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1. Introduction and results

Throughout this paper, Ω is an open bounded set in R
3 (or R

2) locally situated
on one side of its boundary Γ. The unit outward normal to Γ is denoted by
n = (n1, n2, n3). We consider, in a suitable time-interval [0, T ], the Navier–Stokes
equations











∂tu
ν + (uν · ∇)uν − ν∆uν + ∇π = 0,

div uν = 0,

u(0) = u0,

(1.1)

and the corresponding Euler equations










∂tu + (u · ∇)u + ∇π = 0,

div u = 0,

u(0) = u0.

(1.2)

Our aim is to investigate strong convergence, up to the boundary, of the solutions
uν of the first system to the solution u of the second system, as ν → 0, under
physical meaningful boundary conditions. Concerning the Euler equations, we
assume the classical zero-flux boundary condition

u · n = 0. (1.3)
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Existence of local in time classical solutions to the Euler equations in R
3 was

proved by L. Lichtenstein, see [29]. W. Wolibner, [40], proves the existence of
global in time solutions in R

2. For other 2-D results see also [2], [22], [23], [27] and
[39]. Concerning 3-D existence results under the boundary condition (1.3) we refer
the reader to the classical papers [13], [19], [26] and [36]. For a very interesting
overview of problems relating to the Euler equations, we refer to [15].

Concerning the Navier–Stokes equations, the first thought goes to the classical
non-slip boundary condition u = 0 on Γ. However, it is well known that in this
case “strong” convergence does not hold up to the boundary, since boundary layers
appear; see the thorough analysis of [15], in particular Section 3.

The other boundary condition that comes to mind is the slip boundary condi-
tion:

{

u · n = 0,

t · τ = 0,
(1.4)

for any tangential vector τ . The stress vector t is defined by t = T · n, where

T = −πI +
ν

2
(∇u + ∇uT ),

is the stress tensor. The literature on this type of boundary conditions is end-
less. We quote here Solonnikov and Šcadilov’s pioneering paper [34], and also
[9], where a more general self-contained presentation is given. In these two ref-
erences regularity results up to the boundary are considered (see also [8] and [1],
where the regularity problem is considered in the half-space). Further, in [10], it
is shown that the linear Stokes operator, under slip boundary conditions, gener-
ates an analytical semi-group. This may be applied to study evolution Stokes and
Navier–Stokes equations.

It is worth noting that, on flat portions of the boundary, the boundary condi-
tions (1.4) and

{

(u · n)|Γ = 0,

ω × n = 0
(1.5)

coincide, where ω = curlu. This leads us to consider (1.5), even when the boundary
is not flat. Note that the boundary condition (1.5) is strongly related to the slip
boundary condition (1.4). In fact,

t · τ =
ν

2
(ω × n) · τ − νu ·

∂n

∂τ
.

Note, also, that the last term on the right-hand side is a lower order term, and
that ω × n and ∂n

∂τ
are tangential to Γ, while

∣

∣

∂n

∂τ

∣

∣ is the normal curvature in the

τ direction. For n = 2, the second boundary condition in equation (1.5) is simply
replaced by ω = 0. Furthermore,

t · τ =
ν

2
ω − νu · (kτ ),
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where k is the curvature of Γ. For a discussion on Navier–Stokes equations under
some non-standard boundary conditions related to (1.5), we refer to [3] and [21].

Vanishing viscosity limit results in R
3 without boundary conditions, can be

found, for instance, in [16], [24], [25], [28], [31], [35], and in the recent paper [12].
Note that here we are interested only in “smooth solution” situations. For some
main results concerning inviscid limits in non-smooth situations we refer to [17]
(L2 theory) and [18] (Lp theory).

We are mainly interested in 3-D problems. However, if the boundary is not
flat, it is not clear how to prove the inviscid limit result. In fact, a substantial
obstacle appears. In Section 4 we discuss this point in some detail. This situation
leads us to consider, together with the 3-D flat boundary case, also the 2-D general
problem, since in this case we are able to prove the convergence results for non-flat
boundaries (Section 5).

The 3-D inviscid limit for solutions uν to the boundary value problem (1.1),
(1.5) has been considered by Xiao and Xin in smooth domains, by means of a
new and very interesting approach to the problem. In [41] these authors state
the following result (see [41], Theorem 8.1). Assume that div u0 = 0, and that
u0 ∈ H3 satisfies the boundary conditions (1.5). Then, as ν → 0,

uν → u in Lp(0, T ; H3(Ω)) ∩ C([0, T ]; H2(Ω)),

for some T > 0 and any p ∈ [1, +∞) , where u is the solution to the Euler equations
(1.2), (1.3). However, if the boundary is not flat, the proof seems to contain an
oversight (see Remark 4.1 below).

We develop here an Lp theory, for arbitrarily large values of p, which is a novelty
in the context of the above vanishing viscosity limit problems. In particular, our
convergence results are substantially stronger than the previous ones. Since the
problem has a local character, in studying the 3-D flat boundary case we consider
a cubic domain Q (for details, see the following section), and prove the following
result.

Theorem 1.1. Assume p > 3
2 . For each ν > 0 denote by uν the solution to the

initial boundary value problem (1.1), (1.5), in the “cubic domain” Q (flat boundary
case). Assume also that the initial data u0 belongs to W 3,p(Q), is divergence free
in Ω and satisfies the boundary conditions (1.5). Then

{

uν ⇀ u in L∞
(

0, T0; W
3,p(Ω)

)

weak-*,

uν → u in C
(

[0, T0]; W
s,p(Ω)

)

for each s < 3,
(1.6)

where u is the unique solution to the Euler equations (1.2), (1.3). Further,

∂tu
ν → ∂tu in L∞

(

0, T0; W
1,p(Ω)

)

(1.7)

and, if p ≥ 2,
∂tu

ν → ∂tu in Lp
(

0, T0; W
1,3p(Ω)

)

. (1.8)
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In the 2-D case the assumption ω × n = 0 on Γ is simply replaced by ω = 0.

Moreover equation (3.4) is replaced by (5.1). For 2-D vanishing viscosity results
under slip-type boundary conditions we refer to the classical papers, [2], [22], [33].
See also the more recent papers [14] and [38]. In [14] the authors consider the slip
boundary condition

u · n = 0, τ(u) + α(x)uτ = 0, (1.9)

where α is a given positive, twice continuous differentiable function on Γ. They
assume that u0 ∈ H2 satisfies the boundary conditions (1.9), that divu0 = 0, and
that curl u0 ∈ L∞, and prove that

uν → u in Lq
(

0, T ; Wα,q′

(Ω)
)

,

for any α ∈ (0, 1) and q, q′ ∈ (1,∞). Further, uν ⇀ u in L2
(

0, T ; H1(Ω)
)

weakly,

and ων ⇀ ω in L∞
(

0, T ; L∞(Ω)
)

weak-*.
In fact, we show that in the 2-D case the results stated in Theorem 1.1 hold

without the flat-boundary assumption. More precisely, we prove the following
result.

Theorem 1.2. Let Ω ⊂ R
2 be a simply connected, open set, locally situated on

on side of its boundary Γ that we assume to be a C3 manifold. Then, the results
stated in Theorem 1.1 hold with Q replaced by Ω. More precisely, the estimate
(1.8) holds with the exponent 3p replaced by any finite q. Moreover, the results are
global in time, in the sense that they hold for any arbitrarily large T0.

The effective construction of the solution to the problem (1.1), (1.5) follows
easily from our a priori estimates. We may appeal to [10] or to well-known approx-
imation methods like, for instance, Faedo–Galerkin procedure (see, for instance,
[16], [20], [30], [37]).

In studying problems like inviscid limits, incompressible limits, well-posedness,
etc., the relevance of the results strictly depends on the topology in which conver-
gence is proved. In the framework of smooth solutions, if the initial data are given
in a Banach space X , ultimate results should establish convergence in C([0, T ]; X).
In the present context, this means to replace (1.6) by

uν → u in C
(

[0, T0]; W
3,p(Ω)

)

. (1.10)

We believe that (1.10) can be proved by following ideas developed in previous pa-
pers, see [11] for references, even though the proofs become much more involved.
Moreover it seems that there is not sufficient awareness of the mathematical im-
portance of this kind of achievement.

The vanishing viscosity limit in strong topology, without a spatial boundary,
was proved in [25], pages 54–56. For a very elementary proof of this same result
see the recent paper [12]. See also [28] and, for n = 2, [27]. In [25] Kato points out
that in his previous paper [24] he was able to prove only the weak topology result,
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and not the strong result. Kato’s remark shows how large is the gap between the
strong, and any weaker convergence result.

Remark 1.1. Let us present some other remarks concerning the gap between
weak and strong topology convergence results. We take the very classical problem
of the uniform continuous dependence on the initial data as model problem since
some basic technical obstacles are similar. The uniform continuous dependence,
in strong topology, on the initial data for solutions to the boundary value problem
(1.2), (1.3), was proved in [19] by appealing to infinite dimensional Riemannian
geometry techniques. A first analytical proof, well-founded only in 2-D, is given
in [4]. For arbitrary dimensions the first analytical proof is given in [26]. The
following claim is included in the introduction of reference [26]. The authors
wrote: “A remark is in order regarding the continuous dependence in strong of
the solution on the data. It is the most difficulty part in a theory dealing with
nonlinear equations of evolution. As far as we know, [19] is the only place where
continuous dependence (in the strong sense) has been proved for the Euler equation
in a bounded domain. The general theory developed in [25] by one of the authors
for non-linear equations is unfortunately nor applicable, since it is difficult to find
the operator S with the required properties in the case of a bounded domain.”
(Actually, the result was proved later on, even in W k,p spaces, just by appealing
to the above Kato’s general perturbation theory; see references [6], [7], and [28].)

2. Some main estimates in general 3-D domains

The following result is a main tool in our proofs.

Theorem 2.1. Let Ω be a regular open, bounded, set in R
3. Then, for each p > 1,

and sufficiently regular vector fields v,

−

∫

∆v · (|v|p−2v)dx =
1

2

∫

|v|p−2|∇v|2dx + 4
p − 2

p2

∫

∣

∣∇|v|
p

2

∣

∣

2
dx

−

∫

Γ

|v|p−2(∂ivj)nivjdΓ. (2.1)

See [32], and [5] Lemma 1.1. Note that
∫

Γ

|v|p−2(∂ivj)nivjdΓ =
1

p

∫

Γ

∂n|v|
pdΓ. (2.2)

As remarked in [5], one has

∣

∣∇|v|
p

2

∣

∣

2
≤

(p

2

)2

|v|p−2|∇v|2. (2.3)

Note that, for p ≥ 3
2 , the absolute value of the second term on the right-hand side

of equation (2.1) is bounded by a positive constant times the first term, and that
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the above term is no-negative if p ≥ 2.
It is easily shown that if v and n are two arbitrary, sufficiently regular, vector

fields then

(∂ivj)nivj = (curl v) × n · v + (∂jvi)nivj . (2.4)

Since we mainly work with the solution uν of the Navier–Stokes equations (1.1),
in the following we denote this solution by u, except when both solutions uν and
u appear at the same time.

In the sequel we set

ω = curlu, ζ = curlω, χ = curl ζ, (2.5)

and assume, for convenience, that Ω is simply-connected.

By multiplying both sides of equation (3.4) by |ω|p−2ω, by integrating in Ω,
and by taking into account the Theorem 2.1, one gets the general relation

1

p

d

dt
‖ω‖p

p +
ν

2

∫

|ω|p−2|∇ω|2dx + 4ν
p − 2

p2

∫

∣

∣∇|ω|
p

2

∣

∣

2
dx

+
1

p

∫

(u · ∇)|ω|pdx −

∫

|ω|p−2
(

(ω · ∇)u
)

· ωdx

= ν

∫

Γ

|ω|p−2(∂iωj)niωjdΓ. (2.6)

Due to div u = 0 in Ω, and to u · n = 0 on Γ, the third integral on the left-hand
side vanishes. Hence,

1

p

d

dt
‖ω‖p

p + ν
2(2p − 3)

p2

∫

∣

∣∇|ω|
p

2

∣

∣

2
dx

≤

∫

|∇u| |ω|pdx + ν

∫

Γ

|ω|p−2(∂iωj)niωjdΓ, (2.7)

where we have used (2.3).
Next we follow the above argument with ω replaced by ζ. By applying the

operator curl to both sides of equation (3.4) one gets, with obvious notation,

∂tζ − ν∆ζ + (u · ∇)ζ +
∑

c(Du)(Dω) = 0. (2.8)

Next, multiply both sides of the above equation by |ζ|p−2ζ, integrate in Ω, and
take into account the Theorem 2.1. An obvious extension of the above argument
gives

1

p

d

dt
‖ζ‖p

p + ν
2(2p− 3)

p2

∫

∣

∣∇|ζ|
p

2

∣

∣

2
dx ≤

∫

|∇u| |∇ω| |ζ|p−1dx

+ ν

∫

Γ

|ζ|p−2(∂iζj)niζjdΓ. (2.9)
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Finally, by applying the operator curl to the equation (2.8), and by following
devices similar to that used in obtaining (2.9), we get the estimate

1

p

d

dt
‖χ‖p

p + 4ν
2(2p− 3)

p2

∫

∣

∣∇|χ|
p

2

∣

∣

2
dx

≤

∫

(

|Du| |D2ω| + |D2u| |Dω|
)

|χ|p−1dx + ν

∫

Γ

|χ|p−2(∂iχj)niχjdΓ. (2.10)

The estimates obtained in this section are not sufficient to extend Theorem 1.1
to general boundaries. Hence, in order to prove our results, we have to confine
ourselves to flat-boundaries. This is done in the next section. In Section 4 we
comment on the obstacles that prevent us from considering non-flat boundaries.

3. The 3-D flat-boundary case. Proof of Theorem 1.1

In this section we consider a cubic domain Q = (]0, 1[)3, and impose our boundary
conditions only on two opposite faces. On the other faces we assume periodicity,
as a device to avoid unessential technical difficulties. By working in this simple
context, we concentrate on the basic ideas of proofs. We set

Γ = {x : 0 ≤ x1, x2 ≤ 1, and x3 = 0 or x3 = 1} .

The boundary condition (1.5) will be imposed on Γ. The problem is assumed to
be periodic, with period equal to 1, both in the x1 and the x2 directions.

In the flat boundary case, the boundary conditions (1.5) (as well as (1.4)) are
simply

u3 = ω1 = ω2 = 0 on Γ. (3.1)

Further, from ω1 = ω2 = 0 on Γ and divω = 0 it follows that

∂3ω3 = 0 on Γ. (3.2)

Proposition 3.1. Assume that ω1 = ω2 = 0 on Γ and div ω = 0 in Ω. Then

(∂iωj)niωj = 0 on Γ. (3.3)

The result follows by appealing to (3.2) and to n1 = n2 = 0.

Lemma 3.1. Let ω be a vector field in Q such that ω1 = ω2 = 0 on Γ, and set
ζ = curl ω. Then ζ3 = 0 on Γ.

The following lemma was inspired by [41].

Lemma 3.2. Let u be a vector field in Q, and ω = curl u. Assume that u3 = ω1 =
ω2 = 0 on Γ. Then the vector fields (u · ∇)ω and (ω · ∇)u are normal to Γ.
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The proof is left to the reader. Note that ∂3u1 = ω2 + ∂1u3 = 0 on Γ, and
similarly for ∂3u2.

Lemma 3.3. Assume, in addition to the hypothesis of Lemma 3.2, that ω satisfies
the equation

∂tω − ν∆ω + (u · ∇)ω − (ω · ∇)u = 0, (3.4)

where ν > 0. Then

(curl ζ) × n = 0

on Γ, where ζ = curlω.

Since ω is normal to the boundary, so is ∂tω. By appealing to Lemma 3.2, it
follows that −∆ω = curl ζ is normal to the boundary.

Proposition 3.2. Under the assumptions of Lemma 3.3 one has

(∂iζj)niζj = 0 on Γ. (3.5)

The thesis follows from Lemmas 3.1 and 3.3. Note that ∂3ζ1 = χ2 + ∂1ζ3, and
similarly for ∂3ζ2.

Proposition 3.3. Set χ = curl ζ. Under the assumptions of Lemma 3.3 one has

(∂iχj)niχj = 0 on Γ. (3.6)

By Lemma 3.3, one has χ × n = 0. Hence χ1 = χ2 = 0 on Γ. Further, by
appealing to divχ = 0, it follows that (∂3χ3)χ3 = 0.

Lemma 3.4. Let u, ω, ζ, χ be as above. Then, for each non-negative integer k one
has the following norm-equivalence results.

‖ω‖k,p ≃ ‖u‖k+1,p ; ‖ζ‖k,p ≃ ‖u‖k+2,p ; ‖χ‖k,p ≃ ‖u‖k+3,p .

The first claim follows from curl u = ω and div u = 0 in Q, together with the
boundary condition u · n = 0. The second claim follows from −∆u = ζ in Q,
together with the boundary conditions ∂3u1 = ∂3u2 = u3 = 0. Finally, the third
claim follows from the second claim, by taking into account that curl ζ = χ and
div ζ = 0 in Q, and that ζ · n = 0 on Γ (by Lemma 3.1).

By appealing to equations (3.3), (3.5) and (3.6) one obtains the following the-
orem.

Theorem 3.5. If the boundary is flat, the boundary integrals in equations (2.7),
(2.9) and (2.10) vanish.
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From the continuous immersion of W 1,2 in L6 it follows that

‖g‖p
3p ≤ c

(

‖∇|g|
p

2 ‖2
2 + ‖g‖p

p

)

. (3.7)

We may use this estimate in equations (2.7), (2.9) and (2.10). From (2.9) and
(3.7), one gets

1

p

d

dt
‖ζ‖p

p + cν‖ζ‖p
3p ≤

∫

|∇u| |∇ω| |ζ|p−1dx + cν‖ζ‖p
p, (3.8)

where we assume that p > 3
2 . Further, the integral on the right-hand side of (3.8)

is bounded by ‖∇u‖∞‖∇ω‖p‖ζ‖
p−1
p . Since W 1,p ⊂ L∞, for p > 3, the following

result holds.

Theorem 3.6. Assume that p > 3. Then

1

p

d

dt
‖ζ‖p

p + cν‖ζ‖p
3p ≤ c‖ζ‖p+1

p + cν‖ζ‖p
p. (3.9)

Similarly, from (2.10) we obtain, if p > 3
2 ,

1

p

d

dt
‖χ‖p

p + cν‖χ‖p
3p ≤

∫

(

|Du||D2ω| + |D2u|2
)

|χ|p−1dx + cν‖χ‖p
p. (3.10)

Note that, for p > 3
2 , one has ‖Du‖∞ ≤ c‖Du‖2,p and

∥

∥ |D2u|2
∥

∥

p
= ‖D2u‖2

2p ≤ c‖D3u‖2
p,

since W 1,p ⊂ L2p. So, the following result holds.

Theorem 3.7. Assume that p > 3
2 . Then

1

p

d

dt
‖χ‖p

p + cν‖χ‖p
3p ≤ c‖χ‖p+1

p + cν‖χ‖p
p. (3.11)

To avoid a useless dependence on ν, fix a value ν0 and assume that ν ≤ ν0.
Constants c may depend on ν0.

From comparison theorems for ordinary differential equations applied to (3.11),
it follows that ‖χ(t)‖p ≤ y(t), where y(t) satisfies

y′ = cy2 + cy, y(0) = y0 =: ‖χ(0)‖p. (3.12)

The solution to the above equation is given by

y

1 + y
=

y0

1 + y0
ect.

Note that y(t) is no-negative, increasing, and goes to ∞ as t goes to T ∗, where T ∗

is defined by

ecT∗

=
1 + y0

y0
.
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Further, we fix a value T0 ∈ (0, T ∗). Then y(t) ≤ y(T0) for each t ≤ T0. For
instance, define T0 by

ecT0 =
1

2

(

1 +
1 + y0

y0

)

.

It follows that y(T0) = 1 + 2y0. Hence

‖χ‖L∞(0,T0;Lp) ≤ 1 + 2‖χ0‖p. (3.13)

Next, we turn back to the equation (3.11). By integrating it over (0, t), for t ∈
(0, T0), and by using (3.13), with a straightforward manipulation we show that

‖χ‖L∞(0,T0;Lp) + ν
1

p ‖χ‖Lp(0,T0;L3p) ≤ M0. (3.14)

The reader may verify that, with the above choice of T0,

M
p
0 ≤ c‖χ(0)‖p

p + c
(

1 + ‖χ(0)‖p+1
p

)

.

Denote by N0 positive constants that depend on M0. One has

‖ω‖L∞(0,T0;W 2,p) + ν
1

p ‖ω‖Lp(0,T0;W 2,3p) ≤ N0. (3.15)

Consequently,

‖u‖L∞(0,T0;W 3,p) + ν
1

p ‖u‖Lp(0,T0;W 3,3p) ≤ N0. (3.16)

From (3.15), it follows that

‖ν∆ω‖L∞(0,T0;Lp) ≤ νN0. (3.17)

Further,
‖(u · ∇)ω‖L∞(0,T0;W 1,p) + ‖(ω · ∇)u‖L∞(0,T0;W 2,p) ≤ N0. (3.18)

From (3.4), together with the above estimates it follows, in particular, that

‖∂tω‖L∞(0,T0;Lp) + ‖∂tu‖L∞(0,T0;W 1,p) ≤ N0. (3.19)

Since ‖ · ‖s,p ≤ c‖ · ‖
s

2

2,p‖ · ‖
1− s

2

0,p , for 0 < s < 2, it follows from (3.15) and (3.19),
together with

ω(t) − ω(τ) =

∫ t

τ

∂sω(s)ds,

that

‖ω‖
C

1−
s

2 ([0,T0];W s,p)
≤ c‖ω‖

s

2

L∞(0,T0;W 2,p)‖∂tω‖
1− s

2

L∞(0,T0;Lp) ≤ N0. (3.20)

From the above estimates, together with the uniqueness of the strong solution to
the Euler equations (1.2), (1.3), one obtains the first equation (1.6), and also the
following property

∂tu
ν ⇀ ∂tu in L∞(0, T0; W

1,p) weak-*.

Note that we may pass to the limit directly in equation (3.4), as ν → 0. The
second equation (1.6) follows by appealing to Ascoli–Arzela’s compact embedding
theorem.
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Next, we write

∂tω − ∂tω
ν + (u − uν)·∇ω + uν · ∇(ω − ων)

+ων · ∇(uν − u) + (ων − ω) · ∇u = −ν∆ων .

From the previous results it follows that the non-linear terms on the left-hand
side of the above equation go to zero in C([0, T0]; W

s,p), as ν goes to zero, for any
s < 1. In view of (3.17), equation (1.8) follows. In particular, the above non-linear
terms go to zero in C([0, T0]; L

3p), if p ≥ 2. On the other hand, from (3.15), it
follows that

‖ν∆ω‖Lp(0,T0;L3p) ≤ N0ν
1

p′ . (3.21)

Hence (1.8) holds.

If in the above argument we appeal to (3.9) instead of (3.11), we obtain similar
results, where W 3,p is replaced by W 2,p, and s < 2 . In this case it must be p > 3
everywhere.

4. On the 3-D non-flat boundary case

The obstacle that prevents us from extending to non-flat boundaries the proof of
Theorem 1.1 is that, in such a more general case, Lemma 3.2 does not hold. This
lemma was used to show that the boundary integrals vanish. In this section we
show an attempt to overcome this obstacle, by trying to control the boundary inte-
grals. However, this device seems not sufficient. Nevertheless, it looks interesting
by itself, and we would like to present it to the reader. Basically, it allows to lower
the highest order of the derivatives appearing in the boundary integrals.

Lemma 4.1. Let the boundary Γ be a surface of class Ck, k ≥ 2. Then, at any
point x0 ∈ Γ, the component of (u · ∇)ω − (ω · ∇)u in any tangential direction τ

has the form
(

(u · ∇)ω − (ω · ∇)u
)

· τ =
∑

aij(x)uiωj , (4.1)

where the coefficients aij are of class Ck−2 on Γ. Consequently,

ν curl ζ · τ = −ν(∆ω) · τ =
∑

aij(x)uiωj . (4.2)

The straightforward proof is left to the reader. This lemma allows us to es-
timate the boundary integrals for each positive ν. However, we are interested in
letting ν → 0. To fix ideas, let us consider (2.9). By appealing to (2.4), and by
using arguments similar to that leading to (3.8), we get
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1

p

d

dt
‖ζ‖p

p + ν
2(2p − 3)

p2

∫

∣

∣∇|ζ|
p

2

∣

∣

2
dx

≤

∫

|∇u| |∇ω| |ζ|p−1dx + ν

∫

Γ

|ζ|p−2(curl ζ) × n · ζdΓ

− ν

∫

Γ

|ζ|p−2(∂jni)ζiζjdΓ, (4.3)

By (4.2), we find, with obvious notation,

ν

∫

Γ

|ζ|p−2(curl ζ) × n · ζdΓ ≤ c

∫

Γ

|ζ|p−1
∑

|a(x)||u||ω|dΓ. (4.4)

In this way we drop the higher order derivatives in the boundary integral. However
this is obtained at the cost of losing multiplication by ν. Actually, for each fixed
positive ν we can estimate the boundary integral by the two ν− terms that appear
in the left-hand side of (4.3). However, if ν goes to zero, the coefficient ν in the
boundary integrals looks crucial. A similar argument can be applied to (2.10)
instead of (2.9).

We end this section by showing that, in the non-flat boundary case, the tan-
gential component of (u · ∇)ω − (ω · ∇)u is not necessarily equal to zero, which
is the thesis of Lemma 3.2. We show a quite simple counter-example due to
C. R. Grisanti. For convenience we use here the notation (x, y, z). Let be Ω =
{

(x, y, z) : z < −x2
}

. The vector field (2x, 0, 1) is normal to the boundary and the
vector fields τ1 = (−1, 0, 2x) and τ2 = (0, 1, 0) are independent, and tangential to
the boundary. Note that the above vector fields are not normalized. Define

u = e−2z(1,−4xy,−2x).

One has u · n = ω × n = 0 on Γ; moreover div u = 0 and

curl u = ω = −4e−2z(2xy, 0, y)

on Ω. Furthermore,

[(u · ∇)ω] · τ1 = −[(ω · ∇)u] · τ1 = 8ye4x2

.

Hence, [(u · ∇)ω − (ω · ∇)u] · τ1 does not vanish on Γ, for y 6= 0.

Remark 4.1. Note that the normal derivative of the tangential component of the
above vector field u does not vanish on the boundary. For instance, ∂z(u · τ1)=−2
at the origin. This fact is at odds with the statement of Proposition 4.1 in [41].

5. Non-flat boundary in the 2-D case

In the 2-D case the equation (3.4) is replaced by

∂tω − ν∆ω + u · ∇ω = 0, (5.1)
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where the vector field ω = curlu, orthogonal to the plane motion, is identified
with the scalar ω = ∂1u2 − ∂2u1. Similarly, ζ is a vector lying in the plane, and
χ a scalar. In the 2-D case, the boundary conditions corresponding to (1.5) are
simply given by

u · n = 0, ω = 0. (5.2)

The next result corresponds to Proposition 3.2.

Proposition 5.1. Let u be a vector field in Ω, and let ω = curlu. Assume that
(5.1) holds on Γ. Then the vector field u · ∇ω vanishes on Γ.

The result follows from the fact that u · ∇ω is a tangential derivative of ω.

Proposition 5.2. Assume, in addition to the set up in Proposition 5.1, that ω

satisfies the equation (5.1), where ν > 0. Then

χ = curl ζ = 0

on Γ, where ζ = curlω.

It thus follows that the boundary integral in equation (2.10) vanishes, since in
2-D it is given by

∫

Γ

|χ|p−2(∂iχ)niχdΓ.

So, in the 2-D case, (2.10) reads

1

p

d

dt
‖χ‖p

p + ν
2(2p− 3)

p2

∫

∣

∣∇|χ|
p

2

∣

∣

2
dx ≤

∫

(

|Du| |D2ω| + |D2u| |Dω|
)

|χ|p−1dx.

(5.3)
Since W

1,2
0 ⊂ Lq, for each finite q, it readily follows that

∫

∣

∣∇|χ|
p

2

∣

∣

2
dx ≥ cq‖χ‖

p
q.

We have to take into account that pq
2 is arbitrarily large. Hence the following

result holds.

Theorem 5.1. Let Ω be a regular, bounded, simply-connected, open set in R
2.

Then, for each p > 3
2 and each finite q, one has

1

p

d

dt
‖χ‖p

p + cν

∫

∣

∣∇|χ|
p

2

∣

∣

2
dx + cqν‖χ‖

p
q ≤

∫

(

|Du| |D2ω| + |D2u| |Dω|
)

|χ|p−1dx.

(5.4)

Actually, we may replace |D2ω| by |Dζ| and |D2u| by |ζ|. In analogy to the 3-D
flat boundary case, the estimate (5.4) leads to corresponding convergence results,
local in time. Actually, the results can be proved globally in time by following
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ideas already known in considering 2-D problems. This is left to the interested
reader.
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Università di Pisa
Via Buonarroti 1/c
56127 Pisa
Italy
e-mail: francesca.crispo@ing.unipi.it

H. Beirão da Veiga
Dipartimento di Matematica Applicata
“U. Dini”
Università di Pisa
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