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Abstract. In these notes we present some results proved in the forthcoming
paper [3]. We consider the 3 − D evolutionary Navier-Stokes equations with
a Navier slip-type boundary condition, and study the problem of the strong

convergence ( k > 1 + 3

p
, see below) of the solutions, as the viscosity goes

to zero, to the solution of the Euler equations under the zero-flux boundary
condition. This problem is still open, except in the case of flat boundaries.
However, if we drop the convective terms (Stokes problem), the inviscid, strong
limit result holds. The cause of this different behavior is quite subtle.

1. Introduction. Consider the Navier-Stokes equations






∂t uν + (uν · ∇)uν − ν ∆ uν + ∇π = 0,

div uν = 0 ,

uν(0) = u0 ,

(1.1)

under the slip-type boundary condition
{

(uν · n)|Γ = 0,

ων × n = 0 .
(1.2)

We are mainly interested in studying the strong convergence up to the boundary,
as ν → 0 , of the solutions uν to the solution u of the Euler equations







∂t u + (u · ∇)u + ∇π = 0,

div u = 0 ,

u(0) = u0 ,

(1.3)

under the zero-flux boundary condition (u · n)|Γ = 0 . Strong inviscid limit results
means here results obtained from an uniform estimate (i.e., independent of ν , and
of some T > 0 ) of the solutions of problem (1.1), (1.2) in an L∞(0, T ; W k, p(Ω) )
space, for some k and p such that k > 1 + 3

p
.

The following two theorems are known.

Theorem 1.1. (see [9]). Assume that u0 ∈ W 3, 2(Ω) , is solenoidal and satisfies
(1.2). Then

{

uν → u in Lp(0, T0; W 3, 2(Ω) ) , for each p ∈ [1, ∞ [ ,

uν → u in C([0, T0]; W 2, 2(Ω) ) .
(1.4)
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In the next two theorems Ω is a cubic domain, and the boundary condition
(1.2) is imposed only on two opposite faces. On the other faces space-periodicity is
assumed, as a device to avoid unessential technical difficulties. The following result
holds.

Theorem 1.2. (see [2]). Let Ω be the above “cubic domain”. Assume that p > 3
2 ,

and that u0 ∈ W 3, p(Ω) is solenoidal and satisfies (1.2). Then














uν ⇀ u in L∞(0, T0; W 3, p(Ω) ) weak − ∗ ,

uν → u in C([0, T0]; W s, p(Ω) ) , for each s < 3 ,

∂t uν → ∂t u in L∞(0, T0; W 1, p(Ω) ) ,

∂t uν → ∂t u in Lp(0, T0; W 1, 3 p(Ω) ) .

(1.5)

In reference [3] we extend the above theorem 1.2 to arbitrarily large values of k

and p. We prove the following result:

Theorem 1.3. Let Ω be the above “cubic domain”. Assume that p ≥ 2 and
that the initial data u0 belongs to W k, p(Ω) , is divergence free, and satisfies the
boundary conditions (1.2). Then







uν ⇀ u in L∞(0, T0; W k, p(Ω) ) weak − ∗ ,

uν → u in C([0, T0]; W s, p(Ω) ) , for each s < k .

(1.6)

Further,
∂t uν → ∂t u in L∞(0, T0; W k− 2, p(Ω) ) (1.7)

and, if p ≥ 2 ,
∂t uν → ∂t u in Lp(0, T0; W k− 2, 3 p(Ω) ) . (1.8)

The proofs presented in references [9], [2] and [3] require flat-boundaries. Hence
the strong limit problem remains open in the presence of smooth boundaries. The
main obstacle consists of the boundary integrals resulting from an integration by
parts related to the viscous term (these integrals vanish on flat portions of the
boundary). We present here an attempt to extend our approach from flat to non-
flat boundaries. We partially succeed in this attempt, insofar as our approach works
well for Stokes problems. The reason for these two distinct behaviors is subtle. It
suffices to say that the obstacle resulting from the addition of the convective term is
not due to the related volume integral (the classical “trilinear form”, when p = 2 ),
but to the destabilizing effect of the convective term on boundary integrals, which
already occur in the Stokes framework. In other words, the main obstacle is due to
the combination of viscosity with convection, near the boundary. Concerning the
Stokes inviscid limit we show the following result (note that here the solution of the
limit problem is time independent, more precisely, u(t, x) = u0(x) ).

Theorem 1.4. (Stokes inviscid limit). Drop the convective terms in equations
(1.1) and (1.3), and assume that Ω is of class C2 . Then























uν ⇀ u in L∞(0, T0; W 2, p(Ω) ) weak − ∗ ,

uν → u in C([0, T0]; W s, p(Ω) ) , for each s < 2 ,

∂t uν → 0 in L∞(0, T0; Lp(Ω) )
∂t uν → 0 in Lp(0, T0; L3 p(Ω) ) .

(1.9)
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It is worth noting that, in the presence of the convective term, we are able to
lower the order of the derivatives occurring in the above troublesome boundary
integrals, see (3.5). However this seems insufficient to prove a strong inviscid limit
result.

In [3] we also show, as a simple by-product of our estimates, some regularity re-
sults for the solutions to the Navier-Stokes equations under the boundary conditions
(1.2) as, for instance, the following theorem.

Theorem 1.5. ( Regularity, Navier-Stokes). Let Ω be a regular open, bounded,
set in R

3 and let ν > 0 be given. Assume, for convenience, that p ≥ 2 . Let
u0 ∈ W 2, p(Ω) be a given divergence free vector field satisfying (1.2). Then there is
a T > 0 such that a unique solution u = uν to the problem (1.1), (1.2) exists in
[0, T ] . Moreover,

u ∈ L∞(0, T ; W 2, p(Ω)) (1.10)

and






|∆ u |
p− 2

2 | ∇ (∆ u) | ∈ L2(0, T ; L2(Ω))

|∆ u |
p

2 ∈ L2(0, T ; W 1, 2(Ω)) .

(1.11)

In particular u ∈ L2(0, T ; W 3, 2(Ω)) .
The above results hold in presence of an external force f ∈ Lp(0, T ; W 2, p(Ω)) .

The proof of this last theorem can be easily extended to the usual slip boundary
condition, see [8] and [1], since this last boundary condition differs from (1.2) only
by lower order terms. Note that these two conditions coincide on flat portions of
the boundary.

Remark 1.1. It is worth noting that in reference [4] G. Grubb proves very general,
strong, and complete, regularity results in Lp spaces for solutions to the Navier-
Stokes equations under nonhomogeneous, boundary conditions. The above reference
follows previous work in collaboration with V.A. Solonnikov (see, for instance, [5],
and references in [4]). This theory has its very beginning in some classical papers
by V.A. Solonnikov as, for instance, [7]. However the proofs in reference [4] are
particularly involved. Hence, a simpler approach is desirable, even if less general.
In reference [3] we just give a contribution in this direction.

2. A basic estimate. In order to show the main problem in a simple situation,
we consider here the W 2, p approach, p > 3 . By setting ω = curl u , it follows
that

∂t ω − ν ∆ ω + (u · ∇)ω − (ω · ∇)u = 0 . (2.1)

Further, by setting ζ = curl ω , it follows that

∂t ζ − ν ∆ ζ + (u · ∇) ζ +
∑

c (D u ) (D ω ) = 0 . (2.2)

Multiplication by | ζ |p− 2 ζ , integration in Ω , yields (see [6] and [1])

1
p

d
d t
‖ ζ‖p

p + ν
2

∫

Ω
| ζ |p− 2 | ∇ ζ|2 dx + c ν

∫

Ω

∣

∣∇| ζ |
p

2

∣

∣

2
dx

≤ c
∫

Ω
| ∇u | | ∇ω | | ζ |p− 1 dx + c ν

∣

∣

∫

Γ
| ζ |p− 2 (∂i ζj)ni ζj dΓ

∣

∣ .

(2.3)
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On the other hand

(∂i ζj)ni ζj = (curl ζ) × n · ζ + ∇ (ζ · n) · ζ − (∂j ni) ζi ζj .

Moreover,
ω × n = 0 ⇒ ζ · n = 0 ⇒ ∇ (ζ · n) · ζ = 0

on Γ . Hence,

1
p

d
d t
‖ ζ‖p

p + c ν
∫

Ω

∣

∣∇| ζ |
p

2

∣

∣

2
dx

≤ c
∫

Ω | ∇u | | ∇ω | | ζ |p− 1 dx + c ν
∣

∣

∫

Γ | ζ |p− 2 (curlζ) × n · ζ dΓ
∣

∣

+ c ν
∣

∣

∫

Γ | ζ |p− 2 (∂j ni) ζi ζj dΓ
∣

∣ .

(2.4)

The second boundary integral on the right hand side of (2.4) can be estimated
by terms in the left hand side, uniformly with respect to ν, by appealing to the
following result.

Lemma 2.1. To each ǫ > 0 there corresponds a positive Cǫ such that

‖ζ‖p
p, Γ ≤ ǫ ‖∇ |ζ|

p

2 ‖2
2;Ω + Cǫ ‖ζ‖

p
p, Ω . (2.5)

Hence, by fixing a sufficient small, positive, ǫ , it follows that

1
p

d
d t
‖ ζ‖p

p + c ν ‖∇ | ζ |
p

2 ‖2
2

≤
∫

Ω | ∇u | | ∇ω | | ζ |p− 1 dx + ν
∣

∣

∫

Γ | ζ |p− 2 (curl ζ) × n · ζ dΓ
∣

∣

+ c ν ‖ ζ ‖p
p,Ω .

(2.6)

Control of terms of the form c ‖ ζ ‖p
p is obvious. Control of the “convective integral”

is proved as in [2]. So, the obstacle to overcome, is just the boundary integral on
the right hand side of equation (2.6).

3. The inviscid limit. In the Stokes case (recall that −∆ ω = curl ζ ), it follows
that

∂t ω + ν curl ζ = 0 .

Hence, due to the boundary condition ω × n = 0 , one shows that

n × curl ζ = 0 (3.1)

on Γ . So, the boundary integral
∫

Γ

| ζ |p− 2 (curl ζ) × n · ζ dΓ

vanishes. This leads to the results stated in theorem 1.4.

In the Navier-Stokes framework, equations n × curl ζ = 0 does not hold in
general. However, the following result is available. To prove it, we express all
the differential operators and equations in a suitable local system of curvilinear
coordinates. See [3].

Theorem 3.1. Let the boundary Γ be a surface of class Ck, k ≥ 2 . Then
∣

∣ curl (u × ω) × n
∣

∣ ≤ H |u| |ω | , (3.2)

on Γ, where H depends, pointwisely, at most on the scale functions h j , and on
their first and second order derivatives.
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Equation (2.1) can be written in the form

∂t ω + ν curlζ + curl (u × ω) = 0 . (3.3)

Since (∂t ω) × n = 0 on Γ , it follows that

− ν ( curl ζ ) × n = curl (u × ω) × n . (3.4)

So, we have

Corollary 3.1. The estimate

ν
∣

∣ ( curl ζ ) × n
∣

∣ ≤ H |u| |ω | (3.5)

holds, pointwisely, on Γ. In particular

ν
∣

∣

∫

Γ

| ζ |p− 2 (curl ζ) × n · ζ dΓ
∣

∣ ≤ c

∫

Γ

| ζ |p− 1 |u | |ω | dΓ . (3.6)

Roughly speaking, equation (3.6) allows us to lower by two the order of the higher
derivative occurring in the boundary integral, however, at the high cost of losing
multiplication by ν. From equations (2.6) and (3.6) one has

1
p

d
d t
‖ ζ‖p

p + c ν ‖ ζ ‖p
3p + c ν

∫

Ω |ζ|p− 2 | ∇ ζ|2 dx

+ c ν
∫

Ω

∣

∣∇| ζ |
p

2

∣

∣

2
dx ≤

∫

Ω | ∇u | | ∇ω | | ζ |p− 1 dx

+ c ν ‖ ζ ‖p
p + c

∫

Γ
| ζ |p− 1 |u | |ω | dΓ .

(3.7)

Unfortunately, this estimate seems not sufficient to prove the desired Navier-Stokes
strong inviscid limit result in the case of non-flat boundaries.

4. A regularity result. We prove Theorem 1.5 by appealing to (3.7). For conve-
nience, we consider the case in which the external forces vanish. It is sufficient to
show that

∫

Γ

| ζ |p− 1 |u | ( |u |+ |∇u | ) dΓ ≤ ǫ ‖∇ |ζ |
p

2 ‖2
2 + c ‖ ζ ‖2 p

p, Ω + Cǫ ‖ ζ ‖p+1
p, Ω . (4.1)

Since p > 3
2 it follows that

‖ u ‖∞,Γ ≤ c ‖ u ‖2,Ω ≤ c ‖ ζ ‖p, Ω .

On the other hand,

‖∇u ‖p,Γ ≤ c ‖∇u ‖1, p Ω ≤ ‖ ζ ‖p, Ω .

Hence, by appealing to Hőlder’s inequality, we show that
∫

Γ

| ζ |p− 1 |u | ( |u |+ |∇u | ) dΓ ≤ c ‖ ζ ‖p− 1
p,Γ ‖ ζ ‖2

p, Ω .

By taking into account (2.5), (4.1) follows.
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