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Abstract

This article concerns the regularity up to the boundary of weak solutions to systems de-
scribing the flow of generalized Newtonian shear thickening fluids under the homogeneous
Dirichlet boundary condition. The extra stress tensor S(D) , see (1.2) below, is given by
a power law with shear exponent p ≥ 2. Complete proofs of the results presented here
are given in the forthcoming paper [4]. The aim of this note is to describe the results
proved in [4], together with suitable comments.

Résumé

Théorèmes de régularité, jusqu’au bord, pour des fluides à viscosité dila-
tante.
Cet article regarde la régularité jusqu’au bord des solutions faibles de systèmes décrivant
le mouvement de fluides Newtonian généralisés, à viscosité dilatante, avec des conditions
de Dirichlet a la frontière. Le tenseur des tensions suplémentaires S(D) , voir (1.2), est
donné par une loi de puissance avec exposant p ≥ 2. Démonstrations complètes des
résultats présentés ici sont donnés dans l’article [4], a paraitre. Le but de cette note est
de décrire les résultats démontrés dans [4], avec des commentaires adéquats.

1. Introduction

This note is concerned with the system

∂tu− divS(Du) + [∇u]u+∇π = f,

div u = 0,
(1.1)
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describing the motion of a fluid in Ω × I, where Ω ⊂ Rn and I is interval (0, T ). The
unknowns are the velocity u : Ω × I → Rn and the pressure π : Ω × I → R. The
external force f is given, and the convective term is defined as ([∇u]u)i =

∑n
j=1 uj∂jui,

i = 1, . . . , n . The extra stress tensor S, expressing the inner properties of the fluid,
depends only on Du = (∇u + ∇u T )/2 by the principle of material frame indifference,
and is assumed to possess p-structure with p ≥ 2. Under these assumptions the system
(1.1) models the flow of shear thickening fluids. Typical examples are

S(D) = (1 + |D|2)
p−2
2 D or S(D) = (1 + |D|)p−2D. (1.2)

We assume the non-slip boundary condition on ∂Ω× I

u = 0 . (1.3)

We do not impose an initial condition since the results are local in time.
The system (1.1) is nowadays classical. It was proposed by O.A. Ladyzhenskaya (see

[11] and references) as a modification of the Navier–Stokes system. J.-L. Lions (see [12]),
suggested a similar system, however with the elliptic term depending on the full gradient.
In spite of the fact that the system has been extensively studied, there are still many open
problems, especially concerning the regularity of weak solutions. Our results contribute
to the field of regularity properties of weak solutions to the problems (1.1) and its steady
version (1.4). In particular, we prove boundary regularity of weak solutions (u, π) of
the problem (1.1), (1.2), and (1.3) for suitable p ≥ 2. The main obstacles arise close to
the boundary. They are connected with the structure of the elliptic term, namely that
it is nonlinear and depends on the symmetric part of the gradient only, and with the
presence of pressure in the equation. This is why we do not get the same regularity as
for solutions of Stokes problem. The difficulties due to convective term are avoided by
considering sufficiently large p ≥ 2.

The question of regularity of weak solutions of (1.1) is transferred, by appealing to
[6], to the problem of the regularity of weak solutions to the stationary variant of (1.1)
in Ω, namely

−divS(Du) + δ [∇u]u+∇π = f,

div u = 0 ,
(1.4)

where δ = 0 or 1. Since the problem with δ = 0 already contains the principle features
that appear due to the form of S, we treat the regularity of solutions to (1.4) with δ = 0
as the basic step of the proof.

Let us now formulate precisely the assumptions on S.

Assumption 1 (extra stress tensor). We assume that the extra stress tensor S : Rn×n →
Rn×nsym belongs to C0(Rn×n,Rn×nsym )∩C1(Rn×n\{0},Rn×nsym ), where Rn×nsym :=

{
A ∈ Rn×n

∣∣A =
A>
}

, and satisfies S(0) = 0 and S(A) = S
(
Asym

)
, where Asym := 1

2

(
A+A>

)
. Moreover,

we assume that S has p-structure, i.e., there exists p ∈ (1,∞) such that
n∑

i,j,k,l=1

∂klSij(A)BijBkl ≥ c
(
1 + |Asym|

)p−2|Bsym|2 , (1.5a)

∣∣∂klSij(A)
∣∣ ≤ C (1 + |Asym|

)p−2 (1.5b)

is satisfied for all A,B ∈ Rn×n with Asym 6= 0.
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These assumptions are motivated by the typical prototypes for the extra stress tensor
given in (1.2). We refer the reader to [13], [8], [5] for a more detailed discussion leading
to Assumption 1. We also define a function F : Rn×n → Rn×nsym , closely related to the
extra stress tensor S , by

F(A) :=
(
1 + |Asym|

) p−2
2 Asym . (1.6)

Note that F(D) ∼ |D|p/2. Since in the following and in reference [4] we insert into S and
F only symmetric tensors, we can drop the superscripts “sym” and restrict the admitted
tensors to symmetric ones.

2. Main results

Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with C2,1 boundary, let S
satisfy Assumption 1 with p ≥ 2, and let f ∈ L2(Ω). Then the unique weak solution
u ∈W 1,p

0 (Ω), with div u = 0, of problem (1.4), with δ = 0, and boundary condition (1.3)
satisfies

u ∈W 1,q(Ω), F(Du) ∈W 1, 2q
p+q−2 (Ω) , (2.1)

for q = (np+ 2− p)/(n− 2) if n ≥ 3 , and for all q < +∞ if n = 2.

Theorem 2.2. Let Ω and f be as in Theorem 2.1, and let S satisfy Assumption 1
with p ≥ max

{
2, (3n)/(n + 2)

}
. Then, for p ∈ [3,∞) ∪ (n/2,∞), any weak solution

u ∈W 1,p
0 (Ω), with div u = 0, of problem (1.4), with δ = 1, and boundary condition (1.3)

satisfies (2.1), where q is as above.

Remark 2.1. (i) In the interior and in tangential directions we get better regularity
properties in the previous theorems. More precisely

F(Du) ∈W 1,2
loc (Ω), ξ∂τF(Du) ∈ L2(Ω),

where ξ is some cut off function with support near the boundary ∂Ω and the tangential
derivative ∂τ is defined in a suitable neighborhood of the boundary.
(ii) One has

|∇F(Du)| ' (1 + |Du|)
p−2
2 |∇Du|

and also |∂τF(Du)| ' (1 + |Du|)
p−2
2 |D∂τu| . For p ≥ 2 it follows that

|∇2u| ≤ c |∇F(Du)| .

Theorem 2.3. Let S satisfy Assumption 1 with p > (3n+2)/(n+2). Let Ω ⊂ Rn, n ≥ 2,
be a bounded domain with C2,1 boundary, I = (0, T ), T > 0, and f ∈ W 1,2

loc (I, L2(Ω)).
Then any weak solution u ∈ L∞(I, L2(Ω)) ∩ Lp(I,W 1,p

0 (Ω)), with div u = 0, of the
problem (1.1), and boundary condition (1.3) satisfies

u ∈W 1,∞
loc (I, L2(Ω)), F(Du) ∈W 1,2

loc (I, L2(Ω))

u ∈ L∞loc(I,W 1,q(Ω)), F(Du) ∈ L∞loc(I,W 1, 2q
p+q−2 (Ω))

(2.2)

for q = (np+ 2− p)/(n− 2), (q < +∞ if n = 2).

Remark 2.2. Note that Remark 2.1 also applies to Theorem 2.3. In particular we get

F(Du) ∈W 1,2
loc (I × Ω), ξ∂τF(Du) ∈ L∞loc(I, L2(Ω)).
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3. Further remarks

The main obstacle in the proofs of the above theorems is the boundary condition pre-
scribed on the non-flat boundary ∂Ω together with the fact that the extra stress tensor S
depends only on symmetric part of the velocity gradient. Moreover, the incompressibility
of the flow (which results in the fact that weak solutions are divergence free, and in the
appearance of the pressure term ∇π) causes additional problems. Let us now briefly
describe how we treat these difficulties in the case of the steady problem with δ = 0.

The regularity of the tangential derivatives ∂τu near the boundary, namely∫
Ω

ξ|∂τF(Du)|2 dx '
∫

Ω

ξ(1 + |Du|)p−2|D∂τu|2 dx < C , (3.1)

is obtained by the classical difference quotients method. We appeal to translations par-
allel to the non-flat boundary ∂ Ω. When deriving the main estimates there appear some
terms which are not present if the boundary is flat. The normal derivatives are restored
from the equations (1.1). Due to the smoothness of ∂Ω, it is possible to express the whole
second gradient of u via the gradient of the tangential derivatives of u and π. Here, in
appealing to (3.1), one has to take into account that we do not know if, for p 6= 2 , a
Korn’s inequality, of the type∫

Ω

(1 + |Du|)p−2|∇∂τu|2 dx ≤ C
∫

Ω

(1 + |Du|)p−2|D∂τu|2 dx ,

holds. This situation leads to a lower regularity in the normal direction.
The results in this article are new and improve all the previous results. They are

obtained by combining several methods from [10], [14], [1], [3] with some new ideas. As
in [10], [14], and [2], we consider non–flat boundaries. In particular, we improve the
regularity exponents obtained in [2] by finding a better balance between the two main
terms which prevent optimal results.

The treatment of the unsteady problem (1.1) is based on the results for the steady
problem (1.4) and on the improvements of the time regularity of weak solutions shown
in [6].

Apart from the results mentioned above, there are some other investigations dealing
with the boundary regularity of weak solutions to systems related to (1.1). For some
references we refer the reader to [4]. We just mention here the forthcoming paper [7],
where the authors prove, for small data f , that the solutions belong to C1, α(Ω) ∩
W 2,2(Ω), up to the boundary. Finally we claim that the method followed in [4] may lead
to an improvement of the result in [9] for all p ≥ 2.
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[8] L. Diening and M. Růžička, Strong Solutions for Generalized Newtonian Fluids, J. Math. Fluid
Mech. 7 (2005), 413–450.
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