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Abstract. We consider a continuous solution u of the balance law

@t u+ @x (f(u)) = g

in one space dimension, where the flux function f is of class C2 and the source term g
is bounded. This equation admits an Eulerian intepretation (namely the distributional
one) and a Lagrangian intepretation (which can be further specified). Since u is
only continuous, these interpretations do not necessessarily agree; moreover each
interpretation naturally entails a di↵erent equivalence class for the source term g. In
this paper we complete the comparison between these notions of solutions started in
the companion paper [2], and analize in detail the relations between the corresponding
notions of source term.
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1. Introduction and statements of the main results

In this paper we consider the balance law

@t u+ @x (f(u)) = g , (1.1)

where the flux function f : R ! R is of class C
2, the source term g : R2 ! R is

bounded and Borel regular, and the solution u : R2 ! R is continuous.
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If u is of class C
1 and (1.1) holds in a pointwise sense for every t, x and if i� is

an integral curve of class C1 of the vectorfield (1, f 0(u)), the chain rule provides

(u(i�))
0 = g(i�) , (1.2)

that is, u(i�) is a primitive of g(i�) whenever u is a classical solution of (1.1) and i�

a characteristic curve.
Conversely, if u is a function of class C1 and (1.2) holds for every characteristic curve
i� , then u is a classical solution of (1.1).

We are interested now in the case when u is continuous. What are the possible
notions of solutions of the balance law (1.1)?
On the one hand, u could be an Eulerian solution, when (1.1) is satisfied in a distri-
butional sense: for all Lipschitz continuous functions ', compactly supported, then

�
ZZ

(u @t '+ f(u) @x ') =

ZZ
'g .

On the other hand, u could be a Lagrangian solution, when (1.2) holds along a
monotone selection of characteristic curves that provides a change of variables. This
notion of solution could be further strengthened requiring that (1.2) holds for every
characteristic curve i� , in which case we call u Broad solution.

Depending on what is the meaning of (1.1), the source term g changes its meaning.
For Eulerian solutions, it is relevant which distribution g itself identifies: it will then
be irrelevant to change values of g on subsets which are L2-negligible in the plane.
For Lagrangian solutions, the relevant objects are the distributions that g identifies

when restricted along the characteristic curves that are selected for the change of
variables. For Broad solutions, what matters are all the distributions that g identifies

when restricted along all characteristic curves.
From now on we denote the source term g with the more peculiar symbol g in
order to stress that we consider a pointwise defined function: the restriction of g on
characteristic curves properly defines a distribution, since g is Borel regular.

In the companion paper [2] we established the equivalence among di↵erent notions
of solutions to (1.1) for general smooth fluxes. We eventually proved that continuous
solutions are Kruzkov iso-entropy solutions, which yields uniqueness for the Cauchy
problem. The source term was an active player: the equivalences, or the reductions,
were not stated for a given Borel regular source term g, they were rather established
framing the source term as the proper meaningful object identified by the correspond-
ing notion of solution.
For example, under the sharp assumption that the set of inflection points of the flux
f is negligible, we proved that Eulerian solutions to the equation @t u+@x (f(u)) = g

are Broad solutions to the infinitely dimensional system of ODEs (u(i�))0 = bg(i�),
indexed by all characteristics curves i� , see [2, Theorem 37]. What was left to a
separate analysis is the sharpness of the assumption on inflection points, and the
correspondence of the Eulerian source term g and the Broad source term bg.

There are striking features that we discover establishing relations among source
terms in di↵erent formulations. In particular, we emphasize:
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§ 6 Eulerian solutions might fail to be Broad solutions if inflection points are not
negligible: we exhibit a continuous Eulerian solution which is not Lipschitz
continuous on some characteristic curves, although it must be Lipschitz con-
tinuous on a suitable selection of them, being a Lagrangian solution by [2,
Corollary 46]. Our counterexample has a source term constantly one: the

continuity of the source term does not help to this extent.
§ 5 We construct a convex flux f and a continuous Eulerian solution u, which

is then Lipschitz continuous along all characteristic curves [2, Theorem 30].
Surprisingly, at points of a compact set K ⇢ R2 with positive L2-measure, u
is not pointwise di↵erentiable along characteristic curves: this phenomenon
occurs for all characteristic curves passing through such points. On K, there
is no candidate value for the derivative of u along characteristic curves. The
derivative of u along characteristic curves does not provide a function g on
the plane, not even almost everywhere: negligible along characteristics does
not imply negligible in the plane. We emphasize that such function u is not
Hlder continuous and that this behavior is prevented by the ↵-convexity of
the flux [7, Theorem 1.2]our flux is only strictly convex.

§ 4 We construct an L2-positive measure set K negligible along characteristic
curves also in the case of the quadratic flux f(u) = u

2. Even in this scenario,
the set K intersects any characteristic curve of u in at most one point.

Besides showing that, surprisingly, even for the quadratic flux Lagrangian
parameterizations can really have a Cantor part, this construction introduces
the general machinery used in the more complex counterexample of § 5. It
also shows that Lagrangian sources might not be Eulerian sources.

§ 3 Despite the counterexamples we described above, comfortingly, when in-
flection points of f are negligible source terms in the Eulerian and Broad
formulation are compatible. This is the case of analytic fluxes: there ex-
ists a Borel, bounded function g that is both the source term for (1.1) and
for (1.2), whichever characteristic curve i� one chooses. We stress that,
even with the cubic flux f(u) = u

3, due to the non-convexity, if the Eulerian
source is continuous the continuous representative is not necessarily the right

Lagrangian source, see a counterexample in Remark 8.2. If the Lagrangian
source is a continuous function, instead, then it is the right Eulerian source.

We first collect and summarize in § 2 precise definitions and statements.

1.1. Remark. As we discuss local properties, for simplicity of notation we as-
sume that u is defined on all R2. This is mostly a notational convenience, and it
would be entirely similar when u is defined in an open set.

2. Description of the setting and of the statements

Let u : R2 ! R be a given continuous function and f : R ! R a given function
of class C2, that we call flux function.
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We call z⇤ 2 R an inflection point of f if f 00(z⇤) = 0 but z
⇤ is neither a local

maximum nor a local minimum for f(z) � f
0(z⇤)(z � z

⇤). We denoted by Infl(f)
the set of inflection points of f , clos(Infl(f)) is its closure.

By negligibility of inflection points of f we mean the following assumption:

L1(clos(Infl(f))) = 0 (2.1)

where, with definitions that can be proved to be equivalent, we denote

clos(Infl(f)) ⌘ Acc({f 00
> 0})

\
Acc({f 00

< 0}) . (2.2)

Above Acc(X) denotes the set of accumulation points of a set X.
We review in which sense u can be a continuous solution of the balance law

@t u+ @x (f(u)) = g

for a Borel, bounded function g. Depending on assumptions on the flux and on the
function g, u can satisfy all the interpretations we consider of such equation, or not.

2.1. Review of di↵erent interpretations. Define characteristic curves as C1 inte-
gral curves i� : I ! R2 of the vector field (1, f 0(u)), where where I is an interval.
Define characteristics as C

1 solutions � : I ! R of �̇(t) = f
0(u(t, �(t))), where

where I is an interval. In the following definition we collect a monotone family of
such characteristics and we define a change of variables in R2.

2.2. Definition. We call (full) Lagrangian parameterization, associated with
the continuous function u, a continuous function � : R2 ! R such that1

- for each y 2 R, the function t 7! �(t, y) = �y(t) is a characteristic:

�̇y(t) = @t �(t, y) = f
0(u(t,�(t, y))) = f

0(u(i�(y)(t)));

- for each t 2 R+, y 7! �(t, y) = �t(y) is nondecreasing;
- denoting i�(t, y) ⌘ i�(y)(t) ⌘ (t,�(t, y)), then i� is onto R2.

A Lagrangian parameterization � is absolutely continuous if (i�1
� )]L2 ⌧ L2.

Equivalently, ��1(S) must have positive L2-measure if L2(S) > 0: � maps negli-
gible sets into negligible sets. We say that a given Borel function g is a Lagrangian
source associated to u and to the Lagrangian parameterizaion � if

8y 2 R d

dt
u(t,�(t, y)) = g(t,�(t, y)) in D0(R+). (2.3)

Let G > 0, u : R2 ! R be continuous and f : R ! R of class C2. The following
conditions are equivalent [2, Lemma 45–Corollary 46–Corollary 28]:

(i) Eulerian solution: The equation @t u(t, x) + @x (f(u(t, x))) = g(t, x) holds
in distributional sense for a Borel function g bounded by G.

(ii) Kruzkov iso-entropy solution: For every ⌘, q 2 C
1(R) satisfying q

0 = ⌘
0
f
0

@t(⌘(u(t, x))) + @x (q(u(t, x))) = ⌘
0(u(t, x))g(t, x)

holds in distributional sense for a Borel function g bounded by G.

1If the first two conditions are required L1-a.e., then they hold naturally for all parameters.
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(iii) u is Lipschitz continuous with constant G along a family of characteristic
curves whose image is dense in R2.

(iv) Lagrangian solution: t 7! u(t,�(t, y)) is Lipschitz continuous with constant
G for a Lagrangian parameterization � as in Definition 2.2 and for each y.

If L2(clos(Infl(f))) = 0, the conditions above are also equivalent to [2, § 3]:

(iv) Broad solution: u is G-Lipschitz continuous along all characteristic curves.

Summarizing, we established in [2] the equivalences

Broad
=) always

(= if (2.2) holds
Lagrangian () Eulerian

without discussing the identification of sources, and we proved entropy conservation.

We also established the following relations among sources in the di↵erent formu-
lations, that we picture in Figure 1, when inflections of the flux f are negligible.

2.3. Definition. Lagrangian sources are explained in Definition 2.2. Eulerian
sources are Borel functions g for which (1.1) holds in D0(R2). Broad sources are
Borel functions g satisfying (1.2) for every characteristic curve i� .

2.4. Theorem [2, Lemma 16-Theorem 37-Corollary 46]. Let � be any Lagrangian

parameterization. Then the family of sources associated to the Lagrangian parame-

terization � contains the family of Broad sources.

If there exists an Eulerian source, then:

• The family of Lagrangian sources is non-empty.

• If Assumption (2.2) holds, then the family of Broad sources is also nonempty.

We emphasize that any Broad source g is a good Lagrangian source independently
of the choice of the Lagrangian parameterization, which always exists [2, Lemma 17].

2.5. Identification of sources. We prove in § 3 the following positive statement,
see Theorem 3.7 below, which includes the case of analytic functions. We emphasize
that in the case of a continuous Eulerian source the continuous representative of
the source is not necessarily, as one would expect, the right Broad source: we refer
to Remark 8.2 for a counterexample with f(u) = u

3, due to non-convexity, and
Theorem 8.1 for a weaker positive result. A Lagrangian continuous source instead is
automatically an Eulerian continuous source, actually even without Assumption (2.2).

2.6. Theorem. If inflection points of f are negligible as specified in (2.2), then
the family of Eulerian sources has nonempty intersection with the family of Broad

sources.

2.7. Counterexamples. Counterexamples are the most surprising part of this work,
pointing out di↵erences among di↵erent formulations. Of course the family of Euler-
ian sources is not generally contained in the family of Lagrangian sources, since
changing values on a curve a↵ects both the Lagrangian and the Broad formulation
but not the Eulerian one. Other relations in Figure 1 are less trivial.
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Borel, bounded functions

Eulerian sources Lagrangian sources
associated to a given �

Broad sources

§ 3 § 4

Figure 1. We picture relations among the sources that we deter-
mine for a fixed continuous solution of the balance law (1.1) under
the non-degeneracy Assumption (2.2). When a Lagrangian source
is continuous, it is also an Eulerian source, although, surprisingly, it
might not be the Lagrangian source for a di↵erent Lagrangian pa-
rameterization, see Remark 8.2 and Theorem 8.1. If a broad source
is continuous, it is a right source with all the formulations.

Section 4. The first counterexample concerns Lagrangian parameterizations,
but not only. We already mentioned that one can build up a monotone family of
characteristics in order to define a ‘monotone’ change of variables i� from R2 to R2.
We know from [5, Example A.2] that in general one cannot choose a Lagrangian
parameterization � which is Locally Lipschitz continuous. In § 4 we construct an
example—for the quadratic flux!!!—where the measure @y� has a Cantor part. In
particular, the Lagrangian parameterization is not absolutely continuous, according
to Definition 2.2. Even for the quadratic flux thus, surprisingly, there exists a subset
K of the plane of positive L2-measure which intersects each characteristic curve in
a single point. For this reason, even for the quadratic flux, the family of Broad
sources is not contained in the family of Eulerian sources: the Lagrangian source can
be defined arbitrarily on the L2-positive measure set K, but of course not all such
definitions provide an Eulerian source.

Section 5. For uniformly convex fluxes, there is a natural element lying both
in the family of Eulerian sources and in the family of Lagrangian sources ([5, Corol-
lary 6.7], [7, Theorem 1.2], [9]): the pointwise derivative of u along any characteristic
curve through the point, when possible, and vanishing in the remaining L2-negligible
set. We construct in this paper a second example which shows that no such natural
element exists in general even for convex fluxes, not uniformly convex: there can
be a positive L2-measure set K ⇢ R2 of points where u is not di↵erentiable along
characteristic curves.
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Section 6. In the third place, we show that, when Assumption (2.2) fails, a
continuous function u which is both an Eulerian and a Lagrangian solution is not
necessarily a Broad solution: the family of Broad sources might be empty, if inflections
of f are not negligible. Namely, Example 6.2 provides a continuous solution u(t, x) ⌘
u(x) to a balance law which is not Lipschitz continuous on many of its characteristics.
It also proves that, whenever one chooses a ‘good’ Lagrangian parameterization, the
Lagrangian source should be fixed accordingly: no universal choice is possible even
within all admissible Lagrangian parameterizations.

Section 8. With continuous sources, the set of broad solutions might be always
non-empty. Even if this was the case, Example 8.3 with f(u) = u

2, u(t, x) = 3
p
x

and g(t, x) = 1 shows that the Broad source, that in this case is available, is not the
continuous representative of the continuous, constant Eulerian source. Nevertheless
when a Lagrangian source is continuous then it is also the correct Eulerian source.

3. Compatibility of Broad and Eulerian sources when inflections
are negligible

When the flux has negligible inflection points, the source terms in the Broad,
Lagrangian and Eulerian interpretations of (1.1) are compatible.

3.1. Theorem. Let u be continuous. Suppose the distribution @t u(t, x) +
@x (f(u(t, x))) is represented by a bounded function. If L1(clos(Infl(f))) = 0, then
the family of Broad sources and the family of Eulerian sources have nonempty inter-

section.

We prove such positive statement in this section by constructing a Borel function
which is both an Eulerian source and a Broad source: see Theorem 3.7.

In [2, Definition 36, Theorem 37] we constructed the Broad source

gB(t, x)
.
=

(
g(t, x) (t, x) 2 E \ u�1(clos(Infl(f)))

0 otherwishe
(3.1)

where E is the Borel set [2, equation (3.4) and Lemma 38] of points (t, x) through
which there exists a C

1 (time-translated) characteristic �, where �(0) = (t, x), for
which s 7! u(t + s, �(s)) is di↵erentiable at s = 0; the function (t, x) 7! g(t, x) =
d
ds u(t+ s, �(s))

���
s=0

was defined by a selection theorem on such set E.

In order to have that the source is also an Eulerian source, of course we have
to modify gB outside E [ u

�1(clos(Infl(f))) setting it equal to any Eulerian source
gE instead of fixing a ‘random’ value and we need to prove that it is the correct
Eulerian source on E [ u

�1(clos(Infl(f))). Changing the value outside E does not
a↵ect the fact of being a Broad source term, because u is Lipschitz continuous along
any characteristic curve [2, Theorem 30] and therefore the complement of E is H

1-
negligible along any characteristic curve. Nevertheless, we could also need to turn
gB into gE within E: we indeed construct a subset DgE of {gB 6= gE} of its same
(maybe positive!) L2-measure and which is negligible along any integral curve of
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(1, f 0(u)). Once we turn gB into gE also on DgE we are done and we get a Borel
function which is both a Broad and an Eulerian source term.

We first prove that 0 is a good value both for Eulerian and Broad sources on
u
�1(clos(Infl(f))), thanks to the assumption of negligibility of inflection points.

3.2. Lemma. Consider any closed set N ⇢ R which is L1
-negligible. Then

(i) any Eulerian source gE vanishes at L2
-Lebesgue points of u

�1(N) ✓ R2
.

(ii) the t-derivative of u � i�(t) = u(t, �(t)) vanishes at H
1
-Lebesgue points of

(u � i�)�1(N) ✓ R, for any any C
1
integral curve i� of (1, f 0(u))

Proof. By �-additivity, we directly assume that N is compact, not only closed.
(i) We apply the entropy equality [2, Lemma 42]. Choose in particular the convex
entropies

⌘
0
"(z) = (1O" ⇤ ⇢")(z), ⌘"(�1) = 0,

where ⇢" is a smooth convolution kernel concentrated on [�", "] and O" � N is a
sequence of open sets such that L1(O") < ". Since L1(N) = 0 and N is compact,
then ⌘

0
"(u) converges pointwise to 1u�1(N) so that ⌘"(z) converges locally uniformly

to 0. In particular, the distributions @t ⌘"(u) and @x (q"(u)) must vanish in the limit
as " # 0. From the entropy equality

@t ⌘"(u) + @x (q"(u)) = ⌘
0
"(u)gE in D0(R2)

we deduce the claim in the limit " # 0: gE must vanish L2-a.e. on u
�1(N) because

0 = 1u�1(N)(t, x)gE(t, x) in D0(R2).

(ii) Recall that u is G-Lipschitz continuous along characteristic curves [2, Theo-
rem 30], thus in particular u � i� is G-Lipschitz. As N is L1-negligible by hypothesis
then the derivative of u � i�(t) must vanish at Lebesgue points of (u � i�)�1(N) by
an easy computation, see [2, Lemma 41]. ⇤

We now construct in Lemma 3.6 a subset DgE of E, defined in (3.2), where we
need to turn gB into gE : in Lemma 3.3 we remove from E

• the set where gE = gB,
• the set u�1(clos(Infl(f))) and
• the points which are not Lebesgue points of the time-restrictions of gE .

We prove that the remaining set DgE is negligible along any Lagrangian parameteri-
zation. Corollary 3.5 then proves that DgE is negligible not only along any Lagrangian
parameterization, but also along any integral curve of (1, f 0(u)). Once constructed
DgE , the compatible source in Theorem 3.7 will be straightforward.
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3.3. Lemma. Let S
{
denote the complement of a set S. Let gB be the Broad

source term in (3.1) and consider any Eulerian source term gE . Define

DgE
.
= E

\
{gE = gB}{

\�
u
�1 (clos(Infl(f)))

�{
(3.2)

\⇢
9 lim
h!0

1

h

Z
x̄+h

x̄

gE(t̄, x)dx = gE(t̄, x̄)

�
.

Then L2( �1(DgE )) = 0 for any Lagrangian parameterization �, where

 (t, y) = (t,�(t, y)) .

Proof. Notice that we are not considering the intersection of the accumulation points
of {f 00

> 0} and {f 00
< 0} since such intersection is precisely clos(Infl(f)), which

lies in the complement of DgE . We can thus focus in an open set where {f 00 � 0}:
open sets where {f 00  0} are analogous.

Denote by r. i.(X) the relative interior of a set X. Fix any Lagrangian parameter-
ization � and set  (t, y) = (t,�(t, y)): we prove that

L2
�
 �1 (DgE )

�
= 0.

Let (t̄, x̄) 2 DgE \ r. i.{f 00(u) � 0}. Suppose (t̄, x̄) = (t̄,�(t̄, ȳ)) =  (t̄, ȳ) with

9 lim
"!0

1

"

Z
t̄+"

t̄

GE(t, ȳ)dt = gE(t̄, x̄) where GE(t, y) = gE(t,�(t, y)) (3.3)

9 lim
"#0

L1
�
 �1(DgE ) \ [t̄� ", t̄+ "]⇥ {ȳ}

�

2"
= 1 (3.4)

9 lim
"!0

u( (t̄+ ", ȳ))� u( (t̄, ȳ))

"
= gB(t̄, x̄) (3.5)

Since this is satisfied at L2-a.e. (t, y) in  �1(DgE ), the thesis will not be a↵ected.
One can go back to Dafermos’ computation [2, (3.1a)], which means in the integral

formulation of the PDE, and exploit first the sign information on f
00: what we get is

1

"(⌧ � �)

(Z
�(⌧)+"

�(⌧)
u(⌧, x)dx�

Z
�(�)+"

�(�)
u(�, x)dx�

Z
⌧

�

Z
�(t)+"

�(t)
gE(t, x)dxdt

)
 0

(3.6)
whenever {⌧  t  � , �(t)  x  �(t) + "} is contained in {f 00 � 0}. We apply
this integral relation fixing the characteristic �(t) = �(t, ȳ) and � ⌘ t̄. We show
below that by the choice of (t̄, x̄) one can pass to the limit, first as " # 0, then as
⌧ # � ⌘ t̄.

1: Last addend. When (t, �(t)) 2 DgE , the space average converges by definition
of DgE :

9 lim
"#0

1

"

Z
�(t)+"

�(t)
gE(t, x)dx = gE(t, �(t))
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In particular, when (t, �(t)) 2 DgE

gE(t, �(t)) = lim inf
"#0

1

"

Z
�(t)+"

�(t)
gE(t, x)dx = lim sup

"#0

1

"

Z
�(t)+"

�(t)
gE(t, x)dx

When (t, �(t)) /2 DgE perhaps the limit does not exists, but the liminf and the limsup
are bounded by ±G. Thanks to this bound and by (3.4), the time-average is the
same when the average is done considering only the points t with (t, �(t)) 2 DgE :
denoting

 �1(DgE ) \ [t̄� ", t̄+ "]⇥ {ȳ} =: ( �1(DgE ))ȳ
by (3.3) we thus deduce

gE(t̄, x̄) = lim
⌧#�

1

|⌧ � �|

Z

[�,⌧ ]\( �1(DgE ))ȳ

gE(t, �(t))dt

= lim
⌧#�

1

|⌧ � �|

Z

[�,⌧ ]
lim inf

"#0

1

"

Z
�(t)+"

�(t)
gE(t, x)dxdt

= lim
⌧#�

1

|⌧ � �|

Z

[�,⌧ ]
lim sup

"#0

1

"

Z
�(t)+"

�(t)
gE(t, x)dxdt .

We conclude by Fatou’s lemma, which proves the double limit for the last addend
because it implies

lim
⌧#�

lim inf
"#0

1

|⌧ � �|"

Z
⌧

�

Z
�(t)+"

�(t)
g(t, x)dxdt � gE(t̄, x̄)

gE(t̄, x̄) � lim
⌧#�

lim sup
"#0

1

|⌧ � �|"

Z
⌧

�

Z
�(t)+"

�(t)
g(t, x)dxdt.

2: First addends. Recall that u is di↵erentiable at (t̄, x̄) along �(t, ȳ) by (3.5) with

derivative gB(t̄, x̄). By the continuity of u then one has that the first two addends
in the LHS converge to gB(t̄, x̄):

lim
⌧#�

lim
"#0

1

|⌧ � �|"

"Z
�(⌧)+"

�(⌧)
u(⌧, x)dx�

Z
�(�)+"

�(�)
u(�, x)dx

#

= lim
⌧#�

u(⌧, �(⌧))� u(�, �(�))

|⌧ � �| = gB(t̄, x̄).

3: Conclusion. By the double limits proved in the previous sub steps, the inequal-

ity (3.6) yields
gB(t̄, x̄)� gE(t̄, x̄)  0.

In particular, gB(t̄, x̄)  gE(t̄, x̄). The reverse inequality comes considering the
similar region bounded by �(t) and �(t)� " instead of �(t) and �(t) + ". As the set
DgE \ r. i.{f 00  0} is entirely analogous, we conclude thus gB(t̄, x̄) = gE(t̄, x̄) at
those points  (t̄, ȳ) = (t̄, x̄) 2 DgE satisfying (3.3)-(3.4)-(3.5). Taking into account
that DgE ⇢ gB(t̄, x̄) = gE by its definition in Lemma 3.3, DgE is only made of points
satisfying (3.3)-(3.4)-(3.5) and thus L2( �1(DgE )) = 0. ⇤
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3.4. Lemma. Given any characteristic curve �, there is a Lagrangian parameteri-

zation � with �(·, y) = � for some y.

Proof. Consider points {(tk, xk)}k2N dense in the plane. Let �k be a characteristic
with �k(tk) = xk, k 2 N. We now modify this family of characteristics recursively in
order to make it monotone and to add also the fixed characteristic �.

Set F0 = {�}. For k 2 N set Fk = Fk�1 [ {e�k} where

e�k(t)
.
= max

�`

⇢
�`(t);min

�r
{�r(t); �k(t)}

�
: �`, �

r 2 Fk�1 with �`(tk)  xk  �
r(tk) .

If there is no �
r 2 Fk�1 satisfying xk  �

r(tk) then the minimum above is meant to
be just �k(t), while if there is no �` 2 Fk�1 satisfying �`(tk)  xk then the maximum
is defined to be min�r {�r(t); �k(t)}. Notice that e�k(tk) = xk.

Let F = clos ([k2NFk) be the closure of Fk in the topology of locally uniform
convergence. Since this property hods in each family Fk, for each �1, �2 2 F then

• either �1(t)  �2(t) for all t or
• �1(t) � �2(t) for all t.

Similarly to what explained in the proof of [2, Lemma 17], the function

F 3 � 7! ✓(�) =
+1X

k=0

tanh (�(tk))

2k
2 (�2, 2)

is continuous and strictly order preserving: defining ✓
�1 its continuous inverse,

�(t, y) =
⇥
✓
�1(y)

⇤
(t) y 2 ✓ (F)

provides a Lagrangian parameterization.
Since by construction � belongs in each Fk and thus in F , just set y = ✓(�). ⇤

3.5. Corollary. Let S be any Borel set which is negligible along any Lagrangian

parameterization: we assume that L2( �1(S)) = 0 for any Lagrangian parameteri-

zation �, where  (t, y) = (t,�(t, y)). Then S is negligible along any characteristic.

Proof. Given any characteristic curve �, there is a Lagrangian parameterization �

with �(·, y) = � for some y by Lemma 3.4. Define then

�(t, y) =

8
><

>:

�(t, y) y  y ,

�(t) y  y  y + 1 ,

�(t, y � 1) y � y + 1 .

By assumption S must be negligible also along this Lagrangian parameterization:

L2
�
 �1(S) \ R⇥ [y, y + 1]

�
= 0 ,

where we consider  (t, y) = (t,�(t, y)). Thus we conclude by Tonelli theorem:

H
1 (i�(R) \ S) = H

1 (i�(R) \ S) · 1 = L2
�
 �1(S) \ R⇥ [y, y + 1]

�
= 0 .

⇤
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3.6. Lemma. The Borel subset DgE of E \ {gE 6= gB} in (3.2) is L1
-negligible

along any C
1
integral curve of (1, f 0(u)) and it satisfies L2(E \ {gE 6= gB}) =

L(DgE ).

Proof. Let us first prove that DgE is itself a subset of E \ {gE 6= gB} with the
same L2-measure of E \ {gE 6= gB}. For brevity, set Z = u

�1 (clos(Infl(f))). By
definition of DgE in Lemma 3.3 the set E \D

{
gE is equal to

E

\
 
{gE = gB}

[
(Z \ {gE = gB})

[⇢
9 lim
h!0

1

h

Z
x̄+h

x̄

gE(t̄, x)dx = gE(t̄, x̄)

�{!
.

By definition of gB and by Lemma 3.2 then L2 (Z \ {gE = gB}) = 0. By Lebesgue
di↵erentiation theorem and by Fubini theorem, also the last set where gE di↵ers from
the Lebesgue value on its t-sections is L2-negligible. We conclude thus that

L2(E \ {gE 6= gB} \D
{
gE ) = 0.

The set DgE is negligible along any Lagrangian parameterization by Lemma 3.3
and it is H

1-negligible along any characteristic by Corollary 3.5. ⇤

3.7. Theorem. Assume that L1(clos(Infl(f))) = 0. Let gE be any Eulerian source

term. Then the function

gU (t, x)
.
=

(
gB(t, x) on E \DgE and on u

�1 (clos(Infl(f)))

gE(t, x) on DgE and on R2 \ E

is both an Eulerian source term and a Broad source term.

Proof. Notice that gE = gB L2-a.e. on u
�1 (clos(Infl(f))) by definition of gB and

by Lemma 3.2. Moreover gE = gB L2-a.e. on E \DgE by Lemma 3.6. The function
gU is therefore an Eulerian source because gU = gE in D0(R2).

As DgE is negligible along any characteristic curve by Lemma 3.6 and R2 \ E is
negligible along any characteristic curve by [2, Theorem 30] and by definition of E
[2, equation (3.4) and Lemma 38], then gU is still a Broad source, as gB was. ⇤

4. Lagrangian parameterizations may be Cantor functions

We remind that for the quadratic flux f(z) = z
2
/2 if u has bounded variation then

Lagrangian parameterizations can be taken absolutely continuous; in addition, any
relative Lagrangian source term is also an admissible Eulerian source term, see [2,
§ 2.1]. Nevertheless, continuous solutions are necessarily 1

2 -Hölder continuous but in
general they do not have bounded variation, thus this is not the general situation.

The example in this section shows that, even with f(z) = z
2
/2, one may have that

any Lagrangian parameterization � is not an absolutely continuous function, but it
has a Cantor part. In particular, whatever Lagrangian parameterization one chooses,
there are Lagrangian sources relative to it that are not Eulerian sources: the Broad
source shall be carefully chosen.
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More in detail, this section aims at constructing

• a continuous solution u of a balance law

@t u(t, x) + @x (u
2(t, x)) = g(t, x), |g(t, x)|  1 ; (4.1)

• a compact set K ⇢ R2 of positive Lebesgue measure whose intersection with
any characteristic curve of u is H

1-negligible.

We aim at introducing here in a simpler setting the machinery that produces also
the more complex counterexample of § 5: we thus leave an additional parameter di
that in this section will turn out to be fixed constantly equal to 16, while it will be
relevant in § 5. We briefly outline the construction before presenting it:

(i) We partition R2 in a rectangle Q0 and its complement. We define u = 0 on
the complement of Q0.

(ii) At the first step we subdivide Q0 into finitely many sub-strips, say d1 sub-
strips equal to S1. The strip S1 is made of two sub-rectangles which are a
translation of a given rectangle Q1 ⇢ Q0 and a remaining ‘corridor’. We
assign a value to u in each ‘corridor’ as the derivative of a suitable family of
curves x = �(t) covering the region of the ‘corridor’. We do it in such a way
that—in this closed region with 2d1 equal rectangular holes—u will be a C

1

function. By Cauchy uniqueness theorem for ODEs, all characteristic curves
of u in this region of the ‘corridor’ must then coincide with the family that
we assign.

(iii) At the i-th step, i 2 N, u is defined as a C
1 function on the complement

of finitely many disjoint equal rectangles which are translations of a given
rectangle Qi ⇢ Qi�1. We subdivide Qi recursively into finitely many sub-
strips, say di+1 sub-strips. Each strip is made by two rectangles translation
of Qi+1 ⇢ Qi and a remaining ‘corridor’. We assign a value to u on each
‘corridor’ so that this extension of u becomes a C

1-function on the closed
region with 2id1 · · · · · di equal rectangular holes which are a translation of
Qi+1.

(iv) By the previous steps we will have assigned a value to u on the whole com-
plement of a compact Cantor-like set K ⇢ R2 of positive Lebesgue measure
but with empty interior: we will be able to assign a unique value of u on K

extending u to K by continuity.
(v) By the details of our construction, every characteristic curve of u will inter-

sect K in at most one point. We obtain this property by requiring that every
characteristic curve must intersect at most one of the disjoint translation of
Qi considered at the i-th step. This is possible because we impose u 2 C

1

on compact subsets of the open set R2 \K, therefore characteristic curves
of u are uniquely defined in the open set R2 \K: we force that every charac-
teristic curve reaching the boundary of a translation of Qi does not intersect
any other translation of Qi.

After performing this program the counterexample will be ready: the counter-image
of the L2-non-negligible set K by any Lagrangian parameterization must have null
measure, because each vertical section of this counterimage is made by the single
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point of intersection withK. This shows that there is no Lagrangian parameterization
satisfying the absolute continuity of Definition 2.2

a0 a0

c1

. . .S5

S4

S3

S2

S1

c0

Q0
b1

a1

a1

u1 +Q1

c1e1

r1 +Q1L1

q1 +R1

s 1
�
L
1

. . .

Figure 2. The initial region Q0 and one of its strips S1. Propor-
tions are distorted. Dashed lines suggest the qualitative behavior of
characteristic curves.

1: Definition of the iterative regions (Figure 2). We define here in an iterative
way a finer and finer partition of a rectangle Q0. This construction is based on
parameters ai, bi, ci, di, ei that we write explicitly in the next step. We only mention
here the relation among ci, di, ei

dici(1 + ei) = ci�1 ) ci(1 + ei) =
ci�1

di
. (4.2)
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The procedure is visualized in Figure 2. We consider the basic domain

Qi�1 = [0, ai�1]⇥ [0, ci�1] i 2 N
and we partition it at the i-th step into di vertical sub-strips

Si = [0, ai�1]⇥ [0, ci (1 + ei)]

of size ai�1 ⇥ ci(1+ ei): this is possible by the relation (4.2). We obtain the flowing
partition:

Qi�1 = [0, ai�1]⇥ [0, ci�1] =
di�1[

j=0

(jvi + Si) vi =

✓
0,

ci�1

di

◆
= (0, ci (1 + ei)) .

The vertical strip Si is then partitioned into three horizontal strips as follows:

• The intermediate strip is the translation of a rectangle

Ri = [0, bi]⇥ [0, ci (1 + ei)] .

This strip provides space for smooth junctions among vertical curves.
• The two extremal horizontal strips have size ai ⇥ ci(1 + ei). Each extremal
horizontal strip is the union of two vertical rectangles which are translations
of

Li = [0, ai]⇥ [0, ciei] Qi = [0, ai]⇥ [0, ci]

This is possible if 2ai + bi = ai�1. One can define vectors for the translation and
one can write

qi = (ai, 0) ri = (0, ciei) ui = (ai + bi, 0) si = (ai�1, ci(1 + ei))

Si = Li

[
[ri +Qi]

[
[qi +Ri]

[
[ui +Qi]

[
[si � Li] .

Let us term Q
h1...hi
j1...ji

the rectangles generated at the i-th step, for h` 2 {0, 1}, j` 2
{0, . . . , d` � 1}:

Q
h1...hi
j1...ji

= ph1...hi
j1...ji

+Qi, ph1...hi
j1...ji

=
iX

`=1

j`v` +
iX

`=1

hj`u` +
iX

`=1

(1� hj`)r`.

Since at each step such rectangles are nested into previous ones, the translation
vector ph1...hi

j1...ji
takes into account which is the list of nesting rectangles: j` tells us in

which strip of the `-th step we are it, hj` tells us if at the `-th step we are in the low
right triangle of the corresponding strip—in case hj` = 1—or if we are instead in the
upper left one—in case hj` = 0.

The remaining regions of shape Li and Ri are not partitioned anymore at future
steps.

2: Setting up the parameters. Set for i 2 N [ {0}
ai

.
= 2�i�1(1 + 2�i).

We impose that for i 2 N the interval of length ai�1 is divided into three subintervals,
two of which of length ai and one of length bi:

bi
.
= ai�1�2ai = 2�i(1+2�i+1)�2·2�i�1(1+2�i) = 2�i[�1+2�i+1���1�2�i] = 2�2i

.
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We determine now values of ci, di, ei satisfying (4.2) plus an additional requirement
that we need later. Example 7.3 constructs a curve x = �(t) 2 C

2([0, bi]) which
satisfies

0  d

dt
u � (t, �(t))  1 u � (t, �(t)) .

=
d

dt
�(t) 8t 2 [a, bi] (4.3a)

d

dt
u(t, �(t))

���
t=0

= u(0, �(0)) = 0 = u(bi, �(bi)) =
d

dt
u(t, �(t))

���
t=bi

. (4.3b)

Easy computations, reported for completeness in Example 7.3, show the estimate

max
s,t2[0,bi]

|�(t)� �(s)| < 2f(bi/2) = 2�4i�1
.

For every 0  c < 2f(bi/2), Example 7.3 also constructs a C
2 curve satisfying (4.3)

and
� (bi)� �(0) = c.

Define therefore the following sequence of positive numbers, lower than 2f(bi/2):

ci
.
=

2f(bi/2)

⇧i
j=1(1 + ej)

=
2�4i�1

⇧i
j=1(1 + 2�j)

, c0 = 1/2, ei
.
= 2�i

, i 2 N.

Define finally the integer ratio

di =
ci�1

ci(1 + ei)
=

16 ·⇠⇠⇠⇠2�4i�1

⇠⇠⇠⇠⇠⇠⇠
⇧i�1

j=1(1 + 2�j)

⇠⇠⇠⇠⇠(1 + 2�i)⇠⇠⇠⇠⇠⇠⇠
⇧i�1

j=1(1 + 2�j)

⇠⇠⇠⇠2�4i�1

1

⇠⇠⇠⇠1 + 2�i
= 16.

A table of the first values is the following

ai bi ci di ei

0 1 � 1/2 � �
1 3/8 1/8 1/48 16 1/2
2 5/32 1/32 1/960 16 1/4
...

...
...

...
...

...

3: Measure of the Cantor set. We compute the measure of the set

K =
\

i2N

d1�1[

j1=0

· · ·
di�1[

ji=0

1[

h1,...,hi=0

Q
h1...hi
j1...ji

Let us describe the above intersection step by step. At the first step there are d1

stripes translations of S1, each of which generates two rectangles which are translation
of Q1 = [0, a1]⇥ [0, c1]. Therefore

L2

0

@
d1�1[

j=0

1[

h=0

Q
h

j

1

A = 2d1c1a1
(4.2)
= 2

c0

1 + e1
a1.

At the second step, each rectangle j`r1 + h`r1 + Q0, for h` 2 {0, 1} and j` 2
{0, . . . , d1�1}, produces 2d2 smaller rectangles of size a2⇥c2: there are thus 2d1 ·2d2
rectangles of size a2 ⇥ c2. More generally, each rectangle Q

h1...hi�1
j1...ji�1

generates 2di
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rectangles each of size ciai, and there are 2d1 · · · · · 2di�1 such rectangles. We can
hence conclude that at the i-th step

L2

0

@
d1�1[

j1=0

· · ·
di�1[

ji=0

1[

h1,...,hi=0

Q
h1...hi
j1...ji

1

A = 2id1 · · · di�1diciai

(4.2)
= 2id1 . . . di�1

ci�1

1 + ei
ai

(4.2)
= 2iai

c0Q
i

j=1(1 + ej)

As the series
P1

j=0 ej converges, by the elementary estimate
Q

i

j=1(1 + ej) 
exp(

P
i

j=1 ej) the infinite product converges and in the limit we get

L2(K) = lim
i!1

◆◆2i · 2⇢⇢�i�1(1 + 2�i) · 2�1

Q
i

j=1(1 + 2�j)
=

2�3

Q1
j=1(1 + 2�j)

>
2�3

Q1
j=1(1 + 2�j)2j

=
1

8e
.

(4.4)

In particular K is non-negligible. We also observe that it is compact, since the i-th
element of the intersection is the union of finitely many closed rectangles contained
in Q0.

4: Assigning u and characteristic curves. We divided Q0 into di↵erent regions in
order to facilitate the definition of the characteristic curves. Set:

• u ⌘ 0 in each region which is created at the i-th step as a translation of Li,
i 2 N.

• define in Ri characteristic curves providing smooth junctions, as in Exam-
ple 7.3, from

u = 0 on {0}⇥ [0, ciei]
u = 0 on {0}⇥ [ciei, ci(1 + ei)]

to
u = 0 on {bi}⇥ [0, ci]
u = 0 on {bi}⇥ [ci, ci(1 + ei)].

We associated in this way characteristic curves, and therefore u, to each
fundamental domain Ri. Characteristic curves are defined in the region
ph1...hi
j1...ji

+qi+Ri, translation of Ri, as the above characteristic curves trans-

lated by the same vector ph1...hi
j1...ji

+ qi.

The dashed lines in the RHS of Figure 2 give an idea of the qualitative behaviour.
We have

u 2 C
1(Q0 \K) \ C(Q0).

The unique continuous extension of u to Q0 vanishes on K.

5: Conclusion. By (4.4) the set K has positive measure. We now notice that
every characteristic curve intersects K in a single point, and countably many of
them in two points. Indeed, fix any i 2 N. The iterative construction is made in
such a way that each characteristic curve intersecting a region Q

h1...hi
j1...ji

is uniquely
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Figure 3. From left to right, figures illustrate the iterative hori-
zontal subdivision of the height a0—left figure—first in two extremal
horizontal strips of height a1 (blue ones) and a central strip of height
b1 (central one), then—second figure—the subdivision of each hori-
zontal strip of height a1 into two horizontal strips of height a2 (blue
ones) and a central strip of height b2, and so on al later iterations.
K lies within blue regions. The regions Li are so thin, even after two
iterations, that they are not visible in such a picture.

defined out of it. In particular, if any characteristic curve of the continuous function
u intersects a rectangle Q

h1...hi
j1...ji

it does not intersect in the complement of Qh1...hi
j1...ji

other regions constructed as translation of any Qi—with the exception of the curves
on the boundary of Qh1...hi

j1...ji
, which run on the boundary of another equal rectangle.

This implies that the counter-image of K by any Lagrangian parameterization must
have null measure, as each vertical section of this counterimage is made by the single
point which is the intersection of K with the relative characteristic composing the
parameterization—or by two such points, for countably many curves.

We show in Figure 3 at a better scale the iterative horizontal subdivision of the
height a0 first in two extremal horizontal strips of height a1 (blue ones) and a central
strip of height b1 (central one), then the subdivision of each horizontal strip of height
a1 into two horizontal strips of height a2 (blue ones) and a central strip of height b2,
and so on al later iterations. The compact K lies within blue regions.

5. Non-negligible points of non-differentiability along
characteristics

The example in this section shows the following: even when u is Lipschitz con-
tinuous along characteristics and the flux f is convex, there could be a compact,
L2-positive measure set K ⇢ R2 of points where u fails to be di↵erentiable along
characteristics, whichever characteristic curves one chooses through the point. One
can also have u 2 C

1(R2 \K), but clearly it will be just continuous on the whole
region. This provides as well a second example of non-absolute continuity of La-
grangian parametrizations, indeed this does not contradict the Lipschitz continuity

Eulerian, Laganrgian and broad solutions 19

of u along any characteristic curves [2, Theorem 30]. Such continuous solution u is
not Hölder continuous, for any exponent

The behavior in this section is prevented by the ↵-convexity of the flux [7, Theo-
rem 1.2]: we give an example where the convex flux function vanishes at 0 together
with all its derivatives, while it is uniformly convex out of the origin.

z

t

f(z) = 2�
1
z�1f(z) = 2

� 1
|z|3�1

Figure 4. Flux function f considered in § 5. Close to the origin,
f is strictly convex, but not uniformly convex. This flux function is
C

1(R), with all derivatives vanishing at the origin, but of course it
is not analytic

Define the flux function, for |z|  1, given by (Figure 4)

f(z) =

(
2�

1
z�1

z � 0,

2
� 1

|z|3�1
z < 0.

We mimic the construction of § 4, modifying the regions Li and the parameters.

1: Setting up the parameters. Similarly to § 4 we set up parameters ai, bi, ci

satisfying

ai�1 = 2ai + bi, ci�1 = ci(1 + di), ci = 2f(bi/2) i 2 N,

so that the following properties for the recursive construction are satisfied:

• An interval of length ai�1 is the disjoint union of two intervals of length ai

plus an interval of length bi.
• There exists a C

2 curve x = �(t), for t 2 [0, bi] which satisfies relations

0  d

dt
u � (t, �(t))  1 f

0(u) � (t, �(t)) .
=

d

dt
�(t) 8t 2 [a, bi] (5.1a)

d

dt
u(t, �(t))

���
t=0

= u(0, �(0)) = 0 = u(bi, �(bi)) =
d

dt
u(t, �(t))

���
t=bi

. (5.1b)

and

� (bi)� �(0) =
ci

�i+1
= ci+1, �i

.
= 1 + di.
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The last point is given again by Example 7.3. In particular, one can fix

ai = 2�i�1(1 + 2�i) bi = 2�2i
a0 = 1 (5.2a)

ci = 2f(bi/2) = �2 · 2
� 1

bi/2
���1

= 2�22i+1
, c0 =

1

4
, i 2 N. (5.2b)

�i =
ci�1

ci
=

2�22i�1

2�22i+1 = 22
2i�1(4�1) = 23·2

2i�1
, (5.2c)

di =
ci�1 � ci

ci
= �i+1 � 1 = 23·2

2i�1 � 1 . (5.2d)

Notice finally that the di↵erence ci�1 � ci is asyntotic to ci�1:

ci�1 � ci

ci�1
= 1� ci

ci�1
= 1� 1

1 + di
= 1� �

�1
i

and thus
dici = ci�1 � ci = ci�1(1� �

�1
i

) . (5.3)

A table of the first values is the following

ai bi ci di

0 1 � 1/4 �
1 3/8 1/4 1/256 63
2 5/32 1/16 2�32 224 � 1
...

...
...

...
...

2: Definition of the iterative regions (Figure 5). We consider the basic domain

Qi�1 = [0, ai�1]⇥ [0, ci�1] i 2 N
and we partition it at the i-th step into di vertical sub-strips which are translations
of

Si = [0, ai�1]⇥

0, ci

✓
1 +

1

di

◆�

each of size a0c1(1 + 1/d1): indeed when i = 1 we have a0 = 1 and

d1c1(1 + 1/d1) = d1c1 + c1 = c0 .

We obtain the flowing partition of Q0, that we write with a notation suitable for later
iterations, when we will then have i > 1:

Qi�1 = [0, ai�1]⇥ [0, ci�1] =
di�1[

j=0

(jvi + Si) vi =

✓
0,

ci�1

di

◆
.

The vertical strip Si is then partitioned into three horizontal strips as follows, see
Figure 5:

• The intermediate horizontal strip has size bi⇥ci(1+1/di). It is in turn made
of three vertical sub-strips:

– two extremal strips of size bi⇥ ci/4di, included in the regions Li of the
next point, and
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a0a0
q1 +R1

S1

c1

Q0
b1

a1

a1

c0

L1 u1 +Q1

u1 +Q1

c1
4d1

3c1
4d1

s 1
�

L
1

. . .

. . .S5

S4

S3

S2

Figure 5. The initial region Q0 and one of its strips S1. Propor-
tions are distorted. Dotted lines suggest the qualitative behavior of
characteristic curves. Dashed lines suggest the blocks Si, Qi, Li, Ri

in the construction.

– a central one strip which is the translation of a rectangle

Ri = [ai, ai + bi]⇥

0, ci

✓
1 +

1

2di

◆�
.

This strip provides space for smooth junctions among vertical curves.
• The two extremal strips have size ai ⇥ ci(1 + 1/di). Each horizontal strip is
in turn made of three vertical sub-strips:

– a central iterative strip which is a translation of the rectangle

Qi = [0, ai]⇥ [0, ci] ;
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– two extremal strips which are translations and reflections of

Li = [0, ai]⇥

0,

3ci
4di

�[
[0, ai�1]⇥


0,

ci

4di

�
.

We can hence write the decomposition

Si = Li

[
[si � Li]

[
[qi +Ri]

[
[ri +Qi]

[
[ui +Qi]

si =

✓
a0, c1 +

c1

di

◆
qi =

✓
0,

ci

4di

◆
ri =

✓
0,

3ci
4di

◆
ui =

✓
ai + bi,

ci

4di

◆
.

We term Q
h1...hi
j1...ji

, for h` 2 {0, 1} and j` 2 {0, . . . , d` � 1} when ` = 1, . . . , i, the
rectangles that are generated at the i-th step: with the above notation one can write

Q
h1...hi
j1...ji

=
iX

`=1

j`v` +
iX

`=1

hj`u` +
iX

`=1

(1� hj`)r` +Qi.

Each of this rectangles Q
h1...hi
j1...ji

will be further partitioned at the next step. The
remaining regions of shape Li,�Li and Ri, suitably translated, are not partitioned
any more.

3: Measure of the Cantor set. We compute the measure of the set

K =
\

i2N

d1�1[

j1=0

· · ·
di�1[

ji=0

1[

h1,...,hi=0

Q
h1...hi
j1...ji

As each Q
h1...hi�1
j1...ji�1

generates 2di rectangles each of size ciai, then at the i-th step

L2

0

@
d1�1[

j1=0

· · ·
di�1[

ji=0

1[

h1,...,hi=0

Q
h1...hi
j1...ji

1

A = 2id1 · · · di�1diciai

(5.3)
= 2id1 . . . di�1[ci�1(1� �

�1
i

)]ai

(5.3)
= 2iaic0

iY

j=0

(1� �
�1
j

)

As the series
P1

j=0 �
�1
j

converges, by the elementary estimate
Q

i

j=1(1 � �
�1
j

) 
exp(�

P
i

j=1 �
�1
j

) the infinite product also converges and in the limit we get

L2(K) = lim
i!1

◆◆2i · 2⇢⇢�i�1(1 + 2�i) ·
iY

j=1

⇣
1� 2�3·22i�1

⌘
· 2�2 (5.4)

=
1

8

1Y

j=1

⇣
1� 2�3·22i�1

⌘

>
1

8

1Y

j=1

⇣
1� 2�3·22i�1

⌘23·22i�1

=
1

8e
.
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In particular K is non-negligible.

4: Assigning u and characteristic curves. We subdivided Q0 into di↵erent regions
in order to facilitate the definition of the characteristic curves. We care now of
defining

u 2 C
1(Q0 \K) \ C(Q0).

It will vanish on K by continuity. We define simultaneously characteristic curves in
Q0 \K. They will be defined separately in the di↵erent regions, and they will have
smooth junctions.

Up to translations, focus on the fundamental regions Ri, Li, �Li. We first specify
the following common properties that characteristic curves should satisfy in a region
R 2 {Ri, Li,�Li}:

• Characteristic curves do not intersect.
• Characteristic curves through points (t, x) with t 2 {0; ai; ai+bi; ai�1} have
there vertical tangent. This means that u vanishes on those horizontal lines.
We impose moreover that at those points also the derivative of u along the
characteristic vanishes.

• The image of the curves cover the whole region R, defining a C1(R) function

u(t, x)
.
=
�
f
0��1

(�̇(t)) where � is the characteristic defined through (t, x) 2 R.

There is no ambiguity in this structure due to the strict, even if not uniform,
convexity of f .

We describe now the shape of the curves, depending on the region R 2 {Ri, Li,�Li}.
The dashed lines in the RHS of Figure 5 give an idea of this qualitative behavior.
The precise expression of the characteristic curves that we describe can be computed
by elementary auxiliary computations that we report for completeness in § 7.

4.1: Region Ri (Figure 5). The unique characteristic curve through a point in

{ai}⇥ [0, ci
4di

]
{ai}⇥ [ ci

4di
,

ci
2di

]
{ai}⇥ [ ci

2di
, ci +

ci
2di

]
reaches increasingly a point in

{ai + bi}⇥ [0, ci]
{ai + bi}⇥ [ci, ci +

ci
4di

]
{ai + bi}⇥ [ci +

ci
4di

, ci +
ci
2di

].

This is compatible with the previous common requirements by the choice (5.2b): an
explicit construction of a curve joining (ai,�

ci
4di

) and (ai + bi,�ci), for � 2 [0, 1], is
provided by Example 7.3.

4.2: Region Li (Figure 5). The unique characteristic curve through a point in

{0}⇥ [0, ei] reaches decreasingly a point in {ai}⇥ [0, ci
4di

]
{0}⇥ [ei, ei +

ci
4di

] reaches decreasingly a point in {ai}⇥ [ ci
4di

,
ci
2di

]

{0}⇥ [ei +
ci
4di

,
3ci
4di

] reaches decreasingly a point in {ai}⇥ [ ci
2di

,
3ci
4di

]
{ai}⇥ [0, ci

4di
] remains constant up to {ai�1}⇥ [0, ci

4di
]

for a value of ei that we specify now. We are in a situation completely analogous
to Example 7.3. We show it in the most interesting region, which is the second
one, and we define together ei. Consider the characteristic �(t) = �(t; ai/8) given
by (7.3), but substituting f(�z) to f(z): this corresponds to the fact that u is
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decreasing along the curve instead of increasing, and thus u is negative—which in
turn corresponds to � decreasing. Set then

ei =
ci

4di
� [�(ai)� �(0)] >

ci

4di
.

Notice that the intervals above are well defined, because ei <
ci
2di

:

|�(ai)� �(0)| < f(�ai/2) = 2
� 1

(ai/2)
3�1

= 2
� 23i+6

(1+2�i)3
�1

< 2�23i+3
< 2�22i+3

<
2�22i+1

4(23·22i�1 � 1)
=

ci

4di
.

We observe finally that u decreases along �(t) up to t = ai/2 and its derivative is
�1 for t in [ai/8, 3ai/8]: then the minimum value of u, reached at the centre of the
interval, is

u(�(ai/2)) = �3ai
8

< �ai

4
. (5.5)

4.3: Region �Li (Figure 5). The region �Li is entirely similar to the re-
gion Li already described, therefore we will be quick. We require that the unique
characteristic curve through a point in

{�ai}⇥ [� 3ci
4di

,� ci
2di

] reaches decreasingly a point in {0}⇥ [� 3ci
4di

,�ei � ci
4di

]
{�ai}⇥ [� ci

2di
,� ci

4di
] reaches decreasingly a point in {0}⇥ [�ei � ci

4di
,�ei]

{�ai}⇥ [� ci
4di

, 0] reaches decreasingly a point in {0}⇥ [�ei, 0]
{�ai�1}⇥ [� ci

4di
, 0] remains constant up to {�ai}⇥ [� ci

4di
, 0]

for the value of ei already defined. Along characteristic curves passing through
{�ai} ⇥ [� ci

2di
,� ci

4di
] the function u reaches a minimum value which is less than

�ai/4.

5: u on K is not di↵erentiable along characteristics. We remind that K has
positive measure by (5.4). We check now that K is made of non-di↵erentiability
points of u along characteristics. Consider a point (t, x) 2 K: it is the countable
intersection of countable unions of rectangles, and the 2id1 · · · di rectangles in the
i-th union are translations of Qi. With the notation above, one can write

8i 2 N , ` = 1, . . . , di�1 9hi` 2 {0, 1}, ji` 2 {0, . . . , d`�1} : (t, x) 2
1\

i=1

Q
h
i
1...h

i
i

ji1...j
i
i
.

For simplicity of notation focus on j
i

`
= 0, hi

`
= 1 for every i, ` 2 N, `  i, which

means

(t, x) =

 
a0,

X

i2N

ci

4di

!
.

The general case is entirely analogous. Denote by �(t) a characteristic curve through
(t, x). We show the non-di↵erentiability by proving the following:
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(i) There is a sequence of points {t0
i
}i2N converging to t such that u(t0

i
, �(t0

i
)) =

0.
(ii) There is a sequence of points {t�

i
}i2N such that

|t�
i
� t| = ai

2
 ai, u(t�

i
, �(t�

i
)) = �3ai

8
< �ai

4
. (5.6)

This implies that u � � cannot have zero derivative at t: since u(t, x) = 0
we get

lim inf
i!1

����
u(t, x)� u(t�

i
, �(t�

i
))

t� t
�
i

���� > lim inf
i!1

ai/4

ai
=

1

4
.

The two points together imply that u �� cannot be di↵erentiable at t, because along
the two di↵erent sequences {t�

i
}i2N and {t0

i
}i2N the di↵erent quotients have two

di↵erent limits: respectively 0 and something less than or equal to �1
4 . The two

sequences are defined as follows.

(i) By construction (Figure 5) � intersects each lower side of the rectangles
Q

1
0, Q

11
00, Q

111
000, . . . at times a0 � a1, a0 � a2, . . . . On that side we set u

vanishing: then u vanishes on the sequence of times t
0
i
= a0 � ai, i 2 N,

which converges to t = a0.
(ii) Characteristic curves were conveyed to the lower side of Q1...1

0...0, which is say
a translation of Qi, from a specific part of the region

0

@
i�1X

j=1

(aj + bj),
i�1X

j=1

cj

4dj

1

A+ Li.

There are times inside this region translated of Li where our requirement is
satisfied, like

t
�
i

.
=

i�1X

j=1

(aj + bj) +
ai

2
= a0 � bi �

3ai
2

works by (5.5). Notice that |t� t
�
i
| = bi + 3ai/2 < ai�1 ! 0.

This concludes proof that u at any point of K is not di↵erentiable along character-
istics, and hence this concludes the example.

5.1. Remark. We notice that the function u constructed in the present section
is not Hölder continuous: in the same setting where (5.6) was derived one has

u(t�
i
, �(t�

i
)) = �3ai

8

(5.2a)
= �3

8
· 2�i�1(1 + 2�i) ⇠ �3 · 2�i�4

.

Moreover, u vanishes on the left side of each Li which contains part of �, so that
if we denote by x

⇤
i
the intersection of that left side with the fixed time t = t

�
i
,

namely x
⇤ =

P
i�1
j=1

cj

4dj
, then

0 < �(t�
i
)� x

⇤
i <

3

4

ci

di

(5.2b)�(5.2d)
=

3

4

2�22(i+1)

23·22i�1 � 1
⇠ 3

4
· 2�11·22i�1

.
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We thus conclude that for every constant ↵ > 0

lim
i

|u(t�
i
, �(t�

i
))� u(t�

i
, x

⇤)|
|�(t�

i
)� x⇤

i
|↵

= lim
i

�3 · 2�i�2

�3 · 2�11↵·22i�1 = +1 .

6. Failure of Lipschitz continuity along characteristics

A continuous distributional solution u to

@t u(t, x) + @x (f(u(t, x))) = g(t, x) f 2 C
2(R), |g(t, x)|  G (1.1)

is always Lipschitz continuous along characteristics if

L1(clos(Infl(f))) = 0 (2.2)

is satisfied [2, Theorem 30]. Our first aim is to show now that this assumption
is needed: we provide a flux function f with non-negligible inflection points and
a continuous (Lagrangian and Eulerian) solution u(t, x) ⌘ u(x) which is not Lips-
chitz continuous when restricted to some characteristic curves. The notion of Broad
solution does not make sense for such fluxes. Moreover, changing the Lagrangian
parameterization, the Lagrangian source g might change.

Example 6.2 shows that for some Lagrangian parameterization it does not make
sense defining a Lagrangian source, since Lipschitz continuity of u on its characteris-
tics might fail. It also proves that, whenever one chooses a ‘good’ Lagrangian param-
eterization, the Lagrangian source should be fixed accordingly: no universal choice
is possible even within admissible Lagrangian parameterizations. This is even more
astonishing considering that the Eulerian source term is constantly 1 and @t u = 0.

6.1. Remark. We first remind that there might be continuous solutions to (1.1),
even in the autonomous case u(t, x) ⌘ u(x), which are Cantor-like functions.
Consider a flux function f 2 C

2(R) which is strictly increasing and which satisfies

S
.
= {z : f

0(z) = 0} ⇢ [0, 1] , L1(S) > 0 , S does not contain intervals.

Notice that f 00(z) = 0 at all points z 2 S and all points of S are inflection points
of f , so that condition (2.2) is violated. Consider the function

w(z) = z � L1({q < z : f
0(q) = 0}) .

First observe that w is strictly increasing and 1-Lipschitz continuous:

z1 < z2 ) 0 < w(z2)� w(z1) = z2 � z1 � L1([z1, z2] \ S)  z2 � z1

since (z1, z2) \ S is a non-empty and open subset of [z1, z2]. Being w
0(z) = 0 and

f
0(z) = 0 when z is a Lebesgue point of S, then by the area formula

L1(w(S)) = 0 , L1(f(S)) = 0 . (6.1)

This vanishing condition implies that the (continuous, strictly increasing) inverse
w

�1 of w is a Cantor-Vitali like function, since w
�1 maps the L1-negligible set

w(S) to the non L1-negligible set S. Set

u(t, x) = w
�1(x) .
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Notice that u defines a continuous function which is constant in t and strictly
increasing in x. The composition f �u(t, x) =

R
x

0 (f
0(w�1)) is Lipschitz continuous

and u is a distributional solution of

@t u(t, x) + @x (f(u(t, x))) = g(t, x) with g(t, x) = f(w�1)0(x).

6.2. Example A distributional solution is not necessarily broad. Consider the
same flux as in Remark 6.1, where f is the inverse of a Cantor-Vitali-like function.

Define the continuous function

u(t, x) = f
�1(x), (6.2)

which is a distributional solution of the equation with continuous Eulerian source

@t u+ @x f(u) ⌘ @x x = 1. (6.3)

We now show that u is not a broad solution, because it is not Lipschitz continuous
on every characteristic curve. We then compute that it is indeed a Lagrangian
solution, as it must be [2, Corollary 46].

1: u is not a broad solution. Consider the increasing and 1-Lipschitz contin-
uous function

w : z 7! z � L1(S \ [0, z]).

The derivative of w at the density points of S is 0, while it is 1 at the Lebesgue
points of the complement. The set S is mapped into a L1-negligible set on which
the singular part of @zw is concentrated: in particular, w

�1 is not absolutely
continuous. The following curve is well defined, because w is a bijection:

�(t) = f(w�1(t)). (6.4)

Form the definition of S, f 0 vanishes on it. As a consequence of (6.1) the char-
acteristic � is Lipschitz continuous because the composition of f and w

�1 is
absolutely continuous, and

�̇(t) = f
0(w�1(t)) = f

0(f�1(f(w�1(t))))
(6.2)�(6.4)

= f
0(u(t, �(t))).

Nevertheless, u is not absolutely continuous on this characteristic �:

u(t, �(t))
(6.2)
= f

�1(�(t))
(6.4)
= f

�1(f(w�1(t))) = w
�1(t).

2: u is a Lagrangian solution. For each ⌧ 2 R the function

�(t, ⌧) = f(t+ ⌧) (6.5a)

is a characteristic: by (6.2) and by definition of the Lagrangian parameterization

u(t,�(t, ⌧)) = f
�1(f(t+ ⌧)) = t+ ⌧

and thus

@t �(t, ⌧) = f
0(t+ ⌧) = f

0(u(�(t, ⌧))) .
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Since � is smooth and also monotone in ⌧ , � is a Lagrangian parameterization
associated with u. Notice that the Lagrangian source coincides with the natural
representative of the distributional one:

d

dt
u(�(t, ⌧)) =

d

dt
(t+ ⌧) = 1 8t > 0, ⌧ 2 R. (6.5b)

This yields to the natural definition g(t, x) = 1 for (t, x) 2 R+ ⇥ R.
3: u admits incompatible Lagrangian sources. On the compact, L1-negligible

set of x defined by f(S) one has also the vertical characteristics. One can clearly
define a Lagrangian parameterization e� which includes such characteristics. Be-
ing u identically zero on these, then it would be necessary to define pointwise the
source term

eg(t, x) = 0 8(t, x) 2 R⇥ f(S).

This Borel regular function is di↵erent from the source of the Lagrangian param-
eterization (6.5) and di↵erent from the continuous representative of the Eulerian
source (6.3). However, being L1(f(S)) = 0, the functions g and eg di↵er on an L2-
negligible set. The Lagrangian sources of the two Lagrangian parameterizations
identify the same distributional source:

eg = g L2-a.e..

Attaining di↵erent values on the vertical characteristics {(t, ⌧)} for ⌧ 2 f(S), g
fails to be a source associated to the Lagrangian parameterization e� as well as
eg fails to be a source associated to the Lagrangian parameterization �. Indeed,
there are positive measure times t 2 (S � ⌧) where the sources di↵er on the
characteristics (6.5): 1 = g(t,�(t, ⌧)) 6= g(t,�(t, ⌧)) = 0.

We conclude observing that Lagrangian sources relative to � and to e� are not
compatible: there exists no Borel, bounded function g such that

• g � i� = 1 L2-a.e. and
• which satisfies g(t, x) = 0 for L1-a.e. t if x 2 f(S).

7. Auxiliary computations

We collect here elementary computations which exhibit junctions, with a generic
flux f , among characteristics defined in separate regions. Each characteristic � must
satisfy

�̇(t) = f
0(u((t, �(t))))

by definition. In particular, if one prescribes u((t, �(t))) smooth enough then � is
determined, up to translations, simply by integrating in time the prescriber function
f
0(u((t, �(t)))). We see below some examples: u growing linearly, quadratically, and

a combination of the two.

7.1. Example. Let us start with a trivial example. Consider a characteristic �

such that
d

dt
u(t, �(t)) = 1 for t 2 (a, b).
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In this case, the characteristic � can be easily computed. Indeed, one has

u(t, �(t)) = ua + t� a, where ua
.
= u(a, �(a)),

and therefore for t 2 [a, b]

�(t)� �(a) =

Z
t

a

�̇(s)ds =

Z
t

a

f
0(u(s, �(s)))ds =

Z
t

a

f
0(ua + s� a)ds

= f(ua + t� a)� f(ua).

If more generally
d

dt
u(t, �(t)) = v(t) > 0 for t 2 (a, b),

then

t 7! u(t, �(t)) = ua +

Z
t

a

v(s)ds, ua = u(a, �(a))

is invertible with inverse that we denote U
�1. Even if the expression of the

characteristic � is not as explicit as before, one can compute the variation of �(t)
from time a to time t by

�(t)� �(a) =

Z
t

a

�̇(s)ds =

Z
t

a

f
0(u(s, �(s)))ds =

Z
t

a

f
0
✓
ua +

Z
s

a

v(r)dr

◆
ds

(7.1)

z=u(s,�(s))
=

Z
ut

ua

f
0(z)

v(U�1(z))
dz,

where we termed

ua
.
= u(a, �(a)), ut

.
= u(t, �(t)) = ua +

Z
t

a

v(s)ds.

7.2. Example. Let us consider another easy example where the trace of u on
a characteristic � determines the characteristic � itself. If

u((t, �(t))) =
t
2

2⌧
for t 2 (0, ⌧) ) v(t)

.
=

d

dt
u((t, �(t)) =

t

⌧
, v(U�1(z)) =

p
2z/⌧

and equation (7.1) gives us

�(⌧)� �(0) =

Z
⌧/2

0

f
0(z)p
2z/⌧

dz,
d

dt
u(0, �(0)) = 0,

d

dt
u(⌧, �(⌧)) = 1.

Similarly, if one fixes

u((t, �(t))) = C � (t� b)2

2⌧
for t 2 (b� ⌧, b),

then

v(t) = (b� t)/⌧ and v(U�1(z)) = �
p

2(C � z)/⌧ .
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7.3. Example. Suppose one requires that 0  d
dt u((t, �(t)))  1 for t 2 [0, b]

and

�(b)� �(0) = c,
d

dt
u(t, �(t))

���
t=0

= u(0, �(0)) = 0 = u(b, �(b)) =
d

dt
u(t, �(t))

���
t=b

.

(7.2)

We describe the characteristic in the interval [0, b/2], then we take the symmetric

�(t) = �(b/2) +

Z
b/2

b�t

�̇(s)ds t 2 (b/2, b]. (7.3a)

The (positive) values of c one can hope to achieve are less than 2f(b/2) since

�(b/2)� �(0) =

Z
b/2

0
�̇(s)ds =

Z
b/2

0
f
0(u(s, �(s)))ds

0u(s,�(s))<s

<

Z
b/2

0
f
0(s)ds = f(b/2).

We give below C
2-curves achieving each precise value 0 < c < 2f(b/2), distin-

guishing c small or big.
Case c ⇠ 2f(b/2). Combine Examples 7.1 and 7.2: the continuous function

�(t; ⌧) =

8
>><

>>:

�(0) +
R
t
2
/(2⌧)

0
f
0(z)p
2z/⌧

dz 0  t  ⌧

�(⌧) + f(⌧/2 + t� ⌧)� f(⌧/2) ⌧ < t  b/2� ⌧

�(b/2� ⌧) +
R
b/2�⌧�(t�b/2)2/(2⌧)
0 f

0(z)
q

⌧

b�2⌧�2zdz b/2� ⌧ < t  b/2

(7.3b)

will satisfy the requirements in (7.2) for one fixed ⌧ 2 (0, b/4], provided that

f

✓
b

2

◆
>

c

2
� �

✓
b

2
;
b

4

◆
� �(0) = 2

Z
b/2

0

f
0(z)

2
p

2z/b
dz.

This choice is equivalent to assigning the C
1([0, b/2]) function

u(i�⌧ (t)) =

8
><

>:

t
2

2⌧ 0  t  ⌧ ,

⌧

2 + t� ⌧ ⌘ t� ⌧

2 ⌧ < t  b

2 � ⌧ ,

b

2 � ⌧ � (t� b
2 )

2

2⌧
b

2 � ⌧ < t  b

2 ,

d

dt
u(i�⌧ (t)) =

8
><

>:

t

⌧
0  t  ⌧ ,

1 ⌧ < t  b

2 � ⌧ ,

b

2⌧ � t

⌧

b

2 � ⌧ < t  b

2 .

Case c small. If instead c is small one may have

f

✓
b

2

◆
> 2

Z
b/2

0

f
0(z)

2
p

2z/b
dz >

c

2
.
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In this case one can just consider, for the suitable ⌧ 2 [0, 2/b], the choice of the
C

1([0, b/2]) function

u(i�⌧ (t)) =

(
⌧ t

2 0  t  b

4 ,

⌧b
2

8 � ⌧
�
t� b

2

�2 b

4 < t  b

2 ,

d

dt
u(i�⌧ (t)) =

(
2⌧ t 0  t  b

4 ,

(b� 2t)⌧ b

4 < t  b

2 .

This defines the characteristic, for example in the first half interval [0, b/4],

�(t; ⌧) = �(0) +

Z
⌧ t

2

0

f
0(z)

2
p
⌧z

dz 0  t  b/4.

Since �(b/2; ⌧) # �(0) as ⌧ # 0 and �(b/2; 1/b) > c/2, by the continuity there is
indeed a suitable ⌧ .

8. A remark on continuous sources

We emphasize the nontrivial fact that for continuous sources the continuous repre-
sentative is both a particular Lagrangian source and a good Eulerian source, if f has
negligible inflection points. While for ↵-convex fluxes of [7] a continuous Eulerian
source is also a Broad source, this fails when f(u) = u

3, see Remark 8.2.

8.1. Theorem. If u, g 2 C(R2) and f 2 C
2(R), consider the following conditions:

(i) The distribution @t u(t, x) + @x (f(u(t, x))) identifies the continuous Borel

function g.
(ii) There exists a family of characteristic curves dense in R2

along which u is

Lipschitz continuous and the classical derivative of u identifies the continuous

Borel function g.

Then (ii))(i) always. If inflection points of f are isolated, then (i))(ii).

8.2. Remark. We recall that (ii) is always [2, § A.1] equivalent to

(iii) There exists a Lagrangian parameterization with the continuous Borel
function g as associated Lagrangian source.

One could desire the stronger condition

(iv) the classical derivative of u along every characteristic curve along which
u is Lipschitz continuous identifies the continuous function g.

In Example 8.3 considering f(u) = u
3 and u(t, x) = 3

p
x we realize that there is no

hope: the continuous representative of the source term, if any, is not necessarily
the Broad source, neither the Lagrangian one for all parameterizations.

In Theorem 8.1 assuming that inflection points of f are isolated is not sharp,
nevertheless it covers this meaningful and surprising case, still having a simple
proof.
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8.3. Example. Consider f(u) = u
3, f 0(u) = 3u2 and u(t, x) = 3

p
x then

f(u(t, x)) = x so that @t u(t, x) + @x (f(u)) = @x x ⌘ 1

but �(t) ⌘ 0 is a characteristic, and d
dt u(t, �(t)) ⌘ 0 6= 1: the Broad source is the

Borel function g(t, x)
.
= 1{x 6=0} and not the continuous function identically 1.

In particular, the continuous function identically 1 is not the Lagrangian source
for the Lagrangian parameterization � : R⇥ (�2, 2) ! R given by

�(t, y) =

(
(t� SettTanh(y � 1))3 if t � SettTanh(y � 1) , y 2 (0, 2) ,

0 if t < SettTanh(y � 1) , y 2 (0, 2) ,

and �(t, y) = ��(�t,�y) if �2 < y < 0, while �(t, 0) = 0 for all t. In the
half-plane x > 0, setting y = 1 + tanh t0, s = t� t0, characteristic curves are

s 7!
�
t0 + s, s

3
�

t0 2 R , s > 0 , u(t, �t0(t)) =
3
p

(t� t0)3 = t� t0 .

Proof. (ii))(i). Consider the construction in the proof of [2, Lemma 27]. The
Lagrangian source terms gLk

of the BV approximations uk there defined are not
continuous, but where they do not vanish they satisfy |gLk

� gL|  !(�n), be-
ing ! the modulus of uniform continuity of the Lagrangian source gL and �k =
maxt2[0,1]maxj=1,...,k{|�̄j(t)� �̄j�1(t)|}. In particular, since the measure of the re-
gion where gLk

vanishes ‘because of cuts’ converges to 0 as k " 1, we have that gLk

converges to the Lagrangian source gL of u in L
1 when gL is continuous. Since by [2,

Lemma 22] gLk
satisfies also @t uk + @x f(uk) = gLk

, and uk converges uniformly to
u, then of course the countinuous function gL is an Eulerian source term for u.

(i))(ii). Case 1. The case when the flux is convex follows from passing to the
limit in the first inequality of [2, (3.1b)], and in the analogous opposite one, which is
immediate when the Eulerian source g is continuous: g is both broad and Eulerian.

Case 2: Single inflection point. By the previous case, one can identify source terms
in the complement of u�1(clos(Infl(f))), which is an open subset of R2. Just to
simplify notations, we assume that 0 is the only inflection point of f—just consider
ef(u) = f(u + u)—with f convex on {u > 0} and concave on {u < 0}; one can
reduce to this situation considering bu(t, x) = u(t,�x) and bf(u) = �f(u).

Notice that u is nondecreasing along characteristics lying in {g > 0}, strictly in-
creasing in {g > 0} \ u

�1(0). It has the opposite monotonicity in {g < 0}. In
particular, if H

1
�
i�(R) \ u

�1(0) \ {g 6= 0}
�
> 0 then the image of the characteris-

tic � contains in {g > 0} a single nontrivial segment with slope f 0(0); such segments
can be parametrized by rq(t) = f

0(0)t+q with q 2 Q, t 2 (aq, bq): considering (8.3),
by Fubini-Tonelli theorem necessarily L1(Q) = 0 so that Q has empty interior.

Consider a time t 2 [aq, bq], with q 2 Q. We claim that u must change sign in
any neighborhood of P = (t, rq(t)). Suppose, for example u is nonnegative in a
neighborhood of P : then, in such neighborhood, u is a solution of the same balance
law with the convex flux ef(u) = f(|u|). Nevertheless, in Case 1 for a convex flux we
proved that the continuous Eulerian source g 6= 0 must be the derivative of u along
all characteristics: this contradicts u vanishing on the segment parametrized by rq.
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When g(P ) 6= 0, one can assume that g does not vanish in a neighborhood of P ,
for example fix g � ` > 0 in a square S centered in P with side 4⇢ > 0.

Since u must change sign in any neighborhood of P , consider sequences (t+
k
, x

+
k
),

(t�
k
, x

�
k
) converging to (t, rq(t)) with u(t+

k
, x

+
k
) > 0 and u(t�

k
, x

�
k
) < 0. Since

d
dt u � i� = g � ` > 0 for all characteristics � lying in S \ u

�1(0), then for every
characteristic �

+
k

through (t+
k
, x

+
k
) and �

�
k

through (t�
k
, x

�
k
) we have

u � i
�
+
k
(t+

k
+ ⇢) � u � i

�
+
k
(t+

k
) + `⇢ , u � i

�
�
k
(t�

k
) � u � i

�
�
k
(t�

k
� ⇢) + `⇢ (8.1)

provided that (t+
k
, x

+
k
), (t�

k
, x

�
k
) are su�ciently close to P .

By Ascoli-Arzlea, and by continuity of u and f
0(u), the sequences {�+

k
}k2N and

{��
k
}k2N admit subsequences converging to limit characteristics �+, �� through P

locally uniformly. We can exhibit the following characteristic through P :

�(t) =

(
�
+(t) t � t ,

�
�(t) t  t ,

so that i�(I) \ u
�1(0) \ {g > 0} = {P}

where I is the connected component of i�1
�

({g 6= 0}) which contains t. Since we are
considering f convex in {u > 0} and concave in {u < 0} then � lies on the right
of the line parametrized by rq for t > t, and on the left for t < t. Because of this
analysis, define more in general through every point P the characteristic

�(t) =

(
max{�(t) : � characteristic with �(t) = x} if t � t

min{�(t) : � characteristic with �(t) = x} if t  t
(8.2)

for t 2 R. It is as required in item (ii), as i�(R) \ u
�1(0) \ {g 6= 0} is discrete.

When f is convex in {u < 0} and concave in {u > 0} the expression of ‘good’
characteristics is similar but maximum and minimum in (8.2) are exchanged.

Case 3. Suppose Infl(f) is discrete. Lemma 3.2 proves that the Eulerian source
g vanishes at L2-Lebesgue points of u�1(clos(Infl(f))), so that

L2
�
u
�1(clos(Infl(f))) \ {g 6= 0}

�
= 0 . (8.3)

Lemma 3.2 also proves that the Lagrangian source term vanishes at H
1-Lebesgue

points of (u � i�)�1(clos(Infl(f))), for every characteristic curve i� . In particular,
denoting by g the Eulerian source, also by Case 1, the Broad and the Eulerian source
terms are the same H

1-a.e. on characteristic curves i� : I ! R2 such that

H
1
�
i�(I) \ u

�1(clos(Infl(f))) \ {g 6= 0}
�
= 0 . (8.4)

We now prove that such characteristic curves are dense in the plane, thus (ii) holds.
Since we are assuming that Infl(f) is discrete, up to a rescaling fix e. g. that

• f is concave in (2i� 1/2, 2i+ 1/2), mi = i+ 1/2 are inflection points, and
• f is convex in (2i+ 1/2, 2i+ 3/2), for i 2 Z.

We construct the desired characteristic through any point (t̄, x̄) by approximation.
For h, n 2 N consider times t+

n,h
= t+(h� 1)/n and t

�
n,h

= t� (h� 1)/n. Define

�n(t) = �n(t
+
n,0) = �n(t

�
n,0) = x. Once defined x

+
n

.
= �n(t

+
n,h

) and x
�
n

.
= �n(t

�
n,h

),
set
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• in (t+
n,h

, t
+
n,h+1], for h 2 N: denoting u

+
n,h

.
= u(t+

n,h
, x

+
n,h

)

�n(t) =

(
max{�(t) : � characteristic with �n(t

+
n,h

) = x
+
n,h

} if [[u+
n,h

]] even,

min{�(t) : � characteristic with �n(t
+
n,h

) = x
+
n,h

} if [[u+
n,h

]] odd.

We denoted by [[·]] the integer part of a number.
• in [t�

n,h+1, t
�
n,h

), for h 2 N: denoting u
�
n,h

.
= u(t�

n,h
, x

�
n,h

)

�n(t) =

(
min{�(t) : � characteristic with �n(t

�
n,h

) = x
�
n,h

} if [[u�
n,h

]] even,

max{�(t) : � characteristic with �n(t
�
n,h

) = x
�
n,h

} if [[u�
n,h

]] odd.

By compactness, one can extract a limit characteristic curve � satisfying �(t) = x.
Recall that connected components of R \N contain a single inflection point of f .

When i�n([tn,h, tn,h+`]) lies within some u�1(R\N)\{g 6= 0} then i�([tn,h, tn,h+`])\
u
�1(inf(f)) \ {g 6= 0} is at most a point by the analysis of Case 2. Let R >

0. When 2/n · kf 0(u)kL1([�R,R]2) is less than the distance in the square [�R,R]2

among the closed sets u
�1(N), u�1(inf(f)), then �n has discrete intersection with

u
�1(inf(f)) \ {g 6= 0}: for n large enough, depending on R > 0, then

u(t, �n(t))� u(s, �n(s)) =

Z
t

s

g(⌧, �n(⌧) d⌧ 8s, t 2 [�R,R].

By the local uniform convergence of �nj , we conclude that � is as wanted in (ii).
⇤

We stress that Counterexample 6.2 shows that if the flux has inflection points of
positive measure the correspondence from Eulerian to Lagrangian sources, even when
both well defined, is not perfect regardless of the continuity of the source: di↵erently
from the case of negligible inflection points, there is no Borel function which works for
two given di↵erent Lagrangian parameterizations, even when we are considering the
case of continuous Eulerian source terms. It is not clear if the weaker conditions (ii)-
(iii) still hold even for fluxes with non-negligible inflection points, when the Eulerian
source is continuous.

We also collect here properties of the solution, depending on the assumptions:

`-convexity Negligible inflections General case
absolutely continuous La-
grangian parameterization

7 (§ 4) 7 7

u Hölder continuous 3 ([7, Th. 1.2]) 7 (§ 5) 7
u L2-a.e. di↵erentiable
along characteristic curves

3([7, Th. 1.2]) 7 (§ 5) 7

u Lipschitz continuous
along characteristic curves

3 3 [2, Th. 30] 7 (§ 6)

entropy equality 3 3 3([2, Lemma 42])
compatibility of sources 3 3 ([7, Th.3.1]) 3 (§ 3)
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The picture of `-convex fluxes is similar to the one of `-nonlinear fluxes [8], where
one assumes that the flux f has at each point a non-vanishing derivative of order
between 2 and `. This is the case of analytic fluxes.
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