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Abstract

1 Introduction

We are concerned with the regularity issue for solutions of nonlinear systems of
partial differential equations with p-structure, under Dirichlet boundary condi-
tions . In order to emphasize the main ideas we confine ourselves to the following,
typical, representative cases, where p > 1 and µ ≥ 0 are fixed constants:

The “full gradient case’

(1.1) −∇ · S (∇u ) = f ,

’, where

(1.2) S(∇u) = (µ+ | ∇u| )p−2∇u .

And the “symmetric gradient case”

(1.3) −∇ · S (D u ) = f ,

where

(1.4) S(D u) = (µ+ | D u |)p−2D u ,

and
D u =

1
2

(∇u + ∇uT )

is the symmetric part of the gradient of u.
When µ = 0 in (1.2), the system (1.1) is the well-known p-Laplacian system.
Our main interest is proving global regularity results, up to the boundary, for

the second derivatives of the solutions of the previous systems, with Dirichlet
boundary conditions. The regularity issue for systems like (1.1) has received
many efforts. Actually, these are mostly concerned with an equation in place
of a system, and with the C1,α

loc -regularity. In the scalar case, the existence and
interior integrability of the second derivatives are given in [23], for any p > 1; in
[20] the regularity up to the boundary is obtained for any p ∈ (1, 2). For systems
(N > 1), which is the case considered in the following, we recall [1] for p ∈ (1, 2),
[15] and [24] for p > 2, and [17] for any p > 1. These papers, however, deal with
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homogeneous systems and the techniques, quite involved, seem to be not directly
applicable to the non-homogeneous setting. In particular, [1] seems to be the
only one where L2-regularity of second derivatives for systems is obtained, but
only in the interior.

Another main difference with the above papers is that we do not require
differentiability of S, just Lipschitz continuity.

On the other hand, we have not found papers dealing with the equations
arising from the choice (1.4) for S. This kind of model is used in various branches
of Mathematical Physics as, for instance, in non-linear elasticity or in non-linear
diffusion. However, our interest mainly arise from Fluid Dynamics. Indeed, we
recall that a good model for non-Newtonian fluids with shear dependent viscosity
is the following one

(1.5) −∇ ·
[

(µ+ | D u |)p−2D u
]

+ (u · ∇)u+∇π = f , ∇ · u = 0 ,

which can be obtained from (1.3) by adding the contribution of the pressure
field π, the convective term (u · ∇)u and the divergence free constraint. For
this system, the up to the boundary regularity problem has been considered
in both the cases p < 2 and p > 2. The case p = 2 corresponding to the
well known Navier-Stokes system for Newtonian fluids. For the more general
regularity results and a wide bibliography on this topic, we refer the reader to
[6] [8] for p > 2, and to [7] for p < 2. Despite the very many contributions
to the regularity issue, the up to the boundary W 2,2-regularity of solutions to
(1.5) is still an open question, even for the simplified setting of “generalized”
Stokes system obtained by dropping the convective term in (1.5). We mention
the papers [11] and [12], which, as far as we know, are the only papers where
the W 2,2(Ω) ∩ C1,α(Ω)-regularity is obtained, under the additional assumption
of a small force. The regularity proved below suggests that the main obstacle to
the W 2,2-regularity of solutions of (1.5) is actually the presence of the pressure
term.

In the sequel we cover both the cases p < 2 and p > 2, however with some
differences, and some restrictions on the exponent p .

Case p < 2: For p < 2 we consider the “full gradient case’ (1.1). In this
case, all results hold also in the degenerate case µ = 0. For any bounded
and sufficiently smooth domain Ω, we prove W 2,q(Ω) regularity, for any q ≥ 2.
Therefore, we get, as by product, the Hölder continuity, up to the boundary, of
the gradient of the solution. Results are obtained for p belonging to a suitable
interval [C, 2), where C < 2. W 2,2(Ω) regularity is proved under a similar, but
less restrictive, assumption on the constant C < 2.

Case p > 2: We prove the W 2,2-regularity in both cases, (1.1) and (1.3),
provided that µ > 0. We restrict our proofs to the “cubic domain case” (see the
next section), where the interesting boundary condition (Dirichlet) is imposed
on two opposite sides, and periodicity in the other two directions. This choice,
introduced in reference [4] and used in a series of other papers (see for instance
[3, 5, 9, 10]), is convenient in order to work with a flat boundary and, at the
same time, with a bounded domain. The main reason is that, in proving the
regularity theorem for p > 2 (see Theorem 2.1), we apply the difference quotients
method: we appeal to translations parallel to the flat boundary, and then restore
the normal derivatives from the equations. Then, the simplified framework of a
cubic domain avoids the need of localization techniques and changes of variables.
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The results can be extended to smooth domains, by following [6], [7], and [8],
where the extension is done for the more involved system of non-Newtonian
fluids (see also [21]). See also the Remark 5.1.

2 Notations and statement of the main results

Throughout this paper we will consider problem (1.1) in a arbitrary domain Ω
or in a cubic domain Q. We denote by Ω a bounded three-dimensional domain
with smooth boundary, which we assume of class C2, and we consider the usual
homogeneous Dirichlet boundary conditions

(2.1) u|∂Ω = 0.

We denote y Q the cube Q = ( ]0, 1[ )3, and by Γ the two opposite faces of Q in
the x3-direction, i.e.

Γ = {x : |x1| < 1, |x2| < 1, x3 = 0 } ∪ {x : |x1| < 1, |x2| < 1, x3 = 1 }.

We impose the Dirichlet boundary conditions on Γ

(2.2) u|Γ = 0,

and periodicity, with period equal to 1, in both the x1, x2 directions.
By Lp(Ω) and Wm,p(Ω), m nonnegative integer and p ∈ (1,+∞), we denote

the usual Lebesgue and Sobolev spaces, with the standard norms ‖ · ‖Lp(Ω) and
‖ · ‖Wm,p(Ω), respectively. We usually denote the above norms by ‖ · ‖p and
‖ · ‖m,p, when the the domain is clear. Further, we set ‖ · ‖ = ‖ · ‖2. We denote
by W 1,p

0 (Ω) the closure in W 1,p(Ω) of C∞0 (Ω) and by W−1,p′(Ω), p′ = p/(p−1),
the strong dual of W 1,p

0 (Ω) with norm ‖ · ‖−1,p′ . In notation concerning duality
pairings, norms and functional spaces, we do not distinguish between scalar and
vector fields.

We set
Vp(Ω) =

{
v ∈W 1,p (Ω) : v|∂Ω = 0

}
,

and
Vp(Q) =

{
v ∈W 1,p (Q) : v|Γ = 0, v is x′ − periodic

}
.

By V ′p(Ω) and V ′p(Q) we denote the dual spaces of Vp(Ω) and Vp(Q), respectively.
We use the summation convention on repeated indexes, except for the index

s. For any given couple of second order tensors B and C, we write B · C ≡
Bij Cij .

We denote by the symbols c, c1, c2, etc., positive constants that may depend
on µ; by capital letters, C, C1, C2, etc., we denote positive constants indepen-
dent of µ ≥ 0 (eventually, bounded from above). The same symbol c or C may
denote different constants, even in the same equation.

We set ∂i u = ∂ u
∂ xi

, ∂2
ij u = ∂2 u

∂ xi∂ xj
. Moreover we set (∇u)ij = ∂j ui and

(D u)ij = 1
2 ((∇u)ij + (∇u)ji). We denote by D2u the set of all the second

partial derivatives of u. The symbol D2
∗u may denote any second-order partial

derivative ∂2
hk u except for the derivatives ∂2

33 u . Moreover we set

(2.3) |D2u |2 :=
3∑

i,j,k=1

∣∣ ∂2
jk ui

∣∣2 and |D2
∗u |2 :=

3∑
i,j,k=1

(j,k)6=(3,3)

∣∣ ∂2
jk ui

∣∣2 .
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We define the tensor S(A) as

(2.4) S(A) = (µ+ |A |)p−2A ,

with µ ≥ 0 fixed constant, p > 1, and A an arbitrary tensor field. It is easily
seen that S(A) satisfies the following property: there exists a positive constant
C1 such that

(2.5)
∂Si j(A)
∂Ak l

Bi j Bk l ≥ C1 (µ+ |A |)p−2 |B |2 ,

for any tensor B. Further

(2.6) (S(A)− S(B)) · (A−B) ≥ C2
|A−B|2

(µ+ |A|+ |B|) 2−p ,

and

(2.7) |S(A)− S(B) | ≤ C3
|A−B|

(µ+ |A|+ |B|) 2−p ,

for any pair of tensors A and B, with C2 and C3 positive constants. The proof
of the above estimates are essentially contained in [16]. We also refer to [13] for
a detailed proof.

Our aim is to prove the regularity results up to the boundary given in the
theorems below. We start from the case p > 2.

Theorem 2.1. Assume that p > 2 and µ > 0. Let f ∈ L2(Q), and let u ∈
Vp(Q) be a weak solution of problem (1.1)–(2.2) or of problem (1.3)–(2.2). Then
u ∈W 2,2(Q) , moreover there exists a constant c such that

(2.8) ‖D2 u ‖ ≤ c ‖ f ‖ .

This theorem will be proved in the next section.
In the case p < 2 the parameter µ can be equal to zero, covering in this way

the case of p-Laplacian systems. Here we consider a general smooth bounded
domain. On the other hand, we restrict our considerations to the full gradient
case. Before stating the regularity theorems for p < 2, let us recall two well
known inequalities for the Laplace operator. The first, namely

(2.9) ‖D2 v ‖ ≤ C4 ‖∆ v ‖ ,

holds for any function v ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) . Here C4 = C4(Ω) . Note that

if Ω is a convex domain, then C4 = 1. For details we refer to [18] (Chapter I,
estimate 20). The second estimate is

(2.10) ‖ v ‖ 2,q ≤ C5‖∆v‖q ,

where C5 = C5(q,Ω) . It will be used for functions v ∈W 2,q(Ω) ∩W 1,q
0 (Ω), and

q ≥ 2. It derives by standard estimates for solution of the Dirichlet problem for
the Poisson equation.

In the sequel we set

(2.11) C6 = 2− 1
C4

,
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where C4 is given by (2.9), we set

(2.12) C7 = 2− 1
C5

,

where C5 is given by (2.10), and finally we set

(2.13) C8 = max{C6, C7} .

For p < 2 we prove the following results.

Theorem 2.2. Assume that µ ≥ 0 and that C6 < p ≤ 2 .Let f ∈ L
6

p+1 (Ω).
Then, the unique weak solution u of problem (1.1)-(2.1) belongs to W 2,2(Ω).
Moreover, the following estimate holds

(2.14) ‖u ‖2,2 ≤ C
(

1 + ‖f‖
1

p−1
6

p+1

)
.

Theorem 2.3. Let µ ≥ 0, q > 2, C8 < p ≤ 2, with C8 as in (2.13). Let
f ∈ L

6q
6−2q+pq (Ω) if q ∈ (2, 6

2−p ), f ∈ Lq(Ω) if q ≥ 6
2−p and let u be the unique

weak solution of problem (1.1)–(2.1). Then u belongs to W 2,q(Ω). Moreover,
the following estimate holds

(2.15) ‖u‖2,q ≤ C


(

1 + ‖f‖
1

p−1
6q

6−2q+pq

)
, if q ∈

(
2,

6
2− p

)
,(

1 + ‖f‖
1

p−1
q

)
, if q ≥ 6

2− p
.

If Ω is convex the result holds for any 1 < p ≤ 2 .

Corollary 2.1. Let p, µ and f be as in Theorem 2.3. Then, if q > 3, the weak
solution of problem (1.1)–(2.1) belongs to C1,α(Ω), for any α ≤ 1− 3

q .

Remark 2.1. When p < 2 we could extend to system (1.3) the up to the
boundary regularity results obtained for system (1.1), by requiring a smallness
condition on a suitable norm of f . Actually, following the arguments already
used in [11] and [12] for non-Newtonian fluids, the idea is to study the regu-
larity of suitable approximating linear problems and then prove the regularity
for solutions of the nonlinear problem, by employing the method of successive
approximations. For brevity, we avoid here this further development.

3 The W 2,2(Q)-regularity: p > 2 and µ > 0

In this section we prove Theorem 2.1. Therefore, throughout the section we
work in the cubic domain Q. Let us introduce the definition of weak solutions
of both the problems (1.1) and (1.3).

Definition 3.1. Assume that f ∈ V ′p(Q). We say that u is a weak solution of
problem (1.1)–(2.2), if u ∈ Vp(Q) satisfies

(3.1)
∫
Q

S(∇u) · ∇ϕdx =
∫
Q

f · ϕdx ,

for all ϕ ∈ Vp(Q).
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Definition 3.2. Assume that f ∈ V ′p(Ω). We say that u is a weak solution of
problem (1.3)–(2.2) if u ∈ Vp(Ω) satisfies

(3.2)
∫
Q

S(D u) · Dϕdx =
∫
Q

f · ϕdx ,

for all ϕ ∈ Vp(Q).

We recall that the existence and uniqueness of a weak solution can be ob-
tained by appealing to the theory of monotone operators, following J.-L. Lions
[19].

In proving Theorem 2.1 we focus on the symmetric gradient case, since the
full gradient case is, in some respects, easier to handle. Hence we assume that
S is given by

S(D u) = (µ+ | D u |)p−2D u ,

with µ > 0 and p > 2.
We highly follow the arguments used in [5], in the context of non-Newtonian

fluids. Therefore, we will try to preserve the notations. However in [5] (due to
the divergence free constraint) the symbol D2

∗u has a slightly different mean-
ing from that introduced in definition (2.3) below, since it also includes the
derivatives ∂2

33 u3 (see (2.8) in [5]).
As in in [5], in order to avoid arguments already developed in other papers by

the authors, we replace the use of difference quotients simply by differentiation.
It is an easy matter to obtain the following Korn’s type inequality, proceed-

ing, for instance, as in the proof given in [22].

Lemma 3.1. There exists a constant c such that

‖ v ‖p + ‖∇v ‖p ≤ c ‖D v ‖p ,

for all v ∈ Vp(Q).

Lemma 3.2. There exists a constant c such that

‖D2
∗ u ‖p ≤ c ‖∇∗D u‖p ,

for all u ∈ Vp(Q) .

This result reproduces Lemma 3.1 in [5], adapted to the new definition of
D2
∗ u . Note that ∂s u = 0 on Γ, s = 1, 2.

Actually, the above two lemmas hold for each p > 1.

Define, for s = 1, 2,

(3.3) Js(u) :=
∫
Q

∇ ·
[
(µ+ |D u |)p−2D u

]
· ∂2
ssu dx ,

and

(3.4) Is(u) :=
∫
Q

(µ+ |D u |)p−2 |∂sD u |2 dx .
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Lemma 3.3. For any smooth function u ∈ Vp(Q) the following inequality holds
true

(3.5) Js(u) ≥ C1 Is(u) ,

with the constant C1 given by (2.5).

Proof. Integrating twice by parts in (3.3) one gets

Js(u) =
∫
Q

∂s

[
(µ+ |D u |)p−2D u

]
· ∂s∇u dx .

Note that, due to symmetry, we replace ∂s∇u by ∂sD u. From the above
expression, one has

Js(u) =
∫
Q

∂

∂Dkl

[
(µ+ |D|)p−2Dij

] ∂(Du)kl
∂xs

∂(Du)ij
∂xs

dx ,

where the derivatives with respect to Dk l are evaluated at the point D = D u.
Note that here we merely appeal to the chain rule. Then the result follows by
using estimate (2.5).

next we prove the following result which, roughly speaking, shows that the
second tangential derivatives of u are square integrable.

Lemma 3.4. Assume that f ∈ L2(Q). Then D2
∗u ∈ L2(Q) and

(3.6) ‖D2
∗u ‖ ≤

c

µ p−2
‖ f ‖ .

Proof. Multiply both sides of the equations (1.1) by ∂2
ss u, s = 1, 2, and integrate

over Q. By appealing to (3.3) and Lemma 3.3 it readily follows that

Is(u) ≤ c ‖ f ‖ ‖ ∂2
ss u ‖ ≤ c ‖ f ‖ ‖∇ ∂s u ‖ ,

hence, from Lemma 3.1 applied to ∂s u,

Is(u) ≤ c ‖ f ‖ ‖ ∂sD u ‖ .

Finally, observing that

µp−2 ‖ ∂sD u ‖2 ≤ Is(u) ,

one gets
‖ ∂sD u ‖ ≤

c

µ p−2
‖ f ‖ .

Application of Lemma 3.2, gives the result.

In order to complete the proof of theorem 2.1 we have to show the integrabil-
ity of the remaining second derivatives, namely the normal derivatives ∂2

33 u. In
doing this we follow the argument used in the paper [2]; we express these deriva-
tives, pointwisely, in terms of the derivatives of u already estimated, and solve
the corresponding system in the unknowns ∂2

33 ui, i = 1, 2, 3. Note that the main
differences between this situation reference [2], are the following: in [2] the L2-
integrability of ∂2

33 u3 is known from the integrability of the second tangential
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derivatives, thanks to the divergence free constraint, ∂2
33 u3 = −∂2

11 u1 − ∂2
22 u2.

Hence the 3 × 3 linear system considered below is replaced, in [2], by a 2 × 2
linear system in the unknowns ∂2

33 ui, i = 1, 2. On the other hand, in reference
[2], the presence of the pressure prevents the full W 2,2-regularity.

For the missing derivatives we prove the following lemma.

Lemma 3.5. The vector field ∂2
33 u satisfies the pointwise estimate

(3.7) | ∂2
33u | ≤ c

(
1
µ p−2

|f |+ |D2
∗u |
)
, a.e. in Q .

Proof. Straightforward calculations show that

(3.8)
∂s [(µ+ |D u|)p−2D u] = (µ+ |D u|)p−2 ∂sD u

+ (p− 2)(µ+ |D u|)p−3 |D u|−1 (D u · ∂sD u)D u .

For convenience, we set Djk = (D u)jk and B := (µ + |D u|). By using (3.8),
the jth equation (1.1), for any j = 1, 2, 3, takes the following form
(3.9)
Bp−2

(
∂2
kkuj + ∂2

jkuk
)

+ (p− 2)Bp−3|D u|−1DlmDjk
(
∂2
kmul + ∂2

klum
)

= −2fj .

Let us write the previous three equations as a system in the unknowns ∂2
33 uj .

For j = 1, 2 we have

(3.10) Bp−2 ∂2
33 uj + 2(p− 2)Bp−3 |D u|−1Dj3

3∑
l=1

Dl3 ∂2
33 ul = Fj − 2 fj ,

where

(3.11)

Fj := −Bp−2
2∑
k=1

∂2
kk uj −Bp−2

3∑
k=1

∂2
jk uk

−2(p− 2)Bp−3 |D u|−1
3∑

l,m,k=1
(m,k) 6=(3,3)

∂2
km ulDjk Dlm .

For j = 3 we have

(3.12) 2Bp−2 ∂2
33 uj + 2(p− 2)Bp−3 |D u|−1Dj3

3∑
l=1

Dl3 ∂2
33 ul = Fj − 2 fj ,

where, for j = 3,

(3.13)

Fj := −Bp−2
2∑
k=1

∂2
kk uj − Bp−2

2∑
k=1

∂2
jk uk

−2(p− 2)Bp−3 |D u|−1
3∑

l,m,k=1
(m,k) 6=(3,3)

∂2
km ulDjk Dlm .
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The equations (3.10), for j = 1, 2, together with the equation (3.13) for j = 3 can
be treated as a 3× 3 linear system in the unknowns ∂2

33uj , j = 1, 2, 3. Multiply
all the three equations by B2−p. We denote the elements of the matrix A = A(x)
associated with this system as ajl, where j, l = 1, 2, 3. Then, we can write the
system in a compact form as

(3.14) ajl ∂
2
33 ul = Gj ,

where the elements of the matrix of the system are given by

ajl := δjl + 2(p− 2) (B |D u|)−1Dj3Dl3 ,

for j = 1, 2, by

ajl := 2δjl + 2(p− 2) (B |D u|)−1Dj3Dl3 ,

and for j = 3, and

(3.15) Gj := B2−p (Fj − 2 fj ) .

Note that ajl = alj ; moreover, if ξ denotes any vector field then

ajlξjξl = | ξ |2 + ξ2
3 + 2 (p− 2) (B |D u| )−1 [D u · ξ ]23 .

Hence, the matrix A = (ajl) is also definite positive, a.e. in x ∈ Q, and the
previous identity shows that

ajl ξj ξl ≥ | ξ |2 .

By setting ξ = ∂2
33 u, we have obtained

(3.16) | ∂2
33 u |2 ≤ |G | | ∂2

33 u |, a.e. in Q ,

where, obviously, by G we mean the vector (G1, G2, G3). Noting that, from
(3.15), (3.11) and (3.13), there holds

(3.17) |Gj | ≤
2
µ p−2

|fj |+ c |D2
∗u | , a.e. in Q ,

from this estimate and (3.16) we get (3.5).

Finally, by combining (3.6) and (3.5) we readily obtain

‖D2 u ‖ ≤ c

µ p−2
‖ f ‖

which is just (2.8). The proof of theorem 2.1 is accomplished.

4 A regularity result for an approximating sys-
tem: p < 2 .

In the sequel we introduce an auxiliary positive parameter η and study the
regularity of solutions of the following approximating problem

(4.1)

{
−η∆v −∇ · S (∇ v) = f, in Ω ,

v = 0, on ∂Ω ,
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with S defined by (2.4), η > 0, µ > 0 and p ∈ (1, 2). The solutions vη satisfy the
estimate (4.15) below, with the constant C independent of η. This allows us to
show that, as η → 0, vη tends, in a suitable sense, to the solution v of problem
(4.1) with η = 0. A similar situation occurs, with respect to µ, as µ→ 0.

We explicitly note that we introduce the above model to approximate our
nonlinear problem (1.1) when µ vanishes.

Let us introduce the definition of weak solution of both the problems (4.1)
and (1.1)–(2.1).

Definition 4.1. Assume that f ∈ V ′2(Ω). We say that v is a weak solution of
problem (4.1) if v ∈ V2(Ω) and satisfies

(4.2) η

∫
Ω

∇v · ∇ϕdx+
∫

Ω

S(∇ v) · ∇ϕdx =
∫

Ω

f · ϕdx ,

for all ϕ ∈ V2(Ω).

Definition 4.2. Assume that f ∈ V ′p(Ω). We say that u is a weak solution of
problem (1.1)–(2.1), if u ∈ Vp(Ω) satisfies

(4.3)
∫

Ω

S(∇u) · ∇ϕdx =
∫

Ω

f · ϕdx ,

for all ϕ ∈ Vp(Ω).

As recalled in the previous section, the existence and uniqueness of a weak
solution is known by the theory of monotone operators.

We start by proving the W 2,2-regularity result stated in proposition 4.1
below. In (4.4), the dependence of the constant c on Ω0, η and µ is omitted
since the aim of the proposition is just to ensure that second derivatives are well
defined a.e. in Ω. Following the notations introduced in section 2, by capital
letters, C, C1, C2, etc., we denote positive constants independent of µ and of η
also.

Proposition 4.1. Let p ∈ (1, 2), f ∈ L2(Ω), and v be a weak solution of
problem (4.1). Then v ∈ W 2,2

loc (Ω) and, for any fixed open set Ω0 ⊂⊂ Ω, there
exists a constant c such that

(4.4) ‖D2v ‖L2(Ω0) ≤ c ‖f‖ .

Proof. As in the previous section, we formally use derivatives instead of differ-
ence quotients, to make the computation simpler. Fix an open set Ω0 ⊂⊂ Ω.
Let ζ be a C2

0 (Ω)-function, such that 0 ≤ ζ(x) ≤ 1 in Ω, and ζ(x) = 1 in Ω0.
Multiplying the first three equations in (4.1) by −∇ · (ζ2∇ v) and integrating
over Ω we get
(4.5)

η

∫
Ω

∂2
jj vi ∂h

(
ζ2 ∂h vi

)
dx+

∫
Ω

∂j
[
(µ+ |∇ v|)p−2 (∇ v)i j

]
∂h
(
ζ2 ∂h vi

)
dx

= −
∫

Ω

fi ∂h
(
ζ2 ∂h vi

)
dx .
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By integration by parts, with respect to xj and xh, on the left-hand side one
has
(4.6)

η

∫
Ω

(∂2
jh vi)

2 ζ2 dx+
∫

Ω

∂h
[
(µ+ |∇v|)p−2 (∇v)i j

]
∂h(∇v)i j ζ2 dx

= −η
∫

Ω

(
∂2
jh vi

)
Ri j h(x) dx−

∫
Ω

∂h
[
(µ+ |∇v|)p−2 (∇v)i j

]
Ri j h(x) dx

−
∫

Ω

fi
(
∂2
hh vi

)
ζ2 dx− 2

∫
Ω

fi ( ∂h vi) ζ (∂h ζ) dx =
4∑
i=1

Ii ,

where, with obvious notation, Ri j h are lower order terms satisfying estimates

(4.7) |Ri j h(x)| ≤ c |ζ| |∇ ζ| |∇v| .

As in the proof of Lemma 3.3, it is easy to verify, by appealing to (2.5), that

(4.8)∫
Ω

∂h
[
(µ+ |∇v|)p−2 (∇v)i j

]
∂h(∇v)i j ζ2 dx ≥ c

∫
Ω

(µ+ |∇v|)p−2 |D2v|2 ζ2 dx .

On the other hand, by Hölder’s and Cauchy-Schwartz inequalities,

(4.9) |I1| ≤ ε ‖ |D2v| ζ‖2 + c(ε) ‖∇ ζ‖2∞ ‖∇ v‖2 ,

(4.10) |I3| ≤ ε ‖ |D2v| ζ‖2 + c(ε) ‖f‖2 ,

and

(4.11) |I4| ≤ c ‖∇ ζ‖∞‖f‖ ‖∇ v‖ .

Further, by using the estimate

∂Si j(A)
∂Ak l

≤ c (µ+ |A |)p−2,

we have

(4.12) |I2| ≤ c

∫
Ω

(µ+ |∇v|)p−2 |D2 v| |ζ| |∇ ζ| |∇v| dx ,

and, by the Cauchy-Schwartz inequality,

(4.13) |I2| ≤ ε ‖ |D2v| ζ‖2 + c(ε) ‖∇ ζ‖2∞ ‖∇ v‖22 .

Further, from (4.5) together with ‖∇ v‖ ≤ c ‖f‖, it readily follows that

(4.14) ‖ |D2v| ζ‖ ≤ c ‖f‖ .

Hence (4.4) follows.

Our next step is to get a global estimate for the L2-norm of the second
derivatives, uniform in η. This is the aim of the following proposition.
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Proposition 4.2. Let C6 < p < 2, with C6 given by (2.11). Let f ∈ L
6

p+1 (Ω),
and let v be a weak solution of problem (4.1). Then v belongs to W 2,2(Ω).
Moreover, there exists a constant C such that

(4.15) ‖ v ‖2,2 ≤ C
(

1 + ‖f‖
1

p−1
6

p+1

)
.

Proof. In order to avoid an useless dependence on µ, we assume, without loss
of generality, µ ∈ (0, 1]. At first note that, by replacing ϕ by v in (4.2) it is easy
to get the following estimate for ‖∇v‖p, uniformly in η,

‖∇v‖pp ≤ µp |Ω|+ 22−p
∫

Ω

f · v dx ≤ C
(

1 +
∫

Ω

f · v dx
)
.

Since, by Proposition 4.1, v ∈W 2,2
loc (Ω), the ith equation (4.1) can be written

almost everywhere in Ω as

η∆vi + (µ+ |∇v|)p−2 ∆vi
+(p− 2)(µ+ |∇v|)p−3 |∇v|−1∇v · (∂j ∇v) ∂j vi = − fi .

By multiplying both sides by ∆vi and summing over i = 1, 2, 3, we have

η |∆v|2 + (µ+ |∇v|)p−2 |∆v|2

= (2− p)(µ+ |∇v|)p−3|∇v|−1∇v · (∂j ∇v) ∂j vi ∆vi − fi ∆vi , a.e. in Ω .

Therefore we can drop the term η|∆v|2, bounding the left-hand side from
below by (µ + |∇v| ) p−2 |∆v|2. Multiplying the estimate thus obtained by
(µ+ |∇v|)2−p and then integrating over Ω we get∫

Ω

|∆v |2 dx ≤ (2− p)
∫

Ω

|D2v | |∆v | dx+
∫

Ω

(µ+ |∇v| )2−p | f | |∆v | dx ,

where we have used the following estimate (for details see the Appendix)

| ∇v · (∂j ∇v) (∂j vi ) ∆vi | ≤ |∇v |2 |D2 v | |∆v | .

Observing that (µ+ |∇v|)2−p ≤ µ2−p + |∇v|2−p, using Hölder’s inequality and,
finally, by dividing both sides by ‖∆v ‖, we get

(4.16) ‖∆v ‖ ≤ (2− p) ‖D2v ‖+ ‖ |∇v|2−p f ‖+ ‖ f ‖ .

Let us estimate the first two terms on the right-hand side. For the first term
we employ estimate (2.9). As far as the second term in (4.16) is concerned, by
applying Hölder’s inequality with exponents 3/(2−p) and 3/(p+1), the Sobolev
embedding of W 2,2(Ω) in W 1,6(Ω), and by appealing to the estimate (2.10) with
q = 2, we get

‖ |∇v|2−p f‖ ≤ ‖∇v ‖2−p6 ‖ f‖ 6
p+1
≤ C ‖∆v ‖2−p ‖ f‖ 6

p+1
.

By using the above estimates in (4.16), we get

‖∆v ‖ ≤ (2− p)C4‖∆v ‖+ C ‖∆v ‖2−p ‖ f‖ 6
p+1

+ ‖ f ‖ .

12



Recalling that, by assumption, p > 2 − 1
C4

= C6 and 2 − p < 1, it is easy to
recognize that the estimate

(4.17) ‖∆v ‖ ≤ C

(
1 + ‖f‖

1
p−1
6

p+1

)
holds. Note that the constant C may blow up as p tends to C6. By using once
again (2.10) we prove (4.15).

5 The W 2,2-regularity result: p < 2 .

Proof of Theorem 2.2. We deal separately with the case µ > 0 and the degen-
erate case µ = 0.

The case µ > 0 - Consider the “sequence” (vη) consisting of the solutions
to problem (4.1), for η > 0. By the above proposition the sequence (vη) is
uniformly bounded in W 2,2(Ω). Therefore, by Rellich’s theorem, there exists a
field u ∈W 2,2(Ω) and a subsequence, which we continue to denote by (vη), such
that vη ⇀ u weakly in W 2,2(Ω), and strongly in W 1,q(Ω) for any q < 6. Let us
prove that

(5.1)
∫

Ω

S(∇u) · ∇ϕdx = lim
η→0+

{∫
Ω

S(∇vη) · ∇ϕdx+ η

∫
Ω

∇vη · ∇ϕdx
}
,

for any ϕ ∈ C∞0 (Ω). By applying (2.7) and then Hölder’s inequality, we get∣∣∣∣∫
Ω

S(∇u) · ∇ϕdx−
∫

Ω

S(∇vη) · ∇ϕdx
∣∣∣∣

≤ c
∫

Ω

(µ+ |∇u |+ |∇vη| )p−2 | ∇u−∇vη | |∇ϕ| dx

≤ c
∫

Ω

| ∇u−∇vη |p−1 |∇ϕ| dx ≤ c ‖∇vη−∇u ‖p−1
p ‖∇ϕ ‖p .

The right-hand side of the last inequality tends to zero, as η goes to zero, thanks
to the strong convergence of vη to u in W 1,p(Ω). Further∣∣∣∣ η ∫

Ω

∇vη · ∇ϕdx
∣∣∣∣ ≤ η ‖∇vη‖ ‖∇ϕ‖ ,

where the right-hand side tends to zero as η goes to zero. Finally, observing
that for any η > 0 and any ϕ ∈ C∞0 (Ω) the right-hand side of (5.1) is equal to∫

Ω
f ·ϕdx, we show that u satisfies the integral identity (4.3) for any ϕ ∈ C∞0 (Ω).

By a standard argument we show that u satisfies the integral equation (4.3), for
any ϕ ∈ Vp(Ω). Hence u is a weak solution of (1.1), and belongs to W 2,2(Ω).
Moreover, (2.14) follows from the relation ‖ u ‖2,2 ≤ lim inf

η→0+
‖ vη ‖2,2, together

with (4.15). From the uniqueness of weak solutions we obtain the desired result.

The case µ = 0 - Let us denote by uµ the sequence of solutions of (1.1)
for the different values of µ > 0. We have shown that the sequence (uµ) is
uniformly bounded in W 2,2(Ω). Therefore, exactly as above, we can prove
the weak convergence of a suitable subsequence in W 2,2(Ω), and the strong
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convergence in W 1,q(Ω) for any q < 6, to the solution u ∈ W 2,2(Ω) of the
problem (1.1) with µ = 0. In this regard note that estimate (2.7) also holds
with µ = 0.

Convex domains - Finally we prove the last assertion in the Theorem 2.2.
If Ω is convex (or, for instance, the cubic domain in Theorem 2.1), then the
Theorem holds for any p > 1. Indeed, as previously observed, for a smooth
convex domain the estimate (2.9) holds with C4 = 1, hence the lower bound
p > C6 = 1− 1

C4
is merely p > 1.

Remark 5.1. We can adapt the above arguments to the case p > 2. Via a result
similar to Proposition 4.1, one shows that the solution v of the approximated
system 4.1 belongs to W 2,2

loc (Ω) and then, reasoning as in the proof of Proposition
4.2, one obtains a global estimate for v in W 2,2(Ω), uniformly in η, with a
restriction on the range of p, p ∈ (2, 2 + 1

C5
), C5 as in (2.9). Hence, as in the

above Theorem 2.2, one proves that the solution of (1.1), with µ > 0, belongs
to W 2,2(Ω). This result has the advantage to hold in a general smooth domain,
without need of localization techniques. However, such estimate is not uniform
in µ, hence one cannot cover the case µ = 0.

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

6 The W 2,q-regularity result: q ≥ 2 and p < 2 .

Proof of Theorem 2.3. Since C6 < p < 2, From Theorem 2.2, we already know
that the solution u of problem (1.1) belongs to W 2,2(Ω). Therefore, by multi-
plying the equations (1.1) by (µ+ |∇u|)2−p, we can write the system, a.e. in
Ω, as

(6.1) −∆u− (p− 2)
∇u · ∇∇u · ∇u
(µ+ |∇u|) |∇u|

= f (µ+ |∇u|)2−p
,

where we have used the notation ∇u · ∇∇u · ∇u to denote the vector whose ith

component is ∇u · (∂j ∇u) ∂j ui.
Let us assume, for the moment, that u ∈ W 2,q(Ω) and let us find a Lq-

estimate of its second derivatives. We follow an argument similar to that used
for proving theW 2,2-estimates of u. We take equations (6.1), multiply both sides
by ∆u |∆u|q−2 and integrate over Ω. We get (for details see the Appendix)∫

Ω

|∆u |q dx ≤ (2−p)
∫

Ω

|D2u | |∆u |q−1 dx+
∫

Ω

(µ+ |∇u| )2−p | f | |∆u |q−1 dx .

By using Hölder’s inequality, since (µ+ |∇u|)2−p ≤ 1 + |∇u|2−p, we have

(6.2)
‖∆u ‖qq ≤ (2− p) ‖D2u ‖q‖∆u ‖q−1

q

+ ‖ f ‖q‖∆u ‖q−1
q + ‖ |∇u|2−p f ‖q‖∆u ‖q−1

q .

By dividing both sides by ‖∆u ‖q−1
q , one gets

(6.3) ‖∆u ‖q ≤ (2− p) ‖D2u ‖q + ‖ f ‖q + ‖ |∇u|2−p f ‖q.
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The first term on the right-hand side of (6.3) can be estimated via inequality
(2.10).

Let us assume that q ∈
(

2, 6
2−p

)
. Then, the term (µ+ |∇u| )2−p | f | belongs

to Lq(Ω), since, by applying Hölder’s inequality, with exponents 6/[q(2−p)] and
6/(6− 2q + pq), and the Sobolev embedding theorem, we get

(6.4) ‖ |∇u|2−p f‖q ≤ ‖∇u ‖2−p6 ‖ f‖ 6q
6−2q+pq

≤ c ‖u ‖2−p2,2 ‖ f‖ 6q
6−2q+pq

.

By using (6.4) and then the estimate (2.14) for the second derivatives of u, from
(6.3) one easily gets that, for p > 2− 1

C5
= C7,

(6.5) ‖u‖ 2,q ≤ C
(

1 + ‖f‖
1

p−1
6q

6−2q+pq

)
,

where C is independent of µ.
With this result in hand, it is easy to prove theW 2,q-regularity of the solution

for any q ≥ 6
2−p . Indeed, assume that f ∈ Lq(Ω), for such an exponent q. Then

f ∈ L
6s

6−2s+ps (Ω), for any s ∈
(

3, 3
2−p

)
. Then, from the first part of the proof,

the solution u belongs to W 2,s(Ω), and, by embedding, ∇u ∈ L∞(Ω). We can
now estimate the Lq-norm of the force term as follows:

(6.6) ‖ |∇u|2−p f‖q ≤ ‖∇u ‖2−p∞ ‖ f‖q ≤ c ‖u ‖2−p2,s ‖ f‖q .

Then, by replacing estimate (6.4) with (6.6), we can repeat verbatim the argu-
ments used above and show that u is bounded in W 2,q(Ω), uniformly in µ, and
the following estimate holds

(6.7) ‖u ‖2,q ≤ C
(

1 + ‖f‖
1

p−1
q

)
.

The same arguments used in the proof of the previous Theorem 2.2 show that
the result also holds in the degenerate case µ = 0.

The previous arguments are formal, since we do not know that the solution
belongs to W 2,q(Ω) yet. However the following arguments make everything
rigorous. Let us consider the following problem
(6.8) −∆wε − (p− 2)

∇Jε(u) · ∇∇wε · ∇Jε(u)
(µ+ Jε(|∇u|)) Jε(|∇u|)

= f (µ+ |∇u|)2−p
, in Ω ,

wε = 0 , on ∂Ω ,

in the unknown wε, where Jε denotes the Friedrichs mollifier. The coefficients
of the previous system belong to C∞(Rn). We can also write the system in
divergence form as follows:

(6.9) −∂h
[
mijhk(x) ∂k wεj

]
+ (p− 2) ∂h

[
cεijhk(x)

]
∂k w

ε
j = f (µ+ |∇u|)2−p

,

where
mijhk(x) = δijδhk + (p− 2) cεijhk(x)

and
cεijhk(x) = ∂hJε(ui) ∂kJε(uj)

1
(µ+ Jε(|∇u|)) Jε(|∇u|)

.
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Further, let

cijhk(x) = ( ∂h ui ) ( ∂k uj )
1

(µ+ |∇u|) |∇u|
.

We recall the following well known estimate

(6.10) |∇Jε(u)| = |Jε(∇u)| ≤ Jε(|∇u|) .

From (6.10) we get

(6.11) |cεijhk(x)| ≤ 1, uniformly in x , ε , and µ .

As a consequence of the above estimate, we get that system (6.8) (or, equiva-
lently, (6.9)) is a linear elliptic system with regular coefficients. For such kind
of system it is well known that if the prescribed force term, say F , belongs to
Lq(Ω), q ≥ 2 , then the solution belongs to W 2,q(Ω) (see, for instance, [14]). Fol-
lowing the arguments above with u replaced by wε, by using (6.10) and (6.11),
it is straightforward to obtain the estimates (6.5) and (6.7) for wε. Note that
such estimates are uniform both in µ and ε. Then there exists a subsequence,
still denoted by wε, and w ∈W 2,q(Ω) such that, as ε goes to zero, wε converges
to w, weakly in W 2,q and strongly in W 1,r(Ω), for any r if q ≥ 3 and for any
r ∈

(
1, 3q

3−q

)
if q < 3. Let us show that w is a solution of the following system

(6.12) −∆w − (p− 2)
∇u · ∇∇w · ∇u
(µ+ |∇u|) |∇u|

= f (µ+ |∇u|)2−p
.

For this purpose we write equations (6.8) and (6.12) in the weak form and take
their difference, side by side. This leads to the expression

(6.13)

∫
Ω

(∂hwεi − ∂hwi) ∂hϕi dx+ (2− p)
∫

Ω

(
cεijhk − cijhk

)
∂2
hkw

ε
j ϕi dx

+ (2− p)
∫

Ω

cijhk
(
∂2
hkw

ε
j − ∂2

hkwj
)
ϕi dx,

for any ϕ ∈ C∞0 (Ω). The first integral goes to zero, thanks to the strong con-
vergence of wε to w in W 1,2(Ω). Concerning the second integral, from the
Lp-convergence of the mollified functions it follows the almost everywhere con-
vergence of a subsequence. Therefore, cεijhk converges a.e. to cijhk. From (6.11),
recalling that Ω is bounded and by using the dominated convergence theorem,
it follows that

(6.14) lim
ε→0

∫
Ω

|cεijhk − cijhk|2 dx = 0 .

Hence the second integral in (6.13) goes to zero. The last integral in (6.13)
tends to zero thanks to (6.11) and the weak convergence of wε to w in W 2,q(Ω).

Finally, it is easy to verify that w coincides with u. Indeed, by taking the
difference of (6.1) and (6.12), side by side, and by setting V = u− w, we have −∆V − (p− 2)

∇u · ∇∇V · ∇u
(µ+ |∇u|) |∇u|

= 0, in Ω ,

V = 0 , on ∂Ω .
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Then, multiplying by ∆V , integrating over Ω and then applying arguments
already used, one readily recognizes that, under our assumptions on p, the
vector V satisfies ‖∆V ‖ = 0, hence V = 0, by uniqueness.

The result in Corollary 2.1 is an immediate consequence of Theorem 2.3.
Hence we omit any detail of the proof.

7 Appendix

Our aim is to show the estimate

| I | := | ∇v · (∂j ∇v) (∂j vi) ∆vi | ≤ |∇v|2 |D2 v| |∆v| .

For convenience, in the sequel we sometimes avoid the summation convention
and explicitly write the sums, even if repeated indexes appear. We recall that

(D2vk)2 :=
3∑

j,h=1

∣∣ ∂2
jh vk

∣∣2 and |D2v|2 :=
3∑
k=1

(D2vk)2 :=
3∑

k,j,h=1

∣∣ ∂2
jh vk

∣∣2 .
We introduce the vectors b and w, whose components are defined as follows

bj := (∂j v) · ∆v , w2
k :=

3∑
j,h=1

( (∂h vk) bj)
2
.

The moduls of vector b satisfies the following estimate:

| b | =
3∑
j=1

b2j ≤
3∑
j=1

| ∂j v|2|∆v|2 = |∆v|2
3∑
j=1

3∑
i=1

( ∂j vi)2 = |∆v|2|∇v|2.

Hence

(7.1) w2
k =

3∑
h=1

(∂h vk)2
3∑
j=1

b2j = |∇vk|2|∆v|2|∇v|2 .

Moreover

| I | =

∣∣∣∣∣∣
3∑

j,h,k=1

(∂h vk)
(
∂2
hj vk

)
bj

∣∣∣∣∣∣ ≤
3∑
k=1

∣∣∣∣∣∣
3∑

j,h=1

(
∂2
hj vk

)
(∂h vk) bj

∣∣∣∣∣∣
≤

3∑
k=1

√√√√ 3∑
j,h=1

(
∂2
hj vk

)2

√√√√ 3∑
j,h=1

( (∂h vk) bj)
2
,

where, in the last step, we have used that, for any pair of tensors A and B,
there holds |A ·B| ≤ |A| |B|. Hence, by the above notations and estimate (7.1),
we get

| I | ≤
3∑
k=1

|D2vk| |wk| ≤ |∆v| |∇v|
3∑
k=1

|D2vk| |∇vk|

≤ |∆v| |∇v|

√√√√ 3∑
k=1

|D2vk|2

√√√√ 3∑
k=1

|∇vk|2 = |∆v| |∇v|2 |D2v| ,
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that is what we wanted to prove.
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[21] J. Málek, J. Necas and M. Růžička, On weak solutions to a class of non-
Newtonian incompressible fluids in bounded three-dimensional domains: the
case p ≥ 2, Adv. Differential Equations, 6 (2001), 257–302.

[22] C. Parés, Existence, uniqueness and regularity of solution of the equations
of a turbulence model for incompressible fluids, Appl. Anal., 43 (1992), no.
3-4, 245–296.

[23] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equa-
tions, J. Differential Equations, 51 (1984), 126–150.

[24] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta
Math., 138 (1977), 219–240.

19


