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Abstract. We consider the classical model of capillarity coupled with a rate-
independent dissipation mechanism due to frictional forces acting on the contact
line, and prove the existence of solutions with prescribed initial configuration for
the corresponding quasistatic evolution. We also discuss in detail some explicit
solutions to show that the model does account for contact angle hysteresis, and
to compare its predictions with experimental observations.
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1. Introduction

More than 200 years ago, the laws of Young and Laplace governing the equi-
librium shape of capillary drops were discovered [23, 37]. Gauss realized that
these two laws arise from the condition that the capillary energy be stationary
with respect to shape perturbations [21]. Since then, the topic has never lost
appeal in the mathematics community (see, for example, [19] and the reference
therein).

In recent years, renewed interest has been spurred by the physics literature on
wetting phenomena (see [14, 15, 8]) and in particular by the research on super-
hydrophobicity of rough hydrophobic surfaces. Understanding the impact of
roughness on the shape of energy minimizing drops and on their adhesion prop-
erties has been the subject of a number of investigations, both in the physics
literature (see [31, 32] and the many references cited therein), and in the math-
ematical literature (see [3, 17]).

The fact that liquid drops may adhere to solid substrates is a readily avail-
able observation: raindrops may stick to a vertical window pane. Interestingly,
this phenomenon rests entirely on the fact that water drops may violate Young’s
law. If an interval of equilibrium contact angles is possible, rather than only
one (as stipulated by Young’s law), then an imbalance of the frictional forces
at the contact line becomes available to equilibrate the gravitational force. The
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phenomenon that liquid drops on solid surfaces can exhibit more than one equi-
librium contact angle is called contact angle hysteresis.

Accounting for contact angle hysteresis requires an amendment to classical
capillarity theory. Here, we follow the phenomenological approach in [17], based
on the introduction of a dissipation potential which states that the energy dissi-
pated by a (slowly) moving contact line is proportional to the change in wetted
area. This extends to the wetting problem the energy-based approach proposed
by A. Mielke and coauthors for studing quasistatic, rate-independent, dissipative
evolution processes (see [27, 28], and references therein). Similar ideas have been
used in a variety of physical contexts ranging, for example, from the mathemat-
ical study of crack growth (see [20, 13]) and plastic flow (see [10, 12]), to the
development of computational schemes for wetting problems (see [16, 36]).

In this paper we focus on a model problem, namely the quasistatic evolution of
a water drop resting on a solid surface and driven by a prescribed, time-varying
volume. A slowly evaporating drop provides a concrete example.1

Our achievements are twofold. First we prove a rigorous existence result (The-
orem 3.9) and deduce some necessary and sufficient conditions that solutions must
satisfy (Proposition 5.13). Second, we use these sufficient conditions to exhibit
solutions in some concrete examples that can be easily compared with experi-
mental evidence (Section 6). In this way, we can assess strengths and weaknesses
of using the quasistatic evolution scheme to model contact angle hysteresis.

One of our conclusions is that while equilibrium configurations involving no
motion of the contact line are reliably identified, our scheme may sometimes lead
to unphysical contact line motion, with jumps occurring “earlier” than what
should be expected based on physical intuition.

From the point of view of mathematical analysis, we have added a time-
dependent constraint to the abstract approach of Mielke, yielding an additional
term in the energy-dissipation balance; moreover we have treated a problem
which is somewhat degenerate, in that the movement of the free surface of the
drop (the liquid-vapour interface) carries no dissipation. As a consequence, our
solutions do not have bounded variation with respect to time, and are not di-
rectly obtained as pointwise limits of time-discretized solutions (at least not
in the usual way). Finally we were also able to show that under suitable as-
sumptions on the physical parameters of the model and on the geometry of the
container, the evolving drops can be represented as subgraphs of BV functions
(Proposition 3.12).

The paper is organized as follows. Section 2 contains notation, background
material on classical capillarity theory and on contact angle hysteresis, and a

1 In this case the volume v of the drop is not a prescribed function of time t but is determined
by some evaporation law expressing ∂v/∂t in terms of other quantities (typically the area of
the free surface). However, in rate-independent dissipation processes time is just an order
parameter, and could be replaced by any other parameter τ which is increasing in time; in this
case we would take τ equal to minus the volume itself, find the desired solution as a function
of τ , and then recover the physical time t as a function of τ using the fact that ∂t/∂τ is now
explicitly known via the evaporation law.
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Figure 1. A drop E in the container Ω.

heuristic presentation of our model. In this section we make no attempt to
provide precise mathematical statements and results, while all the material in the
subsequent sections is intended to be mathematically rigorous. In Section 3 we
state the main existence result (Theorem 3.9), which we then prove in Section 4.
The technical lemmas needed for this goal are proved in Section 5. Finally,
in Section 6 we present some concrete examples, some of which represent case
studies of particular physical interest.

Acknowledgements. This research has been partially supported by the italian
Ministry of Education, University and Research (MIUR) through the 2008 PRIN
grants “Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e
applicazioni” and “Problemi variazionali con scale multiple”. The final version
of this paper owes much to the accurate and thoughtful remarks of Minh Nguyet
Mach and an anonymous referee.

2. Quasistatic evolution of capillary drops

In this section we describe the quasistatic evolution of a capillary drop subject
to time-dependent volume forces, a time-dependent volume constraint, and fric-
tional forces acting on the contact line. After a short description of the setting of
this problem, we define the quasistatic evolution in terms of the capillary energy
and of the dissipation potential (§2.8), and then derive the corresponding flow
rules (§2.10 and §2.11).

This section is mostly informal and heuristic. In particular, we will assume
throughout that the objects we consider (sets, surfaces, and curves) are always as
regular as necessary in order to define the quantities we use (curvature, velocity,
and so on) and carry out the computations we need.

Let us begin with notation. Given a set A, we write |A| for the measure of A,
whether volume, area or length being usually clear from the context. Similarly,
we write

∫
A f to denote the integral of the function f over the set A with respect

to the appropriate measure.
For the rest of this section we fix a regular domain Ω in R

3 (the container)
and denote by ηΩ the inner (unit) normal to the boundary of Ω.

2.1. Drops. Given a set E contained in Ω (a drop) we consider the following
objects (see Fig. 1):
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Figure 2. A moving drop at times t and t + h.

Σf : liquid-vapour interface, or free surface;

ηf : outer (unit) normal of the surface Σf ;

Hf : mean curvature of the surface Σf (average of the principal curvatures);

Σc : liquid-solid interface, or contact surface;

γ : contact line, that is, the common boundary of Σc and Σf ;

ηc : outer (unit) normal of the curve γ (tangent to the surface ∂Ω);

θ : contact angle, that is, the angle between ηf and ηΩ, defined for every
point of the contact line γ or, equivalently, the angle between the tangent
planes to Σf and ∂Ω.

Assume now that the drop E is moving in time;2 we then define the following
velocities (see Fig. 2):

vf : outer normal velocity of the free surface Σf ;

vc : outer normal velocity of the contact line γ.

Thus vc is a scalar function defined for every x ∈ γ(t) and every t ∈ [0, T ] such
that, for h sufficiently small, the curve γ(t + h) can be represented as

γ(t + h) =
{
x + (vch + o(h)) ηc : x ∈ γ(t)

}
.3 (2.1)

A slightly more complicated formula allows us to represent Σf (t + h) in terms of
Σf (t) and vf .

Note that for every point of the contact line, vf is the component of the vector
vcηc in the direction ηf (see Fig. 2), that is

vf = vc ηc · ηf = vc sin θ . (2.2)

2.2. Capillary energy. The capillary energy associated with a drop E is given
by

E := σLV|Σf | + σLS|Σc| + σSV|∂Ω \ Σc| + V . (2.3)

2 More precisely, E is a map that assigns to every t ∈ [0, T ] a set E(t), representing the
position of the drop at time t; when needed, we write Σf (t) for the free surface at time t, γ(t)
for the contact line at time t, and so on.

3 In this formula vc and ηc are computed at t, x.
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Here V stands for an additional, possibly time-dependent, volume energy of the
form

V :=

∫

E
ρ(t, x) dx , (2.4)

where ρ is an assigned function on [0, T ] × Ω. A typical example for the volume
energy density is given by ρ = −g ·x, where the vector g is the gravitational force
per unit volume acting on the drop. The vector g depends on t if we consider,
for example, a container Ω tilted by an angle which varies in time, and use a
reference frame moving with the container.

As usual, the surface tensions σLV, σLS, σSV which appear in (2.3) are positive
parameters which satisfy the wetting condition

|σLS − σSV| ≤ σLV . (2.5)

The Young angle θY is the angle in [0, π] defined by

cos θY :=
σSV − σLS

σLV
. (2.6)

Using (2.6) we can write the capillary energy E , up to addition of a constant,
in a more convenient form:

E := σLV

(
|Σf | − cos θY |Σc|

)
+ V . (2.7)

In the following we write E (E) or E (t, E) if we need to emphasize the depen-
dence of the capillary energy E on the drop E and on the time t. Similarly, we
write V (E) or V (t, E) for the volume energy V .

2.3. Equilibrium conditions. We usually consider drops of prescribed volume,
which is possibly a function of time w(t). When the drop E is at equilibrium with
respect to the capillary energy E —for example, when it is a (local) minimizer
of E under the prescribed-volume constraint—then the contact angle θ agrees
with the Young angle θY at every point of the contact line (Young’s law) and the
mean curvature Hf verifies

− 2σLVHf + ρ = constant = p (2.8)

at every point of the free surface Σf (Laplace’s law). The constant p in (2.8) is
the Lagrange multiplier associated with the volume constraint, and agrees with
the difference between the internal and the external pressure on the surface of the
drop (in short, the pressure). If there is no volume contribution in the capillary
energy E then the free surface Σf has constant mean curvature.

2.4. Derivation of the equilibrium conditions. We briefly sketch here the
derivation of the equilibrium conditions given in the previous paragraph; the
same calculations will be used later. Given a drop E, consider an arbitrary
variation of E, that is, a map h 7→ E(h) such that E(0) = E (and reasonably
regular). Interpreting h as a time parameter, we denote by vf and vc the outer
normal velocities of the free surface and of the contact line at time h = 0. The
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corresponding first variations of the volume, of the area of the contact surface,
and so on, are given by the following well-known formulas:

d

dh
|E(h)|

∣∣∣∣
h=0

=

∫

Σf

vf , (2.9)

d

dh
|Σc(h)|

∣∣∣∣
h=0

=

∫

γ
vc , (2.10)

d

dh
|Σf (h)|

∣∣∣∣
h=0

=

∫

Σf

−2Hfvf +

∫

γ
cos θ vc , ) (2.11)

d

dh
V (E(h))

∣∣∣∣
h=0

=

∫

Σf

ρvf . (2.12)

We then compute the first variation of the capillary energy E in (2.7):

d

dh
E (E(h))

∣∣∣∣
h=0

=

∫

Σf

(−2σLVHf + ρ)vf +

∫

γ
σLV(cos θ − cos θY )vc . (2.13)

If E is a (local) minimizer of E at prescribed volume, then it must satisfy

d

dh
E (E(h))

∣∣∣∣
h=0

= 0 (2.14)

for all variations E(h) which are volume-preserving, that is, satisfy |E(h)| = |E|
for every h. Formula (2.9) implies that for such variations the integral of vf over
Σf vanishes.

The key remark now is that as E(h) ranges among all admissible volume-
preserving variations, the velocity-field vf can be any (reasonably smooth) func-
tion on Σf with vanishing integral.

If the velocity-field vf vanishes on the contact line γ, then vc vanishes too, and
replacing the left-hand side of (2.14) by the right-hand side of (2.13) we obtain

∫

Σf

(−2σLVHf + ρ)vf = 0 ;

knowing that this equality holds for every function vf vanishing at the boundary
of Σf and with vanishing integral is sufficient to infer that −2σLVHf + ρ must
be constant on Σf , which is Laplace’s law (2.8).

Consider now a velocity-field vf that does not vanish on the contact line γ:
replacing once again the left-hand side of (2.14) by the right-hand side of (2.13)
and taking into account (2.8) we obtain

∫

γ
(cos θ − cos θY )vc = 0 ,

and since this holds for every (sufficiently smooth) function vc on γ, we infer
that cos θ = cos θY at every point of γ, which implies Young’s law.

2.5. A variational formula for the pressure. Let E be a drop which mini-
mizes the capillary energy E (E), or, equivalently,

E
′(E) := σLV|Σf | + V (E) , (2.15)
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among all drops with the same volume and the same contact surface.
Then the argument in the previous paragraph shows that Laplace’s law (2.8)

is still satisfied (even though Young’s law might not hold). In particular, we can
still define the pressure p as the constant value of −2σLVHf + ρ.

Consider now an arbitrary variation E(h) of E such that the velocity-field
vc = 0 vanishes everywhere on γ. Then the second integral at the right-hand side
of (2.13) vanishes, and recalling (2.9) we obtain the following formula involving
the pressure:4

d

dh
E (E(h))

∣∣∣∣
h=0

= p · d

dh
|E(h)|

∣∣∣∣
h=0

. (2.16)

2.6. Dissipation potential and frictional forces. Given two drops E, Ẽ, we
consider the following dissipation potential (or dissipation distance):

D(E, Ẽ) := µ|Σc△Σ̃c| , (2.17)

where µ is a positive friction coefficient and Σc△Σ̃c := (Σc \ Σ̃c) ∪ (Σ̃c \ Σc) is

the symmetric difference of Σc and Σ̃c.
Consider now a drop E which is moving, and write E0, γ0 and vc

0 for the posi-
tion of the drop, the contact line and its velocity at time 0: a simple computation
shows that the dissipation rate R associated with D can be written in terms of
γ0 and vc

0, and precisely5

R(E0, v
c
0) := lim

h→0+

D(E(0), E(h))

h
= µ

∫

γ0

|vc
0| . (2.18)

This can be rephrased by saying that a small arc of the contact line which is
moving with non-zero normal velocity vc

0 is subject to a frictional force per unit
length equal to −µηc

0 if vc > 0 and µηc
0 if vc < 0.

2.7. Advancing and receding contact angles. The advancing and receding
contact angles θadv and θrec are the angles in the interval [0, π] defined by the
following relations:

cos θadv = cos θY − µ

σLV
=

σSV − σLS − µ

σLV
,

cos θrec = cos θY +
µ

σLV
=

σSV − σLS + µ

σLV
.

(2.19)

To ensure that these definitions make sense, we assume the following stronger
version of the wetting condition (2.5):

− σLV < σSV − σLS − µ < σSV − σLS + µ < σLV . (2.20)

4 We are simply re-affirming that the pressure p is the Lagrange multiplier associated to the
minimization of E with prescribed volume (and prescribed contact surface).

5 To obtain the second identity in (2.18), note that D(E(0), E(h)) = µ(|Σ+(h)| + |Σ−(h)|)
where Σ+(h) := Σc(h) \ Σc(0) and Σ−(h) := Σc(0) \ Σc(h); then an obvious variant of formula
(2.10) yields that the right derivatives of |Σ+(h)| and |Σ−(h)| at h = 0 are given by integral
over γ0 of (vc

0)
+ and (vc

0)
−, respectively (for every real number a, we denote by a+ and a− its

positive and negative part).
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Remark. (i) In our setting, the dissipation rate depends only on the modulus
of vc

0, and therefore disregards whether the contact line is advancing or receding.
By setting

D(E, Ẽ) := µadv|Σ̃c \ Σc| + µrec|Σc \ Σ̃c| ,

we could consider an asymmetric dissipation rate of the form

R(E0, v
c
0) =

∫

γ0

φ(vc
0) with φ(v) :=

{
µadv|v| for v ≥ 0

µrec|v| for v < 0.

We also remark that, while (2.18) seems physically plausible, (2.17) is not entirely

justifiable when Σc and Σ̃c are not infinitesimally close. Indeed, in those cases
where sudden jumps of the contact line occur, neglecting the contribution of
viscous dissipative terms may be unphysical.

(ii) We emphasize that, within our approach, the existence of contact an-
gle hysteresis at the macroscopic scale is postulated. In fact, it has long been
known in the Physics literature, and proved rigorously in [7], that the existence
of an interval of stable macroscopic contact angles can be deduced from a micro-
scopic theory without hysteresis (so that the microscopic contact angle obeys the
Young law), thanks to microscopic oscillations, either in the topography or in the
chemical composition of the surface. In other words, the homogenization of the
Young-Laplace law leads to an interval of stable contact angles, thus explaining
the phenomenon of contact angle hysteresis.

(iii) When condition (2.20) is violated, it seems plausible that the system
behaves as if the dissipation potential D given by (2.17) has been replaced by
the one in point (i) above, with µadv and µrec chosen so that

σSV − σLS − µadv := max{−σLV; σSV − σLS − µ} ,

σSV − σLS + µrec := min{σLV;σSV − σLS + µ} .

2.8. Stability and solutions. We say that a drop E′ is (globally) stable at time
t if it minimizes E (t, E) + D(E,E′) among all E with the same volume as E′.

Let w be a strictly positive function defined on the interval [0, T ]. We say
that a map t 7→ E(t) defined for t ∈ [0, T ] is a solution (of the quasistatic
evolution problem) satisfying the volume constraint |E(t)| = w(t) if the following
conditions are satisfied:

Global stability : E(t) has volume w(t) and is stable at time t for every t ∈ [0, T ].

Energy-dissipation balance: for every t0, t1 with 0 ≤ t0 < t1 ≤ T there holds

E (t1, E(t1)) − E (t0, E(t0)) =

∫ t1

t0

[ ∫

E(t)

∂ρ

∂t
dx

]
dt

+

∫ t1

t0

pẇ dt −
∫ t1

t0

R(E(t), vc) dt , (2.21)
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where ρ is the energy density that appears in (2.4), p is the pressure associated
to the drop E at time t (see §2.5),6 and R the dissipation rate (see §2.6). The
quantities ∂ρ/∂t, ẇ, p, and vc at the right-hand side of (2.21) are all computed
at time t.

2.9. Remark. (i) The definition of solution given above coincides with the one
of energetic solution of a rate-independent process proposed by Mielke and coau-
thors, see for instance [27, 28].

(ii) Equation (2.21) represents an energy-dissipation balance because the sum
of the first two integrals can be identified as the work done by the external
forces in the time interval [t0, t1], while the third integral represents the energy
dissipated by friction. More precisely, since the derivative ẇ of the volume of the
drop agrees with the integral of the normal velocity vf on the free surface Σf ,
the second integral in (2.21) represents the work done by the pressure p on Σf ,
that is, the amount of energy (from external sources) which is needed to keep
the volume constraint |E(t)| = w(t) at every t in [t0, t1].

(iii) In an evolution governed by (2.21), the contact line moves at a speed
vc such that the dissipation rate R(E, vc) exactly balances the energy release
rate (namely, the negative of the sum of rate of change of capillary energy and
power of the external forces). As will be clearer from the examples of Section 6,
this condition may be violated when locally (but not globally) stable states are
allowed in an evolution, and jumps may involve additional dissipation terms not
included in R. The additional dissipation terms are associated with dynamic
processes occurring at time scales much faster than the (slow, quasistatic) time
scale of the function t 7→ w(t) driving the evolution. Only at these slow time
scales R describes dissipation correctly.

2.10. Flow rules. Consider a solution t 7→ E(t) as defined in §2.8. Then for
every time t the free surface Σf satisfies Laplace’s law (2.8) and the contact angle
θ verifies the following conditions (with θrec and θadv defined in §2.7):

(i) θ = θadv at every point of γ where vc > 0;

(ii) θ = θrec at every point of γ where vc < 0;

(iii) θrec ≤ θ ≤ θadv at every point of γ where vc = 0.

In other words, the contact angle is always between the angles θrec and θadv,
and must agree with the former one on the part of the contact line which is
receding (moving inward), and with the latter one on the part which is advancing
(moving outward).

2.11. Derivation of flow rules. Let t be fixed. We first prove that the global
stability condition implies the following bounds for the contact angle, which yield
statement (iii) in §2.10:

θrec ≤ θ ≤ θadv at every point of γ(t). (2.22)

6 By the global stability condition, E(t) minimizes E
′(t, E) := σLV|Σ

f | + V (t, E) among all
sets E with the same volume and the same contact surface, and therefore the pressure p(t) is
well-defined.
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The derivation of these bounds takes the next three steps; statements (i) and (ii)
are proved in the fourth and last step.

Step 1. A straightforward computation yields

E (t, E) + D(E,E(t)) = E
′′(E) + C , (2.23)

where C depend on E(t) but not on E,7 and

E
′′(E) := σLV

[
|Σf | − cos θadv|Σc \ Σc(t)| + cos θrec|Σc(t) \ Σc|

]
+ V (E) .

Step 2. Let Ẽ(h) be an arbitrary variation of E(t), and denote by ṽf and ṽc

the normal velocities at h = 0 of the free surface Σ̃f (h) and of the contact line
γ̃(h).

We compute the first variation of E ′′ as in §2.4: using (2.11), (2.12), the fact

that the right derivatives of
∣∣Σ̃c(h) \Σc(t)

∣∣ and
∣∣Σc(t) \ Σ̃c(h)

∣∣ at h = 0 are given
by the integrals over γ(t) of (ṽc)+ and (ṽc)−, respectively (see footnote 2.6), and
that −2σLVHf + ρ is equal to p(t) on Σf (t) (see §2.8), we obtain

d

dh+
E

′′
(
Ẽ(h)

)∣∣∣∣
h=0

= p(t)

∫

Σf (t)
ṽf

+ σLV

∫

γ(t)
(cos θrec − cos θ)(ṽc)−

+ σLV

∫

γ(t)
(cos θ − cos θadv)(ṽ

c)+ . (2.24)

Step 3. The global stability condition and identity (2.23) imply

d

dh+
E

′′
(
Ẽ(h)

)∣∣∣∣
h=0

≥ 0 (2.25)

for every volume-preserving variation Ẽ(h). Recall that for such a variation the
integral of the velocity-field ṽf over Σf (t) is null and therefore the first integral
at the right-hand side of (2.24) vanishes, while the velocity-field ṽc can be any
reasonably smooth function on γ(t).

Consider now volume-preserving variations Ẽ(h) such that ṽc is positive: by
replacing the left-hand side of (2.25) by the right-hand side of (2.24) we obtain

∫

γ(t)
(cos θ − cos θadv)ṽ

c ≥ 0 ;

since ṽc can be any positive function, we infer that cos θ − cos θadv ≥ 0 at ev-
ery point of γ(t), which implies the second inequality in (2.22). By considering
volume-preserving variations such that ṽc is negative we derive the other inequal-
ity.

7 If E is taken as in (2.7), then C := −σLV cos θY |Σc(t)|.
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Step 4. If we differentiate the energy-dissipation balance (2.21) with respect
to the variable t1 and replace t1 by t, we obtain

d

dt
E (t, E(t)) =

∫

E(t)

∂ρ

∂t
dx + p(t) ẇ(t) − R(E(t), vc) . (2.26)

On the other hand, a direct computation of the derivative of E (t, E(t)), similar
to the one used to get (2.24), yields

d

dt
E (t, E(t)) =

∫

E(t)

∂ρ

∂t
+ p(t)

∫

Σf (t)
vf

+ σLV

∫

γ(t)
(cos θ − cos θY )vc . (2.27)

Hence the difference between the right-hand sides of (2.26) and (2.27) must
vanish, and using (2.9), (2.18), and (2.19) we get

0 =

∫

γ(t)
(cos θ − cos θY )vc +

µ

σLV
|vc|

=

∫

γ(t)
(cos θ − cos θadv)(v

c)+︸ ︷︷ ︸
f+

+ (cos θrec − cos θ)(vc)−︸ ︷︷ ︸
f−

. (2.28)

Finally, (2.22) implies that the functions f+ and f− are both non-negative, and
therefore the integral in the second line of (2.28) vanishes only if f+ = f− = 0
at every point of γ(t), that is, only if statements (i) and (ii) in §2.10 hold. �

2.12. About the existence of solutions. A fundamental issue regarding the
solution defined in §2.8 is clearly its existence for a given initial configuration E0.
We briefly discuss here some aspects of this problem; a rigorous existence result
will be given in the next section (Theorem 3.9).

(i) Existence cannot be expected to hold in general for obvious physical rea-
sons. Consider, for instance, a drop subject to gravity on a plane which is
horizontal at time 0 and gets more and more inclined as time passes; when the
frictional force is no longer sufficient to balance the gravitational force, then the
drop slides down. In the limit regime where inertia becomes negligible—the one
of quasistatic evolution—the drop disappears instantly at infinity. Thus every
existence result must contain assumptions which prevent this phenomenon.

(ii) We have encoded in our definition of solution the requirement that the
drop is stable at the initial time. This requirement can be dropped, allowing for
unstable initial states. In this case, however, the solution will jump at time zero
to a stable state.

(iii) In Theorem 3.9 we prove the existence of solutions for a large class of
initial states. However, these solutions are not as regular as required in §2.8, and
satisfy the global stability condition and the energy-dissipation balance only in
a suitable weak sense. While the regularity in space of these “weak” solutions
can certainly be improved, the regularity in time cannot be expected to be much
better than BV .
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(iv) Due to a lack of convexity of the problem, the solution cannot be expected
to be uniquely determined by the initial state. Cases of non-uniqueness and
symmetry breaking are presented in Examples 6.4, 6.6, and 6.8.

(v) Even though the notion of quasistatic evolution we use is quite well-
established (see [28, 29], and references therein) and it is of considerable math-
ematical interests to prove rigorous results in this context, it is not completely
satisfactory in our setting. In particular, it is reasonable to think that the sta-
bility condition should be modified by requiring that E(t) is a local minimizer
of E (E) + D(E,E(t)) rather than an absolute minimizer. This might affect the
way the solution jumps, making it more “realistic”: jumps will not occur as soon
as a more favorable competitor becomes available, but only when the current
state ceases to be a local minimizer. Also, the form of the energy-dissipation
balance (2.21) is affected: at a jump time it becomes an inequality because extra
energy is lost in a transition from a less stable to a more stable configuration (see
Example 6.6 and Remark 6.7(ii)). This “gap” is filled by additional dissipation
mechanisms associated with fast time scales, as suggested in Remark 2.9(iii).

This idea is also at the basis of recent proposals that consider alternative no-
tions of solutions, based on vanishing viscosity approximation schemes, in which
the extra dissipation at the jump time is the one due to viscous forces (see, for
example, [11, 29, 30]).

3. Rigorous existence results

In Theorem 3.9 we state a rigorous existence result for solutions with pre-
scribed volume and prescribed initial configuration. To this end, however, we
replace the “strong” notion of solution given in §2.8 with a “weak” one described
in §3.7.

The need for a weak formulation is partly due to the intrinsic lack of smooth-
ness of solutions and partly due to the approach we use to prove Theorem 3.9:
we first construct time-discretized solutions by iterated minimizations (§4.1), and
then take the limit as the discretization parameter tends to 0 (Theorem 4.3). In
order to perform both operations we must enlarge the class of admissible drops
E to include all finite perimeter sets (see §3.2) and consider maps E(t) with
almost no regularity in t. Consequently the geometric and mechanical quantities
involved in the definition of the capillary energy E , the dissipation D , and the
energy-dissipation balance must be carefully re-defined for this class of objects.
This will be done in §3.6 and §3.7.

Let us begin by clarifying some notation used in this and the following sections.
We denote points in R

3 as x = (x1, x2, x3). Sets and functions are always assumed
to be at least Borel measurable. When it is not clear from the context, we
explicitly denote the d-dimensional volume of a set A by H d(A) instead of |A|
(more precisely, H d(A) is the d-dimensional Hausdorff measure of A).
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Figure 3. Container with completely hydrophobic walls.

3.1. Assumptions on the container and the energy. The container Ω is an
open set in R

3 of the form

Ω :=
{
x ∈ U × (0,+∞) : x3 > g(x1, x2)

}
(3.1)

where U is a bounded open set in R
2 with Lipschitz boundary and g : U →

[0,+∞) is function of class C1 with bounded gradient; we denote by Lip(g) the
Lipschitz constant of g.

The “bottom” of the container is the part of ∂Ω corresponding to the graph
of g, and is denoted by S. The “wall” is the part of ∂Ω contained in ∂U ×R (see
Fig. 3).

Unlike the previous section, we assume that the wall of the container is made
of a material different from the bottom and completely hydrophobic. To realize
this assumption, we modify the definitions of the contact and the free surface of
a drop E as follows:

Σc := ∂E ∩ S and Σf := ∂E \ S . (3.2)

In other words, the contact surface is now the interface between the drop and the
bottom of the container (but not the wall). The capillary energy E = E (t, E) is
then defined by formula (2.7).

We assume furthermore that the energy density ρ associated to the volume
energy V (see formula (2.4)) is a positive function of class C1 on [0, T ]×Ω with
bounded derivative (in particular ρ is Lipschitz) and linear growth at infinity,
that is, there exists a positive constant c0 such that

ρ(t, x) ≥ c0x3 . (3.3)

Remark. The only purpose of the specific assumptions on Ω and ρ made above
is to simplify some of the statements and proofs contained in this and the next
sections. In particular, the growth assumption on ρ has been added to prevent
the drop from disappearing at infinity during the evolution, and is used only in
the proof of Proposition 5.4. Clearly, the same result could be obtained under
different or less restrictive assumptions.

3.2. Drops as finite perimeter sets. In this and the next sections, a drop is
a set E with finite perimeter in R

3 which is contained in Ω.
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Accordingly, ∂E denotes the essential boundary of E in R
3 rather than the

topological boundary; this modification should be taken into account in the def-
inition of the free surface Σf and the contact surface Σc (formula (3.2)). Along
the same line, we now define the normal vector-field ηf as the approximate outer
normal to E.

We denote by Y the class of all finite perimeter sets in R
3 contained in Ω, and

by X the class of all Borel sets Σ with finite area contained in S. The class Y

can be immersed in L1(Ω) by mapping every set E into its characteristic function
1E , and similarly the class X can be immersed in L1(S); we then endow Y and
X with the distances induced by these immersions, that is,

dY (E,E′) := |1E − 1E′ |L1(Ω) = |E△E′| ,
dX (Σ,Σ′) := |1Σ − 1Σ′ |L1(S) = |Σ△Σ′| .

It is tacitly assumed in this definition that we identify sets in Y which differ
by subsets of negligible volume; thus we say that two sets in Y agree, or one is
contained in the other, if this is true up to negligible subsets. A similar convention
applies to sets in X .

Finally, we say that a set E ∈ Y is a subgraph if it agrees (up to negligible
subsets) with the subgraph of a function u : U → R such that u ≥ g, that is,

E =
{
x ∈ U × (0,+∞) : g(x1, x2) < x3 < u(x1, x2)

}
.

For more details on the theory of finite perimeter sets see any of the standard
references [22, 4, 18].

Remark. Note that the contact line γ, the contact angle θ, and the mean cur-
vature Hf of the free surface Σf cannot be properly defined for finite perimeter
sets. None of these objects occur in the definition of the capillary energy E , but
they do appear in the definition of solution: the mean curvature Hf is used to
define the pressure p, while the contact line γ is used, together with its normal
velocity vc, to define the dissipation rate R, and pressure and dissipation rate
appear in the energy-dissipation balance.

To get around this problem, in §3.4 we give a formula for the pressure p
which does not involve the mean curvature Hf and makes sense for all (energy-
minimizing) finite perimeter sets, while in §3.6 we give a formula for the energy
dissipated during the evolution which involves neither the contact line γ nor the
normal velocity vc, and indeed does not require any regularity for the solution
E(t).

3.3. A special family of deformations. For every λ ∈ R, let Φλ be the
deformation of R

3 given by

Φλ(x) := (x1, x2, e
λ(x3 − g) + g) , (3.4)

where g = g(x1, x2) is the function that defines the container Ω (see §3.1). Each
Φλ is a bi-Lipschitz diffeomorphism of R

3 which maps the container Ω into itself
and agrees with the identity on the bottom S.



Quasistatic evolution of sessile drops 15

For every set E ∈ Y we write

Eλ := Φλ(E) . (3.5)

Thus Eλ belongs to Y ,8 and we write Σc
λ, Σf

λ, and ηf
λ for the contact surface,

the free surface and the outer normal of Eλ, respectively. Note that Σc
λ = Σc

because Φλ leaves every point of S fixed.
The properties of Φλ and Eλ will be described in detail in Proposition 5.3, we

just anticipate here two formulas that will be used in the next paragraph:

d

dλ
|Eλ|

∣∣∣∣
λ=0

= |E| and
d

dλ
E (Eλ)

∣∣∣∣
λ=0

= P ∗(t, E) , (3.6)

where

P ∗(t, E) :=

∫

Σf

σLV(1 − (η̄ · ηf )ηf
3 ) + ρ(x3 − g)ηf

3 . (3.7)

In this formula, η̄ is the vector-field on Ω given by

η̄(x) := (−∇g(x1, x2), 1) , (3.8)

η̄ · ηf is the scalar product of η̄ and the outer normal ηf to Σf , and ηf
3 is the

third component of ηf .

3.4. Pressure for energy-minimizing sets. Let E be a set in Y which min-
imizes (at a given time t) the capillary energy E —or equivalently the energy E ′

defined in (2.15)—among all sets with the same volume and the same contact
surface. If E is sufficiently smooth, the pressure p is defined via Laplace’s law
(2.8); replacing E(h) by Eλ in formula (2.16) and using (3.6) we get

p =

d
dλE (Eλ)

∣∣∣
λ=0

d
dλ |Eλ|

∣∣∣
λ=0

=
P ∗(t, E)

|E| . (3.9)

Note that the last term in this identity makes sense for every set E ∈ Y , regard-
less of its regularity. In the following we use (3.9) as definition of the pressure p.9

3.5. Maps with bounded variation. Let (X, dX) be a metric space and I an
interval in R. The variation of a map f : I → X is

Var(f ; I) := sup

{
n∑

k=1

dX(f(tk−1), f(tk))

}
(3.10)

8 Eλ is a finite perimeter set in R
3 because Φλ is bi-Lipschitz, and is contained in Ω because

Φλ maps Ω into Ω.
9 The pressure p is a Lagrange multiplier for the minimization of the capillary energy E with

a prescribed-volume constraint, and therefore should be defined only for those sets E ∈ Y which
minimize E (or E

′) among all sets with the same volume and the same contact surface. For
such sets, the regularity theory for almost minimal boundaries yields that Σf is a surface of
class C2 and therefore p can be defined by the usual formula (2.8). We prefer, nevertheless, to
use formula (3.9). Firstly because it turns out to be particularly useful in certain proofs, and
secondly because we make a point that regularity theory is not essential in proving the existence
of solutions in the framework of finite perimeter sets.



16 Giovanni Alberti, Antonio DeSimone

where the supremum is taken over all positive integers n and all increasing finite
sequences t0 ≤ t1 ≤ · · · ≤ tn contained in I. When X is a subset of a normed
space F and f : I → X is a map of class C1, the variation of f is given by the
well-known formula

Var(f ; I) =

∫

I

∣∣∣∣
df

dt

∣∣∣∣
F

dt . (3.11)

As usual, we say that f has bounded variation when Var(f ; I) is finite.

3.6. Alternative definition of dissipation. The energy dissipated by friction
by a moving drop E(t) in the time interval [t0, t1] is given by the integral from t0
to t1 of the dissipation rate R(E(t), vc). In view of (2.18), the latter is µ times
the norm of the derivative of t 7→ 1Σc(t), viewed as a map with values in L1(∂Ω)).
In other words

∫ t1

t0

R(E(t), vc) dt =

∫ t1

t0

µ

∣∣∣∣
d1Σc(t)

dt

∣∣∣∣
L1

dt = µVar(Σc(t); [t0, t1])

where the second equality follows from (3.11) (here and afterwards the variation
of the map t 7→ Σc(t) is computed with respect to the distance dX defined in
§3.2).

While the first term in this formula makes sense only if E(t) is sufficiently
regular, the last term can be defined regardless of the regularity of E(t). This
motivates the following definition: given a map t 7→ E(t) from [t0, t1] to Y we
set

Diss(E(t); [t0, t1]) := µVar(Σ(t); [t0, t1]) . (3.12)

3.7. Stability and solutions, revisited. We say that a set E′ ∈ Y is stable at
time t if it minimizes E (t, E) + D(E,E′) among all sets E ∈ Y with |E| = |E′|.

Let w be a strictly positive function of class C1 defined on the interval [0, T ].
We say that a map t 7→ E(t) defined for t ∈ [0, T ] with values in Y is a solution
satisfying the volume constraint |E(t)| = w(t) if the following conditions are
satisfied:

Global stability : E(t) has volume w(t) and is stable at time t for every t ∈ [0, T ].

Energy-dissipation balance: for every t0, t1 with 0 ≤ t0 < t1 ≤ T there holds

E (t1, E(t1)) − E (t0, E(t0)) =

∫ t1

t0

[ ∫

E(t)

∂ρ

∂t
dx

]
dt

+

∫ t1

t0

pẇ dt − Diss(E(t); [t0, t1]) , (3.13)

where the pressure p(t) in the second integral is defined by (3.9) for each set
E(t).

3.8. Remark. (i) By Proposition 5.4 there exists a constant m (depending on
the setting of the problem and on the function w, but not on t) such that, for
every map t 7→ E(t) which satisfies the global stability condition, the quantities
|Σf (t)|, E (t, E(t)), and p(t) = |P ∗(t, E(t))|/|E(t)| are bounded from above by m
and the sets E(t) are contained in the bounded cylinder U × [0, m]. Therefore
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the two addenda at the left-hand side of equation (3.13) and the two integrals
at the right-hand side are all well-defined and finite. Hence this equation makes
always sense, and when verified it implies that the dissipation Diss(E(t); [0, T ])
is also finite.

(ii) Lemma 4.4 shows that equation (3.13) holds with “=” replaced by “≥” for
any map t 7→ E(t) that satisfies the global stability condition. Then, as pointed
out in the proof of statement (ix) of Theorem 4.3 (end of Section 4), to obtain
the equality it suffices to prove the opposite inequality for t0 := 0 and t1 := T .

(iii) The following semigroup property is (almost!) immediate: if t 7→ E(t) is
a solution on the time intervals [T0, T1] and [T1, T2], then it is also a solution on
[T0, T2].

3.9. Theorem (existence of solutions). Take w as in §3.7, and let E0 ∈ Y

be an initial configuration with volume w(0) which is stable at time 0.
Then there exists a solution E(t) defined on [0, T ] which satisfies the initial

condition E(0) = E0 and the volume constraint |E(t)| = w(t). Moreover the set
E(t) and the quantities E (E(t)), |Σf (t)|, p(t) are uniformly bounded in t, and
the map t 7→ Σc(t) has bounded variation.

3.10. Remark. Let E(t) be a solution.

(i) In general, E(t) is not uniquely determined by the initial configuration E(0)
(see Examples 6.4, 6.6, and 6.8).

(ii) The regularity theory for minimal and almost minimal boundaries shows
that the free boundary Σf (t) is of class C2 for every t (see [35, §1.5 and §1.9], or
[26]).

(iii) The fact that the dissipation is finite means that the map t 7→ Σc(t) has
bounded variation, and since jump discontinuities may occur (Example 6.6), the
regularity of this map cannot be substantially higher. The map t 7→ E(t), on
the other hand, may not even have bounded variation (see Example 6.8 and Re-
mark 6.9(i)); this is due to the fact that in our model the dissipation is associated
only to the movement of the contact surface, and not of the free surface.

3.11. Jump discontinuities. Let t 7→ E(t) be a solution. Since the map t 7→
Σc(t) has bounded variation and takes values in a complete metric space, for
every t0 ∈ [0, T ] there exist the left and right limits of Σc(t) for t → t0, denoted
by Σc(t−0 ) and Σc(t+0 ), and they both agree with Σc(t0) for all t0 except at most
countably many exceptions, called jump discontinuities.

Fix t0 ∈ [0, T ] and consider a limit point E+ of E(t) for t → t+0 and a limit
point E− for t → t−0 .10 Clearly |E±| = |E(t0)| = w(t0), and Proposition 5.8
implies that the sets E± are stable at time t0, and their contact surfaces agree
with Σc(t±0 ) respectively.

10 The map t 7→ E(t) does not have bounded variation and therefore the left and right limit at
t0 may not exist; however, this map takes values in a compact subsets of Y (see Remark 3.8(i)),
and therefore E− and E+ always exist.
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Moreover, passing to the limit in the energy-dissipation balance (3.13), we
obtain

E (t0, E+) + D(E+, E(t0)) = E (t0, E(t0)) ,

E (t0, E(t0)) + D(E−, E(t0)) = E (t0, E−) ,
(3.14)

and using (3.14) and the stability of E(t0) and E− we get11

E+ ∈ argmin
{
E (t0, E) + D(E,E(t0)) : |E| = w(t0)

}
,

E(t0) ∈ argmin
{
E (t0, E) + D(E,E−) : |E| = w(t0)

}
.

(3.15)

Assume now that the sets E± and E(t0) are sufficiently smooth. We have
already shown in §2.11 that in this case stability implies that the contact angle
belongs to the interval [θrec, θadv]. In a similar way we can use (3.15) to derive
the following additional conditions, which should be viewed as extensions of
conditions (i) and (ii) in §2.10 to jump discontinuities:

(i) the contact angle of E(t0) agrees with θrec in the interior of Σc(t−0 ), and
with θadv in the interior of the complement of Σc(t−0 );

(ii) the contact angle of E+ agrees with θrec in the interior of Σc(t0), and
with θadv in the interior of the complement of Σc(t0).

Another (almost straightforward) consequence of (3.14) is the following: if
we modify the map t 7→ E(t) in t0 by replacing E(t0) either by E+ or E−, the
resulting map is still a solution.

3.12. Proposition (subgraph solutions). Take g and ρ as in §3.1, and assume
that ρ(t, x) is increasing12 in the variable x3 and

Lip(g) ≤ cot θadv . (3.16)

Then every solution E(t) is a subgraph for every t ∈ [0, T ].

This proposition is an immediate corollary of a more general result stating
that, under these assumptions on ρ and g, every set E ∈ Y which is stable in
the sense of §3.7 is a subgraph (see Corollary 5.11 and Remark 5.12(ii)).

4. Convergence of discretized solutions
and proof of Theorem 3.9

In this section we follow the notation introduced in the previous one. In order
to make the proof of Theorem 3.9 more transparent, we have postponed many
auxiliary results to the next section.

In the following, the letter δ denotes a positive discretization parameter tend-
ing to 0. By “subsequence of δ” we mean any sequence (δn) which tends to 0.
For simplicity we often omit to relabel subsequences, and write δ instead of δn.

11 Here and in the following, argmin{f(x) : P (x)} denotes the set of all x that minimize
f(x) among those for which proposition P (x) is true.

12 We use the word “increasing” in the weak sense, that is, to mean “non-decreasing”.
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For the rest of this paper we fix the number T and the positive function w
given in the statement of Theorem 3.9, and write vm and vM for the minimum
and the maximum value of w, respectively.

Warning. By “constant” we always mean a positive finite number which depends
only on the setting of the problem—that is, on the choice of the container Ω and
of the parameters in E and D—and on the values vm, vM (and therefore not on
the initial configuration). With few exceptions, all constants will be denoted by
the letter C; in particular the value of C may change at every occurrence, even
within the same line.

4.1. Discretized solution. Let E0 ∈ Y be the initial configuration chosen in
Theorem 3.9. For every δ > 0 we construct the discretized solutions Eδ(t) with
t ∈ [0, T ] as follows: for every integer n such that nδ ≤ T we define Eδ(nδ) ∈ Y

by the recursive formula Eδ(0) := E0 and

Eδ(nδ) ∈ argmin
{

E (nδ, E) + D(Eδ(nδ − δ), E) : E ∈ Y , |E| = w(nδ)
}

;

and for every t ∈ [0, T ] we set

Eδ(t) := Eδ(tδ) where tδ := sup{nδ : nδ ≤ t} .

In the following we write Σf
δ (t) and Σc

δ(t) for the free and the contact surfaces
of Eδ(t) = Eδ(tδ). We write pδ(t) for the pressure of Eδ(t) computed at time tδ
(and not t),13 and set

qδ(t) :=

∫

Eδ(t)

∂ρ

∂t
(tδ, x) dx + pδ(tδ) ẇ(tδ) . (4.1)

4.2. Lemma. The set Eδ(nδ) in §4.1 exists for every δ and n with nδ ≤ T .

Proof. Let F be the functional given by (5.23) with ρ := ρ(nδ, x) and

σ(x) :=

{
cos θrec if x ∈ Sδ

cos θadv if x ∈ S \ Sδ
where Sδ := Σc

δ(nδ − δ) .

Then Eδ(nδ) is a minimizer of F (E) under the constraint |E| = w(nδ); its
existence is proved in Proposition 5.5. �

The next theorem contains all we need to know about the discretized solutions
Eδ and their limit as δ → 0, and it implies Theorem 3.9 as a corollary.

4.3. Theorem. For every δ > 0 and every t ∈ [0, T ] take Eδ(t) as in §4.1, and
let h0 be the constant that appears in Proposition 5.4. Then there exist positive
constants C such that the following statements hold:

(i) for every δ > 0 and t ∈ [0, T ] we have that
(a) Eδ(t) is contained in U × [0, h0] (U is the cross-section of Ω),

(b) |Σf
δ (t)| ≤ C, E (tδ, Eδ(t)) ≤ C, |pδ(t)| ≤ C, |qδ(t)| ≤ C;

13 Thus pδ(t) := P ∗(tδ, Eδ(tδ))/w(tδ), and pδ(t) = pδ(tδ).
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(ii) for every t ∈ [0, T ], every subsequence of Eδ(t) admits a sub-subsequence
(depending on t, and not relabelled) that converges to some set E ∈ Y

contained in U × [0, h0]; moreover, if we denote by Σf , Σc, and p the free
surface, the contact surface, and the pressure of E, then

(a) Σc
δ(t) → Σc in X , |Σf

δ (t)| → |Σf |, and V (tδ, Eδ(t)) → V (t, E),
(b) E (tδ, Eδ(t)) → E (t, E),
(c) E has volume w(t) and is stable at time t,
(d) pδ(t) → p,
(e) |Σf | ≤ C, E (t, E) ≤ C, |p| ≤ C;

(iii) for every t ∈ [0, T ], the family of all limit points of the sequence Eδ(t) is
a non-empty compact subset of Y , and for t = 0 it consists only of the
set E0;

(iv) the variations Var(Σc
δ(t), [0, T ]) are uniformly bounded in δ;

(v) every subsequence of δ admits a sub-subsequence (not relabelled) such that
Σc

δ(t) converge to some set in X for every t ∈ [0, T ].

Consider now a subsequence of δ (not relabelled) such that Σc
δ(t) converge to

some Σ(t) in X for every t ∈ [0, T ], and denote by M (t) the family of all limit
points E ∈ Y of the subsequence Eδ(t). Then

(vi) Var(Σ(t), [0, T ]) ≤ lim inf Var(Σc
δ(t), [0, T ]) < +∞;

(vii) M (t) is a non-empty compact set in Y for every t ∈ [0, T ], and the
contact surface of every E ∈ M (t) agrees with Σc(t); in particular it is
always possible to choose E(t) ∈ M (t) so that t 7→ E(t) is a Borel map
from [0, T ] to Y ;

(viii) if E (Tδ, Eδ(T )) converge to some number in [−∞, +∞],14 the functions
qδ defined in (4.1) converge in measure on [0, T ] to

q∗(t) := lim sup
δ→0

qδ(t) .

(ix) if E (Tδ, Eδ(T )) converge to some number in [−∞,+∞] and qδ converge
to q∗ a.e.,15 every Borel map t 7→ E(t) from [0, T ] to Y such that E(t) ∈
M (t) for every t is a solution with initial configuration E0 which satisfies
|E(t)| = w(t) for every t.16

Remark. (i) The maps t 7→ Eδ(t) constructed in §4.1 are not unique because
the minimum problem that defines Eδ(nδ) may have more than one solution.

(ii) In general it is not possible to find a subsequence of δ (independent of t)
such that Eδ(t) converge for a.e. t, see Example 6.8 and Remark 6.9(ii). This
is related to the fact that the movement of the free surface carries no dissipa-
tion, and therefore the variations of the maps t 7→ Eδ(t) may be not uniformly
bounded.

14 This requirement can be met by refining the subsequence of δ.
15 By statement (viii) these requirements can be met by refining the subsequence of δ.
16 The existence of such maps is ensured by statement (vii).
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Proof of Theorem 3.9. Take a solution t 7→ E(t) as in statement (ix) of
Theorem 4.3; statement (vi) shows that the map t 7→ Σc(t) has bounded varia-
tion, while statement (ii) yields uniform bounds on E(t), |Σf (t)|, E (t, E(t)), and
p(t). �

The rest of this section is devoted to the proof of Theorem 4.3. Every refer-
ence to a “statement #” without further specification, should be understood as
“statement # of Theorem 4.3”.

Proof of statement (i). It follows immediately from the definition that each
Eδ(t) minimizes (at time tδ) the energy E ′ defined in (2.15) among all sets
with the same volume and the same contact surface, and therefore this state-
ment becomes an immediate corollary of Proposition 5.4 (recall that pδ(t) =
P ∗(tδ, Eδ(t))/w(tδ) and qδ(t) is given by (4.1)). �

Proof of statement (ii). Let t be fixed. For every δ > 0 take tδ as in §4.1,
let Yδ be the class of all sets E ∈ Y with volume vδ := w(tδ), and let Fδ be the
functional given by formula (5.23) with ρ and σ replaced by ρδ(x) := ρ(tδ, x) and

σδ(x) :=

{
cos θrec for x ∈ Sδ

cos θadv for x ∈ S \ Sδ
with Sδ := Σc

δ(tδ − δ) .

By definition, each Eδ(t) minimizes Fδ on Yδ.
As δ → 0, the volumes vδ converge to v0 := w(t), the functions ρδ converge

uniformly to ρ0(x) := ρ(t, x), and, possibly passing to a suitable subsequence
of δ, we can assume that the functions σδ converge weakly* in L∞(S) to some
function σ0. Therefore, if we denote by F0 the functional given by (5.23) with ρ
and σ replaced by ρ0, σ0, then Theorem 5.6 implies that the sets Eδ(t) converge
up to subsequences to some minimizer E of F0 on the class Y0 of all sets E ∈ Y

with volume v0 := w(t).
Moreover Theorem 5.6 gives all the convergences in sub-statement (a), which

in turn imply sub-statement (b).

Concerning sub-statement (c), the stability of E follows by Lemma 5.7(ii)
and the fact that E minimizes F0 on Y0 (note that σ0 satisfies the bounds
cos θadv ≤ σ0 ≤ cos θrec because the functions σδ do so).

Let us prove sub-statement (d). By formula (3.9), the convergence of pressure
reduces to the convergence of P ∗(tδ, Eδ(t)) to P ∗(t, E). To prove the latter, we
consider the vector measure µ := ηf · 1Σf · H 2; hence (3.7) becomes

P ∗(t, E) =

∫

Ω
f
(
x,

µ

|µ|(x)
)

d|µ|(x) +

∫

Ω
ϕ(t, x) dµ3(x) (4.2)

where µ/|µ| is the Radon–Nikodym density of µ with respect to |µ|, µ3 is the
third component of µ, and

f(x, v) := σLV

(
1 − (η̄(x) · v)v3

|v|2
)

, ϕ(t, x) := ρ(t, x) (x3 − g(x1, x2)) .
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Since f is 0-homogeneous in v and continuous in (x, v) for v 6= 0, a well-known
theorem by Yu.G. Reshetnyak (see [33] or the appendix in [24]) implies that the
first integral in (4.2) is continuous with respect to convergence in mass of µ, while
the second one is obviously continuous with respect to convergence of t and µ (in
the sense of measures).

Therefore the convergence of P ∗(tδ, Eδ(t)) to P ∗(t, E) is implied by the conver-
gence in mass of the measure µδ associated with the sets Eδ(t) to the measure µ
associated with the limit E. Now, the convergence of µδ in the sense of measures
follows by the fact that µδ is the distributional derivative of the characteristic
function of Eδ(t) in Ω, while the convergence of masses is in sub-statement (a).

Finally, the bounds in (e) can be derived from the corresponding bounds in
statement (i-b), or directly from Proposition 5.4 using the fact that E is stable,
and therefore minimizes the energy E ′ (at time t) among all sets with the same
volume and the same contact surface. �

Proof of statement (iii). This is a straightforward corollary of statement (ii).
�

Proof of statement (iv). Let δ be fixed. We denote by nδ the largest integer
n such that nδ ≤ T , and for every n = 1, . . . , nδ we set En

δ := Eδ(nδ) and
tn := nδ. Taking into account the definition of Eδ(t) and formulas (2.17), (3.10),
(3.12) we obtain

µVar(Σc
δ(t), [0, T ]) = Diss(Eδ(t), [0, T ]) =

nδ∑

n=1

D(En−1
δ , En

δ ) . (4.3)

Let n be fixed for the time being. In order to estimate D(En−1
δ , En

δ ) from
above we set

Ẽδ
n−1

:= Φλ(En−1
δ ) ,

where Φλ is defined in (3.4) and λ is chosen so that |Ẽδ
n−1| = |En

δ |, that is,
λ := log w(tn) − log w(tn−1). Thus

|λ| ≤ min{C, C ′δ} (4.4)

where C := log(vM/vm) and C ′ := Lip(log w).17

Since Ẽδ
n−1

has the same volume as En
δ , it can be used as a comparison set for

the minimum problem that defines En
δ (see §4.1). Then, taking into account that

D(Ẽδ
n−1

, En−1
δ ) = 0 because Ẽδ

n−1
and En−1

δ have the same contact surface, we
get

E (tn, En
δ ) + D(En−1

δ , En
δ ) ≤ E (tn, Ẽδ

n−1
) .

Hence

D(En−1
δ , En

δ ) ≤ In
δ + IIn

δ + E (tn−1, E
n−1
δ ) − E (tn, En

δ ) , (4.5)

17 We denote by C′ any positive finite number which depends on the setting of the problem
and on the choice of the function w and not just on its minimum and maximum (this is the
case with Lip(log w)). As usual, the value of C′ may vary at every occurrence.
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where

In
δ := E (tn, Ẽδ

n−1
) − E (tn, En−1

δ ) , IIn
δ := E (tn, En−1

δ ) − E (tn−1, E
n−1
δ ) .

Next we estimate In
δ and IIn

δ . Taking into account the definition of Ẽδ
n
, and

in particular that it has the same contact surface as En−1
δ , we get

In
δ = E

′(tn, Ẽδ
n−1

) − E
′(tn, En−1

δ ) = g(λ) − g(0) , (4.6)

where we have set g(s) := E ′(tn,Φs(E
n−1
δ )). Using estimate (5.8) and the bounds

on the set En−1
δ and on the area of its free surface proved in statement (i), we

obtain that |ġ| ≤ C on the interval [0, λ]. Hence (4.6) and (4.4) yield

In
δ ≤ C|λ| ≤ C ′δ . (4.7)

Concerning IIn
δ , since the gradient of ρ is bounded and |En−1

δ | ≤ vM , we have

IIn
δ = V (tn, En−1

δ ) − V (tn−1, E
n−1
δ ) =

∫

En−1

δ

[ ∫ tn

tn−1

∂ρ

∂t
dt

]
dx ≤ Cδ . (4.8)

We can now conclude: (4.5), (4.7) and (4.8) imply

D(En−1
δ , En

δ ) ≤ C ′δ + E (tn−1, E
n−1
δ ) − E (tn, En

δ ) ,

and taking the sum over all n = 1, . . . , nδ we finally get (see (4.3))

µVar(Σc
δ(t), [0, T ]) ≤ C ′T + E (0, E0) − E (tnδ

, Enδ

δ ) ≤ C ′ . �

Proof of statement (v). It suffices to apply Theorem 5.1 to the sequence of
maps t 7→ Σc

δ(t). To this end, note that the variations of these maps are uniformly
bounded by statement (iv), and that for every t ∈ [0, T ] the set of values {Σc

δ(t)}
is relatively compact in X by statement (ii). �

Proof of statement (vi). This is an immediate consequence of statement (iv)
and of the lower semicontinuity of variation with respect to pointwise conver-
gence. �

Proof of statement (vii). This is an immediate consequence of statements
(iii), (ii-a), and of a standard measurable-selection theorem.18 �

Given a map t 7→ E(t) as in statement (ix), the fact that each E(t) is stable
essentially follows from the statements we have already proved, and what remains
to be shown is the energy-dissipation balance. For this we will need the next three
lemmas and statement (viii).

18 See for instance [34, Corollary 5.2.5]: the key point is that t 7→ M (t) is a Borel map
from [0, T ] into the space of compact subsets of Y , endowed with the Hausdorff distance; this
measurability property is an immediate consequence of the definition of M (t) as sets of limit
points of Eδ(t).
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4.4. Lemma. Consider a Borel map t 7→ E(t) from [0, T ] to Y such that for
every t ∈ [0, T ] the set E(t) has volume w(t) and is stable at time t. Then for
every t0, t1 with 0 ≤ t0 < t1 ≤ T there holds

E (t1, E(t1)) − E (t0, E(t0)) ≥
∫ t1

t0

q(t) dt − Diss(E(t); [t0, t1]) , (4.9)

where

q(t) :=

∫

E(t)

∂ρ

∂t
(t, x) dx + p(t) ẇ(t) (4.10)

and p(t) is the pressure at time t for the set E(t), as given by (3.9).

Proof. We can restrict our attention to the case t0 = 0 and t1 = T . Since each
E(t) is stable, it minimizes the energy E ′ among all sets with the same volume
and the same contact surface. Then Proposition 5.4 yields E(t) ⊂ U × [0, h0],
|Σf (t)| ≤ C, and |p(t)| ≤ C.

We fix for the time being δ > 0 and a partition 0 = t0 < t1 < · · · < tm = T of
the interval [0, T ] such that δn := tn − tn−1 ≤ δ for n = 1, . . . ,m. Moreover we
set En := E(tn) and

Ên := Φλ(En) ,

where λ is chosen so that |Ên| = |En−1|, that is, λ := log w(tn−1) − log w(tn).
Thus the first-order Taylor expansion of log w around the point tn yields 19

λ = − ẇ(tn)

w(tn)
δn + o(δn) . (4.11)

We first establish a lower bounded for E (tn, En)−E (tn−1, En−1). Since Ên has
the same volume as En−1, it can be used as a comparison set in the definition of

stability of En−1 = E(tn−1), and taking into account that Ên and En have the
same contact surface, we get

E (tn−1, En−1) ≤ E (tn−1, Ên) + D(En−1, En) .

Hence

E (tn, En) − E (tn−1, En−1) ≥ In + IIn − D(En−1, En) , (4.12)

where

In := E (tn−1, En) − E (tn−1, Ên) , IIn := E (tn, En) − E (tn−1, En) .

To estimate In and IIn from below we closely follow the estimates of In
δ and

IIn
δ in the proof of statement (iv). Thus

In := E
′(tn−1, En) − E

′(tn−1, Ên) = g(0) − g(λ) (4.13)

19 We write o(δα) for every function g depending on δ and possibly on other variables which
satisfies |g| ≤ g̃ where g̃ is a positive function of δ which depends only on the setting of the
problem and on the choice of the function w, and satisfies g̃(δ)/δα → 0 as δ → 0. Similarly, we
write O(δα) for every function g which satisfies |g| ≤ C′δα for some positive constant C′ as in
footnote 4.
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where g(s) := E ′(tn−1,Φs(En)). Next we replace g(λ) in (4.13) by its first-order

Taylor expansion at 0: using estimate (5.9) and the usual bounds on Σf
n and λ,

we obtain that |g̈| ≤ C on [0, λ], while formula (3.6) yields ġ(0) = P ∗(tn−1, En).
Moreover formula (3.7) shows that

P ∗(tn−1, En) = P ∗(tn, En) + O(δn) ,

while (3.9) yields P ∗(tn, En) = p(tn) w(tn). Hence (4.13) and (4.11) yield

In = −ġ(0)λ + O(λ2) = −p(tn) w(tn) λ + O(δn) |λ| + O(λ2)

= p(tn) ẇ(tn) δn + o(δn) . (4.14)

Concerning IIn we have

IIn = V (tn, En) − V (tn−1, En)

=

∫

En

[ ∫ tn

tn−1

∂ρ

∂t
dt

]
dx =

[ ∫

En

∂ρ

∂t
(tn, x) dx

]
δn + o(δn) . (4.15)

We can now conclude the proof of (4.9): using that o(δn) = o(1) · δn, from
formulas (4.10), (4.12), (4.14) and (4.15) we obtain

E (tn, En) − E (tn−1, En−1) ≥ q(tn) δn − o(1) δn − D(En−1, En) ;

then, taking the sum over all n and recalling the definition of dissipation ((3.12)
and (3.10)), we get

E (T, E(T )) − E (0, E(0)) ≥
m∑

n=1

q(tn) δn − o(1) − Diss(E(t), [0, T ]) . (4.16)

To recover inequality (4.9) from (4.16), it suffices to notice that it is always
possible to choose first δ and then the partition points tn so that the term o(1)
at the right-hand side of (4.16) is arbitrarily close to 0, and the sum of q(tn) δn

is arbitrarily close to, or even larger than, the integral of q from 0 to T . �

4.5. Lemma. Under the assumption of statement (viii), let t 7→ E(t) be a map
such that E(t) belongs to M (t) for every t. Then

E (T, E(T )) − E (0, E(0)) ≤ lim inf
δ→0

∫ T

0
qδ(t) dt − Diss(E(t), [0, T ]) . (4.17)

Proof. We start from inequality (4.5) in the proof of statement (iv). Following
the notation of that proof, we rewrite (4.5) as

E (tn, En
δ ) − E (tn−1, E

n−1
δ ) ≤ In

δ + IIn
δ − D(En−1

δ , En
δ ) . (4.18)

Proceeding as in the proof of Lemma 4.4 we obtain the following expressions for
In
δ and IIn

δ :

In
δ = pδ(tn−1) ẇ(tn−1) δ + o(δ) , IIn

δ =

[ ∫

En−1

δ

∂ρ

∂t
(tn−1, x) dx

]
δ + o(δ) .

Therefore (4.18) becomes

E (tn, En
δ ) − E (tn−1, E

n−1
δ ) ≤ qδ(tn−1) δ − D(En−1

δ , En
δ ) + o(δ) ,
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and summing over all n = 1, . . . , nδ we obtain

E (tnδ
, Enδ

δ ) − E (t0, E
0
δ ) =

∫ tnδ

0
qδ(t) dt − Diss(Eδ(t), [0, T ]) + o(1)

(use (4.3) and the fact that qδ(t) = qδ(tn−1) for every t ∈ [tn−1, tn)).
Taking into account the definition of En

δ and the fact that t0 = 0, tnδ
= Tδ,

T − tnδ
< δ and |qδ(t)| ≤ C (statement (i-b)), the previous inequality yields

E (Tδ, Eδ(T )) − E (0, Eδ(0)) ≤
∫ T

0
qδ(t) dt − Diss(Eδ(t), [0, T ]) + o(1) .

To obtain (4.17) we pass to the limit as δ → 0 and use the following facts:

(a) Eδ(0) = E(0);

(b) Diss(E(t), [0, T ]) ≤ lim inf Diss(Eδ(t), [0, T ]);

(c) E (Tδ, Eδ(T )) → E (T, E(T )).

Assertion (b) follows from statement (vi) and the fact that the dissipation of
E(t) is µ times the variation of Σ(t)—recall that Σ(t) is the contact surface of E(t)
by statement (vii). Assertion (c) follows from the assumption that E (Tδ, Eδ(T ))
converges, and therefore the limit must be E (T, E(T )) by statement (ii-b). �

Proof of statement (viii). For every t ∈ [0, T ] we can choose E(t) ∈ M (t)
such that the number q(t) defined in (4.10) agrees with q∗(t). Indeed the defini-
tion of q∗(t) and statement (ii) yield a subsequence δk such that qδk

(t) converge
to q∗(t) and Eδk

(t) converge to a set E(t) ∈ M (t).20

Moreover the sets Eδk
(t) are uniformly bounded (statement (i-a)) and pδk

(t)
converge to the pressure p(t) associated to E(t) (statement (ii-d)). Thus (4.10)
and (4.1) imply that qδk

(t) → q(t), and therefore q(t) = q∗(t).
Now, the map t 7→ E(t) satisfies the hypothesis of Lemma 4.5 by assumption,

and those of Lemma 4.4 by statement (ii-c). Therefore, putting together inequal-
ity (4.9) with t0 := 0 and t1 := T , inequality (4.17), and the identity q = q∗, we
finally get ∫ T

0
q∗(t) dt ≤ lim inf

δ→0

∫ T

0
qδ(t) dt . (4.19)

It remains to show that (4.19) implies that qδ converge in measure to q∗. Since
q∗ is the upper limit of qδ, we have only to prove that for every ε > 0 the measure
of the set

Aδ :=
{
t : qδ(t) ≤ q∗(t) − ε

}

converges to 0 as δ → 0. If we set q′δ(t) := max{qδ(t), q
∗(t)} we have qδ+ε1Aδ

≤ q′δ
and therefore ∫ T

0
qδ(t) dt + ε|Aδ| ≤

∫ T

0
q′δ(t) dt . (4.20)

Moreover, since the functions q′δ converge pointwise to q∗ and are uniformly
bounded (because the functions qδ are, see statement (i-b)), the integrals of q′δ

20 We assume that the map t 7→ E(t) is Borel measurable, see footnote 4.
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converge to the integral of q∗ by the dominated convergence theorem, and passing
to the limit in (4.20), we get

lim inf
δ→0

∫ T

0
qδ(t) dt + ε lim sup

δ→0
|Aδ| ≤

∫ T

0
q∗(t) dt ,

which together with (4.19) implies lim sup |Aδ| = 0. �

4.6. Lemma. Let t 7→ E(t) be taken as in statement (ix). Then the function q
defined in (4.10) agrees with q∗ a.e. in [0, T ].

Proof. For every t there exists a subsequence δk such that Eδk
(t) converge to

E(t), and therefore qδk
(t) → q(t). On the other hand qδ(t) → q∗(t) for a.e. t by

assumption. �

Proof of statement (ix). Statements (iii) and (ii-c) show that E(0) = E0,
and that each E(t) has volume w(t) and is stable at time t.

It remains to prove the energy-dissipation balance (3.13). Note that this bal-
ance can be re-written as I(t0, t1) = 0 for every 0 ≤ t0 ≤ t1 ≤ T , where I(t0, t1) is
the difference between the left and the right-hand side of (4.9),21 and we already
know from Lemma 4.4 that I(t0, t1) ≥ 0.

By Lemma 4.6 the functions qδ converge a.e. to q, and therefore the lower limit
of their integrals, which appears in (4.17), is actually a limit and agrees with the
integral of q.22 Thus (4.17) becomes 0 ≥ I(0, T ). Hence

0 ≥ I(0, T ) = I(0, t0) + I(t0, t1) + I(t1, T ) , 23

and since the three addenda in the last term are all non-negative, they must be
null. In particular I(t0, t1) = 0. �

5. Auxiliary results

In this section we collect some technical lemmas used in Section 4. We follow
the notation introduced in the previous two sections; in particular concerning
constants (see the “warning” at the beginning of Section 4).

We first recall a generalization of a classical result by E. Helly on monotone
functions.

5.1. Helly’s Selection Theorem (see [25], Theorem 3.2). Let I be an interval,
X a complete metric space, and fn : I → X a sequence of maps with uniformly
bounded variations (in the sense of §3.5) such that for every t ∈ I the set of
values {fn(t)} is relatively compact in X. Then, upon extraction of a suitable
subsequence, the maps fn converge pointwise to some limit map f : I → X.

21 I(t0, t1) is well-defined because all terms in (4.9) are finite with the only possible exception
of the dissipation.

22 Apply the dominated convergence theorem and the fact the functions qδ are uniformly
bounded, see statement (i-b).

23 Use the additivity of variation: Var(f, [t0, t2]) = Var(f, [t0, t1]) + Var(f, [t1, t2]) whenever
t0 ≤ t1 ≤ t2.
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5.2. Lemma. For every set Σ in X and every δ > 0 there exists a set E in Y

with contact surface equal to Σ such that |E| ≤ δ|Σ| and |Σf | ≤ (1 + δ)|Σ| (X
and Y are defined in §3.2) . Moreover E is contained in U × (0, h0) where U is
the cross-section of Ω and h0 is any number strictly greater than the supremum
of g over U .

Proof. Consider the open set A := Ω∩ (U × (0, h0)). By a well-known result of
E. Gagliardo (see for instance [22], Theorem 2.16 and Remark 2.17) there exists
a smooth function u : A → [0, 1] such that ‖u‖1 ≤ δ|Σ| and ‖∇u‖1 ≤ (1 + δ)|Σ|,
and whose trace on ∂A agrees with the characteristic function of Σ. We then
take E equal to a suitable superlevel set of u (to choose the right level one can
use the coarea formula, see the proof of Theorem 1.24 in [22]). �

5.3. Proposition. Given E ∈ Y and λ ∈ R, take Eλ as in §3.3 and define Σf
λ

and ηf
λ accordingly. Then for every t ∈ [0, T ] there holds

|Eλ| = eλ|E| and then
d

dλ
|Eλ| = |Eλ| , (5.1)

|Σf
λ| =

∫

Σf

|eληf + (1 − eλ)ηf
3 η̄| ≤ eC|λ||Σf | , (5.2)

d

dλ
|Σf

λ| =

∫

Σf
λ

1 − ηf
λ,3η̄ · ηf

λ , (5.3)

V (t, Eλ) = eλ

∫

E
ρ(t, Φλ(x)) dx ≤ eC|λ|V (t, E) , (5.4)

E
′(t, Eλ) ≤ eC|λ|

E
′(t, E) (5.5)

(in the previous equations ηf
3 and ηf

λ,3 are the third components of ηf and ηf
λ, η̄

is defined in (3.8), and E ′ is defined in (2.15)).
If, in addition, the set E is bounded, then

d

dλ
V (t, Eλ) =

∫

Eλ

ρ + (x3 − g)
∂ρ

∂x3
=

∫

Σf
λ

(x3 − g)ρ ηf
λ,3 , (5.6)

d

dλ
E

′(t, Eλ) =

∫

Σf
λ

σLV

(
1 − ηf

λ,3η̄ · ηf
λ

)
+ (x3 − g)ρ ηf

λ,3 , (5.7)

where g is the function that defines Ω, see §3.1. Moreover there exists a positive
function C(h, s), increasing both in h and s, with the following property: for
every set E ∈ Y contained in U × [0, h], and every |λ| ≤ s there holds

∣∣∣∣
d

dλ
E

′(t, Eλ)

∣∣∣∣ ≤ C(h, s) |Σf | , (5.8)

∣∣∣∣
d2

dλ2
E

′(t, Eλ)

∣∣∣∣ ≤ C(h, s) |Σf | . (5.9)

Remark. Some statements of the previous proposition concern the energy E ′,
but remain valid even if E ′ is replaced by E , because E differs from E ′ only by a
boundary contribution which does not depend on λ (recall that E and Eλ have
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the same contact surface) and is bounded from above by a constant. A similar
remark applies to Proposition 5.4.

Proof of Proposition 5.3. Recall that Eλ := Φλ(E) where Φλ is defined in
(3.4). Then the first identity in (5.1) follows by the fact that the Jacobian
determinant of Φλ is eλ; the second one is obtained by differentiating the first
one with respect to λ.

Since the map Φλ is bi-Lipschitz, if E has finite perimeter then Eλ := Φλ(E)
has finite perimeter, too, and the essential boundary ∂Eλ is equal to Φλ(∂E).

Hence the free surface Σf
λ is equal to Φλ(Σf ). Then a lengthy but straightforward

computation show that the (approximate) outer normal to Eλ at y := Φλ(x) is
given by

ηf
λ = H

(
eληf + (1 − eλ)ηf

3 η̄
)

(5.10)

where H(v) := v/|v| for every v 6= 0, and ηf and η̄ are computed at x. Moreover
the Jacobian determinant of the restriction of Φλ to the rectifiable set Σf is

J =
∣∣eληf + (1 − eλ)ηf

3 η̄
∣∣ . (5.11)

The equality in (5.2) follows from (5.11), and the inequality follows from the
estimate

J =
∣∣ηf + (eλ − 1)(ηf − ηf

3 η̄)
∣∣ ≤ |ηf | + |eλ − 1| |ηf − ηf

3 η̄|
= 1 + C|eλ − 1| ≤ eC|λ| .

Differentiating the identity in (5.2) with respect to λ we get

d

dλ
|Σf

λ|
∣∣∣
λ=0

=

∫

Σf

1 − ηf
3 η̄ · ηf ; (5.12)

we then obtain (5.3) using the semi-group property of Φλ, namely that

Φλ1+λ2
= Φλ1

◦ Φλ2
for all λ1, λ2 ∈ R. (5.13)

The equality in (5.4) is obtained by applying the change of variable x′ = Φλ(x)
to the integral that gives V (t, Eλ); the inequality follows from the estimate

ρ(t, Φλ(x)) ≤ ρ(t, x) + Lip(ρ) |Φλ(x) − x|
= ρ(t, x) + Lip(ρ) |eλ − 1| (x3 − g)

≤ (1 + C|eλ − 1|) ρ(t, x) ≤ eC|λ|ρ(t, x)

(to obtain the second inequality we used assumption (3.3) and the fact that
g ≥ 0).

Estimate (5.5) follows immediately from the inequalities in (5.2) and (5.4).
Differentiating the identity in (5.4) with respect to λ we obtain

d

dλ
V (t, Eλ)

∣∣∣
λ=0

=

∫

E
ρ(t, x) +

∂ρ

∂x3
(t, x) (x3 − g) dx

=

∫

E

∂

∂x3
((x3 − g)ρ) =

∫

Σf

(x3 − g)ρ ηf
3 ; (5.14)
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the last identity is a consequence of the usual representation of the distributional
partial derivatives of the characteristic function of E in terms of integration on
the essential boundary ∂E, namely

∂

∂xi
1E = −ηi · 1∂E · H 2 ,

and the fact that the test function (x3 − g)ρ vanishes on ∂E \ Σf .24

We obtain (5.6) from (5.14) using the semi-group property of Φλ.
Identity (5.7) follows from (5.3) and (5.6).
Estimate (5.8) follows from (5.7) using estimate (5.2), and the fact that the

integrand in (5.7) is bounded on bounded sets.
To prove (5.9) we must first compute the second derivative of E ′(t, Eλ) with

respect to λ. To this purpose, we start from (5.7) and re-write the first derivative
as

d

dλ
E

′(t, Eλ) = σLV|Σf
λ| +

∫

Σf
λ

[
− σLVη̄ · ηf

λ + (y3 − g)ρ
]
ηf

λ,3 dy ,

where η̄, ηf
λ, g, and ρ are computed at y. Next we apply the change of variable

y = Φλ(x) and use (5.10) and (5.11) to prove that the Jacobian determinant J

of this transformation satisfies ηf
λ,3(y) = ηf

3 (x)/J(x). Hence

d

dλ
E

′(t, Eλ) = σLV|Σf
λ| +

∫

Σf

[
− σLVη̄ · ηf

λ + eλ(x3 − g)ρ
]
ηf
3 dx , (5.15)

where ηf
λ and ρ are computed at y = Φλ(x), while η̄, g and ηf

3 are computed at

x.25 Starting from formula (5.10), a straightforward computation yields

dηf
λ

dλ

∣∣∣
λ=0

= −ηf
3 p(η̄) (5.16)

where p denotes the projection from R
3 onto the plane orthogonal to ηf . Using

(5.12) and (5.16) we can compute the derivative of (5.15) with respect to λ:

d2

dλ2
E

′(t, Eλ)
∣∣∣
λ=0

=

∫

Σf

σLV

[
1 − ηf

3 η̄ ·
(
ηf − ηf

3p(η̄)
)]

+ (x3 − g)ρ + (x3 − g)2
∂ρ

∂x3
. (5.17)

Using the semi-group property of Φλ we obtain a similar formula for the second
derivative of E ′(t, Eλ) at any λ, and then we derive estimate (5.9) using estimate
(5.2) and the fact that the integrand in (5.17) is bounded on bounded sets. �

24 Since (x3 − g)ρ is not a function of class C1 with compact support on R
3, a correct

derivation of the last identity in (5.14) is a bit more delicate: the key points are that E is
bounded and (x3 − g)ρ is locally bounded on U ×R and of class C1 with respect to the variable
x3.

25 The identity y = Φλ(x) implies yi = xi for i = 1, 2, and both η̄ and g depend only on the
first two variables (since g is originally defined as a function of two variables, here there is a
slight abuse of notation).
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Figure 4. The comparison sets Ẽ and Ẽh in the proof of Proposition 5.4.

5.4. Proposition. There exist constants h0 and C with the following property:
if E ∈ Y satisfies vm ≤ |E| ≤ vM and minimizes E ′ (at a given time t) among
all sets in Y with the same volume and the same contact surface, then

(i) |Σf | ≤ C and |E ′(t, E)| ≤ C for every t;

(ii) E is contained (up to a negligible subset) in U × [0, h0];

(iii) |P ∗(t, E)| ≤ C for every t.

Proof. To prove the energy bound in (i) it suffices to construct a comparison

set Ẽ ∈ Y with contact surface Σ̃c equal to the contact surface Σc of E, volume
|Ẽ| equal to |E|, and energy E ′(t, Ẽ) bounded from above by a constant which
depends neither on E nor on t.

Let h1 := 1 + sup g. By Lemma 5.2 we can find a set E0 ∈ Y such that

E0 ⊂ U × (0, h1), Σc
0 = Σc, |E0| < vm, and |Σf

0 | ≤ 2|Σc|. We then set (see
Fig. 4a)

Ẽ := E0 ∪ (U × (h1, h))

where h is chosen in such a way that |Ẽ| = v, that is, h := h1 + (v − |E0|)/|U |;
it is straightforward to check that Ẽ meets all requirements. To conclude the
proof of statement (i), note that a bound on E ′ implies also a bound on |Σf | (for
example, because V is positive).

Now we define, for every h > 0,

Eh := E ∩ (U × (0, h)) and a(h) := |E \ Eh| .
In order to prove statement (ii) we must show that there exists a constant h0

such that a(h) = 0 for h ≥ h0. This will follow from the fact that the Lipschitz
function a satisfies the differential inequality (5.22); in turn, this differential

inequality will be obtained by estimating the energy of the comparison sets Ẽh

defined in (5.19).

We first prove a decay estimate for a. The energy bound in (i) and assumption
(3.3) yield

C ≥ E
′(t, E) ≥ V (t, E) ≥ V (t, E \ Eh) ≥ c0 a(h) h ,

and therefore
a(h) ≤ C/h for every h > 0. (5.18)
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By (5.18) there exists a constant h2 such that a(h) ≤ vm/2 for every h ≥ h2.
For every such h we define the comparison set (see Fig. 4b)

Ẽh := Φλ(Eh) (5.19)

where Φλ is the deformation defined in (3.4) and the parameter λ = λ(h) is

chosen so that |Ẽh| = |E|. Taking into account (5.1), (5.18), and the choice of
h2 we get

1 ≤ eλ =
|E|
|Ẽh|

=
1

1 − a(h)/|E| ≤
1

1 − a(h)/vm
≤ 2 . (5.20)

Let Sh be the section of E at height h, that is, the set of all x ∈ E such that
x3 = h. Note that

a(h) =

∫ +∞

h
|St| dt and then |Sh| = −ȧ(h) for a.e. h,

where ȧ is the derivative of the Lipschitz function a.
Next we estimate E ′(t, Eh) and E ′(t, Ẽh). The key point is that the section

of the free surface of Eh at height h agrees with Sh (up to a subset of negligible
area) for a.e. h, and therefore

Σf
h = [Σf ∩ (U × (0, h))] ∪ Sh .

Hence

|Σf
h| = |Σf | + |Sh| − |Σf ∩ (U × [h,∞))| ,

and since the inclusion Eh ⊂ E implies V (t, Eh) ≤ V (t, E), for a.e. h ≥ h2 we
get

E
′(t, Eh) ≤ E

′(t, E) + σLV

[
|Sh| − |Σf ∩ (U × [h,∞))|

]

= E
′(t, E) + σLV

[
2|Sh| − |∂(E \ Eh)|

]

≤ E
′(t, E) + σLV

[
2|Sh| − C|E \ Eh|2/3

]

= E
′(t, E) − Cȧ − Ca2/3 ,

where the last inequality is obtained by applying the isoperimetric inequality to
the set E \ Eh. Using the previous estimate and (5.5) we get

E
′(t, Ẽh) ≤ eCλ

E
′(t, Eh)

≤ eCλ
E

′(t, E) − CeCλȧ − CeCλa2/3

≤ E
′(t, E) + Ca − Cȧ − Ca2/3 , (5.21)

where the last inequality was obtained using the following estimates, derived
from statement (i) and (5.20): E ′(t, E) ≤ C, 1 ≤ eCλ ≤ C, and

eCλ = (1 − a/|E|)−C ≤ 1 + Ca .

The minimality of E implies E ′(t, E) ≤ E ′(t, Ẽh), thus (5.21) yields

ȧ ≤ Ca − Ca2/3 a.e. in (h2,+∞).
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Now, whatever the constants C are in this equation,26 by (5.18) there exist
constants C and h3, with h3 ≥ h2, such that the right-hand side is smaller than
−Ca2/3 for every h ≥ h3, and therefore

ȧ ≤ −Ca2/3 a.e. in (h3, +∞). (5.22)

We conclude the proof of statement (ii) by a standard argument. Let h̄ be the
supremum of all h such that a(h) > 0; then (5.22) implies

−C ≥ 1

3
a−2/3ȧ a.e. in (h3, h̄).

Integrating this inequality from h3 to h̄ we finally get

C(h3 − h̄) ≥ a(h̄)1/3 − a(h3)
1/3 ≥ −a(h3)

1/3 ≥ −|U |1/3

(use that 0 ≤ a(h̄) ≤ a(h3) ≤ |U |), which implies h̄ ≤ h0 := h3 + 1
C |U |1/3,

concluding the proof of statement (ii).

Statement (iii) follows immediately from the bounds on the set E and on the
area |Σf |, and from formula (3.7). �

The next two statements concern the existence and convergence of minimizers
of energies of capillary type under a prescribed-volume constraint. More precisely,
given ρ : Ω → [0,∞) and σ : S → [−1, 1], where ρ satisfies the growth condition
(3.3) and S is the bottom of the container (see §3.1), we consider the following
variant of the capillary energy E :

F (E) := σLV

[
|Σf | −

∫

Σc

σ

︸ ︷︷ ︸
F ′(E)

]
+

∫

E
ρ(x) dx

︸ ︷︷ ︸
V (E)

. (5.23)

5.5. Proposition. For every real number v ≥ 0, the functional F admits a
minimizer in the class Yv of all sets in Y with volume v.

Proof. The existence of a minimizer is obtained as usual by showing that the
energy F is lower semicontinuous on Y , and that every sequence in Yv with
uniformly bounded energy admits a limit point in Yv (compactness).

Step 1: compactness. Consider a sequence of sets En in Yv such that F (En)

is uniformly bounded. Then the perimeters |∂En| = |Σf
n| + |Σc

n| are uniformly
bounded, and the Sobolev embedding for the space BV (R3) implies that the
characteristic functions 1En converge up to subsequence in L1

loc(R
3), and clearly

the limit must be the characteristic function of some set E∞ contained in Ω,
with locally finite volume and finite perimeter. Moreover, the upper bound on
the energy and assumption (3.3) imply an upper bound on

∫

En

|x| dx ,

26 Remember that they are not necessarily equal.
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Figure 5. The sets E∞, E′ and En in the proof of Proposition 5.5.

which, by a standard argument, implies that En converge to E∞ in Y . Finally,
convergence in Y implies the convergence of volume, and therefore E∞ belongs
to Yv.

Step 2: semicontinuity. Since V (E) is clearly lower semicontinuous in E, it
is enough to prove that also F ′(E) is lower semicontinuous in E, namely that
lim inf F ′(En) ≥ F ′(E∞) for every sequence of sets En which converge to E∞

in Y . Using Lemma 5.2 we construct a finite perimeter set E′ in R
3 with the

following properties: (a) E′ is contained in R
3 \ Ω; (b) the intersection of the

essential boundary ∂E′ and the boundary of the container Ω agrees with S \Σc
∞

(see Fig. 5a).
It is then easy to check that (see Fig. 5b)

|∂(En ∪ E′)| − |∂(E∞ ∪ E′)| = |Σf
n| − |Σf

∞| − |Σc
∞△Σc

n|
and therefore, taking into account that |σ| ≤ 1,

F
′(En) − F

′(E∞) = |Σf
n| − |Σf

∞| −
∫

Σc
n\Σ

c
∞

σ +

∫

Σc
∞
\Σc

n

σ

≥ |∂(En ∪ E′)| − |∂(E∞ ∪ E′)| . (5.24)

We then conclude using the lower semicontinuity in E of the perimeter |∂E|. �

We consider now sequences of functions σn : S → [−1, 1] and ρn : Ω → [0,+∞)
and assume that all σn satisfy |σn| ≤ 1− δ a.e. for some fixed δ > 0 and converge
in the weak* topology of L∞(S) to some limit σ∞, and that all ρn satisfy the
growth condition (3.3) and converge uniformly on compact sets to some limit
ρ∞. Then we define the functionals Fn, F ′

n and Vn as in (5.23), with σ and ρ
replaced by σn and ρn.

We also consider a sequence of non-negative real numbers vn converging to
some v∞, and denote by Yn the class of all sets E in Y with volume |E| = vn.

5.6. Theorem. For every integer n, let En be a minimizer of Fn on Yn. Then,
upon extraction of a suitable subsequence (not relabelled), the following state-
ments hold:

(i) the sets En converge in Y to a set E∞ ∈ Y∞;

(ii) E∞ minimizes F∞ on Y∞, and Fn(En) converge to F∞(E∞);

(iii) the contact surfaces Σc
n converge to Σc

∞ in X , and |Σc
n| → |Σc

∞|;
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(iv) Vn(En) → V (E∞) and |Σf
n| → |Σf

∞|.
Proof. Statements (i) and (ii) are direct consequences of the fact that the re-
strictions of the functionals Fn to Yn are equicoercive and Γ-converge to the
restriction of F∞ to Y∞.27 The proof of this fact is divided in Steps 1-3.

Step 1: (equicoercivity) every sequence of sets En ∈ Yn with uniformly bounded
energies Fn(En) admits a subsequence which converges in Y to a set E∞ ∈ Y∞.
The proof is the same as Step 1 in the proof of Proposition 5.5.

Step 2: (lower-bound inequality) for every sequence of sets En which con-
verge to E∞ in Y there holds lim inf Fn(En) ≥ F∞(E∞). Indeed, since
lim inf Vn(En) ≥ V∞(E∞) by Fatou’s lemma, it only remains to show that
lim inf F ′

n(En) ≥ F ′
∞(E∞). The proof is a modification of Step 2 in the proof of

Proposition 5.5: having defined E′ in the same way, we obtain that (see (5.24))

F
′
n(En) − F

′
∞(E∞)

= |Σf
n| − |Σf

∞| −
∫

Σc
n\Σ

c
∞

σn +

∫

Σc
∞
\Σc

n

σn +

∫

Σc
∞

σ∞ − σn

≥ |∂(En ∪ E′)| − |∂(E∞ ∪ E′)| +
∫

Σc
∞

σ∞ − σn . (5.25)

We conclude the proof using the semicontinuity in E of the perimeter |∂E| and
the fact that the integral in the last line of formula (5.25) converges to 0 because
σn converges to σ∞ in the weak* topology of L∞(S).

Step 3: (upper-bound inequality) every set E∞ ∈ Y∞ can be approximated by a
sequence of sets En ∈ Yn so that Fn(En) converges to F∞(E∞). Indeed the sets
En can be obtained by perturbing E∞ away from S in order to meet the volume
constraint |En| = vn; for this purpose one can use for example the deformations
Φλ defined in §3.3 and the estimates in Proposition 5.3 (we omit the details).

Step 4: proof of statement (iii). We already know that for an arbitrary sequence
En converging to E∞ in Y there holds

lim inf F
′
n(En) ≥ F

′
∞(E∞) and lim inf Vn(En) ≥ V∞(E∞) .

It follows immediately that if Fn(En) converges to F∞(E∞)—which is the case
when the sets En minimize Fn on Yn—then Vn(En) converges to V∞(E∞) and
F ′

n(En) converges to F ′
∞(E∞).

On the other hand, using the fact that |σn| ≤ 1−δ for every n, we can sharpen
inequality (5.25) as follows:

F
′
n(En) − F

′
∞(E∞)

≥ |∂(En ∪ E′)| − |∂(E∞ ∪ E′)| + δ|Σc
n△Σc

∞| +
∫

Σc
∞

σ∞ − σn ,

27 For the definition and basic properties of Γ-convergence, see for instance [1]; for a more
detailed treatment see [5, 9].
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and passing to the limit we get

0 ≥ δ lim sup
n→+∞

|Σc
n△Σc

∞| ,

which means that Σc
n converges to Σc

∞ in X . In particular |Σc
n| → |Σc

∞|.
Step 5: proof of statement (iv). We know from the previous step that F ′

n(En)
converges to F ′

∞(E∞), while the convergence of Σc
n to Σc

∞ in X implies

lim
n→+∞

∫

Σc
n

σn =

∫

Σc
∞

σ∞ .

Hence

lim
n→+∞

|Σf
n| = lim

n→+∞

[
F

′
n(En) +

∫

Σc
n

σn

]
= F

′
∞(E∞) +

∫

Σc
∞

σ∞ = |Σf
∞| . �

Using Theorem 5.6 and the next lemma we can prove that limits of stable sets
are stable (Proposition 5.8).

5.7. Lemma. Let be given a set E0 ∈ Y and denote by Y0 the class of all sets
E ∈ Y with |E| = |E0|. Then

(i) E0 is stable at time t (see §3.7) if and only if it minimizes on Y0 the
functional F0 given by formula (5.23) with ρ and σ replaced by ρ0(x) :=
ρ(t, x) and

σ0(x) :=

{
cos θrec for x ∈ Σc

0

cos θadv for x ∈ S \ Σc
0.

(ii) E0 is stable at time t if it minimizes on Y0 any functional F of the form
(5.23) with ρ(x) := ρ(t, x) and cos θadv ≤ σ(x) ≤ cos θrec.

Proof. Statement (i) follows from the straightforward identity

E (t, E) + D(E,E0) = F0(E) + µ|Σc
0| .

Statement (ii) is an immediate consequence of statement (i) and the following
claim: if E0 minimizes F on Y0, then it minimizes F0 on Y0. To prove the claim
it suffices to show that for every set E in Y0 there holds

F0(E) − F0(E0) ≥ F (E) − F (E0) ,

which in turn reduces to∫

Σc
0
\Σc

σ0 −
∫

Σc\Σc
0

σ0 ≥
∫

Σc
0
\Σc

σ −
∫

Σc\Σc
0

σ .

This is true because σ0 = cos θrec ≥ σ in Σc
0, and σ0 = cos θadv ≤ σ in S \Σc

0. �

5.8. Proposition. For every positive integer n, let En ∈ Y be a set with volume
vn ∈ [vm, vM ]. Assume that each En is stable at a certain time tn ∈ [0, T ]
(see §3.7), and that tn and vn converge to t∞ and v∞, respectively.

Then, possibly passing to a subsequence, the sets En converge to some limit
E∞ ∈ Y . Moreover



Quasistatic evolution of sessile drops 37

(i) Σc
n → Σc

∞ in X , |Σf
n| → |Σf

∞|, and V (tn, En) → V (t∞, E∞);

(ii) E (tn, En) → E (t∞, E∞);

(iii) E∞ has volume v∞ and is stable at time t∞.

Proof. For every n, let Yn be the class of all sets E ∈ Y with volume vn, and
define the functional Fn by formula (5.23) with σ and ρ replaced by

σn(x) :=

{
cos θrec for x ∈ Σc

n

cos θadv for x ∈ S \ Σc
n,

and ρn(x) := ρ(tn, x) for every x ∈ Ω.
By Lemma 5.7(i), the stability of En means that En minimizes Fn on Yn.
Since ρ is Lipschitz, the functions ρn converge uniformly on bounded sets to

ρ∞(x) := ρ(tn, x). Moreover, passing to a suitable subsequence, we can assume
that the functions σn converge weakly* in L∞(S) to some function σ∞. Therefore,
if we denote by F∞ the functional given by formula (5.23) with σ, ρ replaced by
σ∞, ρ∞, then Theorem 5.6 implies that the sets En converge up to subsequences
to a minimizer E∞ of F∞ on Y∞, and that all convergences in statement (i)
hold.

Statement (ii) follows immediately from (i).

Concerning statement (iii), the stability of E∞ follows by Lemma 5.7(ii) and
the fact that E∞ minimizes F∞ on Y∞ (σ∞ satisfies cos θadv ≤ σ∞ ≤ cos θrec

because the functions σn do so). �

Let F be the functional defined in (5.23); the next results show that, under
suitable assumptions on the functions ρ, σ and g, every set E ∈ Y which mini-
mizes F among all sets with the same volume must be a subgraph (in the sense
of §3.2). The key tool for the proof is the following notion of volume-preserving
rearrangement for sets in Y .

5.9. Vertical rearrangement. For every y ∈ U , let Ry be the vertical line in
R

3 passing through the point (y, 0), namely the set of all (y, t) with t ∈ R. Given
a set E ∈ Y , the vertical rearrangement of E is

Ê :=
{
x = (y, t) ∈ U × (0,+∞) : g(y) < t < u(y)

}
,

where
u(y) := g(y) + H

1(E ∩ Ry) for every y ∈ U . (5.26)

Thus Ê is the unique (up to negligible subsets) subgraph in Ω with the property
that the length of Ê ∩ Ry is equal to the length of E ∩ Ry for a.e. y ∈ U (see
Fig. 6). Therefore E is a subgraph if and only if it agrees with Ê.

5.10. Proposition. Take F ′ and V as in (5.23). The following statements hold
for every set E ∈ Y :

(i) Ê has finite perimeter in R
3 and therefore it belongs to Y ;

(ii) E and Ê have the same volume;

(iii) if ρ(x) is increasing in the variable x3 then V (Ê) ≤ V (E);
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Figure 6. A set E and its vertical rearrangement Ê.

(iv) if σ is non-negative and satisfies

|∇g| ≤ σ/
√

1 − σ2 a.e. on U ,28 (5.27)

then F ′(Ê) ≤ F ′(E); moreover the equality holds if and only if E is a
subgraph.

Sketch of proof. A standard computation shows that the function u in (5.26)
is Borel measurable and belongs to the space BV (U), and this is enough to
ensure that the set Ê is Borel measurable and has finite perimeter in R

3, and
statement (i) is proved.

Statement (ii) follows from the definition of Ê and Fubini’s theorem.

Statement (iii) can be obtained using Fubini’s theorem and the following one-
dimensional result: for every set A with finite length contained in the half-line
R

+ := [0,+∞), let Â := (0, |A|); then for every increasing function r on R
+ there

holds ∫

bA
r(t) dt ≤

∫

A
r(t) dt . (5.28)

To prove this inequality it suffices to apply to the integral at the left-hand side
of (5.28) the change of variable t = ϕ(τ) where ϕ : R

+ → R
+ is the Lipschitz

function defined by ϕ(0) := 0 and ϕ̇ := 1A.
Note that the same argument implies that

∫

E
g(x) dx =

∫

bE
g(x) dx (5.29)

for every bounded function g(x) which is constant with respect to x3.

We now prove statement (iv). Given a set E ∈ Y we write Σ := Σ̂c \ Σc, and
denote by η the restriction to S of the inner normal of ∂Ω, and by ηh := (η1, η2, 0)
its horizontal component. Statement (iv) is a direct consequence of the following
claim: For every E there holds

|Σf | ≥ |Σ̂f | −
∫

Σ
|ηh| , (5.30)

and we have equality if and only if E agrees with Ê.

28 The right-hand side of this inequality is set equal to ±∞ for σ = ±1.
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Indeed assumption (5.27) can be re-written as |ηh| ≤ σ a.e. in S. Therefore
(5.30) and the fact that Σ̂c = Σc ∪ Σ (see Fig. 6) yield

F
′(Ê) = |Σf | −

∫

Σc

σ ≥ |Σ̂f | −
( ∫

Σc

σ +

∫

Σ
|ηh|

)

≥ |Σ̂f | −
∫

bΣc

σ = F
′(E) ,

and the inequality in the first line is an equality only if E = Ê.

It remains to prove the claim. To this end, we first establish the auxiliary
formulas (5.31) and (5.32). Let φ(x) be a vector-field of class C1 on R

3 which is
constant with respect to x3 and assume that E is bounded. Then the divergence
theorem and identity (5.29) yield

∫

Σf

φ · ηf =

∫

E
divφ +

∫

Σc

φ · η =

∫

bE
divφ +

∫

bΣc

φ · η −
∫

Σ
φ · η ,

and by applying once again the divergence theorem we obtain

∫

Σf

φ · ηf =

∫

bΣf

φ · η̂f −
∫

Σ
φ · η . (5.31)

Then identity (5.31) can be extended by approximation to every set E ∈ Y and
every bounded Borel vector-field φ on R

3 which is constant with respect to x3.
Let ϕ(x) be a bounded function on R

3 which is constant with respect to x3.
Then

∫

Σf

ϕ|ηf
3 | =

∫

U
#(Σf ∩ Ry) ϕ(y) dy

≥
∫

U
#(Σ̂f ∩ Ry) ϕ(y) dy =

∫

bΣf

ϕη̂f
3 , (5.32)

where the first equality follows by applying the coarea formula to the vertical
projection p : Σf → U ,29 the last equality is obtained in the same way (note

that η̂f
3 is non-negative a.e. on Σ̂f ), and the inequality follows by the fact that

Σ̂f ∩ Ry contains at most one point for a.e. y ∈ U , and is empty when Σf ∩ Ry

is empty (see Fig. 6). This argument shows, in addition, that if ϕ is a.e. positive
and the inequality in (5.32) is an equality, then Σf ∩ Ry contains at most one
point for a.e. y ∈ U , that is, E = Ê.

Consider now a Borel vector-field φ(x) which is constant with respect to x3

and satisfies |φ(x)| ≤ 1 everywhere and φ(x) = η̂f (x) for a.e. x ∈ Σ̂f (such a
vector-field exists because Ê is a subgraph). Then, denoting by φh the horizontal

29 Thus the Jacobian determinant of p is |ηf
3 |.
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component of φ,

|Σf | ≥
∫

Σf

φh · ηf +

∫

Σf

φ3|ηf
3 |

≥
∫

bΣf

φh · η̂f −
∫

Σ
φh · η +

∫

bΣf

φ3η̂
f
3

≥
∫

bΣf

φ · η̂f −
∫

Σ
φh · η ≥ |Σ̂f | −

∫

Σ
|ηh| ,

and (5.30) is proved (the second inequality follows by applying (5.31) with φh

instead of φ, and (5.32) with φ3 instead of ϕ, and the last inequality follows from
the estimate φh · η = φh · ηh ≤ |ηh|).

Moreover, if equality holds in (5.30), then equality must hold in particular in
the second of the chain of inequalities above, and therefore also in (5.32) with ϕ
replaced by φ3. As pointed out above, this implies E = Ê (note that φ3 agrees
with the third component of η̂f and therefore is a.e. positive). �

The following statement is a straightforward consequence of Proposition 5.10.

5.11. Corollary. Given a positive number v, let Yv be the class of all sets E ∈ Y

with volume |E| = v. If ρ(x) is increasing in the variable x3 and condition (5.27)
holds, then every minimizer of F on Yv is a subgraph.

5.12. Remark. (i) Since t/
√

1 − t2 is increasing in t, condition (5.27) is verified
whenever

Lip(g) ≤ m/
√

1 − m2 , (5.33)

where m is the essential infimum of σ.

(ii) An immediate consequence of Corollary 5.11 is the following: if the function
ρ(t, x) in the definition of the capillary energy E is increasing in the variable x3

and (3.16) is verified, then every set E ∈ Y which is stable (in the sense of §3.7)
is a subgraph. Indeed “stable” means that E minimizes the functional F with

σ(x) :=

{
cos θrec if x ∈ Σc

cos θadv if x ∈ S \ Σc,

and for this choice of σ, inequality (5.33) reduces to (3.16).

(iii) Assumption (5.27) admits a nice geometric interpretation, which shows
that it is in some sense natural (and optimal). Assume that E is sufficiently
regular, and for every point of the contact line let ϑ be the angle between the
vertical direction e3 := (0, 0, 1) and the normal ηf to the free surface: then
ϑ ≤ α + θ where α is the angle between e3 and the inner normal η of the bottom
of the container, and θ is the contact angle, that is, the angle between η and ηf .
Now, if E minimizes F ′ in Yv then θ must satisfy a suitable variant of Young’s
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law, namely cos θ = σ, and therefore

cos ϑ ≥ cos(α + θ) = cos α sin θ (cot θ − tanα)

= cos α sin θ
[
σ/

√
1 − σ2 − |∇g|

]
.

Thus (5.27) is the weakest condition we can impose on σ and g to ensure that
cos ϑ ≥ 0 (that is, ϑ ≤ π/2) at every point of the contact line, which is clearly
necessary if E were to be a subgraph. And we have just shown above that it is
also sufficient.

The last result of this section provides an effective way to check if a given map
t 7→ E(t) is a solution, and will be used in the examples in Section 6. We take
the function w as in §3.7, and for every t ∈ [0, T ] we denote by Yw(t) the class of
all sets E ∈ Y with volume |E| = w(t).

5.13. Proposition. Consider a map t 7→ E(t) which is left-continuous at every
t ∈ [0, T ] and satisfies E(t) ∈ Yw(t). Assume moreover that

(i) E(t) ∈ argmin
{
E (t, E) + D(E(0), E) : E ∈ Yw(t)

}
for every t ∈ [0, T ];

(ii) Diss(E(t); [0, T ]) = D(E(0), E(T )).

Then the map E(t) is a solution in the sense of §3.7.

Proof. We first prove that for every t and t′ such that 0 ≤ t′ ≤ t ≤ T there
holds

E(t) ∈ argmin
{
E (t, E) + D(E(t′), E) : E ∈ Yw(t)

}
. (5.34)

Take indeed an arbitrary set E ∈ Yw(t). Then assumption (i) implies

E (t, E(t)) + D(E(0), E(t)) ≤ E (t, E) + D(E(0), E) ,

while assumption (ii) implies

D(E(0), E(t)) = D(E(0), E(t′)) + D(E(t′), E(t)) ,

and therefore

E (t, E(t)) + D(E(t′), E(t)) ≤ E (t, E(t)) + D(E(0), E(t)) − D(E(0), E(t′))

≤ E (t, E) + D(E(0), E) − D(E(0), E(t′))

≤ E (t, E) + D(E(t′), E) ,

where the last inequality follows by the triangle inequality for the distance D .
Now, for every δ > 0 and every t ∈ [0, T ], set Eδ(t) := E(tδ) where tδ is the

supremum of all nδ ≤ t with n integer. Then (5.34) implies that the map Eδ

is one of the discretized solutions with initial configuration E(0) defined in §4.1.
Moreover Eδ(t) converge to E(t) as δ → 0 for every t because of the continuity
assumptions on E(t), and therefore statement (ix) of Theorem 4.3 implies that
E(t) is a solution. �
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S(a,r,θ)

 x1

 x2

a
r

θ

R

Figure 7. The circular segment S(a, r, θ).

6. Examples

In this section we present a few concrete examples of solutions, illustrating
strengths and weaknesses of the approach discussed in the paper. It should be
underlined that the proofs of the various claims concerning these examples are
only briefly sketched.

Throughout this section, to prove that a certain map t 7→ E(t) is a solution in
the sense of §3.7, we use Proposition 5.13. Note that this statement gives slightly
more, namely that E(t) can be obtained as limit of the discretized solutions
defined in §4.1.

6.1. Notation. For the sake of simplicity, the examples in this section are given
in two space dimensions only,30 even though some of them (indeed all except
Example 6.6) can be easily extended to three dimensions. We write x = (x1, x2)
for points in R

2, and refer to the x2-axis as the “vertical axis”.
We also assume that there is no bulk contribution V in the capillary energy,

that is, the potential ρ vanishes. It is then convenient to renormalize the capillary
energy setting σLV = 1; that is,

E (E) = |Σf | − cos θY |Σc| .
Given a set E0, it is easily checked (see the proof of statement (i) of Lemma 5.7)
that minimizing E (E) + D(E,E0) on the class Yv of all sets E ∈ Y with area
|E| = v is equivalent to minimizing

F0(E) := |Σf | −
∫

Σc

σ0 , σ0(x) :=

{
cos θrec for x ∈ Σc

0

cos θadv for x ∈ S \ Σc
0.

(6.1)

6.2. Circular segments. For every a ∈ R, r ∈ (0,+∞) and θ ∈ (0, π), we denote
by S(a, r, θ) the (open) circular segment described in Fig. 7. In the following the
term “circular segment” always refers to circular segments of this type.

If we consider as container the upper half-plane {x ∈ R
2 : x2 > 0}, the contact

line of S = S(a, r, θ) has length 2r and the contact angle is equal to θ at both
contact points. Thus we refer to S as the circular segment centered at a with
contact length 2r and contact angle θ.

30 We therefore use the two dimensional terminology and write “area”, “free line”, “contact
points” instead of “volume”, “free surface”, “contact line”. The notation, however, remains
unchanged.
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θadv θrec

(a) (b) (c)

E(t1)

E0

E(1) E(1)

E(t2) E(t1)

E(1)

E(2)r0
E0

Figure 8. The solutions in Example 6.3 (left and center) and
Example 6.4 (right).

The free line of S is an arc of radius R = r/ sin θ and length |Σf | = r f(θ)
while the area is |S| = r2g(θ), where

f(θ) :=
2θ

sin θ
and g(θ) :=

θ − sin θ cos θ

sin2θ
. (6.2)

6.3. Example. Let the container Ω be the upper half-plane as before. We choose
an initial configuration of the form E0 = S(0, r0, θ0) with r0 ∈ (0,+∞) and θ0 ∈
(θrec, θadv), and consider the area constraint |E(t)| = w(t) where w is a function
of class C1 on the time interval [0, 2] satisfying the following assumptions:

(a) w is strictly increasing in [0, 1] and strictly decreasing in [1, 2];
(b) w(0) = |E0| = r2

0g(θ0);
(c) w(1) = r2

1g(θadv) for some r1 with r1 > r0;
(d) w(2) = r2

2g(θrec) for some r2 with r2 < r1.

Note that the assumptions (c) and (d) and the continuity of w imply that there
exist t1 ∈ (0, 1) and t2 ∈ (1, 2) such that w(t1) = r2

0g(θadv) and w(t2) = r2
1g(θrec).

A solution with initial configuration E0 is given as follows: E(t) is a circular
segment centered at 0 for all t; as t increases from 0 to t1 the contact line remains
fixed while the contact angle increases from θ0 to the largest admissible value θadv;
as t increases from t1 to 1 the contact line grows while the contact angle remains
fixed (= θadv), see Fig. 8a; as t increases from 1 to t2 the contact line remains
fixed while the contact angle decreases from θadv to the smallest admissible value
θrec; as t increases from t2 to 2 the contact line shrinks while the contact angle
remains fixed (= θrec), see Fig. 8b.

In other words E(t) = S(0, r(t), θ(t)) where31

r(t) :=






r0

(w(t)/g(θadv))
1/2

r1

(w(t)/g(θrec))
1/2

θ(t) :=






g−1(w(t)/r2
0) for 0 ≤ t ≤ t1

θadv for t1 < t ≤ 1

g−1(w(t)/r2
1) for 1 < t ≤ t2

θrec for t2 < t ≤ 2.

(6.3)

31 The function g is smooth and has strictly positive derivative on the interval [0, π); here
and in the following we denote by g−1 the inverse of its restriction to this interval.
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Proof. It is easy to check that E(t) satisfies the flow rules in §2.10, but unfor-
tunately these conditions are necessary but not sufficient to be a solution. To
prove that E(t) is a solution on the time interval [0, 1] we will use instead Propo-
sition 5.13. In the same way it can be proved (we omit the details) that E(t)
is a solution also on the time interval [1, 2], and then the proof is completed by
Remark 3.8(iii).

Let us check that the assumptions of Proposition 5.13 are verified. The con-
tinuity of E(t) with respect to t is obvious. Assumption (ii) can be re-written
as

Var(Σc(t); [0, 1]) = |Σc(0)△Σc(1)|
and is clearly verified whenever the set-valued map Σc(t) is either increasing or
decreasing on the interval [0, 1], as in this case.

To check assumption (i) we have to show that E(t) minimizes the functional
F0 defined in (6.1) on the class Yw(t) for every t (see §6.1). This is achieved
by showing that if E is a minimizer of F0 in Yw(t) and E′ is the Steiner sym-
metrization of E with respect to the vertical axis (see for instance [6, §9.2]),
then

(a) E′ is a minimizer of F0 on Yw(t);
(b) E′ agrees with E(t).

Claim (a) follows by the fact that Steiner symmetrization preserves the area
and does not increase the value of F0, the latter assertion being an (almost)
straightforward consequence of well-known properties of Steiner symmetrization.

To prove (b) we first show that E′ is a circular segment (centered at 0). Since
E′ minimizes F0, its free line is a smooth curve with constant curvature. Hence
the connected components of E′ are either circular segments or discs, all with
equal radii and centers on the vertical axis. In particular, at most one of the
connected components is a circular segment. Assuming by contradiction that
there is one which is a disc, we can move it till it touches the wall of the container,
obtaining, therefore, a new minimizer which does not satisfy Young’s law, and
this is impossible.

Thus E′ is of the form S(0, r, θ), and then the stability conditions associated
with the minimization of F0 yield the following: if r > r0 then θ = θadv; if r < r0

then θ = θrec. Using these implications and the fact that E′ and E(t) have the
same area one readily obtains that they are the same set. �

6.4. Example. Take Ω, E0, and w(t) as in the previous example; we want to
show that there are infinitely many solutions with initial configuration E0 besides
the one given there.

We focus for simplicity on the time interval [0, 1], and for every t we consider

a horizontal translation Ẽ(t) of E(t) chosen in such way that the map Σ̃c(t)

is increasing. In other words Σ̃c(t) = S(a(t), r(t), θ(t)) where r(t) and θ(t) are
taken as in (6.3) and a(t) satisfies

|a(t′) − a(t)| ≤ r(t′) − r(t) for 0 ≤ t ≤ t′ ≤ 1,
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or, equivalently, a is a Lipschitz function on [0, 1] which satisfies |ȧ| ≤ ṙ a.e.32

Then Ẽ(t) is a solution with initial configuration E0.

Proof. We apply Proposition 5.13 as in the proof of Example 6.3. To this end,
it suffices to notice that the map Σ̃c(t) is increasing by construction, and Ẽ(t)
minimizes F0 in Yw(t) for every t because it is obtained from E(t) by a horizontal
translation that preserves the value of F0. �

6.5. Remark. (i) It seems plausible that every solution with initial configuration
E0 must agree with E(t) up to time t1. This is certainly true for all solutions
obtained as limit of discretized solutions via Theorem 4.3.

(ii) The setting and the initial configuration E0 described in Example 6.4
present an evident axial symmetry which is not preserved by the solutions given
there. In this case, the lack of symmetry of solutions is related to the fact that
distance in space of contact surfaces X is defined in terms of the L1 norm, which
is convex but (very much) not strictly convex.

(iii) Examples 6.3 and 6.4 suggest the following question: are there axially
symmetric settings and initial configurations such that no solution is symmet-
ric? We can easily force symmetry-breaking by adding a bulk contribution V
to the capillary energy, with V given by a suitably chosen symmetric and time-
dependent potential ρ.

6.6. Example. In this example the parameters related to the capillary energy
and the dissipation must be carefully chosen. We require that33

θadv =
π

2
and θrec ∈ (θ∗, θ

∗) , (6.4)

where the angles θ∗, θ
∗ ∈ (0, π/2) are defined by the relations

cos θ∗ =
π

4
(2 −

√
2) and θ∗ − sin θ∗ cos θ∗ =

π

4
(6.5)

(thus θ∗ = 1.093 ± 10−3 and θ∗ = 1.155 ± 10−3).
The container is the upward half-band Ω := (−s, s) × (0,+∞). Through this

paragraph we denote by Q(r) the open quarter-disc contained in Ω with center
in the lower left corner of the container, (s, 0), and radius r (see Fig. 9b).

We consider the initial configuration

E0 := S(0, r0, θrec) with r0 < s/3,

and a function w(t) on the time interval [0, 1] such that

(a) w is of class C1 and strictly increasing;
(b) w(0) = |E0| = r2

0g(θrec);
(c) w(1) = πr2

0/2.

32 This condition is verified by infinitely many functions a because ṙ > 0 for a.e. t ∈ (t1, 1).
33 Formula (2.19) shows that every choice of θrec and θadv such that 0 < θrec < θadv < π is

compatible with a suitable choice of the physical parameters µ, σLV , . . .
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r0s

E(t1)
E0

θ1
E(t2)

E(t1 )+

E(t2 )+(a) (b) (c) E(t2)

E(t1)
θrecθadv

Figure 9. The solution E(t) in Example 6.6.

A solution with initial configuration E0 is as follows: as t increases from 0 to
a certain critical time t1 ∈ (0, 1), the set E(t) is a circular segment centered at
0 with the same contact line as E0, and contact angle increasing from θrec to a
certain θ1 ∈ (θrec, π/2), see Fig. 9a;34 at t = t1 a discontinuity occurs, and, as t
increases from t1 to 1, the set E(t) is a quarter-disc with increasing radius, see
Fig. 9b. More precisely

E(t) =

{
S(0, r0, θ(t)) with θ(t) := g−1(w(t)/r2

0) for 0 ≤ t ≤ t1
Q(r(t)) with r(t) := 2

√
w(t)/π for t1 < t ≤ 1.

(6.6)

Remark. If we keep increasing w(t) after the time t = 1, it seems plausible that
the set E(t) remains a quarter-disc for a while, and then another discontinuity
occurs at a certain time t2, after which E(t) evolves as shown in Fig. 9c. We do
not attempt a more precise description of this solution (nor a proof).

Proof. We use Proposition 5.13 to prove that E(t) is a solution in the time
interval [0, 1] provided that t1 is carefully chosen. The map Σc(t) is indeed left-
continuous, and it is easy to check that assumption (ii) of Proposition 5.13 is
verified. To verify assumption (i) we must show that the set E(t) minimizes F0

on Yw(t) for every t, where F0 is defined as in (6.1), that is

F0(E) = |Σf | − cos θrec|Σc ∩ Σc
0| (6.7)

(recall that θadv = π/2). The proof of this claim is divided into four steps.

Step 1. We recall a known fact: a set E which minimizes the quantity |Σf | in
the class Yv is a quarter-disc of the form Q(r), or its reflection with respect to
the vertical axis, when v < 4s2/π.

Let indeed Ei, i = 1, . . . , n, be the connected components of E and denote
by vi the corresponding area. Since the free line has constant curvature and the
contact angle is π/2 at every contact point, we have the following possibilities:

(a) Ei is a disc and |Σf
i | =

√
4πvi; (b) Ei is a half-disc and |Σf

i | =
√

2πvi; (c) Ei

is a quarter-disc and |Σf
i | =

√
πvi; (d) Ei is a rectangle of the form (−s, s)×(0, h)

and |Σf
i | = 2s.

Thus |Σf | is a concave function of the variables v1, . . . , vn and the minimality of
E implies that v1, . . . , vn minimize f on the simplex T defined by the constraints
v1 + · · · + vn = v and vi > 0 for every i. But, since f is strictly convex on T ,

34 The values of t1 and θ1 will be made more precise in the proof below.
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this is impossible unless n = 1. Thus E has only one connected component,
and then we can easily conclude by comparing the values of |Σf | for the four
configurations.

Step 2. Let E be a minimizer of F0 in Yv with r2
0g(θrec) ≤ v ≤ πr2

0/2. We claim
that E is either a circular segment of the form S(0, r0, θ) with θrec ≤ θ ≤ π/2 or
a quarter-disc of the form Q(r), or the reflection of the latter with respect to the
vertical axis.

Let indeed G be the class of all connected components of E whose contact line
does not intersect Σc

0. Then (6.7) and Step 1 imply that G consists of just one
element, which must be a quarter-disc because v is smaller than πr2

0/2, which is
smaller than 4s2/π (recall that we assumed r0 < s/3).

Let G ′ be the class of all connected components of E whose contact line inter-
sects Σc

0. Because of Young’s law, the contact line Σc of an element of G ′ must
satisfy one of the following: (a) Σc strictly contains Σc

0, (b) Σc is strictly con-
tained in Σc

0, (c) Σc agrees with Σc
0. Note that case (a) can be excluded because

it would imply an area larger than πr2
0/2, while case (b) can be excluded using

a concavity argument similar to that used in Step 1. Hence it remains (c), and
this implies that G ′ contains at most one component of the form S(0, r0, θ), and
θrec ≤ θ ≤ π/2 because of Young’s law.

It remains to exclude the case that both G and G ′ are not empty. Were this
not true, E would be of the form

E = S(0, r0, θ) ∪ Q(r)

for some θ ∈ [θrec, π/2] and r = r0/ sin θ (because the free line of E has constant
curvature). Hence

|E| = r2
0

[
g(θ) +

π

4 sin2θ

]
,

but it can be shown that the right-hand side of this equality is larger than πr2
0/2

for every θ, contradicting the assumption |E| = v ≤ πr2
0/2.

Step 3. Let us compare the values of F0 for the circular segment S = S(0, r0, θ)
with θ ∈ [θrec, π/2] and for the quarter-disc Q = Q(r), where r is taken so that
the area of Q is the same as that of S, that is πr2/4 = r2

0g(θ). By (6.7) we have

F0(S) = r0(f(θ) − 2 cos θrec) and F0(Q) = r0

√
π g(θ) ,

and therefore F0(S) < F0(Q) if and only if

h(θ) < 0 where h(θ) := (f(θ) − 2 cos θrec)
2 − π g(θ) .

Now, the upper and lower bounds on θrec in (6.4) are equivalent to h(θrec) < 0
and h(π/2) > 0, respectively, and since the function h is strictly convex on the
interval [θrec, π/2], there exists a critical angle θ1 in the interior of this interval
such that h(θ) < 0 if and only if θ < θ1.

Taking into account the previous step and the fact that the function g is strictly
increasing, we conclude that a minimizer E of F0 on the class Yv is a circular
segment of the form S(0, r0, θ) when v satisfies r2

0g(θrec) ≤ v < r2
0g(θ1), and is a
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r0s
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E(t2 )+(a) (b)

E(t1)
E(t2)

E0

E(t2)

Figure 10. A physically plausible solution for Example 6.6.

quarter-disc of the form Q(r), or its reflection, when r2
0g(θ1) < v ≤ πr2

0/2; clearly
both solutions coexist for v = r2

0g(θ1).

Step 4. From Step 3 we immediately infer that E(t) is a minimizer of F0

on the class Yw(t) for every t ∈ [0, 1] provided that we have chosen t1 so that

w(t1) = r2
0g(θ1). �

6.7. Remark. (i) The solution E(t) in the previous example does not preserve
the axial symmetry of the setting and of the initial configuration E0. Therefore
a different solution with initial configuration E0 can be obtained by reflecting
E(t) with respect to the vertical axis. It seems plausible that these are the only
solutions with initial configuration E0, at least for 0 ≤ t ≤ 1.35

(ii) Choose the setting in Examples 6.3 and 6.6 so that we have the same
initial configuration and the same prescribed area w(t) at every time, and only
the walls of the containers are different far away from the initial contact region
Σc

0. Then the solutions described in these examples agree up to the moment
when the difference between the geometry of the containers starts playing a role.
However, this happens when the drop is still far away from the vertical part of
the wall, which seems rather unphysical.

A more plausible behaviour would be the one sketched in Fig. 10: at first the
contact line is fixed while the contact angle grows until it reaches the largest
admissible value θadv = π/2 (at t = t1 with t1 s.t. w(t1) = r2

0g(π/2)). Then
the contact angle remains constant (= π/2) and the contact line grows until the
contact points reach the vertical part of the wall (at t = t2 with t2 s.t. w(t2) =
πs2/2). At that moment a discontinuity occurs, and the drop becomes a rectangle
and remains a rectangle at later times.

This solution is only locally stable, in the sense that E(t) minimizes E (t, E) +
D(E,E(t)) among all sets E with |E| = w(t) in a neighbourhood of E(t), but
not necessarily among all sets E in Yw(t).

Moreover, this solution violates the energy-dissipation balance. More precisely,
the energy instantly dissipated at the discontinuity t2 is strictly larger than the
one prescribed by the energy-dissipation balance: (π − 2)s + π

2 s cos θy instead of
π
2 s cos θy. This extra dissipation is associated with time scales much faster than

35 It is not difficult to show that every solution obtained as limit of discretized solutions is
of this type; as usual the problem is that we cannot exclude the existence of other solutions.
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those characterizing the slowly changing t 7→ w(t), which are not accounted for
by the quasistatic dissipation rate R.

6.8. Example. We conclude this section with an example of purely mathematical
interest. Let the container Ω be the upper half-plane as in Example 6.3, and
choose θrec and θadv so that

θrec < π/2 < θadv , g(θadv) > π . (6.8)

Then we take E0 of the form

E0 := S(d0, r0, θ0) ∪ S(−d0, r0, π − θ0) (6.9)

with r0, d0 ∈ (0,+∞) and θ0 ∈ (π/2, π) chosen so that

sin θ0 > max

{√
π

g(θadv)
,

2π

π + 2 cos θrec

}
, d0 > r0

(
1 +

1

sin θ0

)
. (6.10)

Finally, we denote by Ẽ0 the reflection of E0 with respect to the vertical axis,
that is, the union of S(d0, r0, π − θ0) and S(−d0, r0, θ0).

Then E0 6= Ẽ0 because θ0 6= π/2, and

|E0| = |Ẽ0| =
πr2

0

sin2θ0
, |Σf

0 | = |Σ̃f
0 | =

2πr0

sin θ0
. (6.11)

Moreover both E0 and Ẽ0 are stable, and every map E(t) of the form

E(t) :=

{
E0 if t ∈ A

Ẽ0 if t ∈ [0, 1] \ A,
(6.12)

where A is a Borel subset of [0, 1] which contains 0, is a solution with initial
configuration E0 and constant area |E(t)| = |E0|.

Proof. We apply Proposition 5.13. Since Ẽ0 is the reflection of E0 with respect
to to the vertical axis and has the same contact line as E0, it suffices to show that
E0 minimizes the functional F0 defined in (6.1) in the class Yv where v := |E0|.

This will be achieved by showing that if E is a minimizer of F0 on Yv, then,
up to a modification which preserves the value of F0, it agrees with E0 or Ẽ0.
The proof of this claim is divided into several steps.

Step 1. Let E+ be the union of all connected components of E whose contact
line intersects the right component of Σc

0, namely the interval [d0 − r0, d0 + r0],
and let E− := E \ E+. We modify E by replacing E+ and E− by their Steiner
symmetrizations with respect to the vertical lines x1 = d0 and x1 = −d0. Then,
arguing as in the proof of Example 6.3, we can show that the modified set, also
denoted by E, is still a minimizer of F0, and its components E+ and E− are
circular segments centered respectively at d0 and −d0.

36

Thus E± are of the form S(±d0, r±, θ±).

36 To make this argument work it is essential that the contact line of E+ does not intersect
the left component of Σc

0.
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Step 2: we have r± ≤ r0, and if r+ (resp., r−) is equal to r0 then θ+ (resp., θ−)
is strictly smaller than θadv. Assume for instance that r+ > r0. Then Young’s
law implies θ+ = θadv, which leads to the contradiction |E| > |E0|. Indeed

|E| ≥ |E+| ≥ r2
0 g(θadv) >

πr2
0

sin2θ0
= |E0| ,

where the last inequality follows from the first inequality in (6.10), and the equal-
ity follows from (6.11). The same argument proves the rest of the claim.

Step 3: we have either θ+ > π/2 or θ− > π/2. The contrary would lead to
the contradiction |E| < |E0|; indeed

|E| = r2
+ g(θ+) + r2

− g(θ−) ≤ 2r2
0 g(π/2) = πr2

0 < |E0| ,
where the last inequality follows from (6.11).

From now on we assume θ+ > π/2; the other case can be reduced to this one
by reflection. Note that this implies θ+ > θrec, and therefore r+ = r0 by Young’s
law and Step 2.

Step 4: the set E− is not empty. Assume the contrary: by Step 3 and (6.11)
we get

F0(E) = |Σf | − cos θrec|Σc| ≥ πr0 − 2r0 cos θrec ,

F0(E0) = |Σf
0 | − cos θrec|Σc

0| =
2πr0

sin θ0
− 4r0 cos θrec ,

and then the first inequality in (6.10) yields the contradiction F0(E) > F0(E0).

Step 5: we have r− = r0. This follows by a concavity argument similar to the
one used in Step 1 of the proof of Example 6.6: let v+ and v− denote the areas of
E+ and E−. Assume indeed that r− < r0. Then θ− = θrec and one easily checks
that F0(E−) is a strictly concave function of v−. On the other hand, we know
from Step 3 and Step 1 that r+ = r0 and π/2 < θ+ < θadv, and then F0(E+) is
a strictly concave function of v+.37 Thus F0(E) is a strictly concave function of
(v−, v+) with a minimum point in the interior of the segment of all admissible
(v−, v+), and this is impossible.

Step 6. A variant of the concavity argument used in Step 5 yields θ− ≤ π/2.

Step 7. We know from the previous steps that E+ = S(d0, r0, θ+) with θ+ ∈
(π/2, θadv), and E− = S(−d0, r0, θ−) with θ− ∈ [θrec, π/2]. Moreover, the fact
that the free line of E has constant curvature implies r0/ sin θ+ = r0/ sin θ−, and
then θ− = π − θ+. Then the constraint |E| = |E0| implies θ+ = θ0, and this
concludes the proof. �

6.9. Remark. (i) The solution E(t) defined in (6.12) has bounded variation (as
a map from [0, 1] to Y ) if and only if the topological boundary of the set A is
finite.

37 The key point is to show that f(g−1(s)) is strictly concave for s ≥ π/2; this follows by a
lengthy but straightforward computation.
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(ii) In the proof above it has been shown that the sets E0 and Ẽ0 minimize
F0 on Y0. It follows immediately that for every δ > 0 the map

Eδ(t) :=

{
E0 if t ∈ [kδ, kδ + δ) with k even

Ẽ0 if t ∈ [kδ, kδ + δ) with k odd

is a discretized solution in the sense of §4.1. Note that the maps Eδ(t) admit no
subsequence which converge pointwise for every t (and not even for almost every
t), and indeed the variations of these maps (on any bounded interval) tend to
+∞ as δ → 0.

(iii) Obviously, the initial configuration E0 admits also discretized solutions
which converge at every time (for instance Eδ(t) := E0 for every t and every δ).
However, it seems plausible that by adding a suitably chosen, time-dependent
bulk-contribution V to the capillary energy, we can enforce a highly oscillatory
behaviour in all discretized solutions, so that no subsequence can possibly con-
verge pointwise.
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Collection Échelles. Editions Belin, Paris, 2005.

[16] A. DeSimone, L. Fedeli, A. Turco: A phase field approach to wetting and contact angle
hysteresis phenomena. In: IUTAM symposium on variational concepts with applications
to the mechanics of materials (Bochum 2008), pp. 51–63. Edited by K. Hackl. IUTAM
Bookseries, 21. Springer, New York 2010.

[17] A. DeSimone, N. Grunewald, F. Otto: A new model of contact angle hysteresis. Netw.
Heterog. Media 2 (2007), 211–225.

[18] L.C. Evans, R.F. Gariepy: Measure theory and fine properties of functions. Studies in
Advanced Mathematics. CRC Press, Boca Raton, 1992.

[19] R. Finn: Equilibrium capillary surfaces. Grundlehren der Mathematischen Wissenschaften,
284. Springer-Verlag, New York, 1986.

[20] G. Francfort, J.-J. Marigo: Revisiting brittle fracture as an energy minimization prob-
lem. J. Mech. Phys. Solids 46 (1998), 1319–1342.

[21] C.F. Gauss: Principia Generalia Theoriae Figurae Fluidorum in Statu Aequilibrii. Com-
ment. Soc. Regiae Scient. Gottingensis Rec. 7 (1830). Reprinted in Werke, Vol. V, pp.
29–77. Königlichen Gesellschaft der Wissenschaften, Göttingen, 1877.

[22] E. Giusti: Minimal surfaces and functions of bounded variation. Monographs in Mathe-
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