where µ ≥ 0 is a fixed constant:

−∇ ·

(µ + |∇ u|)p−2

∇ u


= f in Ω,
u = 0 on ∂Ω.

(1.1)

The vector field u = (u1(x), . . . , uN(x)),N ≥ 1, is defined on a bounded domain Ω ⊂ Rn, n ≥ 3. When µ = 0, the system
(1.1) is the well-known p-Laplacian system. To avoidmeaningless specifications, we fix an arbitrarily large positive constant
µ0, and assume that µ ≤ µ0 everywhere.

It is worth noting that our interests concern global (up to the boundary), full regularity for the second derivatives of
the solutions. Our results also hold in the singular case µ = 0. For any bounded and sufficiently smooth domain Ω , we
prove W 2,q(Ω) regularity, for any arbitrarily large q. Therefore, we get, as a by product, the α-Hölder continuity, up to the
boundary, of the gradient of the solution, for any α < 1. The results are obtained for p belonging to intervals [C, 2), where
C are suitable constants, whose expression may be explicitly calculated. In particular, if Ω is convex, solutions belong to
W 2,2(Ω) for any 1 < p ≤ 2.

As usual, weak solutions of problem (1.1) are defined as follows (for notation and more precise statements see the
sequel).
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Definition 1.1. Assume that f ∈ W−1,p′

(Ω). We say that u is a weak solution of problem (1.1) if u ∈ W 1,p
0 (Ω) satisfies

Ω

(µ + |∇ u|)p−2
∇u · ∇ ϕ dx =


Ω

f · ϕ dx, (1.2)

for all ϕ ∈ W 1,p
0 (Ω).

We recall that the existence and uniqueness of a weak solution can be obtained by appealing to the theory of monotone
operators, following [1].

It is immediate to verify that, if µ > 0, sufficiently regular weak solutions to the problem (1.1) satisfy

− 1u − (p − 2)
∇u · ∇∇u · ∇u
(µ + |∇u|)|∇u|

= f (µ + |∇ u|)2−p . (1.3)

Here, and in the following,weuse the notation∇u·∇∇u·∇u to indicate the vectorwhose ith component is∇u·

∂j∇u


∂j ui =

(∂l uk)(∂
2
j l uk)(∂j ui).

In the sequel we start by proving the existence of a (unique) strong solution

u ∈ W 1,p
0 (Ω) ∩ W 2,q(Ω),

of problem (1.3), under homogeneous Dirichlet boundary conditions, in the case µ > 0 (see Theorem 3.1). Clearly, u solves
(1.2). Furthermore, we prove that theW 2,q(Ω) norms of the above strong solutions are uniformly bounded with respect to
µ. This allows us, by passing to the limit as µ → 0, to extend the W 2,q(Ω) regularity result to weak solutions of problem
(1.1) in the case µ = 0 (see Theorem 2.1).

The regularity issue for systems like (1.1) has received substantial attention, mostly concerned with the scalar case
(N = 1), and with C1,α

loc -regularity. Here and in the following, by local regularity wemean interior regularity. The pioneering
result dates back to Ural’tseva [2], where, for p > 2 and N = 1, the author proves C1,β

loc -regularity for a suitable exponent
β . Still in the case N = 1 we recall the following contributions. In [3] the author proves W 2,p

loc -regularity for any p < 2, and
alsoW 2,2

loc -regularity, for p > 2. In [4], for p > 2, the author proves C1,β-regularity up to the boundary, in Ω ⊂ Rn. In [5] the
authors show, for any p ∈ (1, 2),W 2,2

∩ C1,α-regularity up to the boundary, in Ω ⊂ R2.
For systems (solutions areN-dimensional vector fields,N > 1), we recall [6] for p ∈ (1, 2), [7,8] for p > 2, and [9] for any

p > 1. The results proved in papers [6–8] are local. Moreover all these papers deal only with homogeneous systems and the
techniques, sometimes quite involved, seem not to be directly applicable to the non-homogeneous setting. In particular, [6]
is the only paper in which the L2loc-regularity of second derivatives is considered. The results below are, in the non-scalar
case, the first regularity results up to the boundary, for the second derivatives of solutions.

For related results and for an extensive bibliography we also refer to papers [10–18] and references therein.
Last but not least, we recall the classical Ladyzhenskaya and Ural’tseva famous treatise [19], where related results and

deep methods are shown.
We observe that we do not consider a more general dependence on ∇u, as for instance ϕ(|∇u|) ∇u, under suitable

assumptions on the scalar function ϕ, just to emphasize the core aspects of the results and to avoid additional technicalities.
For the same reasonwe avoid the introduction of lower order terms. Note that another, very similar, representative case can
be obtained with the regular term (µ + |∇ u|2)

p−2
2 in place of (µ + |∇ u|)p−2 in (1.1). This latter function is only Lipschitz

continuous, hence in this case it seems not possible to get stronger regularity results. Finally one could also extend the
results to non-homogeneous Dirichlet boundary conditions, if the boundary data belongs to a suitableW 2,q-space.

Remark 1.1. Different, more intricate, proofs of Theorem 2.1 and its corollaries were given in [11], in the particular case
N = n = 3. In [11] we also consider the case where ∇ u is replaced by D u =

1
2 (∇ u + ∇ uT ), and p ∈ (1, +∞). Results

and proofs where also presented at the conference Vorticity, Rotation and Symmetry (II)—Regularity of Fluid Motion, held
at the CIRM, (Luminy, Marseille) from May 23–27, 2011.

2. Notation and statement of the main results

Throughout this paper we denote by Ω a bounded n-dimensional domain, n ≥ 3, with smooth boundary, which we
assume of class C2, and we consider the usual homogeneous Dirichlet boundary conditions

u|∂Ω = 0. (2.1)

By Lp(Ω) and Wm,p(Ω),m nonnegative integer and p ∈ (1, +∞), we denote the usual Lebesgue and Sobolev spaces,
with the standard norms ∥ · ∥Lp(Ω) and ∥ · ∥Wm,p(Ω), respectively. We usually denote the above norms by ∥ · ∥p and ∥ · ∥m,p,
when the domain is clear. Further, we set ∥ · ∥ = ∥ · ∥2. We denote by W 1,p

0 (Ω) the closure in W 1,p(Ω) of C∞

0 (Ω) and by
W−1,p′

(Ω), p′
= p/(p − 1), the strong dual ofW 1,p

0 (Ω) with norm ∥ · ∥−1,p′ .
In notation concerning norms and functional spaces, we do not distinguish between scalar and vector fields. For instance

Lp(Ω; RN) = [Lp(Ω)]N ,N > 1, is simply Lp(Ω).



Author's personal copy

4348 H. Beirão da Veiga, F. Crispo / Nonlinear Analysis 75 (2012) 4346–4354

We use the summation convention on repeated indexes. For any given pair of matrices B and C in RNn (linear space of
N × n-matrices), we write B · C ≡ Bij Cij.

We denote by the symbols c, c1, c2, etc., positive constants that may depend on µ; by capital letters, C, C1, C2, etc., we
denote positive constants independent of µ ≥ 0 (eventually, µ bounded from above). The same symbol c or C may denote
different constants, even in the same equation.

We set ∂i u =
∂ u
∂ xi

, ∂2
ij u =

∂2 u
∂ xi∂ xj

. Moreover we set (∇u)ij = ∂j ui. We denote by D2u the set of all the second partial
derivatives of u. Moreover we set

|D2u|2 :=

N
i=1

n
j,h=1

∂2
jh ui

2 . (2.2)

Before stating our main results, let us recall two well known inequalities for the Laplace operator. The first, namely

∥D2 v∥ ≤ C1∥1v∥, (2.3)

holds for any function v ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω), with C1 = C1(Ω). Note that C1 = 1 if Ω is convex. For details we refer

to [20, Chapter I, estimate (20)]. The second kind of estimates which we are going to use says that

∥D2 v∥q ≤ C2(q) ∥1v∥q, (2.4)

for v ∈ W 2,q(Ω) ∩ W 1,q
0 (Ω), q > 1, where the constant C2 depends on q and Ω . It relies on standard estimates for solution

of the Dirichlet problem for the Poisson equation. Actually, there is a constant K , independent of q, such that

C2(q) ≤ K q, (2.5)

for q > 2 n
n+2 . Similarly, one has

∥v∥ 2,q ≤ C∥1v∥q, (2.6)

where the constant C depends on q and Ω . For further details we refer to [21,22]. For convenience, since we are interested
in large values of q, we assume from now on that q ≥ 2.

We set

r(q) =

 nq
n(p − 1) + q(2 − p)

if q ∈ [ 2, n],

q if q ≥ n.
(2.7)

Note that r(q) is a strictly increasing function. Moreover, r(q) > q for any q < n. Clearly, in (2.7), r(n) = n in booth cases.
Our main results is the following.

Theorem 2.1. Let be µ ≥ 0. Further, let p ∈ (1, 2] and q ≥ 2, q ≠ n, be such that the couple (p, q) satisfies the condition

(2 − p) C2(q) < 1, (2.8)

where C2(q) is given by (2.4). In particular (2.8) holds if

2 −
1
K q

< p ≤ 2, (2.9)

where K is independent of q (see (2.5)).
Assume that f ∈ Lr(q)(Ω), and let u be the unique weak solution of problem (1.1). Then u belongs to W 2,q(Ω). Moreover, the

following estimate holds

∥u∥2,q ≤ C


∥f ∥q + ∥f ∥
1

p−1
r(q)


. (2.10)

Corollary 2.1. Let p, µ, q, and f be as in Theorem 2.1. Then, if q > n, the weak solution of problem (1.1) belongs to C1,α(Ω), for
α = 1 −

n
q .

In particular, when q = 2, one has the following corollary.

Corollary 2.2. Let p ∈ (1, 2] satisfy (2 − p) C1 < 1, where C1 is defined by (2.3). Assume that µ ≥ 0. Let f ∈ Lr(2)(Ω), where

r(2) =
2n

(n − 2) p + (4 − n)
, (2.11)
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and let u be the unique weak solution u of problem (1.1). Then u belongs to W 2,2(Ω). Moreover, there is a constant C such that

∥u∥2,2 ≤ C


∥f ∥ + ∥f ∥
1

p−1
r(2)


. (2.12)

If Ω is convex the result holds for any 1 < p ≤ 2.

It is worth noting that in the limit case p = 2, when system (1.1) reduces to the Poisson equations, we recover exactly the
well known result

∥u∥2,q ≤ C∥f ∥q,

since r(q) = q for p = 2.
Note that in estimates (2.10) and (2.12), the terms ∥f ∥q and ∥f ∥ can be replaced by 1.

Remark 2.1. One could also consider the case where f ∈ Ln(Ω). We omit this further case and leave it to the interested
reader. In this regard we stress that our interest mostly concerns the maximal integrability of the second derivatives of the
solution.

We end this section by some remarks:
It could be more natural to state the results by inverting the (strictly increasing) function r = r(q) since, in practice, r

is given and we look for q. This means to consider the inverse function q = q(r), to assume f ∈ Lr(Ω), and conclude that
u ∈ W 2, q(r)(Ω).

Let us make some comment on practical application of Theorem 2.1. The p-growth exponent is fixed, as soon as we
consider the problem (1.1). Next, by assuming that right hand sides f are given in some Ls(Ω) space, we look for the solution
q to the equation r(q) = s (note that this equation depends on the given value p). If the pair (p, q) enjoys (2.8), the solution
u belongs toW 2, q(Ω). Otherwise, we look for the largest valueq ≥ 2 for which (2.8) holds. Since r(q) < r(q) = s, it follows
that f ∈ Lr(q)(Ω). Hence Theorem 2.1 shows that u ∈ W 2,q(Ω). Roughly speaking, in this last case, f is ‘‘unnecessarily’’
regular.

An interesting question is to look for the minimal Ls-regularity needed by f in order to prove that the second derivatives
of solutions are integrable with some exponent q. In our framework the values s are artificially restricted from below, due to
the assumption q ≥ 2. However, it is easily checked that the proof of Theorem 2.1 also hold without this restriction. Some
restriction is necessary if we want to appeal to (2.5). For instance q > 2 n

n+2 .
Finallywe note that, in the presence of the same right hand side f , the regularity proved for the solutions tends to increase

with the growth’s exponent p, since the value r(q), for fixed q, is a decreasing function of p (strictly decreasing if q < n).

3. Proof of Theorem 2.1. The case µ > 0

In this section we assume that µ > 0. Let us consider the system (1.3). In the left hand side of (1.3) the fraction is
continuously extended by zero to ∇ u = 0. Formally the system (1.3) can be obtained from system (1.1) by computing the
divergence on the left-hand side and then multiplying the equation by (µ + |∇ u|)2−p.

It is immediate to verify that if u is a sufficiently regular solution of (1.3), say u ∈ W 2,2(Ω), then u is a weak solutions of
(1.1). So, from the uniqueness of weak solutions of (1.1), it follows that to prove Theorem 2.1 under the assumption µ > 0
it is sufficient to prove the following result for strong solutions.

Theorem 3.1. Let beµ > 0. Further, let p ∈ (1, 2] and q ≥ 2, q ≠ n, be such that the couple (p, q) satisfies the condition (2.8).
Let f ∈ Lr(q)(Ω) for some q ≥ 2 and q ≠ n. Then, there is a strong solution u ∈ W 2,q(Ω) of problem (2.1), (1.3). Moreover, the
following estimate holds

∥u∥2,q ≤ C


∥f ∥q + ∥f ∥
1

p−1
r(q)


. (3.1)

In the sequel we appeal to the following fixed point theorem in order to prove Theorem 3.1. In order to avoid
misunderstanding between indexes concerning sequences and lower indexes concerning components of a vector, the first
ones will be denoted by upper-indexes.

Theorem 3.2. Let X be a reflexive Banach space and K a non-empty, convex, bounded, closed subset of X. Let F be a map defined
in K, such that F(K) ⊂ K.

Assume that there is a Banach space Y such that:

(i) X ⊂ Y , with compact (completely continuous) immersion.
(ii) If vn

∈ K converges weakly in X to some v ∈ K then there is a subsequence vm such that F(vm) → F(v) in Y .

Under the above hypotheses the map F has a fixed point in K.
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For the proof and some comments see Section 5.
In the sequel we appeal to the above theorem with X = W 2, q and Y = Lq. Clearly, point (i) in Theorem 3.2 holds.

Proof of Theorem 3.1. For any v ∈ W 2,q
∩ W 1,q

0 we define C3 = C3(q) by

∥∇ v∥q∗ ≤ C3∥1v∥q, if q ∈ (1, n),
∥∇ v∥∞ ≤ C3∥1v∥q, if q ∈ (n, +∞).

(3.2)

These estimates can be easily obtained by applying the Sobolev embeddings and then using estimate (2.6).
Define δ by

δ = 1 − (2 − p) C2,

where C2 is given by (2.4), and fix a positive real a by

1 + 2 C2−p
3 a2−p

≤ a δ.

Note that, under our assumptions, δ > 0. It is worth noting that δ, a and b are constants of type C .
Define

K = {v ∈ W 2, q(Ω) : ∥1v∥q ≤ R, v = 0 on ∂Ω},

where

R = a


∥f ∥q + ∥f ∥
1

p−1
r(q)


.

Let f ∈ Lr(q) be given. For each v ∈ K define u = F(v) as being the solution to the linear problem−1u = (p − 2)
∇v · ∇∇v · ∇v

(µ + |∇v|)|∇v|
+ f (µ + |∇ v|)2−p , in Ω,

u = 0, on ∂Ω.
(3.3)

To apply Theorem 3.2 we start by showing that F(K) ⊂ K. Note that if the right-hand side of (3.3) belongs to Lq(Ω), from
well known results on the Poisson equation, there exists a unique u ∈ W 2,q(Ω) solving the Dirichlet problem (3.3). For
q ∈ (1, n), by using (3.2)1 we have

∥|∇v|
2−p f ∥q ≤ ∥∇v∥

2−p
q∗ ∥ f ∥r(q) ≤ C2−p

3 ∥1v∥
2−p
q ∥ f ∥r(q).

For q > n, by using (3.2)2, and by recalling that r(q) = q if q > n, we have

∥|∇v|
2−p f ∥q ≤ ∥∇v∥

2−p
∞

∥ f ∥q ≤ C2−p
3 ∥ 1v∥

2−p
q ∥ f ∥q.

So, in both the cases,

∥|∇v|
2−p f ∥q ≤ C2−p

3 ∥1v∥
2−p
q ∥ f ∥r(q). (3.4)

Therefore, since the first term on the right-hand side of (3.3) obviously belongs to Lq(Ω), there exists a unique u ∈ W 2,q(Ω)
solving the Dirichlet problem (3.3).

It remains to show that u satisfies the estimate ∥1u∥q ≤ R. We multiply both sides of Eq. (3.3) by −1u|1u|q−2, and
integrate in Ω . Note that (for details see the Appendix)

|I| := |(∇v · ∇∇v · ∇v) · 1u| ≤ |∇v|
2
|D2 v| |1u|. (3.5)

We get
Ω

|1u|q dx ≤ (2 − p)


Ω

|D2v| |1u|q−1 dx +


Ω

(µ + |∇v|)2−p
|f | |1u|q−1 dx.

The Hölder inequality and the inequality (µ + |∇v|)2−p
≤ 1 + |∇v|

2−p yield

∥ 1u∥q
q ≤ (2 − p)∥D2v∥q∥ 1u∥q−1

q + ∥ f ∥q∥ 1u∥q−1
q + ∥|∇v|

2−p f ∥q∥ 1u∥q−1
q , (3.6)

and, by dividing both sides by ∥ 1u∥q−1
q , one has

∥ 1u∥q ≤ (2 − p)∥D2 v∥q + ∥ f ∥q + ∥|∇v|
2−p f ∥q. (3.7)

Let us estimate the last term on the right-hand side of (3.7). Since v ∈ K , one has

∥1v∥
2−p
q ≤ a2−p


∥f ∥2−p

q + ∥f ∥
2−p
p−1
r(q)


. (3.8)
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Hence, from (3.4), by using (3.8) and

∥f ∥2−p
q ∥f ∥r(q) ≤ ∥f ∥q + ∥f ∥

1
p−1
r(q) ,

one gets

∥|∇v|
2−p f ∥q ≤ C2−p

3 a2−p


∥f ∥q + 2∥f ∥
1

p−1
r(q)


.

Therefore (3.7) becomes

∥1u∥q ≤


(2 − p) C2 a + 1 + 2 C2−p

3 a2−p


∥f ∥q + ∥f ∥
1

p−1
r(q)


, (3.9)

where we have appealed to (2.4). Finally from the definition of δ, it readily follows that u ∈ K. So, F(K) ⊂ K.
To end the proof of Theorem 3.1 it is sufficient to show the following result (which corresponds to point (ii) in

Theorem 3.2).

Proposition 3.1. Let vn ⇀ v weakly in W 2, q, where vn
∈ K. If un

= F(vn) are the solutions to the problem

− 1un
= (2 − p)

∇vn
· ∇∇vn

· ∇vn

(µ + |∇vn|)|∇vn|
+ f


µ + |∇ vn

|
2−p

, (3.10)

then there is a subsequence vm of vn such that um
= F(vm) → u in Y = Lq, where u = F(v).

In the sequel we use the label (3.10)l to mean that the sequences un and vn are replaced by subsequences ul and vl

respectively. For instance we can denote identity (3.10) also by (3.10)n.
Since un

∈ K, there is a subsequence uk and an element u ∈ K such that uk ⇀ u weakly in W 2, q (since this space is
reflexive). In particular −1 uk ⇀ −1 uweakly in Lq. Moreover, uk

→ u strongly inW s, q, for each s < 2, hence uk
→ u in

Y = Lq.
The proof is accomplished by showing that one can pass to the limit in (3.10)m, along subsequences um and vm, to obtain

− 1u = (p − 2)
∇v · ∇∇v · ∇v

(µ + |∇v|)|∇v|
+ f (µ + |∇ v|)2−p . (3.11)

To prove the proposition it is sufficient to consider the Eq. (3.10)k and to show that there is a subsequence vm of vk such that
each of the two terms in the right hand side of (3.10)m converge, in the distributional sense, to the corresponding terms in
Eq. (3.11). This verification would be quite immediate. However, we rather prefer to prove the convergence in a topology
stronger than the distributional one.

It is worth noting that below, on passing to the limit, the particular structure of the fractional term in the right hand side
of Eq. (3.10) has not a particular role. So, for clearness and also to simplify notation, we denote similar single terms by the
same notation, by setting

A(w) =
(∂l wk) (∂j wi)

(µ + |∇w|)|∇w|
,

and also ∂2 w = ∂2
j l wk, for arbitrary vector fields w and indexes l, j, k, i. Clearly, we may appeal to successive extraction

of subsequences.

Lemma 3.3. There is a subsequence vm of vk such that

A(vm) → A(v),

strongly in Lt , for each finite t > 1.
Proof. Since, in particular, vk

→ v in W 1,q, it follows, by a classical result, that almost everywhere convergence of the
gradient in Ω also holds, for some vm. So, A(vm) → A(v), a.e. in Ω . Further, |A(w(x))| ≤ 1, point-wisely. Hence

|A(vm(x)) − A(v(x))|t ≤ 2t .

The desired norm-convergence follows by appealing to Lebesgue’s dominated convergence theorem. �
Next, we prove that each of the two terms in the right hand side of (3.10)m converges to the corresponding term in Eq. (3.11).
We start by the first term. Each single addend has the form A(vm) ∂2 vm, where ∂2 w denotes an arbitrary, fixed, second order
derivative. We prove the following result.

Lemma 3.4. One has

A(vm) ∂2 vm ⇀ A(v) ∂2 v

weakly in Ls, for each s < q.
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Proof. Set g = A(v), gm
= A(vm), h = ∂2 v, and hm

= ∂2 vm. Clearly, hm ⇀ h weakly in Lq. Moreover, by the previous
lemma, gm

→ g strongly in Lt , t :=
q s
q−s .

Write

gm hm
− g h = g(hm

− h) + (gm
− g) hm, (3.12)

and let φ ∈ Lq
′

. Since g(x) is bounded it follows that g φ ∈ Lq
′

. So the quantity

⟨ g(hm
− h), φ ⟩ = ⟨(hm

− h), g φ ⟩

goes to zero as m → ∞. This proves the weak convergence to zero, in Lq, of the first term in the right hand side of (3.12).
On the other hand, by the Hölder inequality,

∥(gm
− g) hm

∥
s
s ≤ ∥ gm

− g∥s
q s
q−s

∥ hm
∥
s
q.

This proves the strong convergence to zero, in Ls, of the second term in the right hand side of (3.12). In conclusion, the first
term in the right hand side of (3.10)m converges to the first term in the right hand side of (3.11). �

Finally, the convergence of the second term in the right hand side of (3.10)m to the corresponding term in (3.11) holds, since

|(µ + |∇ vm
|)2−p

− (µ + |∇ v|)2−p
| ≤

2 − p
µp−1

|∇ vm
− ∇ v|.

By the Cauchy–Schwarz inequality

∥ f (µ + |∇ vm
|)2−p

− f (µ + |∇ v|)2−p
∥ q

2
≤

2 − p
µp−1

∥ f ∥q ∥∇ vm
− ∇ v∥q,

and the right-hand side goes to zero thanks to the compact embedding ofW 2, q in W 1, q.
The solution u obviously satisfies (3.1), as u ∈ K. �

4. Proof of Theorem 2.1. The case µ = 0

In the previous step we have obtained estimates on the Lq-norm of the second derivatives, uniformly in µ, µ > 0. Let us
denote by uµ the ‘‘sequence’’ of solutions of (1.1) for the different values of µ > 0. We have shown that the sequence uµ is
uniformly bounded in W 2,q(Ω). Therefore, there exists a vector field u ∈ W 2,q(Ω) and a subsequence, which we continue
to denote by uµ, such that uµ ⇀ u weakly in W 2,q(Ω), and, by Rellich’s theorem, strongly in W 1,s(Ω), for any s if q > n,
and for s < q∗ if q < n. In particular uµ converges to u strongly inW 1,p(Ω). Let us prove that

Ω

|∇u|p−2
∇u · ∇ϕ dx = lim

µ→0+


Ω

(µ + |∇uµ
|)

p−2
∇uµ

· ∇ϕ dx, (4.1)

for any ϕ ∈ W 1,p
0 (Ω). We write the integral on the right-hand side of (4.1) as

Ω


(µ + |∇uµ

|)
p−2

∇uµ
− (µ + |∇u|)p−2

∇u


· ∇ϕ dx +


Ω

(µ + |∇u|)p−2
∇u · ∇ϕ dx, (4.2)

and we recall the following well known estimate (see, for instance, [23])

|(µ + |A|)p−2A − (µ + |B|)p−2B| ≤ C
|A − B|

(µ + |A| + |B|)2−p
, (4.3)

for any pair A and B in RNn, where C is a positive constant independent of µ. By applying (4.3), followed by the Hölder
inequality, we get

Ω

(µ + |∇u|)p−2
∇u · ∇ϕ dx −


Ω

(µ + |∇uµ
|)

p−2
∇uµ

· ∇ϕ dx


≤ C


Ω

(µ + |∇u| + |∇uµ
|)

p−2
|∇u − ∇uµ

| |∇ϕ|dx

≤ C


Ω

|∇u − ∇uµ
|
p−1

|∇ϕ|dx ≤ C∥∇uµ
− ∇u∥p−1

p ∥∇ϕ∥p. (4.4)

The second inequality in (4.4) easily comes from |∇u− ∇uµ
| ≤ |∇u| + |∇uµ

|. We may also appeal to [24], Lemma 6.3, that
can be particularly useful for extension to more general operators.
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The right-hand side of the last inequality tends to zero, as µ goes to zero, thanks to the strong convergence of uµ to u in
W 1,p(Ω). On the other hand, since(µ + |∇u|)p−2

∇u · ∇ϕ
 ≤ |∇u|p−1

|∇ϕ|

and

(µ + |∇u|)p−2
∇u → |∇u|p−2

∇u, a.e. on Ω,

we apply Lebesgue’s dominated convergence theorem to obtain

lim
µ→0+


Ω

(µ + |∇u|)p−2
∇u · ∇ϕ dx =


Ω

|∇u|p−2
∇u · ∇ϕ.dx.

The proof of (4.1) is accomplished.
Finally, for each µ > 0, the right-hand side of (4.1) is equal to


Ω
f · ϕ dx. So, u satisfies the integral identity (1.2). Hence

u is a weak solution of (1.1), and belongs toW 2,q(Ω). Eq. (2.12) follows since ∥ u∥2,q ≤ lim infµ→0+ ∥ uµ
∥2,q.

Corollary 2.1 is an immediate consequence of Theorem 2.1, by using the regularity of the domain and the Sobolev
embedding.

The results in Corollary 2.2 can be obtained by replacing in the proof of Theorem 2.1, hence in the proof of Theorem 3.1,
the constant C2 with the constant C1. The last assertion in Corollary 2.2 follows from the validity of (2.3), for a smooth convex
domain, with C1 = 1. We omit further details.

5. The fixed point theorem. Proof and remarks

Theorem 3.2 is a simplification of an idea introduced in Ref. [25] to prove existence of strong solutions to initial boundary
value problems for non-linear systems of evolution equations, specially in Sobolev spaces. See Section 3, in the above
reference. Successively, themethod has been appliedwith success tomany other problems, in particular to the compressible
Euler equations (see [26]). Main requirements, in applications, are the reflexivity of the Banach space X , and its sufficiently
strong topology. Schauder’s fixed point theorem is applied with respect to a quite arbitrary ‘‘container space’’ Y . Roughly
speaking, the above two properties allow us to trivialize both compactness and continuity requirements, respectively. So,
to apply the theorem, the main point is to show that F(K) ⊂ K, for some convex, bounded, closed subset K.

Proof of Theorem 3.2. Obviously K is convex, bounded, and pre-compact in Y .
Let yn ∈ K converge to some y in the Y norm. We start by showing that K is closed, hence compact, in Y , and that

the sequence yn ⇀ y weakly in X . Since K is X-bounded, and X is reflexive, there is a subsequence ym which is X-weakly
convergent to some u ∈ X . Since the immersion X ⊂ Y is continuous, ym is also weakly convergent to u in Y . Since, by
assumption, this sequence is strongly convergent in Y to y, it follows that u = y. Further, since convex sets in Banach spaces
are weakly closed if and only if they are strongly closed, it follows that y ∈ K. So, K is Y -closed. Further, from the uniqueness
of the limit y, we deduce that the whole sequence yn converges weakly in X to y.

Finally, to prove that F(yn) → F(y) strongly in Y it is sufficient to show, by using standard arguments, that any
subsequence yk contains a subsequence ym such that F(ym) → F(y) strongly in Y . Obviously, yk ⇀ y weakly in X . By
assumption (ii), there is a subsequence ym such that F(ym) → F(y) strongly in Y . This shows that the map F is continuous
on K with respect to the Y topology. So, Schauder’s fixed point theorem guarantees the existence of, at least, one fixed point
y0 ∈ K, F(y0) = y0. �
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Appendix

We prove here the estimate (3.5). One has

|I| =


j, l


i

(1ui)(∂j vi)


k

(∂l vk)(∂
2
j l vk)

.



Author's personal copy

4354 H. Beirão da Veiga, F. Crispo / Nonlinear Analysis 75 (2012) 4346–4354

By appealing to the Cauchy–Schwarz inequality one shows that

|I| ≤


j, l

(|1u| |∂j v|)(|∂l v||∂2
j l v|)

≤ |1u|

j, l

(|∂j v| |∂l v|)|∂2
j l v|

≤ |1u|


j, l

|∂j v|
2
|∂l v|

2

 1
2

|D2 v|.

Eq. (3.5) follows.
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