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Abstract. This article is concerned with the global regularity of weak solutions to systems describing the flow of shear
thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law
ansatz with shear exponent p > 2. We show that, if the data of the problem are smooth enough, the solution u of the steady
generalized Stokes problem belongs to wl(np+2-p)/(n—2) (£2). We use the method of tangential translations and reconstruct
the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results
for the steady and unsteady generalized Navier—Stokes problem are also formulated.
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1. Introduction

This article is concerned with systems describing motions of shear thickening fluids, which in steady
situations are governed by the following system in 2

—divS(Du) + § [Vulu + V7 = f,

1.1
divu = 0, (1.1)

equipped with Dirichlet boundary conditions on 952
u=0, (1.2)

where v : Q = R*", 7:Q —=RJ§=0o0rd=1,and Q C R?, n > 2, is a bounded domain with an C%'
boundary. Here we have denoted the velocity field by w and the pressure by 7. The symbol

1
Du= 5 (Vu+ vuTl),

denotes the symmetric velocity gradient, S(Du) the extra stress tensor and ([Vulu); = Z;.Lzl 0,
1=1,...,n the convective term. Typical prototypes of extra stress tensors are

S(D)= (1+|D2)*=D or S(D)= (1+|D|)*2D. (1.3)

We recall that a fluid is called shear thickening if p > 2 and shear thinning if p < 2.

We are interested in proving boundary regularity of weak solutions (u, ) of the problem (1.1) describ-
ing flows of shear thickening fluids. It is generally accepted that the regularity of weak solutions in this
case is easier to obtain than in the case of a shear thinning fluid, where the convective term interacts with
the elliptic term and may spoil the regularity of the solution. Certainly, in the case of a shear thickening
fluid, the convective term is not the basic obstacle and, at least in the interior, the local regularity of
weak solutions may be obtained. However, as soon as the boundary comes into the play, the question
of regularity becomes more delicate, because there arise problems connected with the structure of the
elliptic term, namely that it depends on the symmetric part of the gradient only, and with the presence
of pressure in the equation. This may result in the loss of regularity of the flow of shear thickening fluids
in comparison to the flow of Newtonian fluids.
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We also investigate time dependent versions of the above problem in I x 2 namely
Ou — divS(Du) + [Vulu + Vr = f,
divu =0,

under the above Dirichlet boundary conditions (1.2) on I x 9Q, where u : I x @ = R" 7: I x Q) — R
and I = (0,7), T > 0, is a nontrivial time interval. Since our results are local with respect to time we do
not specify the initial condition.

The extra stress tensor S is assumed to possess p-structure with p > 2. More precisely we make the
following assumptions on S.

(1.4)

Assumption 1 (extra stress tensor). We assume that the extra stress tensor §: R™*" — RET! belongs to

COR™ ™ REXm) N CHR™ ™\ {0}, REX), where REX! := {A € R™" | A= AT}, and satisfies $(0) = 0

and S(A) = § (A™™), where A%™ := 1 (A4 AT). Moreover, we assume that S has p-structure, i.e., there
exists p € (1,00) such that

3 0uSi(A)By By > ¢ (1+ | AP B, (1.5a)
i,k l=1

0185 (A)] < C (1 + [A™])P2 (1.5b)
is satisfied for all A, B € R™*™ with AY™ =£ (.

This assumptions is motivated by the typical prototypes for the extra stress tensor given in (1.3).
We refer the reader to [11,26,40,43] for a more detailed discussion leading to Assumption 1.

Closely related to the extra stress tensor S with p-structure is the function F: R™*" — R{XT defined
through

F(A) = (1 + |A¥m)) " Avm, (1.6)

There is a close relation of the quantities S and F to Orlicz spaces and N-functions and we refer the
reader to [11,45] for a detailed description (cf. Sect. 2). Since in the following we shall insert into S and
F only symmetric tensors, we can drop in the above formulas the superscript “¥™” and restrict the
admitted tensors to symmetric ones.

Before formulating our main results we want to note that the system (1.4) is nowadays classical.
It was proposed by Ladyzhenskaya in [36-38] as a modification of the Navier-Stokes system. Simul-
taneously Lions [39] suggested a similar system, however with the elliptic term depending on the full
gradient. Since that time much work has been done concerning existence of the weak solutions to the
systems (1.4) and (1.1) and their qualitative properties. We refer, without any ambition of completeness,
to [9,11,13,14,25-27,31-33,40,41,44,48]. In spite of the fact that the system was extensively studied
there are still many open problems, especially concerning the regularity of weak solutions.

The main results of the present paper contribute to the field of regularity properties of weak solutions
to the variants of the problems (1.4) and (1.1).

Theorem 1.1. Let Q2 C R™, n > 2, be a bounded domain with C*' boundary and let f € L*(Q). Then the
unique weak solution u € Wy (Q) of problem (1.1), with § =0, and (1.2) satisfies

weWha(Q), F(Du)e Whiriz(Q), (1.7)
for
_np+2-p
=2
ifn >3, and for all ¢ < o0, if n = 2.
Theorem 1.2. Let S satisfy Assumption 1 with p > max{2,(3n)/(n+2)}. Let @ C R™, n > 2, be a

bounded domain with C*' boundary, and let f € L?(Q). Then, for p € [3,00) U (n/2,00), any weak
solution u € W, ™P() of problem (1.1), (1.2), with § = 1, satisfies (1.7), where q is as above.
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Remark 1.1. (i) In the interior and in tangential directions we get better regularity properties in the
previous theorems. More precisely we get (cf. [42], (3.14), (3.13))

F(Du) e Wb2(Q), €0, F(Du) € L*(Q),

loc
where £ is some cut off function with support near the boundary 92 and the tangential derivative
0- is defined locally by (2.1).
(i) Since p > 2 it follows that (cf. (3.21))

|V2u| < ¢|VF(Du)|.

Theorem 1.3. Let S satisfy Assumption 1 with p > (3n+2)/(n+2). Let Q@ C R™, n > 2, be a bounded
domain with C** boundary, I = (0,T), T >0, and let f € VVli’CQ(I,LQ(Q)). Then any weak solution u of
the problem (1.4), and (1.2) satisfies
we WX (I, L3(Q), F(Du) e WS2(I,L*(Q)) s
we LS (ILWY(RQ), F(Du) € LS (I, W ez (Q)), '

loc

where q is as above.

Remark 1.2. Note that Remark 1.1 also applies to Theorem 1.3. In particular we get
F(Du) € WZ(I x Q),  £0-F(Du) € LiS.(I, L*(Q)).

The main obstacle in the proofs of the above theorems is the boundary condition prescribed on the
non-flat boundary 92 together with the fact that the extra stress tensor S depends only on symmetric
part of the velocity gradient. Moreover, the incompressibility of the flow (which results in the fact that
weak solutions are divergence free) and in the appearance of the pressure term Vr in the Egs. (1.4) and
(1.1), causes additional problems. Let us now briefly describe how we treat these difficulties in the case
of the steady problem (1.1), with § = 0, and (1.2).

The regularity of the tangential derivatives d,u near the boundary, namely

/f\an(Du)de ~ /5(1 + |Du|)P~2| Do, ul? dx < C (1.9)
Q Q

is obtained by the classical difference quotients method. As in [35,42], we appeal to translations parallel
to the non-flat boundary 92, hence without a previous change of coordinates, as done in [6] in order to
straighten the boundary. In both cases, however, when deriving the main estimates there appear some
terms which are not present if boundary is flat. In order to handle them we need 992 € C?!.

The normal derivatives are restored from the Egs. (1.4) by the method of [2] (cf. [3] for a simplified
approach), where the same system on the half space is studied. In [6] the same ideas are applied in the
non-flat boundary case. The main ingredient is that, due to the smoothness of 0f2, it is possible to express
the whole second gradient of u via the gradient of the tangential derivatives of u and 7. To use (1.9) at
this place, we have to overcome the problem that we do not know if Korn’s inequality of the type

/(1 + DUV O, de < c/(1 + | Dul)P 2| Dosul? do
Q Q

holds. This leads to a loss of regularity of normal derivatives. In spite of the fact that we improve the
results from [2,6,8,42], a fundamental question remains open. Namely, if it is possible to show that

/|V.7:(Du)|2da: <.
Q
Note that

/|V.7’:(Du)|2 dx ~ /(1 + | Du|)P 2| V2u|? da.
Q Q
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To treat 0.7 we need the next important tool, the theorem about properties of the divergence opera-
tor, cf. [12] (cf. [2,3,6,8] for an alternative approach using Necas’ negative norm theorem), which allows
to estimate the norm of 9.7 from (1.1). Also here we may set up an open question. Is it possible to get
an estimate of some norm of (1 + |Du|)?=2)/29, 7 and get HV2uH2 <C?

The results in this article are new and improve all previous results. They are obtained by combining
several methods from [2,8,35,42] with some new ideas. In [42] the problem (1.4) is studied in a three-
dimensional domain. The main focus is put on the existence theory for p close to 2 to fill the previously
existing gap between 2 and 15—1 As a tool, regularity of the second derivatives of the weak solutions is
used. It is obtained by the method of tangential differences provided p € [2,3). The article [35] is devoted
to the existence of a W2T¢(Q) solution to the problem (1.1) in a two-dimensional domain for p < 2.
We follow some parts of these papers to obtain regularity of tangential derivatives of Du and . In [2,3]
regularity of weak solutions of problems (1.4) and (1.1) are studied in the neighborhood of the flat portion
of 0€Q). From these articles we learn how to reconstruct the normal derivatives from the tangential ones,
see Sect. 3.2 below. In [8] the results proved in [3] are improved by appealing in particular to anisotropic
embedding theorems (cf. [47]), since we have different information in different directions. The results in
[3] have been extended in [6] to non-flat boundaries, an extension that also applies to the results in [8].
In [22] results between [3] and [8] are shown. In this paper, as in [6,35,42], we consider non-flat boundaries.
In particular, we improve the regularity exponents obtained in [6] by finding a better balance between
the two main terms that prevent optimal results. The treatment of the unsteady problem (1.4) is based
on the results for the steady problem (1.1) and the very nice improvements of the time regularity of weak
solutions in [14] compared to [42] (cf. [11,26]).

Concerning the shear thinning case, strongly related W29 regularity results up to the boundary,
under the boundary condition (1.2), are proved, for flat boundaries in [4,5,10], for cylindrical domains
in [20,21], and for smooth arbitrary boundaries in [7]. Appeal to Troisi’s anisotropic embedding theo-
rems (instead of classical, isotropic, Sobolev embedding theorems), also used below, was introduced in
[10]. In the forthcoming paper [23] the authors prove that, under a suitable smallness assumption on f
the solution u to the system (1.1), (1.3), under the boundary condition (1.2), belongs to C*® N W22,
up to the boundary. Still in the shear-thinning case, W2 9— regularity results up to a flat or a poly-
hedral boundary, under no-stick boundary conditions, are proved in [28]. Here, the information about
the normal derivative is obtained by testing the equation with second normal difference after suitable
prolongation of the solution u outside 2. However, under the Dirichlet boundary condition (1.2), we
do not know a suitable prolongation of u. The above boundary condition was also included in [2],
where p > 2.

Apart from the results mentioned above we know about some other investigations dealing with the
boundary regularity of weak solutions to systems related to (1.4). Very interesting are the papers [29,30],
where incompressibility and the pressure are dropped off the equation. In the article [46] the problem
(1.1) is studied provided p = n = 2 by the method of straightening the boundary. In [15-19] very
interesting, physical meaningful, problems are deeply studied. In [34] it has been shown that the unique
weak solution w of (1.4) with (1.2) satisfies u € L°(I, W?2T¢(Q)) provided p € [2,4) and n = 2.
The upper bound appears due to the lack of regularity of the second derivatives of the weak solu-
tion near the boundary. This type of results are interesting because they imply full regularity of the
problems. We believe that the results presented here lead to the improvement of the result in [34] for
all p > 2.

The paper is organized as follows. In Sect. 2 we recall the notation used throughout the paper. More-
over, we recall some basic facts related to difference quotients in tangential directions and to the extra
stress tensor S. In Sect. 3 we prove Theorem 1.1. In particular, we treat in detail the regularity in tan-
gential directions in Sect. 3.1, and in normal directions in Sect. 3.2. Moreover, we prove some regularity
properties of the pressure. In Sect. 4 we explain how the convective term can be incorporated into the
scheme developed in Sect. 3. In the final section we use the previous results and a result from [14] to deal
with the unsteady problem.
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2. Preliminaries

In this article we use standard notation for Lebesgue spaces (LP(), [|||,,), 1 < p < oo, and Sobolev spaces
(WHEP(Q), |||, »): 1 <p<oo, k€N, where 2 C R" is a bounded domain with C?1! boundary. Moreover,
we use the usual local versions of these spaces. Weak partial derivatives in spatial directions are denoted
by 0;, i = 1,...,n. The tangential weak derivatives near the boundary are denoted by 9. (cf. (2.1)).
WP () is the subspace of W1P(€2) consisting of functions with zero trace. The dual space of W (Q)
is denoted by W1+’ (), where p’ is the dual exponent to p, i.e. % + 1% = 1. The duality pairing between
these spaces is denoted by (-, )1 ,. For the treatment of the unsteady problem we shall make use of the
Bochner spaces LP(I,X) and W*P(I,X), 1 < p < oo, k € N, where (X, ||. | x) is some Banach space.
Differentiation with respect to time is denoted by 0.

If w e R" and v € R” then u ® v € R™*" and (u ® v);; := wv;. If m = n then u ®g v =
%(u ®@v+ (u®wv)"). We do not use any special symbol for the scalar products of vectors and tensors,
e.g., S(Du)B = S;;(Du)D;;u, where the summation convention over repeated Latin indices from 1 to n
was used, alike in the rest of the article. We use universal constants ¢, C' > 0, which may vary in different
occurrences. We write f ~ g if there exist positive constants ¢ and C' such that cf < g < Cf.

Since 9Q € C%!, for each point P € 9 there are local coordinates such that in these coordinates we
have P = 0 and 9 is locally described by a C?!-function ap : Bl '(0) — BL(0), where B}(0) is the
k-dimensional ball with center 0 and radius R > 0 (which is small enough and will be fixed later) with
the following properties

€ Qp:=QN(BE10) x BR(0)) &z, > ap(21,...,701),
Vap(0) =0, |Vap| <R on B '(0).
As 09 is compact there exists a finite set of points I' C 92 and an open set g CC €2 such that
QC QU U Qp.
Per
To this covering of Q we construct a partition of unity {£p,&p, P € T'} such that for all P € T the sets
spt&p and 9Qp \ IQ have positive distance dist(spt Ep, OQp \ Q) > hy, for some suitable small hy > 0.
Let us fix some P € I' and write for simplicity & = £p, a = ap. Moreover, we use the notation
x = (2/,x,) and denote by e’,i = 1,...,n the standard basis in R". For h € (0,ho), a € {1,...,n — 1},
and a function ¢ with spt ¢ C spt ¢ we define positive and negative tangential translations by
or (2, 2n) = (2" + he®, x, + a(x’ + he®) — a(z"))
p—r(@,an) == (2" — he®, zn + a(2’ — he) — a(a'))
and tangential differences through
dro=pr—p, dop:=¢p_r—0o.
One easily checks (cf. [42, Section 3]) that
hld,o — 0,0 = 00 + Oaa Onp ash—0 (2.1)

almost everywhere in spt¢ if o € WH(Q). Moreover, for all 1 < ¢ < oo, all ¢ € V[/'Ol’q(Q)7 and all
sufficiently small h we have

1R~ drpllg spre < c(a)lIVeel- (2.2)
Conversely, if ||h = d,p||g.spte < C for all sufficiently small h, then we get
10-@llgspre < C. (2.3)

Now we formulate some auxiliary lemmas related to these objects. The first lemma clarifies the non
commutativity of tangential translations and tangential differences with partial derivatives. For simplicity
we denote Va := (01a,...,0,-1a,0) and use also a, and a_, with obvious meaning.
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Lemma 2.1. Let sptp C spt&. Then
Vd,o =d;Vo+ (Onp), ®d;Va,
Dd.p = d; Dy + (0ny), ®s d-Va,
divd.p = d,;divp + (Op9), d;Va.

For strictly related formulae, see the lemma 6.3, and equations (6.12) and (6.13), in [6].
The second lemma is devoted to the relation between tangential differences and tangential translations.

Lemma 2.2. Let spt p C spt&. Then
(dr¢), = —drp,  (drp)_, = —d- .
The discrete version of the partial integration formula will be often used.

Lemma 2.3. Let spt gUspt f C spt&. Then

!fmﬂmzzﬂmm

Consequently, [, fd-gdx = [,(d; f)gdz.
Also the discrete product rule will be used.

Lemma 2.4. Let spt gUspt f Cspt&. Then
d‘r(fg) = frd-g+ (de)g-

In the following sections the tangential differences of the extra stress tensor S will play a crucial role.
Before we derive various formulas related to it we will clarify the role of F and its relation to differences
of 8. The following lemma is proved in [24, Lemma 2.1] (cf. [45, Lemma 6.16]).

Lemma 2.5. Let S satisfy Assumption 1 with p € (1,00) and let F be defined by (1.6). Then for all
A, B € RX" there holds

sym

(S(A) = S(B))(A - B) = |A— BI*(1 + |B| + |A])"~*

~ \F(4) - F(B)? .
|S(A) = S(B)| ~ |A = B|(1+|B| +|A])"~, (2.5)
with constants depending only on p and the constants in Assumption 1.
Using this lemma we easily see
|d,S(Du)| < C (1 + |Du| + |(Du)_|)P~2|d, Dul
< Cld-F(Du)| (1 + [Dul + (D). |) =", =
d,S(Du)d,Du ~ |d.F(Du)|? @
~ (1+ |Du| + |(Du)_|)*~2|d, Dul?.
These relations, Lemma 2.1 and (2.2) yield
/ém&Dmm¢mmzcM@fwwﬁfCW%MﬂH+WWﬁ~ 2.8)
Q

All assertions from this section may be proved by easy manipulation with definitions and we drop their
proofs.
We conclude this section by the following anisotropic embedding theorem.
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Theorem 2.1. Let P € T', F € WhY(Qp) with spt F' C spt&p. Let all tangential derivatives 0, F satisfy
0. F € L*(Qp), for some k > 1, and let O, F € L' (Qp), for some p > 1. Let 1/p+ (n —1)/k > w for
some w > 1. Then F € LY(Qp) with v given by 1/v =1/n((n—1)/k+1/u—1) and

IFNl, < C 0Pl +1F1L) " (I0uFll, + I1F1,) "

The constant C' > 0 depends on w but not on u, K, v.

Proof. The theorem is proved in [47] provided the boundary is flat. The case of the non-flat boundary
can be converted to the previous case by the coordinate transformation ® : (2/,x,) — (¢/,z, + a(z’)).
Note that defining G := F o ® it holds 0,G = (0o F + 0,00, F)o® = 0;Fo® for a € {1,...,n—1}, and
OnG = (0, F) o ®. Since the Jacobian of the transformation ® is one, we can use [47, Theorem 4.3] for G
and the reverse transformation to ® to get the statement of the theorem. (I

3. Steady p-Stokes Problem

Let us start with the definition of weak solutions and some remarks about its existence. We refer to the
problem (1.1), with § = 0, (1.2), and S satisfying Assumption 1 as the steady p-Stokes problem. Note
that in this section the universal constants ¢, C' > 0 do not depend on f.

Definition 3.1. Let S satisfy Assumption 1 with p > 2 and let f € W’l’p,(Q). A weak solution of the
steady p-Stokes problem is a function u € Wy *(2), with divu = 0 such that for all p € W, () with
div ¢ = 0 holds

/S(Du)Dgpdm ={f,)1,p- (3.1)
Q

The existence of a weak solution of the steady p-Stokes problem is easily obtained using the Galerkin
method together with the monotone operator theory. A weak solution always satisfies the a priori estimate

[Dullb < C{IfII” - (3.2)

Uniqueness of weak solutions follows from the strict monotonicity of S, which is consequence of Assump-
tion 1. To the weak solution u there exists an associated pressure m € LP (), with fQ mdx = 0, satisfying

for all p € W, ()

/S(Du)Dgo +rdivedr = (f,¢),, (3.3)
Q

and
17/l < CHFll 105 (3.4)
as it is proved in [1, Theorem 2.8]. Similarly, the following lemma holds.

Lemma 3.1. Let f € W_l’ﬁ(Q) and let u be a weak solution of the steady p-Stokes problem satisfying
Du € L9(2), where p < ¢ < (2n)(p — 1)/(n — 2). Then the associated pressure w belongs to Lv—1 () and
satisfies

Il o, <€ (14 IDull™ + 11f1l 1, e, ) (3.5)
Here we have used the growth property of S (cf. (2.5)), namely that for A € R{" holds

[S(A)] < C(1+]A])72|Al. (3.6)
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Remark 3.1. Note that for f € L*() and p > 2 we get f € W12 (Q). Also note that L2(€) —
Wh5T(Q) — WP (Q) if p < ¢ < 2n(p — 1)/(n — 2), so we can substitute the norm of f in (3.5) by
| fll5- The parameter g is chosen such that the information to be obtained on Vu is better than the one
from the energy estimate (3.2), and that the conditions on ¢ do not impose any additional restriction
on p.

3.1. Regularity in Tangential Directions

Fix PeT and let £ =&p, a=ap, Qp, a € {1,...,n— 1}, h € (0,hp) be as in Sect. 2. We consider the
test function ¢ in the weak formulation (3.3) in the form ¢ = d () with ¢ € C5°(£2) to get, with the
help of Lemmas 2.1-2.4,

/ngS(Du)Dz/) + (d;m)&divep da
Q
_ / S(D) (0 (60)) . s d= Va) + 1(0u(E))_d> Vada
Q

- [a:s0uvess v+ @mvevds + [ fa-(cv)ds (3.7)
Q

Q

Due to the fact that v € Wy**(), = € L?' () and the density of C§°(Q) in W, ?(Q), Eq. (3.7) remains
valid for all ¢ € Wol’p(ﬂ) and we can set ¥ = &£d,u. Note that {d,u has zero trace on p. We get
an information from the first term on the left-hand side of (3.7). By (2.8), (2.6)2, Young’s and Korn’s
inequalities, (2.2), and (3.2) it may be estimated from below by

[ €4 SDwD(Ed ) da = ¢ e FD; - O 1+ [Vl

Q

The second term on the left-hand side of (3.7) we treat with the help of Lemma 2.1 and the fact that
divu = 0. This leads to

/ (o) div(Edou) da — / (d,m)E(VEdru + €(Dnu). d, Va) da.
Q Q
Using these two relations we obtain from (3.7)

¢ ||€d. F(Du)|;
< [ ldele (drull Vel + H@On) |) do+ [ iz (€dru)ds

Q

Q
—/S(Du)(an(gZdTu)),T ®s d; Vadr — /w(an(§2d7u))4d;vudx
Q Q

— /deS(Du)Vf ®s drudr — /deWVdeU dx+Ch* |1+ |Vu|||g
Q Q

=L+ + I+ Ch* |1+ |Vull}. (3.8)

Let us now gradually estimate all integrals on the right-hand side. Using (2.2), (2.6)2, and Young’s
inequality we get

I+ Is| < Ch ||derl|, |Vl
|Is| < & ||€d-F(Du)|5 + C= b |1+ | Vul|[2.
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Next, by (2.2) and Korn’s inequality we get
|B| < CIfll, | D(E%d-u)| -
Note that from (2.7) it follows |d, Du| < C'|d,F(Du)|. Using this, Lemma 2.1 and p > 2 we finally obtain
12| < & |lgd-F(Du) 3+ C b (I1F15+ 111+ [Vull})

where C' also depends on V2a and on € > 0. Thus, it remains to estimate the terms I3 and I,. Since these
estimates are similar we present it only for I3. To this end we write using Lemma 2.1

(0,(E3dyu))_, = (€2d - Opu + 2£0,Edu)
to get by Lemmas 2.2 and 2.3

T

I3 = /S((DU)T)dTVG, ®s (£2d'ranu + 2£an£d'ru) dx =: I31 + I32.
Q

From (3.6), and (2.2) we obtain
[Iso| < C? |14 [Vul?,

where C also depends on VZ2a. For the treatment of I3; we have to use Lemmas 2.2 and 2.3 again. Due
to this we need 9Q € C%!. We obtain proceeding similarly as in the estimates of the terms I5 and I3,

|I31| = /d; (£S((Du),)d,Va) ®s dudz| < ’/[fszS(Du)dTVa+S(Du)dT(Va)d;§2
Q Q
—8(Du)(€?)_ (d-Va+d;Va)| ®s Opu dm‘ < e ||ed.F(Du)|5 +Ch? |1+ [Valll7,

where the constant C' depends on |[V2al|1,4 and e. Recall that 7 € L (Q). Proceeding similarly as for
I3 we get

(] < C ( llgdoml, 19ull, + 12 (el + 11+ [Ful?)).
Finally, combining all estimates above, (3.2), (3.4), and choosing € > 0 sufficiently small we get
led-F(Du)l3 < C (h lederll, [Ful, + b2 (141513 ))- (3.9)

In order to get regularity in the tangential directions we have to estimate [|{d.7|,. In view of the next
subsection we will prove in the next lemma a slightly more general estimate than needed here.

Lemma 3.2. Let u be the weak solution of the steady p-Stokes problem and let 7 be the associated pressure.
Assume that for some ¢ > p, 1 < S <2q/(p+ q— 2) we have

K =1+ [Dully " + |I7lls + | f]ls < oo (3.10)
Then
p=2
l¢domls < € (Ied-F (DUl 11+ |Dull= + ).
Proof. We solve an auxiliary problem

divey = |[édm|°2¢d, 7 — ]/ |éd,m|52¢d, mdx  in spté,
Q

Y =0 at d(spt&ENNQ).
By the Bogovskii theorem [12] such ¢ exists and satisfies
S—
[l s < Cllédemlg™ (3.11)
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After prolongation by zero outside spt¢, v is a suitable test function in (3.7) due to (3.10), the growth
property of S (cf. (3.6)), and ¢ > p (hence ¢ > S). By inserting ¢ into (3.7) we get from the second term
on the left-hand side using = € L? ()

Jtamgdivode = a3 + f ledom* 2 mds [ rdzgdo > el - ChledmlS Il
Q Q Q

The first term on the left-hand side can be estimated, using (2.6)2, Holder’s inequality and (3.11), by

O lléd, F(Du), ed-n|§™ (1 + [ Dul)) 2, <

The other terms are treated easily. Thus we arrive at

2—-S

fedml$ < € ledorl$ |led A D, (1410017 o )+ 1015+ SOl + )|
< C lled,alS [led, A, (1410l ) + 1 (1L + 0+ 1Duly = + ) |,

where we used the growth property (3.6) of S;p < ¢, (p—2)S/(2—5) <¢,(p—1)S < g. This inequality
yields the assertion. O

Now we come back to (3.9). Using f € L*(Q), (3.2), (3.4), and Remark 3.1 we can choose ¢ = p,
S =p’ in Lemma 3.2. Thus we obtain from (3.9) and Young’s inequality

led-F(Du)3 < 2 (1+]1£13)- (3.12)

Note that Vu € LP(Q) implies F(Du) € L*(Q). Consequently we obtain from the properties of the
tangential differences (cf. (2.3))

1€0-F(Du)|l3 < CA+ |1 £]3)- (3.13)

A similar procedure can be done in the interior of  for all differences. This leads to (cf. [42, section 3])
u e W22(Q). In particular we know that

loc

160 VF(Du)ll; < CL+[|£113), (3.14)

and that the system (1.1), with 6 = 0, holds almost everywhere in €.

3.2. Regularity in Normal Direction

In this section we obtain new information about the regularity of u from Eq. (1.1) and the information
about tangential regularity (3.13).

As mentioned above, second derivatives of u exist almost everywhere in © and the system (1.1), with
0 = 0, holds almost everywhere in . We use the first n — 1 equations in (1.1), with 6 = 0, and the
equation divu = 0 to obtain information about the whole second gradient of u (cf. [42, section 3], [2,
proof of Lemma 4.5] and [6, section 10]). Using the definition of d;u in (2.1) and divu = 0 we get for all

i;jvk: 1a-~-7na(j7k) 7é (n7n)
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|0;0ku;| < |VOru| + |Va||V2ul, (3.15)
n—1
|0nOntin| = | Y 0:0pu;| < C (|V,ul + |Val[V2ul). (3.16)
i=1
It remains to reconstruct only d2u;, j = 1,...,n— 1. Expressing them from first n — 1 equations of (1.1),
with § = 0, we get for all i € {1,...,n — 1} (without summation convention).
n—1 n—1
- Z 8,158”1(Du)8,2lul + o, = fi+ Z BjS,»j (Du) + 8,Ln8i,L(Du)8§un
1=1 j=1
n—1 n
+ Z Z OriSin (Du)anakul =: (RHS) (3.17)
k=11=1

We know from the properties of S (cf. (3.6)), (3.15), and (3.16) that
(RHS)| < C (If| + (1 + [Dul)""*|Vru| + [Va|(1 + |Dul)"~2|V?ul ).

Multiplying i-th equation of (3.17) by d2u;, summing over i = 1,...,n — 1, using (1.5a), ;7 = ;7 —
0;a0,, adding to this (3.16) multiplied by (1 + |Du|)?~2, we get

(1 + [Du))P~207ul® < C (|0;7| + (1 + [ Dul )P 2|V ,rul + | f]
+[Val (|8,7] + (1 + [Du|)P~2[V?ul) ) |07ul.
We divide this by |02ul, notice that from n-th equation of (1.1), with § = 0, follows
|0um| < C (If] + (1 + [Dul)P~?|V?ul)
and get
(1 + [Dul)P202u] < C (|077| + (1 + [Dul)P~?|V,u| + | f]
+|Va|(1 + |Dul)P~2|V?ul) .

Adding to this (3.15) multiplied by (1 + |Du|)?~2, and finally choosing R > 0 small enough in Sect. 2,
namely R < 1/(4C), to absorb the term with |Val into the left-hand side, we get ([8], (6.6))

(1+ |Du|)P~2|V?u| < C (|07m| + (1 + | Du|)P 2|V o u| + If1). (3.18)
Following [3], we set
2q
r(q) = .
@ (p+q-2)
Let us assume for a while
2
Vu € L1(Q), pgqg(p—l)nil? (3.19)
Since L2(Q) — W51 () we obtain from Lemma 3.1 that = € L7 (Q) and
Iml_a, <€ (UFllo+ L+ IVaulll2 ).
Consequently the assumptions of Lemma 3.2 are satisfied with S = r(q), since for ¢ > p we have

r(¢) < ¢/(p—1). Lemma 3.2 and (3.12) thus imply

-1 2(p-1)
el < On (4 19ally ™+ 11577,
which by the properties of the tangential differences yields

- 2(p-1)
|wmm@<00u+Wuﬁl+wm” ). (3.20)
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Note that 2q/(p+q —2) < 2. In view of (3.20) we would like to take the L#¥4=2 norm of (3.18) after
multiplication with &, because this would give us an estimate of the left-hand side in terms of ||Vu||, and
[|£]l2 only, provided [|£(1 + |Du|)p’2|V87u|||T( ) is also finite. One has

|VF(Du)| ~ (1 + |Dul) "= \VDu| (3.21)
and
0, F(Du)| ~ (1 + |Du|) "z | Do, ul. (3.22)
See (4.17), (4.20) in [2] or (52) in [8]. Unfortunately, this information together with (3.13) is not sufficient
to estimate ||¢(1 + [Du|)P~2|Vd,ul Hr(q) using Holder’s inequality, since it is not clear how to bound Vo, u
by DOru. Nevertheless we can extract some suboptimal information for VO u from (3.13). Using (3.22),
p > 2, and Korn’s inequality we get from (3.13)
cllEVorully = C[Vullz < [|EDrullz < [|€0; F (Du)l2 < occ. (3.23)

In order to estimate the right-hand side of (3.18) we proceed as follows. We divide the second term
in (3.18) by (1 + |Du|)? for some suitable 8 > 0, multiply by &, and estimate by Holder’s and Korn’s
inequalities

€+ |Dul)P~22|Vo,ul . < 1€VOull, |11+ | Dul[[|7- 27

p2ﬁ)2q

< €0 F(Du)ll, |1 + [Dullf,

r(q)

e (3.24)
Requiring now 2¢(p —2 — 3)/(p — 2) = q yields 8 = (p — 2)/2. Taking the L"(?-norm of (3.18) multiplied
by (1 + |Du|)~P=2/2 we get using (3.20), (3.24) with (3.13), and f € L?(f), also using V?u ~ VDu,
and (3.21) that

IEVF(Du)

r(q)

(p—1)
<€+ Dul) " V) < C (||1+|Vu|||f’ e ) (3.25)

Theorem 2.1 with F = ¢F(Du), 0,F € L*(Q) by (3.13) and (3.2), 9,F € L"9(Q) by (3.25) and (3.2)
yields

(p—1) w n=1
leF(Du), < (|1+|w|||“+|f||2” ) A+ 171ly) (3.26)
with
1 1 /n—-1 1 . 2nq
—_ = — _— — =1 h h S = .
v n( 2 Ty ) TR T =)t p -2

Recalling that {{p : P € T'} was a partition of unity we obtain from (3.26), using also definition of F,
and Korn’s inequality

2
IVul| __ong < CI|FDUI" 2 < K|Vul] + K, (3.27)
qa(n—2)+p—2 qn—2)+p—2
where we defined for suitable C' > 1
2(p—1 4
o= (pn )’ K = C(l—|—||f||2)ppl . (328)

Since, ¢ < ngp/(gln —2)+p—2) if ¢ < (np+2—p)/(n —2) (¢ < o0 if n = 2) we improved the
information (3.19) in this case. Moreover, since now

IVully < ClIVull——ens < +00

q(n—2)+p—2

and a < 1 depends only on p and n we get by Young’s inequality from (3.27)
IVul| e < CKTs. (3.29)

q(n—=2)+p—2
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As we always know Vu € LP(€)) we may start the procedure above (with ¢ = p in (3.19)) to get (3.29)
forall g € (1,(np+2—p)/(n —2)).

If n = 2 the statement of the theorem follows from (3.27) and (3.25), since {{p : P € T'} is partition
of the unity.

Let us now consider the case n > 2 and follow [8, Proof of Theorem 2.3]. We note that the constant
K in the estimate (3.29) depends on the norm of the embedding W1 7(9)(Q) — [27e/((a(n=2)+r=2)(())
which can be estimated uniformly with respect to s € (1, (np + 2 — p)/(n — 2)), since n > 2. Thus the
estimate (3.29) is uniform with respect to ¢ € (1, (np+2—p)/(n —2)) and independent of || Vu||,. Hence,
the estimate (3.29) remains valid also for ¢ = (np + 2 — p)/(n — 2). Repeating the procedure starting
from (3.19) with this ¢ one concludes the proof. Indeed, (1.7) then follows from (3.27) and (3.25), since
{&{p : P € T'} is a partition of the unity.

4. Steady p-Navier—Stokes Problem

This section is devoted to the study of regularity of the system (1.1), with 6 = 1, (1.2), and S satisfying
Assumption 1. We refer to this problem as the steady p-Navier—Stokes problem. Since the main obstacle,
namely the interaction of non-flat boundary with the nonlinear elliptic term was overcome in the previous
sections, we will concentrate only on how to deal with the convective term. Precisely, we show for which
values of the growth parameter p the diffusive part of the system dominates the convective one.

We will consider only the case p > max {2, (3n)/(n + 2)} because then it is allowed to test the weak
formulation of the problem by the weak solution itself.

Definition 4.1. Let S satisfy Assumption 1 with p > max {2, (3n)/(n+2)} and let f € W1 (Q).
A weak solution of the steady p-Navier—Stokes problem is a function u € VVO1 P(Q), with dive = 0 such
that for all ¢ € Wy"(€) with div e = 0 it holds

L/&DMD¢+HVMW¢Mﬁ%ﬁ¢hp (4.1)
Q

The existence of a weak solution of the steady p-Navier—Stokes problem is easy to obtain by the
Galerkin method together with monotone operator theory and a compactness result (cf. [39]). A weak
solution always satisfies the estimate

|Dull? < CIFIP, . (4.2)

For f € L?(€2) and p > 2 we always have f € W17 (Q). To the weak solution u there exists an associated
pressure 7 € L¥ (), with Jomdx = 0, satisfying for all ¢ € WyP ()

/S(Du)Dgp + ([Vulu)p + mdivede = (f,¢), , (4.3)
o)

and
|mms0(m4@+wmg) (4.4)

Now we would like to prove Theorem 1.2. Clearly, since [Vu]u € L*(Q) for p > (4n)/(n + 2) we can
view the convective term as an additional right-hand side. Thus Theorem 1.1 immediately yields Theorem
1.2 for such p’s. In particular the case n = 2 is completely covered. Thus we restrict ourselves in the
following to the case n > 3 and p < (4n)/(n + 2). Note that this in particular implies p < n. Another
important observation is that it is enough to show Theorem 1.2 only for ¢ € (1,(np+ 2 — p)/(n — 2))
since then from the obtained regularity follows [Vu]u € L?(Q2) and the statement of the theorem in the
case ¢ = (np+ 2 — p)/(n — 2) follows from Sect. 3.
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Let us assume that

3n 4n n 4n
> 2 d - — ). 4.
p_max{ ’n—|—2} an pe {3’n+2>U<2’n+2> (4.5)

In order to prove Theorem 1.2 in this case we follow the procedure from Sects. 3.1 and 3.2. As the
computations are very similar, we mention only the differences.

4.1. Regularity in Tangential Direction

When deriving estimates in tangential directions for Eq. (1.1), with § =1, we have to deal also with
convective term. In Eq. (3.7) there appears additionally the term

/ ([(Vu), Jdru+ [Vdruju — [(Opu); ® d-Valu) & da.
Q
Setting 1) = £d,u the second integral reduces due to divu = 0 and we have to estimate

[ (v Jdnduds [P Veu+ € (@), @ d,Valu) duda,
Q Q

If p > 3 we easily get that all these integrals are bounded by C'h2. Thus we obtain as in Sect. 3.1 that
€0, F(Du); < C. (4.6)

Let now p > max {2, (3n)/(n + 2)} be such that p € (n/2,3). Using (2.2), Sobolev’s embedding theorem,
Korn’s inequality, Holder’s inequality, and proceeding as in the treatment of the term Iy in Sect. 3.1 we
can estimate the second integral above by

C h||Dullg lgd-ul| 2o, < Ch||Dull} || D(¢dru)]l2
< C1? (| Dully + [|Dully) + e llgd-F(Du)13

as long as p > 4n/(n + 4). One easily checks that this is true for our choice of p we are just considering.
Note that the last term can be absorbed into the left-hand side of (3.8). The first integral above can be
estimated with Holder’s inequality by

C | Vul, [|Ed-ul3, -

Asp < 2p < 2n/(n—2)if n/2 < p < 3 we can interpolate the last term between LP({2) and L%(Q)
After that we proceed as in the above treatment of the second integral and obtain

p(6—n)
p—n

C |Vull, [€drull3, < Ch? <|DU§§ + [ Dully® > +ellgd: F(Du)ll3

Again the last term can be absorbed into the left-hand side of (3.8). Proceeding now as in Sect. 3.1 we
again derive (4.6).

4.2. Regularity in Normal Direction

In this section we follow Sect. 3.2 and reconstruct regularity in normal directions from the previous
information. We define
g:=f—[VuJu
and get (3.18) with f replaced by g. We have to consider only such p’s which satisfy (4.5), since for
p > (4n)/(n + 2) Theorem 1.2 is already proved. Thus, now g & L*(Q).
We assume for a while that (3.19) holds true. In this case Lemma 3.1 yields 7 € L7 (€2). Indeed,
as discussed in Remark 3.1 we have f € L2(€) — W~1%71(Q). Assumption (3.19) for ¢ < n implies
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lu|?> € Lﬁ(ﬁ) by Sobolev’s embedding theorem. Consequently [Vulu = div(u ® u) € W™1571(Q),
because nq/(2(n — q)) > q/(p — 1) for p > (3n)/(n + 2). For s > n we have |u|> € L"(2) for all r < oo
and we immediately obtain [Vu]u € W™1771 (Q).

In Sect. 3.2 we found that it would be optimal to take the L"(¥-norm of (3.18) with f replaced
by g. Thus we have to investigate to which space belongs g. For ¢ > (4n)/(n + 2) we easily see that
g € L*(Q) — L"@(Q). For q € [p, (4n)/(n+2)) follows g € LLD(Q) with Q(q) := gn/(2n — q). For these
q we have that Q(q) > r(q) if and only if ¢ > n(6 — p)/(n + 2).

If p>n(6—p)/(n+2), which is p > 3n/(n + 1), we know for all ¢ in (3.19) that Q(q) > r(¢) and the
proof can be concluded as in Sect. 3.2.

Let us consider the case p < 3n/(n+1). We start with remark that for n > 5 there are no p’s that sat-
isfy simultaneously (4.5) and p < 3n/(n+1). Note that if ¢ > n(6 —p)/(n+2) we know that g € L"(9)(Q)
and we can conclude the proof as in Sect. 3.2. Consequently we have to consider only for n = 3,4 such p

and ¢ that satisfy
3n n  3n
2, —— - — 4.
pe{’n—l—l)ﬂ(?n-&-l) (4.7)

e =) »

and

n+2

For these values of p and ¢ we have ¢ < 4n/(n +2) <n and Q(q) < r(q).

We want to show that for p and g satisfying (4.7) and (4.8) we obtain Du € L(Q) with § > n(6 —
p)/(n + 2). Then we can again conclude the proof as in Sect. 3.2. For that we proceed as follows. From
the definition of Q(q) we know that g € L2@(Q) and since ¢/(p — 1) > r(q) > Q(q) we also have
7 € L9 (Q). Now we apply Lemma 3.2 with S = Q(q). Consequently we get

”EaTW”Q(q) <C. (4.9)

Taking the L@@ -norm of (3.18) divided by (1 + |Du|)? with f replaced by g it remains to estimate by
Holders inequality, and (3.23)

|1+ \Du|)P—2—5|V87u\HQ(q) <C (1 +1EVOrully 11+ [Dulll , 54 20w )

2-Q(q)

<C (1 - IIDuII(pfzfm%%)'

Requiring now 2Q(¢)(p — 2 = 8)/(2 = Q(g)) < s we compute § > p — 4+ g(n +2)/(2n). We set

(a) B=p—4+q(n+2)/(2n)is q<2(4-p)n/(n+2)
(b) 8 =0 otherwise.

In the case (a) it follows

|+ 1pups-os2

|| D
1,Q(q)

V2u|H < o0
Q(a)
and by embedding
| D] aon—anr2y < 00.
4(n—aq)
In the case (b) we get
~1 —2|92
1@+ 1Dl g + 1L+ 1Dl 22l g < o0
and by embedding

1Dul| (p-1gn < 0.
2(n—q)
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Since there exists Gy > 0 such that
— 2 -1
min{q(ﬁn a(n+2) (v )qn} 4> ho
4(n —q) 2(n—q)
for p satisfying (4.7) and ¢ € [p,n(6 — p)/(n + 2)] satisfying (4.8) we may iterate this process finitely
many times to get

|| Du

n(6-p) < +0C.
n+2

Finally, as it was already mentioned, the proof concludes as in Sect. 3.2.

5. Unsteady p-Navier—Stokes Problem in 3D

In this section we extend the results shown in the previous sections to any local-in-time weak solution of
the evolutionary problem (1.4), (1.2) with S satisfying Assumption 1 considered on @ := I x §2. We refer
to this problem as the unsteady p-Navier—Stokes problem. Theorem 1.3 improves previous results stated
in references [3,6,8,42].

We will consider only the case p > (2 4 3n)/(n + 2) because then it is allowed to test the weak
formulation of the problem by the weak solution itself. We start with definition of weak solution.

Definition 5.1. Let S satisfy Assumption 1 with p > (2 4 3n)/(n + 2) and let f e L' (I, W~12'(Q)).
We say that u € LY (I, WyP(Q)) N LS (I, L2(Q)) with divu = 0 is a weak solution of the unsteady

loc loc

p-Navier-Stokes problem if for all ¢ € C§°(I, Wy (2)) with div e = 0 holds

/—uatgo + S(Du)Dy + ([Vulu)p dz dt = / (f,0)1, dt. (5.1)
Q T
Note that the test function ¢ in (5.1) have compact support in time and thus we do not have to specify
an initial condition. It was already proved in [38] that under suitable assumptions on the data there exists
a global-in-time weak solution for p > (24 3n)/(n + 2). By a global-in-time weak solution we mean a
function u € LP(I, Wy P(Q)) N L®(I, L*(Q)) with divu = 0, that satisfies for all ¢ € C(T, W, (Q))
with div =0 and ¢(T) = 0 Eq. (5.1) with [, uo@(0) dz added on the right-hand side. It was proved in
[14] that if f is more regular in time also u has better regularity properties in time if n = 3. However, the
method used there works also in other dimension than n = 3. We formulate the result in the following
theorem.

Theorem 5.1. Let p > (2+3n)/(n+2). Let S satisfy Assumption 1 and f € W2 (I, L*(2)). Then every
weak solution u satisfies

we Whe(I,L3(Q)) F(Du) € W, (I, L3 ()

loc loc

Proof. Detailed proof is given in [14, Corollary 1.3] for n = 3. If n # 3 the same method works. O
Remark 5.1. Since W,"2(I, L2(Q)) € L2 (I, L2(€)) the statement of Theorem 5.1 implies by definition

loc loc
of F(Du) that u € L2, (I, W, P(Q)).

loc

Now we would like to prove Theorem 1.3. Let u be a weak solution. By Theorem 5.1 and Remark 5.1
we have u € L2 (I, Wy P(Q)), dyu € L2 (I, L*(52)), i.e. choosing J CC I there exists C' > 0 that for a.e.
teJ

[u®lly , + 10cu)], < C.
Since for a.e. t € J also
—divS(Du(t)) 4+ [Vu(t)]u(t) + Vr(t) = f(t) — Opu(t) (5.2)

in W~1%'(Q) we have that u(t) is a weak solution of (5.2) with (1.2) and we may apply Theorem 1.2 to
get (1.8).
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