

- GOAL OF THE TALK :
 - SHOW THE EXISTENCE OF CORKS
 - SHOW THE EXISTENCE OF EXOTIC 4-HFDS
 - WITH BOUNDARY

Mazur manifold

Key Lewise •
$$X^4$$
 example to Stein
• $F_c^2 X^4$ smooth prop. emb., $\partial F = K$ Legendrian in ∂X^4 (not the induced contact
structure)
• in the framing induced from a trivialization of the normal bundle of F.
Then we have: $-X(F) \ge (TB(k) - n) + |Vot_F(k)|$
W is Stein
if f extends to a diffeo \Longrightarrow γ' is smoothly slice.
Key Lemme \Longrightarrow $-X(D^2) \ge TB(2^i) - Irot(2^i)$

Key Lewise
$$X^4$$
 exampled Stein
 $F_c^2 X^4$ smooth propriemb., $\partial F = K$ Legendrian in ∂X^4 (with the induced contact
 $structure$)
 M the framing induced from a trivialization of the normal bundle of F .
Then we have: $-X(F) \ge (TB(K) - n) + 1 \operatorname{vot}_F(K)$
 $\frac{Pf}{of} \frac{K_{ey} Lemma}{K}$
Attach a 2-handle h to X^4 along K with framing TB(k)-1
 $Z = X \cup h$ $Z = F \cup D^2$
 $\int \frac{1}{Stein}$
It holds: $1 [\Sigma] \neq 0$ in $H_2(Z, Z)$
 $2 (\Sigma - \Sigma = (TB(K) - m) - 1$
 $3) \operatorname{vot}_F(K) = \langle C, (Z), \Sigma > [Compt. Handlebody construction of Stein Surfaces]$

FACTS ABOUT KÄHLER SURFACES [Obegci-Stipsice, Surgay on contact 3-manifolds and Stein surfaces]
1) [Adjunction inequality]
$$X^{4}$$
 closed minimal Kähler of general type with $b_{z}^{+} > 1$.
1 $f \Sigma$ is suroth in face, $[\Sigma] \neq 0$ in $H_{z}(X, \mathbb{Z})$, then
 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\langle c_{1}(X), \Sigma \rangle|$

2) Closed minimal Kähler surfaces with
$$b_2^+ > 1$$
 cannot contain non-trivial
smooth spheres with Self intersection ≥ -1 (NEEDED FOR LATER)

So we have

$$\begin{split} I \oint [\Sigma] \neq 0 \text{ in } H_2(S,\mathbb{Z}) & \longrightarrow \\ 4d_{\mathcal{I}} & 2g(\Sigma) - 2 & \geq \\ & \Sigma & \pm |\langle c_1(S), \Sigma \rangle| \\ & \text{(neq.)} & (TB(\mathbb{K}) - \mathbb{N})^{-1} & |c_1(\mathbb{Z})| \\ & \text{(Image: Constraints of the set of$$

$$\frac{C_{or}}{F_{st}} = \frac{1}{2} \left[\frac{1}{2} \left[$$

Def We say that X' is an exotic copy X relative to the boundary of
.
$$\partial X' = \partial X$$

. Three exists a homeomorphism $X' \longrightarrow X$ which is the identity on ∂
. Three exists no diffeo $X' \longrightarrow X$ which is the identity on ∂
. Three exists no diffeo $X' \longrightarrow X$ which is the identity on ∂
. Three exists no diffeo $X' \longrightarrow X$ which is the identity on ∂
. Three exists no diffeo $X' \longrightarrow X$ which is the identity on ∂
. Three exists no diffeo $X' \longrightarrow X$ which is the identity on ∂
. Pf Consider $F: W \longrightarrow W$ extending the involution f .
. W' is W with the pulled back smooth structure .
. id: $W' \longrightarrow W$ is hower since F is howers
. Suppose $\varphi: W' \longrightarrow W$ diffeo $\varphi|_{\partial} = id$. Then
. we have $W' \xrightarrow{\varphi} W = G: W \longrightarrow W$ differ
. F fidth G extending f M

$$k_z$$
 is slice => $H_z(Q_z, \mathbb{Z})$ is generated by a smooth sphere Σ with $\Sigma \cdot \Sigma_{z-1}$
 Q_1 is Stein => Q_1 embeds in S minimal Kahler.
 $Q_1 \simeq_{dig} Q_z => S$ contains a smooth sphere with self intersection -1 as

HONEO

5

