
REMARKS ON A KNOWN REGULARITY RESULT FOR
FLOWS WITH NONLINEAR VISCOSITY

1 Introduction

We want to warn the reader that the results proved below are not new. However
these notes may have some interest to young researchers as a very simple and
clear introduction to the subject.

In the sequel we consider the Ladyzhenskaya model for the Navier-Stokes
equations with shear dependent viscosity

(1.1)

{
−ν0∇ · Du− ν1 ∇ · (|Du|p−2Du) +∇π = f(x),
∇ · u = 0 ,

where
D u = ∇u + ∇uT .

Hence
(D u)ij =

∂ ui

∂ xj
+

∂ ui

∂ xj
.

Moreover we define

|D u(x)|2 =
3∑

i,j=1

|(D u)ij(x)|2 ,

|∇u(x)|2 =
3∑

i,j=1

|∂ ui(x)
∂ xj

|2

|(∇D u)(x)|2 =
3∑

i,j,k=1

∣∣∣∣
∂

∂ xk
(D u)ij(x)

∣∣∣∣
2

,

and similarly for |∇2 u(x)|2. Since 2 ∂i ∂j uk = ∂i (D u)jk+ ∂j (D u)ki− ∂k (D u)ij

it follows the well known result

(1.2) c |∇2 u(x)| ≤ |(∇D u)(x)| ≤ C |∇2 u(x)| .
In the sequel we prove the following well known regularity result.

Theorem 1.1. Assume that f ∈ L2(Ω) and let (u, π) be a local weak solution
of problem (1.1) in Ω (see definition below). Fix an open set Ω0 ⊂⊂ Ω. Then
the estimate

(1.3)
‖D2 u‖2L2(Ω0)

+
∑3

k=1

∥∥∥ |D u| p−2
2 D ∂u

∂xk

∥∥∥
2

L2(Ω0)
+

‖∇π‖2
Lp′ (Ω0)

≤ c (K2
1 + K2

2 + Φ)
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holds where K1, K2 and Φ depend only on the finite quantities ‖f‖2 ‖∇u‖2 ‖∇u‖p ‖π‖p′

and ‖D2θ‖2∞ . More precisely, these quantities are given by (3.11), (3.14) and
(2.12) respectively.

Moreover, if 2 < p < 6 the pressure satisfies the estimate
(1.4)
‖∇π‖Lr(Ω0) ≤ c (1 + ‖u‖2) (K1 + K2 +

√
Φ) + c (K1 + K2 + c

√
Φ)

p
2 + ‖f‖2 .

where r, r > p′, is given by (4.1). This last result can be improved as shown in
Section 5.

REMARK. The cut-of function θ that appears in the definitions of K1, K2

and Φ is a C2(Ω)-function with compact support and such that 0 ≤ θ(x) ≤ 1
in Ω, and θ(x) = 1 in Ω0.

The above system of equations was introduced by O.A. Ladyzhenskaya. See,
for instance, [3] and [4]. For p = 3 the above model was considered by Smagorin-
sky, see [7], as a turbulence model. J.-L. Lions considered similar models, in
which D u is replaced by ∇u. See [5], Chap.2, n.5.

The above local W 2,2-regularity result is well known, even for much more
general problems. The literature on this subject is wide. We just refer here to
the proof of the above result given in reference [2], which is part of the proof of
Lemma 3.0.5 in this same reference.

The symbol ‖ . ‖p denotes the canonical norm in Lp(Ω). Moreover, ‖ . ‖ =
‖ . ‖2. We denote by W k,p(Ω), k a positive integer and 1 < p < ∞, the usual
Sobolev space of order k, by W 1,p

0 (Ω) the closure in W 1,p(Ω) of C∞0 (Ω) and by
W−1,p′(Ω) the strong dual of W 1,p

0 (Ω), where p′ = p/(p − 1). The canonical
norms in these spaces are denoted by ‖ . ‖k,p.

In notation concerning duality pairings and norms, we will not distinguish
between scalar and vector fields. Very often we also omit from the notation the
symbols indicating the domain Ω, provided that the meaning remains clear.

We set

Lp = [Lp(Ω)]3, Wk,p = [W k,p(Ω)]3 , W1,p
0 = [W 1,p

0 (Ω)]3 .

We denote by c, c, c1, c2, etc., positive constants that depend, at most, on Ω,
ν0, ν1 and p. The same symbol c may denote different constants, even in the
same equation.

Local weak solutions (u, π) to problem (1.1) in an open set Ω1 are assumed
here to belong, by definition, to the space W 1,p

loc (Ω1) × Lp′

loc(Ω1). From the
local regularity point of view one studies regularity in any arbitrary, fixed, open
bounded set Ω ⊂⊂ Ω1. Hence

(1.5) (u, π) ∈ W 1,p(Ω)× Lp′(Ω) .

Note, in particular, that weak solutions to significant boundary value problems
in a domain Ω typically satisfy the assumption (1.5). By taking into account
the above remark we are lead to use here the following definition.
Definition.Assume that f ∈ L2(Ω). We say that a pair (u, π) is a local weak solution
of problem (1.1) in Ω if it satisfies (1.5) together with

(1.6)

ν0
2

∫
Ω
Du · Dφdx + ν1

2

∫
Ω
|Du|p−2Du · Dφdx

− ∫
Ω

π (∇ · φ) dx =
∫
Ω

f · φdx ,
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for each φ ∈ W 1,p
0 (Ω) (or, equivalently, φ ∈ C∞0 (Ω)).

Remark. In order to extend partially the proof to boundary value problems
it looks convenient to consider explicitly the pressure term in equation (1.6) and
do not assume that the test-functions φ are divergence-free.
Let us justify the above definition, in particular the assumption (1.5). For fixing
ideas we consider the non-slip boundary condition

(1.7) u|Γ = 0 .

A formal integrations by parts show that

1
2

∫

Ω

νT (u)D u · D v dx =

−
∫

Ω

[∇ · (νT (u)D u)] · v dx +
∫

Γ

τ(u) · v dΓ ,

(1.8)

for each divergence free vector field v vanishing on the boundary. It readily
follows that (at least formally; see below for the functional framework) u is a
solution to problem (1.1), (1.7), for some π, if and only if u ∈ V satisfies (1.11)
for all v ∈ V , where V denotes the set of all divergence-free ”regular” vector
fields vanishing on the boundary.

The existence of π, as a distribution, follows from well known results, by
using divergence free test functions v ∈ C∞0 (Ω) in equation (1.11).

The above considerations give rise to the definition of a weak solution de-
scribed below. V0 denotes the space

(1.9) V0 =
{

v ∈ W 1,2
0 (Ω) : ∇ · v = 0 in Ω

}

endowed with the norm ‖∇u‖. Moreover, [ · ]−1 denotes the strong norm in the
dual space (V0)′.

We set
V = {v ∈ V0 : ‖Dv‖p < ∞} ,

endowed with the norm

‖v‖V = ‖∇v‖2 + ‖Dv‖p .

It should be remarked that, by appealing to inequalities of Korn’s type, we can
verify that V = {v ∈ V2 : ‖∇ v‖p < ∞} and also that ‖∇v‖2 + ‖Dv‖p and
‖∇v‖2 + ‖∇v‖p are equivalent norms in V .

Weak solutions exist under the assumption

(1.10) f ∈ (V0)′ .

Definition 1.1. We say that u is a weak solution to problem (1.1), (1.7) if
u ∈ V satisfies

(1.11)
1
2

∫

Ω

νT (u)Du · Dv dx =
∫

Ω

f · v dx ,

for all v ∈ V .
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By defining < Au, v >, for each pair u, v ∈ V , as the left hand side of
(1.11), the operator A : V → V ′ satisfies the assumptions in the Theorems 2.1
and 2.2, Chap.2, Sect.2, [5]. This shows existence and uniqueness of the weak
solution.

By replacing v by u in equation (1.11) one gets

(1.12) ν0 ‖∇u‖2 + ν1 ‖Du‖p
p =< f, u >Ω ,

where the symbols < ·, · > denote ”duality pairings”. Note that the left hand
side of equation (1.12) is just < A u, u >. This shows that the assumption (2.3)
in the above Theorem 2.1, reference [5], holds.

From (1.12) there readily follows the basic estimate

(1.13)
ν2
0

2
‖∇u‖2 + ν0 ν1 ‖Du‖p

p ≤ cn [f ]2−1 ,

where the constant cn depends only on n. Recall that

‖∇u‖p ≤ cn,p ‖Du‖p .

By restriction of (1.11) to divergence-free test-functions v with compact support
in Ω, and by (1.8), there follows the existence of a distribution π (determined
up to a constant) such that

(1.14) ∇π = −∇ · [ν0∇u + ν1 |Du|p−2Du
]
+ f .

Equation (1.14) shows that the first equation (1.1) holds in the distributional
sense.

On the other hand, it is well known (see [6]) that if

∇π = ∇ · U

for some U ∈ Lα(Ω), α > 1 , then

(1.15) ‖π‖Lα
#(Ω) ≤ c ‖U‖Lα(Ω) ,

where Lα
# = Lα/R . Hence, from equations (1.14) and (1.13), it readily follows

that
π ∈ Lp′(Ω).

2 An estimate for the velocity in terms of the
pressure

In this section we prove the estimate (2.11).
We start by recalling the following result. Let U, V be two arbitrary vectors

in RN , N ≥ 1, and p ≥ 2. Then

(|U |p−2U − |V |p−2V
) · (U − V ) ≥ 1

2
(|U |p−2 + |V |p−2

) |U − V |2 ,

∣∣ |U |p−2U − |V |p−2V
∣∣ ≤ p− 1

2
(|U |p−2 + |V |p−2

) |U − V | .
(2.1)
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We assume in the sequel that test functions φ have compact support in Ω and
that the translation’s amplitudes |h| are such that the translations of the test
functions used in the sequel have compact support in Ω. Without loss of gener-
ality we assume that translations h are given in the x1 direction. We write in
general

gh(x) = g(x1 + h, x2, x3)

for an arbitrary function g.
Next consider the equation (1.6) with φ replaced by the admissible test

functions φh(x) = φ(x + h). This leads to the equation (2.2) below with x1− h
replaced by x1. Then we obtain (2.2) simply by doing the change of variables
x1 → x1 − h.

(2.2)

ν0
2

∫ Du−h · Dφdx + ν1
2

∫ |Du−h|p−2Du−h · Dφdx

− ∫
π−h (∇ · φ) dx =

∫
f · φh dx .

Next, by taking the difference, side by side, between equation (1.6) and (2.2)
we get

(2.3)

ν0
2

∫
(D(u− u−h)) · Dφdx

+ ν1
2

∫ (|Du|p−2Du − |Du−h|p−2Du−h

) · Dφdx

− ∫
(π − π−h) (∇ · φ) dx = − ∫

f · (φh − φ) dx .

A classical result shows that

(2.4) |
∫

f · (φh − φ) dx| ≤ h ‖f‖2 ‖∇φ‖2 .

Now we replace in (2.3) the test functions φ by (u− u−h) θ2, where θ ∈ C2
0 (Ω)

is no-negative and has compact support in Ω. The translation’s amplitudes |h|
are such that the h-translations of the θ functions have compact support inside
Ω. Due to the identity

D v · D(θ2 v) = |D(θ v)|2 − |v ⊗ (∇ θ) + (∇ θ)⊗ v|2

one has
∫
Dv · D(θ2 v) dx =

∫
|D (θ v)|2 dx−

∫
|v ⊗ (∇ θ) + (∇ θ)⊗ v|2 dx .

Moreover, if θ has compact support in Ω, a direct calculation shows that

(2.5)

∫ |D (θ v)|2 dx = 2
∫ |∇ v|2 θ2 dx + 2

∫ |∇ · v|2 θ2 dx

+2
∫ |v|2 |∇ θ|2 dx− ∫ |v|2 ∆ θ2 dx + 2

∫ |v · ∇ θ|2 dx .

Note that equation (2.5) is a Korn’s type ”inequality” (see, for instance, [2]
Lemma 3.0.1).
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By using equation (2.5) with v = u− u−h and by appealing to the inequal-
ities (2.1) in order to treat the ν1-term one easily gets from (2.3) that
(2.6)

ν0

∫ |∇(u− u−h)|2 θ2 dx

+ ν1
4

∫ (|Du|p−2 + |Du−h|p−2
)
(|Du− Du−h|2 θ2 dx ≤

c ν1 (p− 1)
∫ (|Du|p−2 + |Du−h|p−2

)
(|Du− Du−h| |u− u−h| |∇θ2| dx

− ∫
(π − π−h) (u− u−h) · ∇θ2 dx +

c h ‖f‖2
(∫ |∇(u− u−h)|2 θ2 dx

) 1
2 + c h2 ‖f‖2 ‖∇u‖2 ‖∇θ2‖∞+

ν0
2

∫
(u− u−h)2 |∆θ|2 dx .

We have estimated the f -term as follows

(2.7)
| ∫ f · (φh − φ) dx| ≤ h ‖f‖2

(∫ |∇u− ∇u−h|2 θ2 dx
) 1

2 +

h2 ‖f‖2 ‖∇u‖2 ‖∇θ2‖∞ ,

by appealing to (2.4). For convenience we assume that θ(x) ≤ 1 everywhere.
We define the nonnegative quantities A0, A1, R1 and B as follows.

A2
0 =

∫
|∇(u− u−h)|2 θ2 dx ,

A2
1 =

∫ (|Du|p−2 + |Du−h|p−2
) |Du− Du−h|2 θ2 dx ,

R1 =
∫ (|Du|p−2 + |Du−h|p−2

) |Du− Du−h| |u− u−h| |∇θ| θ dx ,

B =
∫

(π − π−h) (u− u−h) · θ∇θ dx .

From (2.6) it follows that

(2.8)
ν0 A2

0 + ν1 A2
1 ≤ c ν1 R1 + c |B|+

c
ν0

h2 ‖f‖22 + c h2 ‖f‖2 ‖∇u‖2 ‖∇θ2‖∞ + c ν0 h2 ‖∇u‖22 ‖∇θ‖2∞ .

On the other hand

(2.9)
|Du− Du−h| |u− u−h| |∇ θ| |θ| ≤
ε
2 |Du− Du−h|2 θ2 + 1

2 ε |u− u−h|2 |∇ θ|2 .

Hence

(2.10) R1 ≤ ε

2
A2

1 +
1
2 ε

h2 ‖∇u‖p
p ‖∇θ‖2∞ ,

where ε > 0 is arbitrary. It follows that(sss)

(2.11) ν0 A2
0 + ν1 A2

1 ≤ c |B| + Φ h2,
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where

(2.12)
Φ = c

ν1
‖∇u‖p

p ‖∇θ‖2∞ + c
ν0
‖f‖22

+ c ‖f‖2 ‖∇u‖2 ‖∇θ2‖∞ + c ν0 ‖∇u‖22 ‖∇θ‖2∞ .

Note that Φ is finite.

3 An estimate for the pressure in terms of the
velocity

Here we prove the estimate (3.15) which, together with (2.11), leads to the
desired results.

From equation (2.3) with φ replaced by φ θ, where θ is as above and (for
instance) φ ∈ C∞(Ω), one easily obtains

(3.1)

− ∫ ∇ [(π − π−h) θ] · φ dx = − ∫
(π − π−h)φ · (∇θ) dx+

ν0
2

∫
(D(u− u−h)) θ · Dφdx + ν0

∫
(D(u− u−h)) · (φ⊗∇θ) dx+

ν1
2

∫ (|Du|p−2Du − |Du−h|p−2Du−h

)
θ · Dφdx+

ν1

∫ (|Du|p−2Du − |Du−h|p−2Du−h

) · (φ⊗∇θ) dx+

∫
f · ((θ φ)h − (θφ)) dx =

I1 + ... + I6 .

Next we estimate the Ij terms. Since

I1 = −
∫

π (φ · ∇ θ − φh · ∇ θh) dx

it readily follows that

(3.2) |I1| ≤ c h ‖π‖p′ ‖D2θ‖∞ ‖∇φ‖p .

On the other hand

(3.3) |I2| ≤ c ν0

(∫
|Du− Du−h|2 θ2 dx

) 1
2

‖Dφ‖2 .

Next, by the second inequality (2.1),

(3.4)
|I4| ≤ ν1

p−1
4

∫ (
|D u| p−2

2 + |D u−h| p−2
2

)
×

[(
|D u| p−2

2 + |D u−h| p−2
2

)
|Du−Du−h| θ

]
|D φ| dx .

by taking into account that

p− 2
2p

+
1
2

+
1
p

= 1 ,
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and by appealing to Hőlder’s inequality one gets

(3.5) |I4| ≤ ν1
p− 1

2
‖Du‖

p−2
2

p A1 ‖Dφ‖p .

Next we estimate I5. By a suitable translation one has

I5 =
∫
|Du|p−2Du · (φ⊗∇θ − φh ⊗∇θh) dx .

It readily follows that

(3.6) |I5| ≤ c ν1 |h| ‖Du‖p−1
p′ ‖D2θ‖∞ ‖∇φ‖p .

This estimate is sufficient to our purposes, however we rather prefer to appeal
to the estimate

(3.7) |I5| ≤ ν1
p− 1

2
‖Du‖

p−2
2

p A1 ‖∇φ‖2 .

For the proof see the appendix. Similarly,

(3.8) |I3| ≤ c ν0 |h| ‖Du‖2 ‖D2θ‖∞ ‖∇φ‖2 .

Finally, by appealing to (2.4) one shows that

(3.9) |I6| ≤ |h| ‖f‖2 ‖∇θ‖∞ ‖∇φ‖2 .

From (3.1) together with the above estimates for the Ij terms one gets

(3.10) ‖∇[(π − π−h) θ]‖−1,p′ ≤ c |h|K1 + c ν0 A0 + c ν1 A1 ,

where

(3.11) K1 = ‖D2 θ‖∞
(
1 + ‖f‖2 + ‖π‖p′ + ν0 ‖∇u‖2 + ν1 ‖∇u‖

p−2
2

p

)
.

Well known results, see [6], show the existence of a constant c such that for all
g ∈ Lq(Ω) one has

‖g‖q ≤ c (‖g‖−1, q + ‖∇ g‖−1, q) .

From this result together with (3.10) one shows that

(3.12) ‖(π − π−h) θ‖p′ ≤ c |h|K1 + c ν0 A0 + c ν1 A1 .

Note that
‖(π − π−h) θ‖−1,p′ ≤ c |h| (1 + ‖∇ θ‖∞) ‖π‖p′ .

On the other hand (ole)

(3.13) |B| ≤ |h|K2 ‖(π − π−h) θ‖p′ ,

where

(3.14) K2 = ‖∇θ‖∞ ‖∇u‖p .
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From (3.12) and (3.13) one gets

(3.15) |B| ≤ c |h|K2 (|h|K1 + ν0 A0 + ν1 A1) .

Finally from (2.11) and (3.15) it follows that

(3.16)
ν0

2

(
A0

h

)2

+
ν1

2
(p− 1)

(
A1

h

)2

≤ cK2 (K1 + ν0
A0

|h| + ν1
A1

|h| ) + Φ .

This shows that the left hand side of (3.16) is bounded. In particular

(3.17)
(

A0

h

)2

+
(

A1

h

)2

≤ c [K2
2 + K1 K2 + Φ] = C̃ .

For convenience assume that the constants c may depend on ν0 and ν1. Fix an
open set Ω0 ⊂⊂ Ω and set h = dist (Ω0, ∂ Ω). Fix the function θ equal to 1 on
Ω0 and with compact support in Ω. From (3.17) it follows that

(3.18)

∫
Ω0

∣∣∣∇(u−u−h

h )
∣∣∣
2

dx+

∫
Ω0

(|Du|p−2 + |Du−h|p−2
) ∣∣∣D(u−u−h

h )
∣∣∣
2

dx ≤ C̃ .

Note that the h-translations can be done in all the directions xk, k = 1, 2, 3.
Next we pass to the limit in (3.18), as h → 0. Clearly, ∇u−h → ∇u almost
everywhere in Ω. A classical result on differential quotients proves the estimate
(3.19) below for the first term on the left hand side. In particular,

∇u− u−h

h
→ ∇ ∂u

∂xk
,

almost everywhere in Ω. The above considerations, together with the nonnega-
tivity of the integrands that appear in (3.18), allow us to pass to the limit by
using Fatou’s lemma. This yields

(3.19) ‖D2 u‖2L2(Ω0)
+

3∑

k=1

∥∥∥∥ |D u| p−2
2 D ∂u

∂xk

∥∥∥∥
2

L2(Ω0)

≤ C̃ .

Finally, from (3.12) and (3.16) one gets

(3.20)
∥∥∥∥

(π − π−h)
h

θ

∥∥∥∥
2

p′
≤ c (K2

1 + K2
2 + Φ) .

Hence the complete estimate (1.3) holds.

4 FURTHER regularity FOR THE PRESSURE

Set

(4.1) r =
12

p + 4
.
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Note that r ≤ 2 since p ≥ 2. By assuming that

2 < p < 6 ,

one has the strict inequality
r > p′ .

By a Sobolev embedding theorem one has (for instance, in Ω0)

‖∇u‖6 ≤ c (‖D2 u‖+ ‖u‖) .

Note that for solutions to the non-slip boundary value problem we may drop
everywhere the term ‖u‖.

Straightforward calculations show that

∂

∂ xk

(|D u|p−2D u
)

=

|D u|p−2D ∂u

∂xk
+ (p− 2) |D u|p−4

(
D u · D ∂u

∂xk

)
D u .

(4.2)

Hence

(4.3) | ∂

∂xk

(|D u|p−2D u
) | ≤ c |D u|p−2

∣∣∣∣D
∂ u

∂xk

∣∣∣∣ ,

almost everywhere in Ω. So, by Hőlder’s inequality,

(4.4) |∇ (|D u|p−2D u
) ‖r ≤ ‖D u‖

p−2
2

6

3∑

k=1

∥∥∥∥ |D u| p−2
2 D ∂ u

∂xk

∥∥∥∥ .

Consequently,
(4.5)

|∇ (|D u|p−2D u
) ‖r ≤ c

(
K1 + K2 +

√
Φ + ‖u‖

) p−2
2

(K1 + K2 +
√

Φ) .

From the expression of ∇π obtained from (1.1) and from estimates already
proved the estimate (1.4) follows.

Let now p ≥ 2 be arbitrarily large. The above result can be improved by
appealing to the following know result (see [1], Lemma 2.5): Local solutions to
problem (1.1) satisfy

(4.6) ∇u ∈ W 1,3p
loc (Ω) .

Define

(4.7) s =
3 p

2p− 1
.

By replacing in the above argument the norm ‖∇u‖6 by the norm ‖∇u‖3p one
proves (4.4) with r replaced by s and 6 replaced by 3p. This easily leads to

∇ (D u|p−2D u), ∇π ∈ Ls(Ω0) .
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Finally, if 2 < p < 3, then ∇u ∈ L
3p

3−p ; see [1], Lemma 2.3. Hence, by arguing
as above, we show that (4.4) holds with s replaced by

(4.8) s =
6 p

(3− p)(p− 2) + 3p
.

Remark. In [?] we prove that ∇π ∈ Lm(Ω) up to the boundary, where m =
6(4− p)/(8− p). Note that 2 ≥ s > s > r > m > p′ for p > 2 and that all the
above coefficients are equal to 2 when p = 2.

5 Appendix

Here we prove (3.7). We claim that there is a real no-negative function g(x)
such that

(5.1) |∇ θ(x)| ≤ g(x) |θ(x)|
in Ω. The function g depends on the distance

d = dist{Ω0, ∂ Ω}
and belongs to Lα(Ω) for each α > 1.

Clearly, |I5| is bounded by the right hand side of (3.5) if in this last expression
we replace θ |D φ| by |∇ θ| |φ|. Hence, by (5.1), this last quantity can be replaced
by g(x) |θ(x)| |φ|. Arguing as in the previous section in order to prove (3.5), one
gets

|I5| ≤ c ν1 ‖g‖
L

6
5
‖Du‖

p−2
2

p A1 ‖φ‖6 .

The estimate (3.7) follows by a Sobolev’s embedding theorem.
Next we sketch the proof of (5.1). It is immediate that the proof can be

essentially reduced to a one-dimensional problem and to the case d = 1. In the
sequel the point t = 0 represents a point in ∂ Ω0 and t = 1 a point in ∂ Ω.
Consider the function θ(t) = (1− x)m for 1

2 ≤ x ≤ 1, θ(t) = 1 for x ≤ 0 and
θ(t) = 0 for x ≥ 1. Moreover θ is defined in [0, 1

2 ] as a non-increasing function,
of class C∞ for x < 1. Clearly θ is of class Cm−1, hence C2 if m = 3. Equation
(5.1) follows since

|θ′(t)| ≤ m

1− t
θ(t) ,

and the function g0(t) = m
1− t belongs to Lα if α > 1.

We establish here the following result, which could be useful in forthcoming
work. There is a constant c, which depends on d, such that (grath2)

(5.2) |∇ θ(x)|2 ≤ c |θ(x)|
in Ω. This follows from the inequality |θ′(t)|2 ≤ c θ(t) , if m ≥ 2.
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