
Variational models for phase transitions
An approach via Γ-convergence

Giovanni Alberti

Introduction

This paper is an extended version of the lecture delivered at the Summer School on
Differential Equations and Calculus of Variations (Pisa, September 16-28, 1996).
That lecture was conceived as an introduction to the theory of Γ-convergence
and in particular to the Modica-Mortola theorem; I have tried to reply the style
and the structure of the lecture also in the written version. Thus first come few
words on the definition and the meaning of Γ-convergence, and then we pass
to the theorem of Modica and Mortola. The original idea was to describe both
the mechanical motivations which underlay this result and the main ideas of its
proof. In particular I have tried to describe a guideline for the proof which would
adapt also to other theorems on the same line. I hope that this attempt has
been successful. Notice that I never intended to give a detailed and exhaustive
description of the many results proved in this field through the recent years, not
even of the main ones. In particular the list of references is not meant to be
complete, neither one should assume that the contributions listed here are the
most relevant or significant.

This paper is organized as follows:

1. A brief introduction to Γ-convergence
2. The Cahn-Hilliard model for phase transitions and the Modica-Mortola theo-

rem
3. The optimal profile problem and the proof of the Modica-Mortola theorem
4. Final remarks
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1. A brief introduction to Γ-convergence

The notion of Γ-convergence was introduced by E. De Giorgi and T. Franzoni in
[16]; even though it is mainly intended as a notion of convergence for variational
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functionals on function spaces, it is more convenient to give its definition and main
properties in a slightly more general setting, namely as a notion of convergence
for functions on a metric space. Therefore in what follows X is a metric space, u
an element of X, F a function from X into [0,+∞], and ε is a parameter which
converges to 0. In the applications X will be a space of functions u on some open
domain Ω of R

n, and F a functional on X; typical examples are given by integral
functionals on Sobolev or Lp spaces (cf. paragraph 1.3).

What we present here is a rather simplified version of the original definition.
A detailed and systematic treatment of the general theory Γ-convergence, and
many applications as well, can be found in G. Dal Maso’s book [17] (see also [8],
section 8).

Warning: Throughout this paper, instead of sequences of functions (and func-
tionals) labelled by some integer parameter which tends to infinity, we consider
families of functions labelled by a continuous parameter ε which tends to 0. Nev-
ertheless we use the term “sequence” also to denote such ordered families (and,
for instance, we write (uε) instead of {uε}). On this line, a subsequence of (uε)
is any sequence (uεn

) such that εn → 0 as n → ∞, and we say that (uε) is
pre-compact in the corresponding (metric) space X if every subsequence admits
a sub-subsequence which converge in X. In proofs we often omit to relabel sub-
sequences.

Definition 1. – Let X be a metric space, and for ε > 0 let be given Fε :
X → [0,+∞]. We say that Fε Γ-converge to F on X as ε → 0, and we write
Fε −→Γ F , if the following two conditions hold:

(LB) Lower bound inequality – for every u ∈ X and every sequence (uε) s.t.
uε → u in X there holds

lim inf
ε→0

Fε(uε) ≥ F (u) ; (1.1)

(UB) Upper bound inequality – for every u ∈ X there exists (uε) s.t. uε → u in
X and

lim
ε→0

Fε(uε) = F (u) . (1.2)

Condition (LB) means that whatever sequence we choose to approximate u,
the value of Fε(uε) is, in the limit, larger than F (u); on the other hand condition
(UB) implies that this bound is sharp, that is, there always exists a sequence (uε)
which approximates u so that Fε(uε) → F (u).

Remark 1. – When proving a Γ-convergence result, it is often convenient to
reduce the amount of verifications and constructions. To this aim we notice that
if (LB) holds, then equality (1.2) can be replaced by

lim sup
ε→0

Fε(uε) ≤ F (u) . (1.3)
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Assume furthermore that we can find a set
� ⊂ X which satisfies the following

condition: for every u ∈ X there exists an approximating sequence (un) ⊂ �

such that un → u and F (un) → F (u); then a simple diagonal argument shows it
is enough to verify condition (UB) for all u ∈ �

only, and not for every u ∈ X.
In fact one can push this argument a bit further, and just verify that for every
u ∈ �

and every η > 0 there exists a sequence (uε) ⊂ X (but a subsequence is
not enough!) such that lim sup d(uε, u) ≤ η and lim supFε(uε) ≤ F (u) + η.

Proposition 1. – The notion of Γ-convergence enjoys the following proper-
ties:

(i) the Γ-limit F is always lower semicontinuous on X;
(ii) Stability under continuous perturbations – if Fε −→Γ F and G is continuous,

then Fε + G−→Γ F + G;
(iii) Stability of minimizing sequences – if Fε −→Γ F and vε minimizes Fε over

X, then every cluster point of (vε) minimizes F over X.

The proof of this proposition is left to the reader, and we pass to describe how
this notion of variational convergence will be used.

1.1. Asymptotic behavior of minimizers and compactness. – Assume
that for every ε > 0 we are given a function vε which minimizes the functional Fε

on X, and that we want to know what happens of vε as ε → 0. Sometimes the
minimizers vε can be written via some explicit formula from which we can deduce
all information about the asymptotic behavior of vε when ε tends to 0. If no such
formula is available, and indeed this is often the case, then we can exploit the
fact that each vε solves the Euler-Lagrange equation associated with Fε and try
to understand which kind of limit equation is verified by a limit point v of (vε).
Another possibility is to take the Γ-limit F of the functionals Fε (if any exists),
and then use statement (iii) of Proposition 1 to show that any limit point v of vε

is in fact a minimizer of F , and in particular solves the Euler-Lagrange equation
associated with F .

Notice that such a strategy makes sense only if we know a priori that the
minimizing sequence (vε) is pre-compact in X (even the fact that F has some
minimizer v does not imply that v is a limit point of vε). According to this
viewpoint a Γ-convergence result for the functionals Fε should always be paired
with a compactness result for the corresponding minimizing sequences (vε). In
fact one usually tries to prove the following asymptotical equi-coercivity of Fε:

(C) Compactness – let be given sequences (εn) and (un) such that εn → 0 and
Fεn

(un) is bounded; then (un) is pre-compact in X.

1.2. Interesting rescalings. – If vε minimizes Fε, then it minimizes also
λεFε for every λε > 0. This means that information about the limit points of (vε)
can be recovered also by the Γ-limit of λεFε, and different choices of the scaling
factors λε generate different Γ-limits, which give different information. It may
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well happen that the functionals Fε converge to a constant functional F , so that
the fact that every limit point v minimizes F actually gives no information about
v, while the Γ-limit of the functionals λεFε may be less trivial for suitable choice
of λε (see for instance Remark 8). Therefore the problem arises of finding λε > 0
so that the Γ-limit of the rescaled functionals λεFε gives the largest amount of
information; sometimes this optimal rescaling is evident but sometimes it is not
(compare for instance the situations described in paragraph 1.3 and Theorem 1).

We conclude this section with a simple but instructive example.

1.3. An example from homogenization. – Let X be the class of all u in
the Sobolev space W 1,2(0, 1) such that u(0) = 0 and u(1) = 1, endowed with the
strong topology of L2(0, 1). Let a be the 1-periodic function on R which is equal
to α1 on [0, 1/2) and to α2 on [1/2, 1), with 0 < α1 < α2 < +∞, and set

Fε(u) :=

∫ 1

0

a(x/ε)
∣

∣u̇(x)
∣

∣

2
dx . (1.4)

Then the functional Fε Γ-converge on X to

F (u) := α

∫ 1

0

|u̇|2 where α :=
2α1α2

α1 + α2

. (1.5)

This is a simple example of homogenization, (cf. [17], chapters 24 and 25, or [14]).
The proof is quite instructive, but we just give a sketch, leaving the details to the
interested reader.

1. Start with the constructive part of the proof, that is, with the upper bound
inequality. Take u affine on (0, 1) and show that (1.2) can be fulfilled by
suitable approximating functions uε which are affine on every interval of the
type

[

nε, (n + 1/2)ε
)

with n = 0, 1, . . . (these are the intervals where a(x/ε)
is constant).

2. Extend the previous construction to every u which is piecewise affine on (0, 1).
3. Use a proper density argument to conclude the proof of the upper bound

inequality (cf. Remark 1).
4. Try to understand why the approximation proposed in step 2 is optimal, and

then prove the lower bound inequality.

Remark 2. – The choice of the L2-topology on X may look unnatural, and
indeed a motivation is needed. Since Fε(u) ≥ α1

∫

|u̇|2, when Fε(uε) is bounded
in ε the functions uε are weakly pre-compact in W 1,2(0, 1), but not strongly.
Hence the compactness condition (C) in paragraph 1.1 is verified if we endow X
with the L2-topology (recall that the weak topology of W 1,2 is not metrizable,
and anyhow conditions (LB) and (UB) in Definition 1 do not change if we replace
the L2-topology with the weak W 1,2-topology).
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Remark 3. – The pointwise limit of Fε(u) as ε → 0 is F (u) := ᾱ
∫

|u̇|2 where
ᾱ is the average of α1 and α2, while the value of α in (2.5) is such that 1/α is
the average of 1/α1 and 1/α2; in particular α < ᾱ. Notice that the if we endow
X with the strong W 1,2-topology the Γ-limit of Fε is F . This shows that the
choice of the topology on X does affect the Γ-limit. In view of paragraph 1.1 the
right choice is the L2-topology, because this way the compactness property (C)
is verified.

Remark 4. – The minimizers vε of Fε over X can be easily computed (at least
for ε = 1/n), and then also the limit of vε as ε → 0 can be directly computed.
It is interesting to perform such a calculation and then compare with the result
obtained via Γ-convergence.

2. The Cahn-Hilliard model for phase transitions and

the Modica-Mortola theorem

Consider a container which is filled with two immiscible and incompressible fluids
(oil and water, or if you prefer two different phases of the same fluid). In the
classical theory of phase transition it is assumed that, at equilibrium, the two
fluids arrange themselves in order to minimize the area of the interface which
separates the two phases (we neglect the interaction of the fluids with the wall
of the container and the effect of gravity). This situation is modelled as follows:
the container is represented by a bounded regular domain Ω in R

3, and every
configuration of the system is described by a function u on Ω which takes value
0 on the set which is occupied by the first fluid, and value 1 on the set occupied
by the second fluid; the singular set of u (i.e., the set of discontinuity points of
u) is the interface between the two fluids, and we denote it by Su. The space of
all admissible configurations is given by all u : Ω → {0, 1} which satisfy

∫

u = V
where V is the total volume of the second fluid (we assume 0 < V < vol(Ω)).
Finally we postulate an energy of the form

F (u) := σ� 2(Su) , (2.1)

where the parameter σ is called the surface tension between the two fluids and
� 2 is the two-dimensional Hausdorff measure (when A is a regular surface then
� 2(A) is simply the total area of A). Therefore F (u) is a surface energy dis-
tributed on the interface Su, and the equilibrium configuration is obtained by
minimizing F over the space all admissible configurations.

An alternative way to study systems of two immiscible fluids is to assume that
the transition is not given by a separating interface, but is rather a continuous
phenomenon occurring in a thin layer which, on a macroscopic, level we identify
with the interface. This means that we allow a fine mixture of the two fluids. In
this case a configuration of the system is represented by a function u : Ω → [0, 1]
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where u(x) denotes the average volume density of the second fluid at the point
x ∈ Ω (thus u(x) = 0 means that the first fluid only is present at x, u(x) = 1/2
means that both fluids are present with the same rate, and so on). The space of
all admissible configuration is the class X of all u : Ω → [0, 1] such that

∫

u = V
(recall that V is the total volume of the second fluid) and to every configuration
u is associated the energy

Eε(u) := ε2

∫

Ω

|∇u|2 +

∫

Ω

W (u) , (2.2)

where ε is small positive parameter and W is a continuous positive function which
vanishes only at 0 and 1 (in short, a double-well potential). When we come to
minimize Eε, the term

∫

W (u) favourites those configurations which take values
close to 0 and 1 (phase separation), while the term ε2

∫

|∇u|2 penalizes the spatial
inhomogeneity of u. When ε is small the first term prevails, and the minimum of
Eε is attained by a function uε which takes mainly values close to 0 and 1 (and
takes both, because of the volume constraint

∫

u = V ) and the transition from
0 to 1 occurs in a thin layer (in fact with thickness of order ε). This model was
proposed by J.W. Cahn and J.E. Hilliard in [15]. Notice that the energy Eε was
there obtained as a first order approximation of a more general one.

A connection between the classical model and the Cahn-Hilliard model was
established by L. Modica [23], who proved that the minimizers of Eε converge to
minimizers of F . This was obtained by showing that suitable rescalings of the
functionals Eε Γ-converge to F . In order to state the precise Γ-convergence result
we need to fix some notation. In what follows Ω is a bounded open set in R

N

(and N = 3 is a particular case); we take V so that 0 < V < vol(Ω) and then
we denote by X the class of all measurable functions u : Ω → [0, 1] such that
∫

Ω
u = V , endowed with the L1 norm. We also denote by BV (Ω, {0, 1}) the set

of all functions u : Ω → {0, 1} with bounded variation, and Su is now the set
of all essential singularities of u (for more details and precise definitions see [18],
chapter 5).

Theorem 1. – (L. Modica and S. Mortola [24], see also [23])

Set σ := 2
∫ 1

0

√

W (u) du, and for every ε > 0 let

Fε(u) := 1

εEε(u) =







ε
∫

Ω
|∇u|2 + 1

ε

∫

Ω
W (u) if u ∈ W 1,2(Ω) ∩ X,

+∞ elsewhere in X,

(2.3)

and

F (u) :=

{

σ� N−1(Su) if u ∈ BV (Ω, {0, 1}) ∩ X,

+∞ elsewhere in X.

(2.4)

Then the functionals Fε Γ-converge to F in X, and the compactness condition
(C) in paragraph 1.1 is satisfied.
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Corollary 1. – If vε minimizes Fε (or equivalently Eε) on X, then the
sequence (vε) is pre-compact in X, and every limit point v minimizes F .

Remark 5. – Each functional Fε is lower semicontinuous and coercive with
respect to the strong topology of X, and then it has at least one minimizer.
Minimizing F over X means finding a set A ⊂ Ω among those with prescribed
(N -dimensional) volume V which minimizes the ((N − 1)-dimensional) area of
∂A∩Ω. In particular this implies that ∂A∩Ω is an oriented surface with boundary
in ∂Ω and constant mean curvature (by a well-known result of H. Federer [19]
this surface is always analytic if N ≤ 7; if N > 7 singularities may appear, and
the notions of surface and mean curvature must be intended in a particular weak
sense which we do not specify here).

Remark 6. – When u is a function in BV (Ω, {0, 1}), Su is not the set of
all points where u is discontinuous (that is, the topological boundary in Ω of the
phase {u = 1}), but the set of all points where u is essentially discontinuous,
that is, it has no approximate limit. This set agrees with the so-called measure
theoretic boundary of {u = 1} in Ω, and then F (u) is finite if and only if the
phase {u = 1} (and the phase{u = 0}) is set of finite perimeter in Ω in the
sense of Geometric Measure Theory (see [18], section 5.8). Notice that for such
functions u, F (u) is equal to the total variation

∫

|Du| of the measure derivative
Du multiplied by σ.

Remark 7. – The existence of a minimizer of Eε over X may be proved via
standard lower semicontinuity and compactness results. This minimizer may be
not unique. Indeed if Ω is a ball centered in 0 and the minimizer of Eε is unique,
then it must be invariant under rotation, i.e., is radially symmetric. On the other
hand a simple computation shows that F has no radially symmetric minimizer,
and then we deduce that the minimizers of Eε cannot be radially symmetric for
values of ε arbitrary close to 0 (recall Corollary 1), and then the minimizer of Eε

is not unique for every ε sufficiently small.

Remark 8. – To a certain extent the rescaling Fε := 1

εEε given in Theorem
1 is optimal. Indeed one can easily check out the following table:

a. Eε −→Γ E with E(u) =
∫

Ω
W (u);

b. if λε → ∞ and ελε → 0 then λεEε −→Γ E with E(u) = 0 when u takes the
values 0 and 1 a.e. in Ω, and E(u) = +∞ otherwise;

c. if ελε → ∞ then λεEε −→Γ E with E(u) = +∞ everywhere in X.

In all these cases the set of minimizers of the Γ-limit strictly includes the mini-
mizers of F .

3. The optimal profile problem and the proof of the

Modica-Mortola theorem
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In this section we give the main ideas of the proof of Theorem 1, and we also
try to point out the underlying technical tools. The usual proof is indeed simple
and elegant, but also quite specific (see [23], and paragraph 4.5); in particular it
hardly adapts even to close generalizations of this statement. For these reasons
I prefer to describe here a different approach, which should give a deeper insight
in the structure of this theorem, and is probably more flexible. This is also an
attempt to gather some important ideas which are scattered in the literature,
and therefore not immediately available to non-experts. We remark that another
very general approach to the proof of lower bound inequalities (in relaxation but
also in Γ-convergence) based on an extensive use of blow-up techniques has been
developed in [20]; see also [3] and [11] for applications to theorems of Modica-
Mortola type.

First of all we notice that Theorem 1 reduces to the following three statements:

(i) compactness – let be given sequences (εn) and (un) such that εn → 0 and
Fεn

(un) is bounded; then (un) is pre-compact in L1(Ω) and every limit point
belongs to BV (Ω, {0, 1});

(ii) lower bound inequality – if u ∈ BV (Ω, {0, 1}), (uε) ⊂ W 1,2(Ω) and uε → u
in L1(Ω) then

lim inf
ε→0

Fε(uε) ≥ σ� N−1(Su) ; (3.1)

(iii) upper bound inequality – for every u ∈ BV (Ω, {0, 1}) exists (uε) ⊂
W 1,2(Ω) such that uε → u in L1(Ω),

∫

uε =
∫

u for every ε and

lim sup
ε→0

Fε(uε) ≤ σ� N−1(Su) . (3.2)

Warning: in the following we consider only functions which take values in
the interval [0, 1]. For sequences of such functions convergence in measure is
equivalent to convergence in Lp for any p ∈ [1,∞), and then we simply call it
strong convergence. Similarly, all the weak Lp-topologies with p ∈ [1,∞) induce
the same convergence, which is therefore referred to as weak convergence.

We first prove the three statements above in the one-dimensional case, and
then we briefly show how to pass to the two-dimensional case, which requires the
same amount of work as the passage to arbitrary dimension.

3a. The one-dimensional case

We can assume that Ω is an open bounded interval. In this case BV (Ω, {0, 1})
turns out to be the class of all u : Ω → {0, 1} with finitely many discontinuities
(that is, piecewise constant on Ω), and � 0 is simply the measure that counts
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points. We often consider functions u such that Fε(u) is finite; then u belongs
to W 1,2(Ω), and in particular it admits a continuous representant on Ω; unless
differently stated we always refer to this representant. The basic ingredients of
the proof are given in the following three paragraphs.

3.1. Localization of Fε. – It is useful to consider Fε also as a function of
the integration domain; hence we set

Fε(u, A) := ε

∫

A

|u̇|2 +
1

ε

∫

A

W (u) (3.3)

(for every measurable set A and every function u whose derivative belongs to
L2(U) for some open set U which contains A). In particular Fε(u) = Fε(u, Ω).
The functional in (3.3) is sometimes called the localization of the functional Fε

given in (2.3). Notice that Fε(u, A) is a positive measure with respect to the
variable A; in the following we often use this property without further mention.

3.2. Scaling property of Fε. – For every A and every u we set uε(x) :=
u(εx) and 1

εA := {x : εx ∈ A}. Then we immediately obtain the following scaling
identity

Fε(u, A) = F1

(

uε, 1

εA
)

. (3.4)

In some sense we may say that the choice of scaling Fε := 1

εEε is the optimal one
exactly because of identity (3.4).

3.3. The optimal profile problem. – We consider now the minimum
problem

σ̄ := inf
{

F1(u, R) : u : R → [0, 1] , lim
x→−∞

u(x) = 0 , lim
x→+∞

u(x) = 1
}

. (3.5)

The number σ̄ represents the minimal cost in term of the energy F1 for a transition
from the value 0 to the value 1 on the entire real line. The minimum problem
(3.5) is therefore called the optimal profile problem, and a solution γ is an optimal
profile for transition (with respect to the non-scaled energy F1). We will show
that the optimal profile problem is the key to the proof of Theorem 1, and in
particular σ̄ turns out to be equal to the constant σ in the statement of Theorem
1 (see Proposition 2). The connection between σ̄ and the cost of transition relative
to the energy Fε is made by the following lemma:

Lemma 1. – Let be given an interval I and a function u : I → [0, 1]. Assume
that there exists a, b ∈ I and δ > 0 so that u(a) ≤ δ and u(b) ≥ 1 − δ. Then for
every ε > 0 there holds

Fε(u, I) ≥ σ̄ − O(δ) , (3.6)

where the error estimate O(δ) depends on δ, but neither on ε nor on u.
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Proof. We can assume that a < b and I = (a, b), otherwise we just replace
I with (a, b). By identity (3.4) it suffices to prove (3.6) when ε = 1. In order to
compare Fε(u, I) with σ̄ we extend u to the whole of R as shown in the picture.

 ba

δ

1

x

extension of u

u

1−δ

Fig.1. Extension of the function u out of I = (a, b)

Now an immediate estimate shows that F1(u, R \ I) ≤ δ + Cδ where C is the
maximum value of W in [0, 1]. Hence we set O(δ) := (1 + C)δ and we conclude

F1(u, I) = F1(u, R) − F1(u, R \ I) ≥ σ̄ − O(δ) .

Proposition 2. – The minimum in (3.5) is attained and agree with the con-

stant σ given in Theorem 1, that is, σ̄ = 2
∫ 1

0

√

W (u) du.

Proof. We first prove that F1(u, R) ≥ σ for every u : R → [0, 1] which tends
to 1 (resp. to 0) at +∞ (resp. at −∞), and then we show that the equality is
attained by some particular choice of u. We apply the inequality a2 + b2 ≥ 2ab,
with a := u̇(x) and b :=

√

W (u(x)), to the definition of F1(u, R), and then we
get

F1(u, R) =

∫ +∞

−∞

[

u̇2(x) + W (u(x))
]

dx

≥ 2

∫ +∞

−∞

√

W (u(x)) u̇(x) dx = 2

∫ 1

0

√

W (u) du =: σ .

(3.7)

Now we recall that equality holds in a2 + b2 ≥ 2ab when a = b, and then equality
holds in (3.7) when u satisfies the differential equation u̇ =

√

W (u). Thus we
consider the Cauchy problem







u̇ =
√

W (u) ,

u(0) = 1/2 .

(3.8)

The constant functions 1 and 0 are solution of u̇ =
√

W (u) (because W (0) =

W (1) = 0), and since
√

W is continuous the problem (3.8) admits a global (in-
creasing) solution on R (we have uniqueness when W is of class C1). Since



 

Variational models for phase transitions 11

W (u) > 0 for 0 < u < 1, this global solution must converge to 1 (resp. to 0) at
+∞ (resp. at −∞).

Remark 9. – The possibility of an explicit computation of σ̄ is quite specific
of the form of the functional F1. In many generalizations such a computation is
not possible (cf. paragraphs 4.2 and 4.4). For this reason it is preferable to define
σ and σ̄ separately, and then show that σ = σ̄. For the rest of the proof we will
refer mainly to σ̄, this being the “natural” constant to consider.

3.4. Proof of statements (i) and (ii). – We first sketch the idea of the
proof. If we take a sequence (uε) such that Fε(uε) ≤ C < +∞, then in particular
∫

Ω
W (uε) ≤ Cε, and this implies that the functions uε take values close to 0 or 1

outside an exceptional set with measure of order ε (recall that W is continuous
and strictly positive between 0 and 1). If the sequence (uε) converges weakly but
not strongly, then it must “oscillate” between values close to 0 and 1; on the other
hand Lemma 1 shows that the cost of each oscillation (in term of the localized
energy Fε) is roughly of order σ̄, and then the bound on Fε(uε) allows only for
finitely many oscillations. Hence (uε) converges strongly to a limit function u
which takes values 0 or 1 almost everywhere.

Let us compute now the number of transitions of u from 0 to 1 or viceversa.
Passing to a subsequence, and modifying u in a set of measure 0, we may assume
that uε converge to u everywhere. Then, if we take x0 and x1 so that u(x0) = 0
and u(x1) = 1, by (3.6) we get Fε

(

uε, (x0, x1)
)

≥ σ̄ − o(1). Hence the bound
Fε(uε) ≤ C implies that u has at most C/σ̄ transitions from 0 to 1, that is,
� 0(Su) ≤ C/σ̄. Eventually we notice that passing to subsequences we can take
the bound C := supFε(uε) arbitrarily close to the lower limit of Fε(uε), and then
(3.1) is proved.

The previous heuristic argument can be made rigorous in a very elegant and
simple way by use of the notion of Young measure. To this aim we refer the inter-
ested reader to the concise paper [9]; a more detailed and exhaustive treatment
of the subject can be found in [27], while a how-to-use guide will be provided
in the first chapters of [25]. For our purposes it should be enough to recall that
given an arbitrary sequence of functions uε : Ω → [0, 1], we may extract a subse-
quence (not relabeled) whose asymptotic behavior is captured by a certain family
of probability measures {νx : x ∈ Ω} called the Young measure generated by (uε).
Every νx is a probability measure on the interval [0, 1] related with the asymptotic
distribution of the values of uε, close to x. In particular the functions uε converge
weakly to the function u which takes every x ∈ Ω into the center of mass of νx

(that is, u(x) :=
∫

u dνx(u)), and we have strong convergence if and only if νx is
a Dirac mass for a.e. x ∈ Ω. Moreover for every test function f : Ω × [0, 1] → R

which is continuous with respect to the second variable and bounded there holds

∫

Ω

f
(

x, uε(x)
)

dx −→
∫

Ω

[

∫ 1

0

f(x, u) dνx(u)
]

dx . (3.9)
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Take now a sequence (uε) such that Fε(uε) ≤ C < +∞, and assume that it
generates a Young measure {νx : x ∈ Ω}. Then

∫

Ω
W (uε) → 0, and if we apply

(3.9) with f(x, u) := W (u) we get

∫

Ω

[

∫ 1

0

W (u) dνx(u)
]

dx = 0 .

We infer that for a.e. x ∈ Ω the measure νx is supported on {0, 1}, and then it
can be written as

νx := λ(x) · δ0 +
(

1 − λ(x)
)

· δ1 , (3.10)

for suitable λ(x) ∈ [0, 1] (as usual δt denotes the Dirac mass at t). Take now
any interval I ⊂ Ω where λ is neither a.e. equal to 0 nor a.e. equal to 1. Then
the functions uε must take in I values close to 0 and values close to 1, and then
Lemma 1 yields Fε(uε, I) ≥ σ̄ − o(1). Therefore the bound on Fε(uε) implies
that we can find at most C/σ̄ disjoint intervals of this type. Hence λ agrees a.e.
with a function u which takes values 0 or 1 everywhere and has finitely many
transition from 0 to 1; in short, u ∈ BV (Ω, {0, 1}). Hence νx is a Dirac mass at 0
for a.e. x such that u(x) = 0, and a Dirac mass at 1 for a.e. x such that u(x) = 1.
This implies that the limit of the functions uε is u, and the convergence is strong;
statement (i) is proved.

Since the number of transition of u from 0 to 1 is by definition � 0(Su), the
previous argument provides the following bound:

C ≥ σ̄� 0(Su) . (3.11)

Inequality (3.11) implies (3.1) because, passing to subsequences, we can take the
upper bound C arbitrarily close to the lower limit of Fε(uε).

3.5. Proof of statement (iii). – Once the proof in paragraph 3.4 and the
meaning of the optimal profile problem (3.5) are well understood, the rest of the
proof of Theorem 1, namely the upper bound inequality, is almost immediate.
Assume for simplicity that Ω is an interval which contains the point 0 and that
u(x) = 1 for x ≥ 0 and u(x) = 0 for x < 0. Thus Su consists of the sole point 0,
and we construct the approximating sequence (uε) which satisfies (3.2) by taking
suitable scaling of the optimal profile γ; more precisely we set uε(x) := γ(x/ε).
Then uε(x) → u(x) for every x 6= 0 because the limit of γ at +∞ is 1 and the
limit at −∞ is 0, and identity (3.4) yields

Fε(uε) = F1(γ, 1

εΩ) ≤ F1(γ, R) = σ̄ .

So far we did not care about the constraint
∫

uε =
∫

u; in order to fit it, one has
to slightly modify the previous definition, for instance by taking carefully chosen
translations of uε. The construction of (uε) in the general case is sketched in the
picture below; the details are left to the reader.
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a

1

x

u

0
 b

uεslope ε−1

uε:=γ(ε−1(x−x1))

Fig.2. Construction of uε, with Ω = (a, b) and Su = {x1, x2, x3}

3b. The general case

The proof of Theorem 1 in dimension larger than one is usually achieved by suit-
able adaptations of the proof for the one-dimensional case. Yet it is important to
notice that statements (i) and (ii) can be deduced directly from the correspond-
ing one-dimensional statements via a general slicing argument (we recall that
statements (i) - (iii) are given at the beginning of section 3, and proved for the
one-dimensional case in subsection 3a). This fact shows that to some extent the
nature of Theorem 1 is one-dimensional; for instance it can hardly adapt to the
so-called Ginzburg-Landau functionals (see paragraph 4.3). We remark that the
use of slicing arguments to reduce to lower-dimensional statements has already
been applied in many different situations; we just mention here the proof of the
compactness theorem for integral currents due to B. White [28], the original proof
of the compactness theorem for SBV functions in [7], and the rank-one property
of derivatives of BV functions in [1]. For simplicity we give the proof in the
two-dimensional case only.

3.6. Some notation. – We assume for the time being that Ω is a rectangle
of the form I × J , with I, J open intervals with length smaller than 1, and we
write every x ∈ Ω as x = (y, z) with y ∈ I, z ∈ J . For every function u defined on
Ω and every y ∈ I we denote by uy the function on J defined by uy(z) := u(y, z),
and for every z ∈ J we denote by uz the function on I defined by uz(y) := u(y, z).
The functions uy and uz are called one-dimensional slices of u. We denote by
F ε(u, A) the one-dimensional functional given in (3.3) for every open interval A
and every u : A → [0, 1]. We recall now that if u ∈ W 1,2(Ω) then uy ∈ W 1,2(J)
for a.e. y ∈ I and uz ∈ W 1,2(I) for a.e. z ∈ J , and

∂u

∂z
(x) = u̇y(z) ,

∂u

∂y
(x) = u̇z(y) for a.e. x ∈ Ω

(see [18], section 4.9.2). Since |∇u|2 ≥
∣

∣

∂u
∂z

∣

∣

2
, (resp.

∣

∣

∂u
∂y

∣

∣

2
), we immediately

obtain the following slicing inequalities :

Fε(u) ≥
∫

I

F ε(u
y, J) dy

(

resp.

∫

J

F ε(u
z, I) dz

)

. (3.12)
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3.7. A compactness criterion via slicing. – In order to deduce state-
ment (i) from the corresponding one-dimensional compactness statement, we have
to make a connection between the pre-compactness of a sequence (uε) of func-
tions from Ω into [0, 1] and the pre-compactness of the slices (uy

ε) and (uz
ε). The

simplest result on this line is the following criterion:

(C1) assume that (uy
ε)⊂⊂L1(J) for a.e. y ∈ I and (uz

ε)⊂⊂L1(I) for a.e. z ∈ J ;
then (uε)⊂⊂L1(Ω)

(here ∗⊂⊂ ∗ ∗ reads as “∗ is pre-compact in ∗∗”). Unfortunately this result
does not fit our purposes, but a sufficiently general statement is obtained by
allowing for some “perturbations”: we say that a sequence (ūε) is δ-close to (uε)
if ‖uε− ūε‖1 < δ for every ε, and then we have the following modification of (C1):

(C2) assume that for every δ > 0 there exist sequences (uδ,ε) and (ûδ,ε) δ-close
to (uε) so that (uy

δ,ε)⊂⊂L1(J) for a.e. y ∈ I and (ûz
δ,ε)⊂⊂L1(I) for a.e.

z ∈ J ; then (uε)⊂⊂L1(Ω).

The proof of these compactness criteria essentially relies on the character-
ization of pre-compact sets in the strong L1-topology given by the Fréchet-
Kolmogorov theorem; for a general statement and a detailed proof we refer to
[6], section 6.3.

3.8. Proof of statements (i) and (ii). – Let be given (uε) so that
Fε(uε) ≤ C < +∞. Then (3.12) yields

C ≥
∫

I

F ε(u
y
ε , J) dy for every ε > 0 (3.13)

(and a similar inequality holds for F ε(u
z
ε, I)). We fix now δ > 0 and for every

ε > 0 we take uδ,ε : Ω → [0, 1] so that

uy
δ,ε :=

{

uy
ε if F ε(u

y
ε , J) ≤ C/δ,

0 otherwise.

By (3.13) we have that uy
δ,ε = uy

ε for all y ∈ I apart a set of measure smaller than
δ, and then ‖uε − uδ,ε‖1 ≤ δ|I| ≤ δ. Hence the sequence (uδ,ε) is δ-close to (uε).
Moreover for every y ∈ I there holds F ε(u

y
δ,ε, J) ≤ C/δ (recall that F ε(0, I) = 0)

and then the sequence (uy
δ,ε) is pre-compact in L1(J) by the one-dimensional

version of statement (i). In a similar way we can construct a sequence (ûδ,ε) δ-
close to (uε) so that (ûz

δ,ε)⊂⊂L1(I) for a.e. z ∈ J , and therefore the compactness

criterion (C2) shows that the sequence (uε) is pre-compact in L1(Ω).
Assume now that (uε) converge to u in L1(Ω). Then uy

ε → uy in L1(J) for
a.e. y ∈ I, and if we apply Fatou’s lemma to inequality (3.12) we get

lim inf
ε→0

Fε(uε) ≥
∫

I

[

lim inf
ε→0

F ε(u
y
ε , J)

]

dy .
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Hence lim inf F ε(u
y
ε , J) is finite for a.e. y ∈ I, and then uy belongs to the

space BV (J, {0, 1}) by the one-dimensional version of (i). Moreover the the one-
dimensional version of (ii) yields

lim inf
ε→0

Fε(uε) ≥ σ

∫

I

� 0(Suy) dy , (3.14)

and recalling that � 0(Suy) is the total variation of uy in BV (J), (3.14) yields
∫

I
‖u̇y‖ dy < +∞, and in a similar way one gets

∫

J
‖u̇z‖ dz < +∞. We use now

the following important fact: a function u ∈ L1(Ω) belongs to BV (Ω) if (and
only if) uy ∈ BV (J) for a.e. y ∈ I, uz ∈ BV (I) for a.e. z ∈ J , and

∫

I
‖u̇y‖ dy

and
∫

J
‖u̇z‖ dz are finite (see [18], section 5.10.2).

Finally we recover the lower bound inequality (3.1) from (3.14). Assume for
the moment that Su is a regular curve in Ω. Then the integral at the right
hand side of (3.14) is just the measure of the projection of Su on I (keeping the
multiplicity into account), which in general can be smaller than the length of Su.
In fact the length of a curve C in I × J is close to the measure of its projection
on I if and only if the normal to C is close to the projection axis (in this case the
z-axis). Keeping this in mind we cover Su (up to a subset with small measure)
by pairwise disjoint squares Qi so that within each Qi the normal to Su is close
to one of the axes of Qi.

u=0
 y

 z

 Ji

u=1
u=0

 Ω

Su

 Qi

Su
u=1

u=0

 Ii

Fig.3. Covering the set Su with squares

Then, for every Qi, inequality (3.14) becomes

lim inf
ε→0

Fε(uε, Qi) ≥ σ

∫

Ii

� 0(Suy) dy ' σ� 1(Su ∩ Qi) ,

and taking the sum over all i,

lim inf
ε→0

Fε(uε) ≥
∑

i

lim inf
ε→0

Fε(uε, Qi) ≥ σ� 1(Su) − o(1) .

This argument can be made rigorous for every singular set Su by a careful use of
the Besicovitch covering theorem (see [18], section 1.5) and a detailed description
of the pointwise property of rectifiable sets and of the measure theoretic boundary
of sets with finite perimeter (cf. [18], chapter 5).
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3.9. Proof of statement (iii). – Unlike statements (i) and (ii), the proof of
statement (iii) cannot be achieved by reduction to the one-dimensional case. On
the other hand by Remark 1 it is enough to prove the upper bound inequality only
for a suitable dense subset

�
in X. In this case we choose as

�
the class of all u ∈

BV (Ω, {0, 1}) whose singular set Su is a piecewise affine curve in R
2 (a polyhedral

surface of dimension N − 1 when N is general); indeed every u ∈ BV (Ω, {0, 1})
can be approximated by a sequence (un) ⊂ �

so that � 1(Sun) → � 1(Su);
this is an immediate consequence of a well-known approximation result for finite
perimeter sets by smooth sets, see [21], Theorem 1.24 (in fact, another typical
choice for

�
is given by the class of all u such that Su is a smooth curve with

boundary included in ∂Ω). Thus we take u ∈ �
, and given ε > 0 we construct

uε as follows: we cover Su with disjoint rectangles Ri with width ε2/3, up to a
residual set with measure of order ε2/3:

 Ω
Su = union of segments Si 

Rectangles Ri with width =ε2/3

Affine extension of uε

Lipschitz extension of uε

Fig.4. Covering of Su

In each rectangle Ri (see Fig. 4) we set uε(x) := γ(xi/ε) where xi is the
oriented distance of the point x from the segment Si (so that it is positive on
the side of Si where u = 1 and negative on the side where u = 0). In the darker
rectangles we take an affine extension of uε which agrees with u on the sides which
border the white region, and we choose the width of each rectangle so that the
slope of uε is 1/ε (therefore this width has order o(ε)). In the white region we
take uε equal to u. Finally, we define uε in the interior of the remaining dotted
regions by taking any Lipschitz extension with the same Lipschitz constant as
on the boundary, which has order O(ε−1). Hence, within each Ri (and in the
corresponding darker rectangles) the function uε varies only in the direction νi

normal to Si, and Fε(uε, Ri) ≤ σ� 1(Si); while the contributions of the other
regions vanish as ε → 0. Thus Fε(uε) ≤ σ� 1(Su) + o(1), and the proof of
statement (iii) is completed.

4. Final remarks

Theorem 1 was conjectured by E. De Giorgi and proved by L. Modica and S.
Mortola [24] in 1977, shortly after the definition of Γ-convergence was given in
[16]; the connection with the Cahn-Hilliard model was established by L. Modica
[23] only in 1987. Since then several results were given which extend Theorem 1
in different directions (cf. paragraphs 4.1, 4.3 and 4.4). The idea of defining σ̄
via a suitable minimum problem involving only non-scaled functionals is common
knowledge, and I was not able to trace the source. The idea of proving compact-
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ness and lower bound inequality via Young measures (and Lemma 1) is essentially
contained in [5].

Remark 10. – The minimum problem (3.5) leads to the Euler-Lagrange
equation 2ü − Ẇ (u) = 0. Hence solution of (3.5) are standing waves for the
parabolic equation ut = 2uxx − f(u) for certain choices of f . Standing and
travelling waves for this equation have been widely studied in the literature,
since connected with the asymptotic behavior of the solutions of the scalings of
the Allen-Cahn equation ut = ∆u − f(u); we refer the reader to [8] and the
references therein.

Remark 11. – Notice that throughout the whole proof of Theorem 1, what we
really need is the positivity of σ̄, while it is not strictly necessary that the infimum
in (3.5) is attained (in fact suitable modification of the proof of statement (iii)
works even if no optimal profile is available). Nevertheless the existence of the
optimal profile has a deeper meaning than it appears in the proof above. Indeed if
(vε) is a sequence of minimizers of Fε which converges to some v ∈ BV (Ω, {0, 1}),
then the upper bound inequality is verified, and we would naturally conclude that
if we blow-up the functions vε at some fixed singular point x̄ of v by taking the
functions γε(x) := vε(ε(x−x̄)), then γε should more and more resemble an optimal
profile. In other words we expect the optimal profiles to be the asymptotic shapes
of the minimizers vε close to the discontinuity points of v. Yet a precise statement
cannot be easily formulated in the current framework.

Remark 12. – The existence of a solution of the optimal profile problem (3.5)
cannot be deduced by standard semicontinuity and compactness results: indeed
not only the functional F (·, R) is translation invariant, but also its natural domain
is the class of all u : R → [0, 1] such that ∇u ∈ L2(R), and for such functions the
limits at ±∞ are not always defined (take for instance u(x) := sin2 log(1 + x2)).

An alternative way to find a solution of (3.5) is via rearrangement. Given
a function u : R → [0, 1] which tends to 1 at +∞ and to 0 at −∞, then each
sublevel Et := {x : u(x) > t} with t ∈ (0, 1) can be written as the disjoint union of
a bounded At and an half line (bt,+∞); we define the increasing rearrangement of
u as the function u∗ whose sublevels are the half-lines E∗

t := (bt−at,+∞), where
at is the measure of At. This rearrangement operator decreases the functional
F1(·, R) among others, that is, F1(u, R) ≥ F1(u

∗, R) (see [22]). Hence in (3.5)
we can restrict to the subclass of increasing functions u such that ∇u ∈ L2(R)
and u(0) = 1/2 (we add this constraint to work out the translation invariance of
the functional), which is compact with respect to the strong convergence; then
the existence of an optimal profile follows from the (strong) semicontinuity of
F1(·, R).

4.1. The vectorial case. – The mechanical model described at the begin-
ning of section 2 applies to mixtures of two fluids only, but can be generalized
to mixtures of an arbitrary number m of fluids. In this case every configuration
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of the macroscopic model can be described by a function u : Ω → {α1, . . . , αm}
where α1, . . . , αm are arbitrarily chosen affinely independent points in R

m−1 (each
one corresponds to one fluid in the mixture), and the energy F (u) in (2.1) must be
rewritten as F (u) :=

∑

i<j σij� 2(Siju), where Siju is the interface between the
phases {u = αi} and {u = αj}, and σij is the corresponding surface tension. If Vi

is the total volume of the phase αi, then the admissible configurations are all u
which satisfy the volume constraint

∫

Ω
u =

∑

Viαi. Notice that the correspond-
ing minimum problem is well-posed if the coefficients σij satisfy the following
wetting conditions : σij + σjk ≥ σik for all i, j, k. In fact, if any of these inequal-
ities does not hold, then F is not lower semicontinuous on BV (Ω, {α1, . . . , αm})
(it is worth trying to understand why).

In the continuous model u takes values in the convex hull T of {α1, . . . , αm},
and the associated energy Eε(u) is given as in (2.2) with W a continuous positive
function on R

m−1 which vanishes at α1, . . . , αm. If we modify (2.3) and (2.4)
accordingly, then Theorem 1 holds, provided we set σij ; = dist(αi, αj) where dist

is the geodesic distance on T associated with the metric
√

W (u) du (this result
was first proved in [10], see also [12] for a more general result). The proof can
be achieved by modifying the argument of section 3; the optimal profile problem
(3.5) becomes now

σ̄ij := inf
{

F1(u, R) : u : R → [0, 1] , lim
x→−∞

u(x) = αi , lim
x→+∞

u(x) = αj

}

.

Notice that one of the main technical difficulties in this proof was due to the lack
of a “nice” dense subclass for BV (Ω, {α1, . . . , αm}) (cf. the proof in paragraph
3.9).

4.2. The general anisotropic case. – Anisotropic functionals of type
(2.2) are obtained for instance when we replace the Dirichlet integral

∫

|∇u|2
with the quadratic form

∫

〈A∇u; ∇u〉 where A is a symmetric positive definite
n×n matrix. This is the quadratic case of a larger class of anisotropic functionals
considered in [13], [26] and then in [12]. Here the surface tension σ depends on
the orientation of the interface, and the Γ-limit of Fε is given by the integral over
the interface Su of σ(ν) where ν is the normal to Su. For every direction e the
value of σ(e) is given by an N -dimensional version of the optimal profile problem
(3.5). In some cases (including the quadratic case) it is still possible to apply
some rearrangement theorem to prove that the optimal profile problem reduces
to a one-dimensional minimization problem.

4.3. The Ginzburg-Landau functionals. – An important variation of
the Cahn-Hilliard functionals are the Ginzburg-Landau functionals, which are
defined as in (2.2) for all u : Ω → R

2, by taking W a continuous positive func-
tion which vanishes on the unit circle S1 := {|u| = 1}. In this case when ε
tends to 0 the function u is forced to take values closer and closer to the unit
circle, and then we expect that the Γ-limit of suitable rescalings of Eε is finite
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on functions u : Ω → S1 with singularities of co-dimension 2 (in particular when
Ω has dimension 2 we expect point singularities). For this reason the asymptotic
behavior of these functionals differs deeply from what described in Theorem 1.
However no Γ-convergence result is available so far, while a complete description
of the asymptotic behavior of the minimizing sequences (under some boundary
constraint) was carried out when Ω has dimension 2 in [11].

4.4. A different type of interaction energy. – Another variation
of the Cahn-Hilliard functionals is obtained by replacing the Dirichlet energy
ε2

∫

|∇u|2 in (2.2) with suitable scalings of a non-local interaction energy Iε(u).
In [3] and [4] is considered the case

Iε(u) :=

∫∫

Jε(x
′ − x)

(

u(x′) − u(x)
)2

dx′dx ,

where Jε(h) := ε−NJ(h/ε) and J is a positive interaction potential in L1(RN ).
These kind of functionals arises as scalings of the free energy of a continuum limit
of spin systems on lattices, or Ising systems. Theorem 1 is still true, but now the
surface tension σ is directly defined through the optimal profile problem (3.5), and
cannot be computed explicitly in term of J and W ; the existence of an optimal
profile and the positivity of σ have been proved in this case via rearrangement,
as described in Remark 12 (see [2]).

4.5. The original proof of Theorem 1. – The proof of statement (i)
and (ii) of Theorem 1 given in [23] is very simple and elegant, and works directly
in the N -dimensional case; it is quite interesting to compare it with the proof
given in section 3. Given u : Ω → [0, 1], one applies the inequality a2 + b2 ≥ 2ab
with a :=

√

W (u)/ε and b :=
√

ε |∇u| and obtains

Fε(u) =

∫

Ω

(

ε|∇u|2 + ε−1W (u)
)

dx

≥ 2

∫

Ω

√

W (u) |∇u| dx =

∫

Ω

∣

∣∇(H(u))
∣

∣ dx

(4.1)

where H : [0, 1] → R satisfies Ḣ = 2
√

W . Take now a sequence (uε) such that
Fε(uε) ≤ C < +∞. Then (4.1) implies that the functions H(uε) are uniformly
bounded in BV (Ω), and then pre-compact in L1(Ω), and since H admits a con-
tinuous inverse, also (uε) is pre-compact in L1(Ω), and every limit point must
takes values 0 or 1 a.e. by the usual argument. Assume now that (uε) converge to
some limit u. Since u takes values 0 and 1 only, then H(u) takes values H(0) and
H(1) only, and therefore the total variation of the measure derivative D(H(u))
is equal to the total variation of Du multiplied by a factor H(1) − H(0), which
is equal to σ (cf. Theorem 1). Hence (4.1) yields

lim inf
ε→0

Fε(uε) ≥ lim inf
ε→0

∫

Ω

∣

∣D(H(uε))
∣

∣ ≥
∥

∥D(H(u))
∥

∥ = σ‖Du‖ = σ� N−1(Su)
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(the total variation of the measure derivatives is lower semicontinuous with re-
spect to the strong convergence of functions). This completes the proof of state-
ments (i) and (ii), while the proof of statement (iii) is quite similar to the one
sketched in paragraph 3.9.
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[5] G. Alberti, G. Bouchitté, P. Seppecher: Un résultat de perturbations singulières avec la
norm H/. C. R. Acad. Sci. Paris, Ser. I 319 (1994), 333-338.
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