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Abstract. We show that, in general, the solutions to the initial-boundary value problem for the Navier-Stokes equations
under a widely adopted Navier-type slip boundary condition do not converge, as the viscosity goes to zero, to the solution
of the Euler equations under the classical zero-flux boundary condition, and same smooth initial data, in any arbitrarily
small neighborhood of the initial time. Convergence does not hold with respect to any space-topology which is sufficiently
strong as to imply that the solution to the Euler equations inherits the complete slip type boundary condition. In our
counter-example Ω is a sphere, and the initial data may be infinitely differentiable. The crucial point here is that the
boundary is not flat. In fact (see Beirão da Veiga et al. in J Math Anal Appl 377:216–227, 2011) if Ω = R

3
+, convergence

holds in C([0, T ]; W k,p(R3
+)), for arbitrarily large k and p. For this reason, the negative answer given here was not expected.

1. Introduction

In some recent papers, see [1], [2], [3], we have considered the problem of the strong convergence up to
the boundary, as ν → 0, of the solutions uν of the Navier-Stokes equations in the cylinder Ω × (0, T )

⎧
⎨

⎩

∂t uν + (uν · ∇)uν − ν Δ uν + ∇πν = 0,
div uν = 0,
uν(0) = u0,

(1.1)

under the slip boundary conditions at ∂Ω × (0, T )
{

uν · n = 0,
ων × n = 0,

(1.2)

where ω = curl u , to the solution u of the Euler equations
⎧
⎨

⎩

∂t u + (u · ∇)u + ∇π = 0,
div u = 0,
u(0) = u0,

(1.3)

under the zero flux boundary condition

u · n = 0. (1.4)

The domain Ω is an open set in R
3 locally situated on one side of its boundary Γ, and n = (n1, n2, n3)

is the unit outward normal to Γ. We have showed, [1], [2], [3] that strong convergence holds provided
that the boundary is flat. In particular, in the half-space case we proved [3] that if the initial data are
in W k,p(R3

+), then convergence holds in C([0, T ];W k,p(R3
+)), for arbitrarily large k and p. Moreover, a

minimal set of independent, necessary and sufficient, compatibility conditions on Γ at t = 0 is displayed.
These conditions appear only if k ≥ 4.

The natural next step is to study if and how the above results continue to hold in the presence of
non-flat boundaries. As a matter of fact, in the two-dimensional case the answer turns out to be positive;
see, for instance, [4]. In the three dimensional case, the strong inviscid limit appears, instead, to be a
much more complicated issue and, so far, an open problem; see [1] for a quite complete discussion on this
problem, and for proofs of related useful equations.
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In the recent paper [6] an interesting new approach to the problem is introduced. Notwithstanding,
the method of proof only fully works if the boundary is flat. This fact was pointed out in the subsequent
papers [1] and [2] where it was emphasized that the non-flat boundary problem remains still unsettled;
for a review on these results see also [5].

Objective of this note is to show that a strong inviscid limit result, in the presence of non-flat bound-
aries, is false in general. Roughly speaking by “strong” we mean that it is taken in function spaces such
that all the derivatives that appear in the equations, including the boundary conditions, are integrable.
In particular the result is false in general, when Ω is a sphere, and even for C∞(Ω) divergence free initial
data which satisfy the slip boundary conditions (1.2). For instance, as ν tends to zero, the solutions to
the Navier-Stokes equations do not converge to the solution of the Euler equations in L1(0, t0;W s,q), for
any arbitrarily small t0 > 0, any q ≥ 1, and any s > 1 + 1

q . Note that the above unique solution to the
Euler equations is infinitely differentiable, and the above solutions to the Navier-Stokes equations are
“smooth”.

Remark 1.1. On flat portions of the boundary, the slip boundary conditions coincide with the classical
Navier boundary conditions

{
u · n = 0,
t · τ = 0,

(1.5)

where τ stands for any arbitrary unit tangential vector. Here t is the stress vector defined by t = T · n,
where the stress tensor T is defined by

T = −π I +
ν

2
(∇u + ∇uT ).

These conditions were introduced by Navier in 1823 and derived by Maxwell in 1879 from the kinetic
theory of gases. In the general case

t · τ =
ν

2
(ω × n) · τ − ν Kτ u · τ , (1.6)

where Kτ is the principal curvature in the τ direction, positive if the corresponding center of curvature
lies inside Ω .

Note that our counter-example does not exclude that strong vanishing results hold under the Navier
boundary conditions in the non-flat boundary case.

We end the introduction by stating the following two theorems.

Theorem 1.1. Let Ω = {x : |x | < 1 } be the 3-dimensional unitary sphere. There is an explicit family (see
the Theorem 3.1) of C∞(Ω) , divergence free initial data u0 , which satisfies the slip boundary conditions
(1.2), and such that the following holds. Given an element u0 belonging to the above family, there exists
a t0 > 0 such that the corresponding (unique, indefinitely differentiable) local solution u(t) to the Euler
equations (1.3), (1.4) does not satisfy the boundary condition ω × n = 0, for any t ∈ (0, t0].

In particular, the following result holds.

Theorem 1.2. Let u0 be a given, fixed, initial data belonging to the class referred in the above
Theorem 1.1. Denote by uν the ν−family of solutions to the Navier–Stokes equations (1.1), (1.2) with
initial data u0 , and denote by u the solution of the Euler equations (1.3), (1.4) with initial data u0.

Then, there do not exist a t0 > 0 and exponents q ≥ 1 and s > 1 + 1
q such that uν converges to

u in L1(0, t0;W s, q(Ω) ). The particular case L1(0, t0; W 2,1(Ω) ) is also included in this statement.

Remark 1.2. Actually the convergence in the above theorem 1.2 fails for any arbitrary subsequence, even
under weaker convergence hypotheses.

Plan of the paper : In section 2 we show how to turn the proofs of the above two theorems into the
construction of a suitable class of vector fields (called here “counter-examples”). In section 3 we explicitly
construct the above vector fields.
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2. Reduction to a Functional Problem in Space Variables

In spite of the exceptionally strong convergence results in the case of flat boundaries, at a certain point we
became inclined to believe that a strong inviscid limit result is false in general. This guess led us to look for
a counter-example, by reductio ad absurdum, as follows. Let u0 be a smooth divergence free initial data,
which satisfies the slip boundary conditions (1.2), and denote by uν and u the corresponding solutions
to the above Navier–Stokes and Euler boundary value problems. Moreover, assume (per absurdum) that
uν converges to u as ν goes to zero, with respect to a specific τ−topology, which (by assumption) is
sufficiently strong as to imply that the limit u(t) inherits the boundary condition ων × n = 0 near t = 0
[for instance, convergence in L1(0, t0;W 2,1) ]. This would imply that the Euler equations (1.3) under the
classical boundary condition (1.4) necessarily enjoy the following persistency property : if a smooth initial
data satisfies the additional boundary condition ω(0) × n = 0, then at least for small times, ω(t) must
verify this same property (we note that this was also considered as an open problem). It follows that,
in order to contradict the possibility of the above τ−convergence result, it is sufficient to contradict the
above persistency property for the Euler equations. Next, by arguing as follows, we turn the proof of the
absence of the above persistency property into a problem concerning only the space variables. External
multiplication of the Euler vorticity equation by the normal n , point-wise on Γ, leads to the equation

∂t (ω × n ) − curl (u × ω) × n = 0. (2.1)

If the persistency property holds, the first term in the above equation must vanish identically on Γ, at
time t = 0 . Hence the second term must verify the same property, say

curl (u0 × ω0) × n = 0 (2.2)

on Γ .
Consequently, in order to prove that the above persistence property does not hold and, a fortiori, that

the above τ−inviscid limit result does not hold in general, it is sufficient to solve the following problem.

Problem 2.1. To exhibit a smooth, divergence free vector field u0 , in a bounded, regular, open set Ω,
which satisfies the slip boundary conditions everywhere on Γ , but does not satisfy, somewhere on Γ, the
boundary condition (2.2).

Below, we succeed in constructing, globally in Ω, a wide class of C∞(Ω) vector fields for which the
above, negative, result holds. We assume Ω to be the three-dimensional unitary sphere and display our
vector field in spherical coordinates. Once the vector fields are known, the verification of the desired
properties is straightforward.

3. The Counter-Example

In what follows we use spherical coordinates (r, θ, ϕ). For any vector field u, we denote by ur, uθ and uϕ

the components of u in the orthonormal, positively oriented, local basis
(
er, eθ, eϕ

)
. Just for convenience,

let us recall the expressions of ∇ · u and ω in this curvilinear coordinate system:

∇ · u =
1
r2

∂

∂r
(r2 ur) +

1
r sin θ

∂

∂θ
(uθ sin θ) +

1
r sin θ

∂uϕ

∂ϕ
; (3.1)

curl u =
1

r sin θ

(
∂

∂θ
(uϕ sin θ) − ∂uθ

∂ϕ

)

er

+
1
r

(
1

sin θ

∂ur

∂ϕ
− ∂

∂r
(r uϕ)

)

eθ +
1
r

(
∂

∂r
(r uθ) − ∂ur

∂θ

)

eϕ. (3.2)

We also recall that, for a scalar field f = f(r, θ, ϕ),

∇ f =
∂ f

∂r
er +

1
r

∂ f

∂θ
eθ +

1
r sin θ

∂ f

∂ϕ
eϕ. (3.3)
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We consider the three-dimensional unitary sphere Ω = {x : r < 1 }, and denote by Γ its boundary. The
unit external normal is denoted by n. Clearly n = er on Γ.

Let h(r) be a C∞ ([0,+∞)) real function, and g(θ, ϕ) be a C∞([0, π] × R) real function, 2π-periodic
on ϕ. Just for convenience, we assume that h(r) vanishes in a neighborhood of r = 0 and g(θ, ϕ) vanishes
for θ in a neighborhood of θ = 0 and θ = π (and arbitrary ϕ). Set

G(θ, ϕ) =
∂

∂θ

(

sin θ
∂g

∂θ

)

+
1

sin θ

∂2g

∂ϕ2
.

Theorem 3.1. Let u be the vector field

u = − h(r)
sin θ

∂g

∂ϕ
eθ + h(r)

∂g

∂θ
eϕ. (3.4)

Then the following results hold:

(i) ∇ · u = 0 in Ω, u · n = 0 on Γ.
(ii) If h(1) + h′(1) = 0 , then ω × n = 0 on Γ.
(iii) If h(1) + h′(1) = 0 , with h(1) �= 0, and if

∂g

∂ϕ
�= 0 and G(θ, ϕ) �= 0 (3.5)

at a point P on Γ, then [ curl(u × ω)]θ �= 0 in a neighborhood of P . Similarly if h(1) + h′(1) = 0,
with h(1) �= 0 and if

∂g

∂θ
�= 0 and G(θ, ϕ) �= 0 (3.6)

at a point P on Γ, then [ curl(u × ω) ]ϕ �= 0 in a neighborhood of P .

Proof. Claims in (i) follow by a straightforward calculation, using (3.1) and recalling that n = er on Γ.

By using (3.2), and by observing that (3.4) yields ur =
∂ur

∂θ
=

∂ur

∂ϕ
= 0 in Ω, we show that ω is given

in Ω by

ω = ωr er + ωθ eθ + ωϕ eϕ

=
h(r)

r sin θ
G(θ, ϕ) er − 1

r

∂

∂r
(r h(r))

∂g

∂θ
eθ − 1

r sin θ

∂

∂r
(r h(r))

∂g

∂ϕ
eϕ.

In particular, on Γ the vector field ω × n is given by

ω × n = ωϕ eθ − ωθ eϕ = − 1
r sin θ

∂

∂r
(r h(r))

∂g

∂ϕ
eθ +

1
r

∂

∂r
(r h(r))

∂g

∂θ
eϕ.

Therefore, if ∂
∂r (r h(r))|r=1 = 0, we get ω × n = 0 on Γ. This proves (ii).

Let us pass to the last point (iii). From the previous steps, we have

ur = ωθ = ωϕ = 0 on Γ. (3.7)

Set v = u × ω. Since ur = 0 in Ω, v is given by

v = (uθ ωϕ − uϕ ωθ) er + uϕ ωr eθ − uθ ωr eϕ. (3.8)

Note that ω × n = 0 on Γ implies that v is tangential to Γ. Hence,

vr =
∂vr

∂θ
=

∂vr

∂ϕ
= 0 on Γ. (3.9)

Further, from (3.7), it follows

vθ = uϕ ωr and vϕ = −uθ ωr, on Γ.
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By recalling (3.2) and then using (3.7), (3.8) and (3.9), we show that the θ and the ϕ components of
curl v on Γ are given by

[ curl v ]θ = − 1
r

∂

∂r
(r vϕ)

and

[ curl v ]ϕ =
1
r

∂

∂r
(r vθ),

respectively.
Straightforward calculations lead to

[ curl v ]θ = − 2
sin2 θ

h(1)h′(1)
∂g

∂ϕ
G(θ, ϕ) on Γ.

Therefore, if h(1) �= 0 (hence h′(1) �= 0 by h(1)+h′(1) = 0 ) and if (3.5) is satisfied at some point P ∈ Γ,
it follows that [ curl v ]θ �= 0 at P . Consequently this last quantity does not vanish in a neighborhood of
P . The same arguments applied on the ϕ-component of curl v on Γ ensure that under condition (3.6) at
some point P , [ curl v ]ϕ �= 0 at P . �
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