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1. Introduction

This note contains an expanded version of the lecture I gave at the
“Renato Caccioppoli Conference” (Naples, September 23-25, 2004).

Purpose of that lecture was to advertise the notion of distributional Ja-
cobian for Sobolev maps u : R

n → R
k with n ≥ k ≥ 2, and in particular for

maps with values in the (k − 1)-dimensional sphere Sk−1. For these maps,
the distributional Jacobian Ju is supported on the singular set (points of
discontinuity) of u, and reflects its geometric structure. This result is remi-
niscent of a well-known fact about the derivatives of characteristic functions:
the distributional gradient D1E of the characteristic function of a set E is
supported on the topological boundary of E (the singular set of 1E), and if
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the latter is sufficiently regular, then D1E is the product of the area mea-
sure on ∂E times the inner normal to ∂E. In a way, Sk−1-valued maps
with bounded distributional Jacobian can be regarded as the vector-valued
analogue of finite perimeter sets; this analogy will be the guideline for this
presentation.

The notion of distributional Jacobian appears naturally in the study of
variational problems for vector valued maps (and indeed, it has been dis-
covered under different names by several authors). For maps u : R

k → R
k,

the distributional Jacobian is known as distributional determinant (see [5]),
and has been widely studied in recent years in the context of semicontinu-
ity problems for polyconvex integrands and their applications to nonlinear
elasticity (see, e.g., [32], [20] and references therein). A similar notion was
introduced in [10] to study the singularities of Sobolev and harmonic maps
from the ball B3 into the sphere S2.

More recently, it has been observed that the distrbutional Jacobian is
related to the topological structure of the classes of Sobolev maps between
manifolds. For instance, the triviality of Ju is a necessary condition – and
sometimes also a sufficient one – for the approximation of u by smooth maps
(see [15], [35], [34], and references therein). For maps u with values in the
circle S1, the triviality of Ju is a necessary and sufficient condition for the
existence of a lifting of u, that is, a real function θ in the same Sobolev
class as u which satisfies u = exp(iθ) (see [7], [8], [9]). Last but not least,
the distributional Jacobian has been successfully used as a tool for tracking
energy concentration of minimizers of functionals of Ginzburg-Landau type
(cf. [29]), in particular in the variational approach proposed in [28], [3] (see
[1] for an informal presentation of some of these results).

2. BV functions and finite perimeter sets

Finite perimeter sets provide a class of generalized boundaries which is
large enough to have good compactness properties, hence fitting the frame-
work of the direct method of the Calculus of Variations. The theory was first
developed in the 50’s by Caccioppoli [11] and De Giorgi [13], [14]. Few years
later, the theory of integral currents developed by Federer and Fleming [19]
provided a class of generalized (oriented) surfaces of arbitrary dimension
and codimension with similar compactness properties.

In this section I just recall the basic definitions and results concerning the
theory of BV functions and finite perimeter sets. For the sake of simplicity, I
consider only functions defined on the euclidean space R

n (for more details,
see [4], [16], [22]).

2.1 – Functions of bounded variation

According to the current definition (cf. [4], Sect. 3.1, [16], Sect. 5.1),
the space BV (Rn) of functions of bounded variations on R

n consists of all
u ∈ L1(Rn) whose distributional gradient Du is (represented by) a bounded
measure on R

n with values in R
n.1 This means that there exists a vector

measure, denoted by Du, which satisfies∫

Rn

φ · Du = −

∫

Rn

u divφ (2.1)

for every smooth vector-field φ : R
n → R

n with compact support.2 The
mass of the vector measure Du is then given by

‖Du‖ =

∫

Rn

|Du| = sup
|φ|≤1

∫

Rn

u divφ . (2.2)

The space BV (Rn), endowed with the norm ‖u‖BV := ‖u‖1 + ‖Du‖, is a
non-separable Banach space.

2.2 – Remarks

(i) The relevance of the space BV (Rn) lies in the following compactness
property, which allows to apply the direct method of the Calculus of Varia-
tions and prove the existence of minimizers in BV for a large class of vari-
ational problems: let (uh) be a sequence of functions in BV (Rn) with uni-
formly bounded BV -norms and uniformly bounded supports; then, upon ex-
traction of a subsequence, uh converge in the L1-norm to some u ∈ BV (Rn),
while the derivatives Dun converge to Du in the sense of measures.3 The
latter property implies in addition that ‖Du‖ ≤ lim inf ‖Duh‖.

1By ‘measure’ we mean a σ-additive measure on Borel sets. Every measure λ with
values in R

n can be written as λ = fµ where µ is a positive measure and f is a
vector valued function, that is, λ(E) :=

∫
E

f dµ for every Borel set E. The function
f is the Radon-Nikodym derivative of λ w.r.t. µ. There exists a unique positive
measure µ such that |f | = 1 µ-a.e.; this measure is called total variation of λ, and
denoted by |λ|.

2The integral at the left-hand side of (2.1) should be understood as
∫

φ · f dµ,
where Du = fµ is the decomposition described in footnote 1, and the dot (·) stands
for the scalar product in R

n. The measure in the integral at the right-hand side of
(2.1) is the Lebesgue measure

�
n.

3The existence of a convergent subsequence follows by the fact that BV (Ω) em-
beds compactly in L1(Ω) for every bounded open set Ω. The rest of the statement
follows by the compactness of the unit closed ball of measures with respect to the
weak* topology induced by the duality with continuous functions (Banach-Alaoglu
theorem).
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(ii) The space BV (Rn) can be equivalently defined as the space of all
functions u in L1(Rn) such that the supremum in (2.2) is finite (cf. [22],
Definition 1.1; see also the historical note in [4], Sect. 3.12). Note that the
space BV (R) does not agree with the classical space of functions of bounded
variation of one variable.

2.3 – Finite perimeter sets

A Borel set E contained in R
n is a set with finite perimeter, or a Cac-

cioppoli set, if the characteristic function 1E belongs to BV (Rn) (cf. [16],
Sect. 5.2). We call perimeter of E the number

Per(E) := ‖D1E‖ =

∫

Rn

|D1E | .

2.4 – Why ‘perimeter’?

The reason for calling perimeter the mass of the measure D1E can be
understood by computing the distributional derivative D1E when E is a
bounded set with smooth boundary. In this case, the divergence theorem
states that for every vector-field φ on R

n there holds

∫

∂E

φ · νE =

∫

E

divφ (2.3)

where νE is the inner normal to the boundary of E, and the measure un-
derlying the first integral is the area measure on ∂E, or, more precisely, the
(n − 1)-dimensional Hausdorff measure � n−1. In view of (2.1), formula
(2.3) means that D1E is the restriction of the positive measure � n−1 to
the set ∂E, multiplied by the vector density νE , that is,

D1E = νE · � n−1 ∂E . (2.4)

In particular |D1E | is the restriction of � n−1 to the boundary of E, and

Per(E) = ‖D1E‖ = � n−1(∂E) . (2.5)

The use of the term ‘perimeter’ is thus justified.

2.5 – Remarks

(i) The compactness result for BV functions described in Remark 2.2(i)
applies in particular to finite perimeter sets: let (Eh) be a sequence of sets
with uniformly bounded perimeters, contained in a fixed bounded subset
of R

n; then, upon extraction of a subsequence, the sets Eh converge in
the L1-distance to a finite perimeter set E (that is, � n(E4Eh) → 0) and
Per(E) ≤ lim inf Per(Eh). This result can be used to prove the existence of
sets with minimal perimeter, thus providing a possible (weak) solution to
the Plateau problem for surfaces with codimension one.

(ii) Many variants of the definition of finite perimeter sets are currently
in use, all differing by minor details (cf. [4], Sect. 3.3, and [22], Chap. 1).

(iii) According to [11], a set E is of finite perimeter if it can be ap-
proximated in the L1-distance by a sequence of smooth sets with bounded
perimeters. This definition is equivalent to the one in §2.3.

2.6 – Essential boundary

Formula (2.5) hold for sets with smooth and even Lipschitz boundary,
but not for all sets of finite perimeter. Take indeed a countable dense set
E in R

n: the characteristic function 1E agrees almost everywhere with the
constant function 0, and therefore its distributional derivative is 0, while
∂E is the entire R

n.

However, formula (2.5) hold for any finite perimeter set E provided that
the topological boundary ∂E is replaced by the essential boundary ∂∗E,
namely the complement of the set of all points x where the density4 of E
exists and is either 1 or 0. In particular, ∂∗E, unlike ∂E, is always � n−1-
finite, and therefore its Hausdorff dimension is at most n − 1.

In fact there holds more, ∂∗E is (n − 1)-rectifiable, which means that it
can be covered by countably many hypersurfaces of class C1, except for an
� n−1-negligible subset.5 This result is important because it shows that the
essential boundary shares some of the properties of smooth boundaries; in
particular it admits an inner normal and a tangent space at � n−1-almost
every point, in a suitable approximate sense.

4Namely, the limit as r → 0 of the ratio
�

n(E ∩ B(x, r))/
�

n(B(x, r)).
5This result is due to Federer [17] and De Giorgi [14]. More precisely, the latter

proved the rectifiability of the reduced boundary of E, which the former had shown
to agree with the essential boundary up to an � n−1-negligible subset. Note that
the usual definition of rectifiability in Geometric Measure Theory (see [36], [18]),
although equivalent to this one, looks quite different.
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3. Distributional Jacobian

In this section I briefly recall the notion of distributional Jacobian for
Sobolev maps. The general definition can only be written using the language
of k-forms. However, I also include alternative definitions for the special
cases n = k and n = 3, k = 2, where no multilinear algebra is needed.

In the following, n, k are fixed integers with n ≥ k ≥ 2.

3.1 – Jacobian of smooth maps

The differential of a function v : R
n → R of class C1 is the 1-form

dv :=

n∑

j=1

∂v

∂xj
dxj .

The Jacobian of a map u : R
n → R

k of class C1, is the wedge-product of
the differentials of its components u1, . . . , uk, that is, the k-form

Ju := du1 ∧ . . . ∧ duk . (3.1)

3.2 – Special cases

For maps u : R
k → R

k, the Jacobian is a k-form on R
k, and identifying

k-forms with scalar functions we get6

Ju := det(∇u) . (3.2)

For maps u : R
3 → R

2, the Jacobian Ju can be identified with the vector
product

Ju := ∇u1 ×∇u2 ; (3.3)

this means that Ju is a 2-form on R
3 whose coefficients agree (up to a certain

change of sign) with those of the vector ∇u1 ×∇u2. This identification will
be made clear in Remark 4.7(i).

6Note that, contrary to the common definition of Jacobian determinant, Ju is not
|det(∇u)|.

3.3 – Jacobian of Sobolev maps, I

Definition (3.1) makes sense even for maps of class W 1,k because the
product of k-functions in Lk (the differentials dui) is a well defined func-
tion in L1. More precisely, formula (3.1) defines a continuous nonlinear
operator J from W 1,k(Rn; Rk) into the space L1(Rn;∧k

R
n) of k-forms with

L1-coefficients. By the density of smooth maps in W 1,k, J turns out to be
the (unique!) continuous extension of the Jacobian operator for maps of
class C1.

However, definition (3.1) does not make sense for maps in W 1,p with
p < k because the product of k functions in Lp with p < k is not well-
defined in any reasonable function space, not even distributions. In the
next paragraph we write the Ju in a different form, which paves the way to
a well-posed definition of Jacobians for bounded maps in W 1,k−1.

3.4 – A fundamental identity

Let u : R
n → R

k be a map of class C2. A simple computation gives

Ju =
1

k
d
[ k∑

i=1

(−1)i−1ui d̂ui

]
, (3.4)

where d̂ui stands for the wedge-product of all duj with j 6= i.
For n = 3 and k = 2, formula (3.4) can be written as

∇u1 ×∇u2 = ∇×
1

2
(u1 ∇u2 − u2∇u1) , (3.5)

while for n = k = 2 it becomes

det(∇u) =
1

2

∂

∂x1

(
u1

∂u2

∂x2
− u2

∂u1

∂x2

)
+

1

2

∂

∂x2

(
u2

∂u1

∂x1
− u1

∂u2

∂x1

)
. (3.6)

The analogue of (3.6) for n = k > 2 is slightly more involved.

3.5 – Jacobian of Sobolev maps, II

Consider the right-hand side of (3.4) when u is a map of class L∞ ∩

W 1,k−1: d̂ui is the product of k−1 functions (1-forms) in Lk−1 and therefore

belongs to L1, and since ui belongs to L∞, then ui d̂ui belongs to L1, too.
Hence the sum within brackets in (3.4) belongs to L1, and its differential is
a well-defined distribution (recall that the differential is a linear operator).
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Following [27], for every u ∈ L∞∩W 1,k−1(Rn; Rk), we call distributional
Jacobian of u the distribution at the right-hand side of (3.4), and we denote
it by Ju. Clearly, this definition extends to maps which are locally of class
L∞∩W 1,k−1. For bounded maps in W 1,1(R3; R2) and in W 1,1(R2; R2), the
distributional Jacobian can be alternatively defined as the distribution at
the right-hand side of (3.5) and (3.6), respectively.

It is easy to show that J is a continuous nonlinear operator from
L∞ ∩ W 1,k−1 into the space of k-forms with coefficients in the space of
distributions. More precisely, given a sequence of uniformly bounded maps
uh which converge to u in W 1,k−1, then Juh converge to Ju in the sense of
distributions.

3.6 – Remarks

(i) The ‘pointwise’ and the distributional Jacobian, defined respectively
in §3.1 and §3.5, agree for maps of class C2, and equality carries over by
continuity to all maps of class L∞ ∩W 1,k. However, equality does not hold
in general: for u(x) := x/|x| the distributional Jacobian is a Dirac mass at
the origin, while det(∇u(x)) = 0 for every x 6= 0 (see §4.2).

(ii) If the distributional Jacobian Ju is a measure, then the Radon-
Nikodym derivative w.r.t. the Lebesgue measure agrees a.e. with the point-
wise Jacobian. This was proved in [31] for n = k; the case n > k follows by
a suitable dimension-reduction argument.

(iii) The distributional Jacobian is continuous also with respect to the
weak convergence: given a sequence of uniformly bounded maps uh which
converge weakly to u in W 1,p for some p > k − 1, then Juh converge to Ju
in the sense of distributions.

(iv) For every m < p, the operator u 7→ M(∇u), where M is the deter-
minant of a fixed m×m minor of the matrix ∇u, is sequentially continuous
from W 1,p to Lp/m, where both spaces are endowed with the corresponding
weak topologies. This fact has an important consequence in the Calculus
of Variations: a functional of the form F (u) :=

∫
f(∇u) is sequentially

weakly lower-semicontinuous whenever f is polyconvex, that is, when f can
be written as a convex functions of the minors M(∇u) (cf. [12], Chap. 4).

(v) It can be shown that the Jacobian operator does not admit any
continuous extension to L∞∩W 1,p for p < k−1. To prove this claim in the
case n = k, it suffices to exhibit a sequence of smooth maps uh : R

n → Sk−1

which converge in W 1,p

loc to the map u(x) := x/|x|: the Jacobians of these
maps are all null (see §4.1), and therefore cannot converge in any sense to
the distributional Jacobian of u, which is a Dirac mass (see §4.2).

(vi) When u : R
n → R

k is a smooth map, Ju := du1 ∧ . . . ∧ duk is the

pull-back according to u of the standard volume form on R
k, dy1∧ . . .∧dyk.

Since this form is the differential of the (k − 1)-form

ω(y) :=
1

k

k∑

i=1

(−1)i−1yi d̂yi ,

and the differential commutes with the pull-back, then Ju agrees with the
differential of the pull-back of ω according to u: this is precisely identity
(3.4). Now, dy1 ∧ . . . ∧ dyk can be written as the differential of many other
(k − 1)-forms ω, each one yielding a different variant of identity (3.4).7

Our choice of ω happens to be particularly convenient when dealing with
Sk−1-valued maps.

(vii) The definition of distributional Jacobian for general n and k was
given, in a slightly different form, by R. Jerrard and H.M. Soner in [26], [27];
the presentation given here follows closely that in [2]. For n = k, the distri-
butional Jacobian was introduced by J. Ball [5] as distributional determinant
(see also [24]). This definition hinges on a variant of identity (3.6) which
was known before (C.B. Morrey used it to prove the weak semicontinuity
of polyconvex functionals).

(viii) F.-B. Hang and F.-H. Lin proposed in [23] an alternative defini-
tion of distributional Jacobian for maps in the fractional Sobolev spaces
W 1−1/k,k(Rn; Rk) (see also [3], Sect. 5). Note that for k > 2 this space
includes W 1,k−1(Rn; Rk). Special cases of this definition appeared before in
[7], [35]; in these papers the distributional Jacobian is known as topological
singularity.

4. Jacobian of maps valued in spheres

For the rest of the paper we restrict our attention to maps u from R
n

into the sphere Sk−1. We will see that for maps with ‘nice’ singularities, the
distributional Jacobian is related to the singularities by explicit formulas.

4.1 – Jacobian of smooth maps valued in Sk−1

Let us begin with a simple remark: if u : R
n → Sk−1 is a map of class C1

then Ju = 0. Indeed, the matrix ∇u(x) has rank at most k − 1 because its
columns belong to the tangent space to Sk−1 at the point u(x); this means

7Accordingly, there are many variants of formula (3.6); the one which is most

frequently used is det(∇u) = ∂
∂x1

(
u1

∂u2

∂x2

)
− ∂

∂x2

(
u1

∂u2

∂x1

)
.
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that the linear functionals du1(x), . . . , duk(x) are linearly dependent, and
therefore their wedge product is null.

The same argument applies to the Jacobian of maps of class W 1,k, which
is defined according to the pointwise formula (3.1). However, the conclusion
may not hold for the distributional Jacobian of maps of class W 1,k−1. This
is clarified by the following fundamental example.

4.2 – Example: the map x/|x|

The map u : R
k → Sk−1 defined by u(x) := x/|x| belongs to W 1,p

loc for
every p < k. Its pointwise Jacobian is 0, but the distributional Jacobian is

Ju = αkδ0 (4.1)

where αk is the volume of the unit ball in R
k, and δ0 is the Dirac mass

at the origin. Formula (4.1) can be proved by approximation: consider the
maps

uε(x) :=

{
x/|x| if |x| ≥ ε
x/ε if |x| < ε

;

these maps are Lipschitz and converge to u in W 1,p
loc for every p < k; moreover

the Jacobians Juε = ε−k1B(0,ε) converge in the sense of measure to αkδ0,
which therefore must agree with Ju by the continuity of the Jacobian.

4.3 – Maps with ‘nice’ singularities, case n = k

Formula (4.1) is a particular case of a more general formula proved in

[10]: if u : R
k → Sk−1 is a map in W 1,k−1

loc , smooth outside a finite singular
set S := {xj}, then

Ju = αk

∑

j

djδxj
where dj := deg(u, ∂Bj , S

k−1). (4.2)

In this formula, Bj is a ball such that S∩Bj = {xj}, and deg(u, ∂Bj , S
k−1)

stands for the Brower degree of the restriction of u to the sphere ∂Bj (and
is often called degree of the singularity of u at xj). The invariance of degree
under homotopy shows that the value of dj does not depend on the choice
of Bj .

4.4 – Proof of identity (4.2)

First of all, we remark that u can be approximated in W 1,k−1 by maps
ũ which are ‘radial’ close to the singularities, that is, ũ(x) depends only on
the direction of x − xj when |x − xj | is sufficiently small.

By the continuity of the Jacobian, it suffices to prove (4.2) for such
maps ũ. To this end, we proceed as in the proof of (4.1): for every positive
ε sufficiently small we set

ũε(x) :=

{
ũ(x) if |x − xj | ≥ ε for every j,
ε−1|x − xj | ũ(x) if |x − xj | < ε for some j.

It is not difficult to show that the maps ũε are Lipschitz and converge to ũ
in W 1,k−1. Moreover the Jacobians Jũε are uniformly bounded in L1 and
supported on the union of the closures of the balls B(xj , ε), and finally the
integral of Jũε on B(xj , ε) must be equal to αkdj for every j by the area
formula.8 This information is enough to conclude that the Jacobians Jũε

converge to the measure αk

∑
j djδxj

, which therefore must agree with Jũ.

4.5 – Maps with ‘nice’ singularities, case n = 3, k = 2

Let be given a map u : R
3 → S1 in W 1,1

loc which is smooth outside a
smooth, closed, oriented curve M . Then the Jacobian Ju, viewed as a
distribution with values in R

3, is a measure supported on the curve M of
the form

Ju = π d τM � 1 M , (4.3)

where τM is the tangent unit vector that orients M , � 1 M is the length
measure on M , and finally d := deg(u, ∂E, S1) with E any 2-dimensional
disk that intersects M transversally at one point only.9 In particular, the
mass of the measure Ju is

‖Ju‖ = π|d|� 1(M) .

Identity (4.3) can be derived from (4.2) by a suitable slicing argument (see
[27]).

4.6 – A Hodge-type operator

In order to write formulas (4.2) and (4.3) for general n and k, we must
first introduce a variant of the Hodge operator: for every k-covector λ, ?λ

8The integral of Juε on B(xj , ε) is equal to the integral on R
k of degj(y) :=

deg(ũε, B(xj , ε), y) – the degree of the restriction of ũε to the ball B(xj , ε) computed
at the value y ∈ R

k. One easily checks that degj(y) = 0 for |y| > 1, and degj(y) = dj

for |y| < 1.
9Clearly, formula (4.3) holds provided that E and its boundary are properly ori-

ented (see [2], Sect. 3). The invariance of degree under homotopy shows that the
value of d does not depend on the particular choice of E.
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is the k-vector defined by duality as10

〈ω; ?λ〉 := 〈ω ∧ λ; e1 ∧ . . . ∧ en〉 for every (n − k)-covector ω.

Despite a rather cryptic definition, the operator ? has a clear geometric
meaning: when λ is simple – that is, λ = λ1 ∧ . . . ∧ λk where the λi are
1-covectors (linear functionals on R

n) – then ?λ can be written as a product
of vectors v1 ∧ . . .∧ vn−k which span the kernel of Λ := (λ1, . . . , λk) : R

n →
R

k.11 In particular, given a smooth map u : R
n → R

k, ?Ju(x) is a simple k-
vector that spans the tangent plane to the level surface of u passing through
x.

4.7 – Remarks

(i) Using the operator ?, we can write identities (3.2) and (3.3) in a more
precise way: for a map u : R

k → R
k of class C1 we have ?Ju = det(∇u),

and for a map u : R
3 → R

3 we have ?Ju = ∇u1 × ∇u2. Identities (4.1),
(4.2), and (4.3) should be corrected accordingly.

(ii) Given a map u : R
n → R

k of class L∞∩W 1,k−1, ?Ju is a distribution
with values in (n− k)-covectors. In other words, ?Ju is an (n− k)-current,
that is, a generalized (oriented) surface of dimension n − k. Moreover,
since Ju is a differential, then ?Ju is a boundary, and therefore it has
no boundary. Clearly, these statements should be intended in the proper
distributional sense. Elementary presentations of the theory of currents can
be found in [30], [36].

4.8 – Maps with ‘nice’ singularities, general case

Let be given a map u : R
n → Sk−1 in W 1,k−1

loc , smooth outside a regular
(n− k)-dimensional surface (submanifold) M which is oriented, connected,
and without boundary. Then

?Ju := αk d τM � n−k M , (4.4)

where τM is a simple (n−k)-vector with norm 1 that spans the tangent space
M with the right orientation (cf. footnote 11), and d := deg(u, ∂E, Sk−1) is

10 In this formula, 〈 ; 〉 stands for the duality product of covectors and vectors,
and {ej} is the standard basis of R

n.
11A product v := v1 ∧ . . . ∧ vn−k is uniquely identified by the (oriented) linear

space spanned by the vectors vi, and by the volume of the parallelogram spanned
by these vectors (which is the norm of v). In particular, v1 ∧ . . . ∧ vn−k = 0 if the
vectors {vj} are linearly dependent.

the degree of the restriction of u to the boundary of a k-dimensional disk E
that intersects M transversally at one point only.12 In particular, the mass
of the measure Ju is

‖Ju‖ = αk|d|� n−k(M) . (4.5)

The number d is called degree of the singularity of u at M . Identity (4.4)
can be derived from (4.2) by a slicing argument (see [27]).

4.9 – Remarks

(i) If M is not connected, the number d that appears in (4.4) may be
different for each connected component.

(ii) Identity (4.4) implies that the support of Ju is contained in the
singularity of M , but since d can be 0, the inclusion may be strict. For this
reason, we say that Ju represents the singularity of u which is topologically
necessary. This explains the term ‘topological singularity’ used by some
authors to denote Ju.

(iii) Identities (4.4) and (4.5) hold also if M is a finite union (not neces-
sarily disjoint) of Lipschitz surface of dimension n − k, and u is continuous
(or even locally W 1,k) in the complement of M .

(iv) What can be said about the structure of Ju when u is smooth
(continuous) in the complement of a generic closed set C? In this case, ?Ju
is an (n−k)-current without boundary supported on C. It follows that ?Ju
must be 0 if the Hausdorff dimension of C is strictly smaller than n−k,13 or
if C is a connected (n−k) dimensional surface with non-empty boundary.14

(v) If we view characteristic functions of a set E in R
n with regular

boundary as a map valued in the 0-dimensional sphere S0 which is smooth
outside a smooth hypersurface M without boundary, then identity (2.4) can
be interpreted as a special case of (4.4), and (2.5) becomes a special case of
(4.5). Thus the class of Sk−1-valued maps whose Jacobian is a measure can
be regarded as a generalization of the class of finite perimeter sets.

12Clearly, E and its boundary must be properly oriented for (4.4) to hold, cf. [3],
Sect. 3.

13A set C which is � n−k-negligible cannot support any (n − k)-current with
boundary of finite mass. In fact, this is true even if C is (n−k)-purely unrectifiable,
that is, � n−k(C ∩ M) = 0 for every (n − k)-dimensional surface M of class C1.

14A variant of the constancy lemma (cf. [36], Theorem 26.27) shows that an (n−k)-
current T without boundary supported on a smooth, connected surface M with
dimension n− k can be written as T = d [M ] where d is a constant and [M ] denotes
the current associated to M ; if M has non-empty boundary, then the only possibility
is d = 0.
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5. Geometric structure of Jacobians

As pointed out in §3.1, identity (2.5) holds for any set of finite perimeter,
provided the set ∂E is replaced by the essential boundary ∂∗E and the inner
normal νE is suitably defined. A similar situation occurs with identity (4.4):

5.1 – Rectifiability of Jacobians

If u : R
n → Sk−1 belongs to W 1,k−1 and the Jacobian Ju is a bounded

measure, then it can be written as

?Ju := αk d τM � n−k M , (5.1)

where M is an (n − k)-rectifiable set,15 τM is an orientation of M ,16 and
finally d is an integer multiplicity function.

In the language of currents, this statement is summarized by saying that
if ?Ju has finite mass, then it agrees up to a factor αk with a rectifiable
(n − k)-current with integer multiplicity (and since ?Ju has no boundary,
it is also an integral current).

The proof of this result presented in [2] is based on a simple geometric
intuition. Looking at the map u(x) := x/|x|, one immediately sees that the
singular set – which supports the Jacobian – is the boundary of every level
curve of the map u. In fact, the same is true for every map u : R

n → Sk−1

with a singularity of degree d 6= 0 at a smooth surface M with dimension
n − k.

This observation can be turned into a rigorous statement which is valid
for every map u : R

n → Sk−1 of class W 1,k−1 (see [2], Theorem 3.8): the
(n − k)-current ?Ju agrees, up to the usual factor αk, with the boundary
of a generic level surface of u, which is a rectifiable current of dimension
n−k+1. Then the rectifiability of ?Ju follows immediately by the boundary
rectifiability theorem of Federer and Fleming (see [36], Theorem 30.3).

5.2 – Remarks

(i) For n = k, the rectifiability result in §5.1 simply states that ?Ju
agrees, up to a factor αk, with a finite sum of Dirac masses with integer
multiplicity (cf. [10]).

15Namely, it can be covered by countably many (n − k)-dimensional surfaces of
class C1, except at most an � n−k-negligible subset.

16A Borel map such that τM (x) is a simple (n− k)-vector with norm 1 that spans
the approximate tangent space to M at x for � n−k-almost every x ∈ M .

(ii) The rectifiability of Jacobians can be viewed as a generalization of
De Giorgi’s rectifiability theorem for finite perimeter sets. However, there
is an important difference: no characterization of M as discontinuity set of
u has been found yet (in other words, there is no analogue of the essential
boundary of finite perimeter sets).

(iii) The rectifiability of Jacobians was first proved by Jerrard and Soner
[26] using a nice dimension-reduction argument, which relied on a rectifi-
ability criterion due to B. White [38] (see also [25]). Hang and Lin [23]
gave another proof, based on a different definition of distributional Jaco-
bian and, once again, on the boundary rectifiability theorem. Special cases
of this result were proved in [7], [8], [33].

5.3 – Relation with cartesian currents

In recent years, M. Giaquinta, G. Modica, and J. Souček proposed a
different and more geometric approach to variational problems for vector-
valued maps u : R

n → R
k where the unknown variable is the graph of u,

viewed as an n-dimensional surface (more precisely, a rectifiable n-current),
rather than the map u itself. This point of view is the basis of the theory
of cartesian currents [21].

In particular, for maps u : R
n → Sk−1 of class W 1,k−1, the distributional

Jacobian can be recovered as part of the boundary of the graph of u,17

and the rectifiability result stated in §5.1 is a corollary of the boundary
rectifiability theorem of Federer and Fleming.

5.4 – Which surfaces can support a Jacobian?

We have seen in §4.5 that the Jacobian of a map u : R
k → Sk−1 with

finitely many singularities {xj} is (up to a factor αk) a sum of Dirac masses
at xj with integer multiplicities. Conversely, given finitely many points xj

and integers dj , there exists a map u : R
k → Sk−1 with singular set {xj}

such that the degree of the singularity of u at xj is dj for every j. The
construction of such u is not difficult. In particular, for k = 2, it suffices to
take

u(x) :=
∏

j

(
x − xj

|x − xj |

)dj

,

17The regular part of the graph of u is the set of all points (x, u(x)) such that u is
approximately differentiable at x; to this set is canonically associated a rectifiable
n-current with multiplicity 1, and its boundary is an (n − 1)-current of the form
T × Sk−1, where T is a (n − k)-current in R

n. T agrees, up to some constant, with
?Ju.
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where the product is defined by identifying R
2 and the complex field.

The question becomes more interesting for maps u : R
n → R

k with
n > k: we have seen in §4.8 that the Jacobian of a map with a smooth
singular set M of codimension k is supported on this set, and more precisely
is an integer multiple of (the current associated to) M itself. Then it is
natural to ask if the converse is true:

Question. – Given an integer d and an (n−k)-dimensional surface M in
R

n, connected, oriented, and without boundary, is it possible to find a map
u : R

n → Sk−1, of class W 1,k−1 and smooth outside M , with a singularity
of degree d at M (so that in particular (4.4) holds)?

This and related questions have been studied extensively in [2]; I refer
the reader to the original paper for precise statements and detailed proofs,
and just recall here one of the main results:

The answer to the question above is positive for k = 2 (see [2], §4.1).

A proof of this result is sketched in the next paragraph. But first, let me
underline the essential point: given a smooth surface M of codimension k, it
is always possible to construct a map on a tubular neighbourhood of M with
singularity of prescribed degree d at M .18 The real difficulty is to extend u
to the rest of R

n without introducing new singularities! This extension can
always be done only if k = 2 (see §5.6), and it is not obvious even when M
is the usual threefold knot in R

3.

5.5 – A construction for k = 2 (see [2], §4.1)

Given M an oriented, compact smooth surface in R
n with codimension

two and no boundary, we look for a map u : R
n → S1 with singularity of

degree d at M . I claim that it suffices to construct a smooth 1-form ω on
R

n \ M such that

∫

γ

ω = d link(M, γ) for every closed curve γ in R
n \ M , (5.2)

where link(M, γ) is the linking number of M and γ. Indeed, the integral
of such a form ω on every closed curve in the complement of M would be
an integer, and then ω would be the differential of a smooth map θ from

18U can be taken diffeomorphic to the product M × B where B is the unit disk
in R

k. For d = 1, we can take u(t, x) := x/|x| for every (t, x) ∈ M ×B. For general
d we can take u(t, x) := φd(x/|x|) where φd : Sk−1 → Sk−1 is a smooth map with
degree d.

R
n \ M into the quotient R/Z.19 Moreover, setting u := exp(2πiθ), (5.2)

implies that the degree of the singularity of u around M is d.
It remains to construct ω such that (5.2) holds. Recall that

link(M, γ) = deg(Φ, M × γ, Sn−1) ,

where Φ(x, y) := (x − y)/|x − y| for every x, y ∈ R
n with x 6= y. Denoting

by ω̃ the pull-back of the volume form on Sn−1 according to Φ, the area
formula implies that deg(Φ, M × γ, Sn−1) times the volume of Sn−1 (that
is, nαn) agrees with the integral of ω̃ on M × γ, that is

nαn link(M, γ) =

∫

M×γ

ω̃ =

∫

y∈γ

[ ∫

x∈M

ω̃(x, y)

]
. (5.3)

Since the integral of an (n − 1)-form over an (n − 2)-dimensional surface
M is a 1-covector (for a precise definition, see [2], Sect. 2), the integral
within square brackets in (5.3) defines for every y /∈ M a smooth 1-form
that satisfies (5.2) up to a factor d/(nαn). To conclude, it suffices to set

ω(y) :=
d

nαn

∫

x∈M

ω̃(x, y) for every y ∈ R
n \ M .

5.6 – Connections to topology

The problem of constructing (or extending) a map u with prescribed
singularity M has a clear topological flavour, and indeed it is related to
well-known problems in algebraic topology.

Let M be an oriented surface in R
n of codimension k and without bound-

ary, and assume that there exists a map u : R
n → S1 which is smooth in

the complement of M , and can be written as u(t, x) = x/|x| in a tubular
neighbourhood of M identified with the product M × B as in footnote 18.
Then, given a regular value y of u, the set

N := u−1(y)

is a smooth surface of dimension n − k + 1 in R
n with boundary M .

19Compare with this well-known statement: a 1-form ω on an open set Ω in R
n

is the differential of a real function on Ω if (and only if) the integral of ω on every
closed curve in Ω is null.



   

18 G. Alberti Distributional Jacobian 19

In fact, the existence of u yields even more: if S1, . . . , Sk are transversal
(k− 2)-dimensional spheres of radius 1 on Sk−1 (for k = 2, just two couples
of antipodal points), then the sets

Ni := u−1(Si) ∩ M

are transversal, smooth hypersurfaces20 in R
n without boundary, whose

intersection is exactly M . That is, M is a complete intersection.

Hence the construction in §5.5 implies that every oriented smooth surface
M of codimension two in R

n is the boundary of an oriented smooth surface
of codimension 1, and is a complete intersection.

Since this result does not hold for all surfaces M of codimension k > 2
(cf. [37], [6]), in general the answer to the question posed in §5.4 should be
negative. However, it is possible to construct a map u with singularity of
degree d at a given surface M of codimension k, provided we allow u to be
singular also in some additional set S of codimension k+1, see [2], Theorem
5.10.21 Note that formula (4.4) holds for such maps, because the set S is to
small too support the Jacobian of u.

5.7 – Remarks

(i) If M is not connected, the construction described in §5.5 can be
modified so that u has singularities of different degree on each connected
component of M .

(ii) For k = 1, the question considered in §5.4 becomes: given a smooth
oriented hypersurface M in R

n without boundary, is it the a boundary of
an open set? the answer is positive if we assume that M is connected, and
negative otherwise (consider M made of two parallel lines in the plane, with
same orientation).

(iii) The following question is related to the converse of the rectifiability
of Jacobian stated in §5.1, and can be viewed as a generalization of the
problem considered in §5.4: given an integral current T in R

n, of codimen-
sion k and without boundary, can we find u ∈ W 1,k−1(Rn;Sk−1) such that
?Ju = αkT? The answer is positive for all n and k, see [2], Theorem 5.6.
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