
 

Arch. Rational Mech. Anal. 144 (1998) 1-46. c© Springer-Verlag 1998

Phase Transition

with the Line-Tension Effect

Giovanni Alberti, Guy Bouchitté
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Abstract

We make the connection between the geometric model for capillarity with line
tension and the Cahn-Hilliard model of two-phase fluids. To this aim we consider
the energies

Fε(u) := ε

∫

Ω

|Du|2 +
1

ε

∫

Ω

W (u) + λ

∫

∂Ω

V (u)

where u is a scalar density function and W and V are double-well potentials. We
show that the behavior of Fε in the limit ε → 0 and λ → ∞ depends on the limit
of ε log λ. If this limit is finite and strictly positive, then the singular limit of the
energies Fε lead to a coupled problem of bulk and surface phase transitions, and
under certain assumptions agrees with the relaxation of the capillary energy with
line tension. These results were announced in [ABS1] and [ABS2].
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1. Introduction

In the classical model for two-phase fluids, it is assumed that every configuration
of a fluid in a container Ω ⊂ R

3 is described by a mass density u which takes only two
values α and β, corresponding to the phases A := {u = α} and B := {u = β} = Ω\A.
The energy is located on the interface

�
AB which separates the two phases, with

density σAB (surface tension), and on the contact surfaces
�

AW and
�

BW between
the wall of the container and the phases A and B, with density σAW and σBW

respectively. Then, under some volume constraint, the equilibrium configurations
minimize the capillary energy

E0(A) := σAB |
�

AB| + σAW |�AW| + σBW |�BW|. (1.1)

Here and in the following |A| denote the measure of A, namely the area when A is
a surface, and the length when A is a line. Surface energy densities are represented
by the letter σ with an index which recall the type of interface under consideration;
these coefficients are strictly positive, and clearly do not depend on the particular
configuration of the system.

The problem of minimizing (1.1) is the so-called liquid-drop problem; the exis-
tence of a solution for this minimum problem is assured by the wetting condition

|σAW − σBW| ≤ σAB. (1.2)

At equilibrium, the interface
�

AB has constant mean curvature, and it meets the
wall of the container at a constant contact angle θ, which satisfies Young’s law (see
for instance [RW] or [F])

cos θ =
σAW − σBW

σAB

. (1.3)

An interesting extension of the previous model is obtained by adding to E0 an
energy concentrated along the line �c where

�
AB meets the wall of the container

(contact line) with density c; this energy density is referred to as line tension (see
[RW, WW]). In this model the capillary energy becomes:

F0(A) := σAB |
�

AB| + σAW|�AW| + σBW|�BW| + c|�c|. (1.4)

An alternative way to study two-phase fluids originates from the continuum
mechanics approach initiated by Gibbs and revisited by Cahn & Hilliard [CH]
in the 60’s. The interface

�
AB is now replaced by a thin layer in which the mass

density u varies continuously from the value α to the value β, and the energy

associated with u is the sum of a Gibbs free energy
∫
Ω

W (u), where W is a two-
wells potential vanishing at α and β, and a term ξ

∫
Ω
|Du|2 which penalizes the

non-homogeneity of the fluid. Moreover a boundary contribution
∫

∂Ω
V (u) can be

added to take into account the interactions between the fluid and the wall of the
container.

The coefficient ξ introduces an intrinsic length which is characteristic of the
thickness of the interface, and since this length is in general much smaller than the
size of the container, it is natural to study the equilibrium of such a fluid in an
asymptotic way, i.e., by considering the limits as ε tends to 0 of the minimizers uε

(subject to a mass constraint
∫
Ω

uε = m) of the rescaled energies

Fε(u) := ε

∫

Ω

|Du|2 +
1

ε

∫

Ω

W (u) + λ

∫

∂Ω

V (u), (1.5)

where λ represents the order of magnitude of the wall-fluid interactions.
This problem has been studied by several authors, mainly in the case λ = 0 (that

is, when no boundary energy is considered; see for instance [Gu, Mo1]; see [Ba] for
multi-phase fluids). In the case λ = 1, L. Modica [Mo2] established a rigorous
connection between the classical model for capillarity E0 and the Cahn-Hilliard
model: the sequence of minimizers uε (of Fε) is pre-compact in L1(Ω), each limit
point u takes only the values α and β (almost everywhere), and the corresponding
phase A := {u = α} solves the liquid-drop problem associated with an energy of
type (1.1), where the coefficients σAB, σAW and σBW can be expressed in term of the
potentials W and V . We recall that in [Mo2] it was assumed that W , V , λ and Ω do
not depend on ε (which means that ε is infinitely smaller than any other parameter
of the problem) while in the present work we consider a different behavior for λ,
namely that λ tends to infinity as ε tends to zero. Different assumptions have
already been discussed in [BS, BDS].

The contribution of this paper is twofold. First we focus on the model for
capillarity with line tension associated with the energy F0. We show that due to a
lack of semicontinuity, this functional leads to ill-posed minimum problems. Then
we apply the usual relaxation procedure and we compute the relaxed functional F 0

explicitly.
Our second goal is to establish a rigorous connection between F0 and the Cahn-

Hilliard model. To this end we study the asymptotic behavior of the functionals
Fε in the limit ε → 0 when λ tends to infinity with a suitable scaling and V is a
two-well potential. We show that the limit of Fε in the sense of Γ-convergence is a
functional F (u) which is finite only if u takes values α or β. Thus we can view F
as a function of the phase A := {u = α}, and it turns out that F agrees with F 0

for suitable choice of the potentials W and V . Consequently, if uε minimizes Fε

subject to the mass constraint
∫

ε
u = m, and u is a limit point of the sequence (uε),

then the corresponding phase A := {u = α} minimizes F 0 subject to a suitable
volume constraint.

The relaxation procedure is described in subsection 2.2. We show that the
total energy can be properly written by introducing, besides the usual bulk phase
A ⊂ Ω, an additional variable A

′ ⊂ ∂Ω which is completely independent of A; A
′
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and its complement B
′ := ∂Ω \ A

′ are called boundary phases. The total energy
Φ0 of the configuration (A,A′) is thus given by the sum of three different terms:
the classical surface tension on the interface between the bulk phases A and B, a
surface density on the wall of the container (which depends on which bulk phase
and which boundary phase meet together) and a line density along the line �A′B′

which separates the boundary phases A
′ and B

′ (dividing line).

Thus F 0(A) is obtained by taking the minimum of Φ0(A,A′) over all possible
A
′ (see Theorem 2.1). Notice that in general the boundary phase A

′ where such
a minimum is attained differs from the interface

�
AW between A and the wall of

the container, and therefore F 0 is no longer of the form (1.4). In particular it is
a nonlocal functional (while Φ0 is local), and what we called “line tension” is now
located on the dividing line �A′B′ , which in general does not agree with the contact
line �c; in this case we speak of “dissociation of contact line and dividing line”.

In subsection 2.3 we show that a similar situation occurs when we study the
asymptotic behavior of Fε. In order to properly write the limit of the boundary
energies, as ε → 0 we need to introduce besides the usual bulk mass density u an
additional variable v : ∂Ω → R called boundary mass density. A configuration of
the limit problem is represented by a couple (u, v) to which we associate a total
energy Φ(u, v) (see Theorem 2.6). As before, we can recover from Φ a functional
which depends only on the bulk density u: the limit F (u) of the functionals Fε (in
the sense of Γ-convergence) is given by the minimum of Φ(u, v) over all possible v
(Corollary 2.7).

Since Φ is finite only when u takes values α and β and v takes values α′ and β′

(the wells of the potential V ), we may regard Φ as a function of A := {u = α} and
A
′ := {v = α′}. In subsection 2.4 we encompass Φ0 and Φ in a more general class

of functionals. This leads to different models for capillarity with line tension, and
then we need some qualitative comparison; indeed we show that Φ0 can be always
obtained as Φ for a suitable choice of the potentials V and W , while the converse
is true only if V and W satisfy certain restrictions.

Sections 3 and 4 are devoted to the proofs of the mathematical results stated in
section 2. The main mathematical difficulties arise in the proof of the Γ-convergence
result for the functional Fε. While the limit energy can be evaluated in the bulk
as in [Mo1], the characterization of the boundary contribution is more intricate.
In particular the two-dimensional part of the boundary contribution is studied
by adapting the approach of [Mo2]; for the one-dimensional part we need several
steps: first, by localization and slicing arguments we reduce to a problem on a
two-dimensional half-disk; then we replace the two-dimensional Dirichlet energy on
the half-disk by the H1/2 intrinsic norm on the diameter; eventually we are led to a
new kind of singular perturbation problem involving a nonlocal term. This problem
has its own interest (see Theorem 4.4 and [ABS1]), and brings to the fore the right
scaling for λ, namely log λ ' 1/ε. Some technical lemmas have been postponed in
section 6.

In section 5, we describe the mechanical consequences of our model for line
tension in term of equilibrium configurations. We show that the dissociation of
contact line and dividing line may occur also at equilibrium, and in that case the
contact angle no longer satisfies Young’s law but an entirely different condition.

Accordingly, in the quasistatic evolution of such a fluid the contact angle may have
discontinuous changes.

2. Description of the Results

We begin by fixing the notation and recalling some standard mathematical re-
sults used throughout the paper. Then we discuss the relaxation of the functional
F0 (subsection 2.2) and the asymptotic behavior of the functionals Fε (subsection
2.3). The comparison between these results is briefly discussed in subsection 2.4.

2.1. Notation

In this paper we consider different domains A with dimension h = 1, 2, 3; more
precisely, A is always a bounded open set either of R

h or of a smooth h-dimensional
manifold M without boundary, embedded in R

3. We denote by ∂A the boundary
of A relative to the ambient manifold; ∂A is always assumed Lipschitz regular.

We denote by Br(x) the ball with center x and radius r; we write a∨ b and a∧ b
for the maximum and the minimum of a and b respectively.

Unless differently stated A is always endowed with the corresponding h-
dimensional Hausdorff measure � h (cf. [EG, Chapter 2]). Accordingly, we often
write

∫
A

f instead of
∫

A
f d� h, and |A| instead of � h(A), whereas we never

omit an explicit mention of the measure when it differs from � h. We often
use the fact that given a set B ⊂ R

k and a Lipschitz function f on B, then
� h(f(B)) ≤ (Lip(f))h� h(B), where Lip(f) is the Lipschitz constant of f .

The h-dimensional density of E at a point x is the limit (if it exists) of the ratio
� h(E∩Br(x)) over ωhrh as r → 0, where ωh is the measure of unit ball in R

h. The
essential boundary of E is the set of all points where E has neither density 1 nor
density 0, including all points where the density does not exist. Since the essential
boundary agrees with the topological boundary when the latter is Lipschitz regular,
we also denote the essential boundary by ∂E.

Throughout the rest of this paper, all the functions and sets are assumed Borel
measurable and questions of measurability will never be discussed.

Function Spaces. Let A be an h-dimensional domain and take u ∈ L1
loc(A). The

derivative of u in the sense of distributions is denoted by Du. As usual H1(A) is
the Sobolev space of all real functions u ∈ L2(A) such that Du belongs to L2(A),
and BV (A) is the space of all u ∈ L1(A) with bounded variation, that is, such that
Du is a bounded Borel measure on A. Notice that when A is an open subset of a
manifold M ⊂ R

3 and u ∈ H1(A), then Du : A → R
3 and Du(x) belongs to the

tangent space of M at x for a.e. x ∈ A. If u ∈ BV (A), then Du is a measure on A
which takes values in R

3 and the density of Du with respect to its variation |Du|
at x, belongs to the tangent space of M at x for |Du|-a.e. x ∈ A. Recall that every
bounded set in BV (A) is relatively compact in L1(A). The letter T denotes the
trace operator which maps H1(A) onto H1/2(∂A) and BV (A) onto L1(∂A).
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For further details and results about the theory of BV functions and Sobolev
spaces we refer the reader to [EG, Chapters 4 and 5].

Jump set and essential boundary. Let A be an h-dimensional domain and take
u ∈ L1

loc(A). The jump set Su is the complement of the set of Lebesgue points of
u, i.e., the set of points where the upper and lower approximate limits of u differ
or are not finite. If u ∈ BV (A) then Su is rectifiable: this means that it may be
covered by countably many (h − 1)-dimensional submanifolds of class C1 except
for an � h−1-negligible subset. In particular the dimension of Su does not exceed
h− 1, and if u belongs to H1(A) then Su is � h−1-negligible (see [EG, Sections 4.8
and 5.9]).

For every I ⊂ R, we define BV (A, I) as the class of all u ∈ BV (A) such that
u(x) ∈ I for a.e. x ∈ A. If I := {α, β}, then a function u : A → I belongs to
BV (A) if and only if � h−1(Su) < +∞, and (β − α)� h−1(Su) agrees with the
total variation ‖Du‖ of the derivative Du (cf. [EG, Section 5.11]). In the particular
case I = {0, 1}, u is the characteristic function of a set E and is denoted by 1E ,
and E is called a set with finite perimeter in A. Since the essential boundary of
E agrees in A with the jump set of 1E , we deduce that E has a finite perimeter
in A if and only if � h−1(∂E ∩ A) is finite. For this reason the notion of essential
boundary fits out purposes more than the topological boundary.

Every rectifiable set S can be endowed with a (measure theoretic) normal field
ν which enjoys the following property: for every hypersurface M of class C1 and
� h−1-almost every x in M ∩ S the vector ν(x) agrees with a normal unit vector
to M at x. Moreover when S is the jump set of a function u ∈ BV (A, I) with
I := {α, β} we can chose ν so that the measure derivative Du is given by the
restriction of the measure � h−1 to the set Su multiplied by the density function
(β − α) · ν. This choice of ν is unique up to � h−1-negligible sets and is denoted
by νu; when u is the characteristic function of a finite perimeter set E this normal
field is also denoted by νE and is called the (approximate) inner normal to E.

Eventually we remark that when E has finite perimeter in A the trace of the BV
function 1E on ∂A (which is defined as an element of L1(∂A)) is the characteristic
function of the set ∂E ∩ ∂A. In this sense, the set ∂E ∩ ∂A can be regarded as the
trace of E on ∂A.

2.2. The Relaxation Theorem

The container is represented by a bounded open set Ω of R
3 with a boundary

of class C1 and the bulk phases are denoted A and B. Since B = Ω \ A, every
configuration is identified by A. In the following ∂A and ∂B denote the essential
boundaries of A and B, and then the various interfaces involved in the expression
of the energies E0 or F0 are defined as follows:

�
AB := ∂A ∩ ∂B is the surface which separates the phases A and B;

�
AW := ∂A ∩ ∂Ω is the surface which separates A from the wall of the container;

�
BW := ∂B ∩ ∂Ω is the surface which separates B from the wall of the container.

�c := ∂
�

AW is the contact line, i.e., the line which separates
�

AW from
�

BW.

In the following the letters
�

and � always denote a surface and a line re-
spectively; consequently, we often denote the area � 2(

�
) and the length � 1(� )

simply by |� | and |� |. The letters in sans-serif A and B will be reserved for the
phases.

The admissible configurations of the system belong to the space X of all Borel
subsets of Ω. We endow X with the distance d(A1,A2) := � 3(A14A2), where
A14A2 := (A1 \ A2) ∪ (A2 \ A1) is the symmetric difference of A1 and A2.

Our first claim is that the functional F0 defined in (1.4) is not lower semicontin-
uous on X. The reason can be easily outlined: fix a configuration A and compare
its energy with the energy of a new configuration Aδ which is obtained by inserting
a layer of phase B with thickness δ between A and the wall (see Figure 1).

A Aδ
δ

B
contact line c 

AW BW
Bδ

Fig. 1. The configurations A and Aδ.

As δ tends to zero, Aδ converges to A in X, and since Aδ does not touch the
wall, the contact line of the new configuration is empty and the interface between
the two phases Aδ and Bδ consists roughly speaking in the union

�
AB∪

�
AW. Hence

F0(A) − F0(Aδ) ' (σAW − σAB − σBW) |�AW| + c|�c|. (2.1)

Clearly the right hand side of (2.1) is strictly positive for a suitable choice of A:
indeed the area |�AW| is bounded by |∂Ω| while the length |�c| can be taken
arbitrarily large. Hence for such a configuration there holds lim inf F0(Aδ) < F0(A).

Let us emphasize that this phenomenon is not related to the particular choice of
the topology on the space of configurations X. Since we are interested in minimizing
F0, we can consider only topologies which make F0 coercive, that is, such that every
sequence which is bounded in energy is pre-compact, and it can be easily checked
that the choice of any (Hausdorff) topology in this class has no incidence on the
lower semicontinuity of F0. Notice that due to the compact embedding of BV (Ω)
in L1(Ω), the metric we imposed on X makes F0 coercive.

This lack of lower semicontinuity shows that looking for equilibrium configura-
tions on the basis of the model F0 leads to ill-posed problems. In subsection 5.2 we
show that the energy F0 may admit no minimizer with prescribed volume.

The next natural step is to consider the relaxation of F0, namely

F 0(A) := inf
{

lim inf
n→∞

F0(An) : An → A in X
}
. (2.2)

First we remark that given a sequence (An) which tends to A in X, the trace of
An on ∂Ω (i.e.,

�
AnW) converges in X ′ to a set A

′ which in general does not agree
with the trace of A. This is indeed the case for the sequence (Aδ) defined above
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(see Figure 1). This consideration suggests that to describe the relaxation of F0 it
is convenient to introduce, besides the usual “bulk” phases A and B, two additional
“boundary” phases A

′ and B
′.

Specifically, for every A ⊂ Ω and A
′ ⊂ ∂Ω we set

B
′ := ∂Ω \ A

′, �A′B′ := ∂A
′,�

AA′ :=
�

AW ∩ A
′ = ∂A ∩ A

′,
�

AB′ :=
�

AW ∩ B
′ = ∂A ∩ B

′,�
BA′ :=

�
BW ∩ A

′ = ∂B ∩ A
′,

�
BB′ :=

�
BW ∩ B

′ = ∂B ∩ B
′.

(2.3)

The line �A′B′ separates the phases A
′ and B

′, and is called the dividing line.
With each configuration (A,A′) w associate the energy

Φ0(A,A′) := σAB |
�

AB| + σAW |�AA′ | + (σAB + σBW) |�AB′ | +

+σBW |�BB′ | + (σAB + σBW) |�BA′ | + c|�A′B′ |.
(2.4)

Therefore F0 can be written in terms of Φ0 by

F0(A) = Φ0(A,
�

AW). (2.5)

The space of all admissible configurations is now X × X ′, where X is defined
above and X ′ is the space of all Borel subsets of ∂Ω, endowed with the distance
d′(A′

1,A
′
2) := |A′

14A
′
2|. Since all coefficients in (2.4) are strictly positive we deduce

immediately that the functional Φ0 is coercive on X × X ′ and finite at (A,A′) if
and only if A has finite perimeter in Ω and A

′ has finite perimeter in ∂Ω. We can
now state our relaxation result (see section 3 for the proof):

Theorem 2.1. The functional Φ0 is lower semicontinuous on X × X ′, and the
relaxation of F0 on X is given by

F 0(A) = min
{
Φ0(A,A′) : A

′ ∈ X ′
}
. (2.6)

This result is still valid if we replace the space X by the subclass Xv of all
A ∈ X such that |A| = v}, where v is a fixed number such that 0 < v < |Ω| (this
refinement of Theorem 2.1 requires a slight modification of the proof which we leave
to the reader). This remark allows us to consider the minimization of F0 under the
volume constraint |A| = v:

Corollary 2.2. For every v such that 0 < v < |Ω| there holds

inf
{
F0(A) : |A| = v

}
= min

Xv

F 0 = min
Xv×X′

Φ0. (2.7)

Remark 2.3. From (2.5) and (2.6) we conclude that a configuration A minimizes F0

on Xv if and only if (A,
�

AW) minimizes Φ0 in Xv × X ′. In this case the contact
line �c coincides with the dividing line �A′B′ . In subsection 5.2 we give an example
where F0 has no minimizer on Xv: more precisely, an example where A

′ 6= �
AW for

every minimizing configuration (A,A′) in Xv × X ′.

Remark 2.4. When the wetting condition

|σAW − σBW| ≤ σAB (2.8)

is not satisfied, the minimum problem min
{
Φ0(A,A′) : A

′ ∈ X ′
}

can be explicitly
solved: if σAW > σBW+σAB (the other case is similar) then the minimum is achieved
when A

′ is empty, and (2.6) becomes

F 0(A) = Φ0(A,ø) = σAB|
�

AB| + (σAB + σBW) |�AW| + σBW|�BB′ |. (2.9)

This means that it is always convenient to separate completely the phase A from
the boundary by inserting an infinitely thin layer of phase B. In this case F 0 has
the same form as the energy E0 in (1.1), and no line tension appears.

Remark 2.5. In the limit case c = 0 Theorem 2.1 gives a formula for the relaxation
E0 of the energy E0 in (1.1). When the wetting condition (2.8) is satisfied: E0 = E0,
(that is, E0 is lower semicontinuous on X), otherwise E0 is given by (2.9) (at least
when σAW > σBW + σAB).

Hence the relaxation of E0 has always the same form as E0, only the coefficients
change. This specific property of E0 explains why the relaxation step is usually
skipped: one deals directly with the relaxed form by assuming a priori that the
wetting condition (2.8) is fulfilled, while from our point of view this is only a
consequence of the relaxation procedure.

2.3. The Γ-Convergence Theorem

As before, Ω is a bounded open subset of R
3 with boundary of class C1; W

and V are non-negative continuous functions on R with growth at least linear at
infinity and vanish respectively in the double-well I := {α, β} with α < β, and
I ′ := {α′, β′} with α′ < β′. The symbol ε denotes a parameter decreasing to 0,
while λε is a parameter which goes to infinity as ε → 0 and satisfies

lim
ε→0

ε log λε = K with 0 < K < ∞. (2.10)

The function H is a primitive of 2
√

W , and we set

σ :=
∣∣H(β) − H(α)

∣∣ = 2

∫ β

α

√
W and c := (β′ − α′)2

K

π
. (2.11)

For every ε > 0 and u ∈ H1(Ω) we define the functional

Fε(u) := ε

∫

Ω

|Du|2 +
1

ε

∫

Ω

W (u) + λε

∫

∂Ω

V (Tu), (2.12)

where Tu is the trace of u on ∂Ω.

First we want to briefly account for the choice of the double-well potential in
the boundary energy

∫
∂Ω

V (Tu) and of the scaling (2.10). The case λε = 0 (that
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is, when no boundary energy is taken into account in Fε) was already considered in
[Mo1] (cf. Theorem 4.2 below). The term ε−1

∫
W (u) forces uε to take values close

to α and β, while the term ε
∫
|Du|2 penalizes the oscillations of uε. When ε tends

to 0, the functions uε converge (up to a subsequence) to a function u ∈ BV (Ω)
which takes only the values α and β. Moreover each uε has a transition from the
value α to the value β in a thin layer close to the surface Su which separates the
bulk phases {u = α} and {u = β}. Since the energy Fε(uε) tends to concentrate
in this layer, the limit energy is distributed on Su with surface density σ (surface
tension).

In [Mo2] this analysis has been extended to the case λε = 1 (V being any positive
continuous function). In this case the traces Tuε of the minimizers uε converge to
a function v on ∂Ω. This function is constant on the trace of each bulk phase,
namely {Tu = α} and {Tu = β}, but differs from Tu. The transition of uε from
Tu to v occurs in a thin boundary layer, and since part of the total energy Fε(uε)
concentrates in this layer, an additional surface density appears in the limit ε → 0.

In this paper we investigate the case when λε tends to infinity. If we assume
that V is a double-well potential, the boundary part of Fε forces the traces Tuε to
take values close to α′ and β′, while the oscillations of the traces Tuε are penalized
by the bulk integral ε

∫
|Du|2. Then we expect that the traces Tuε converge to a

function v which takes only the values α′ and β′ and that a concentration of energy
occurs along line Sv which separates the boundary phases {v = α′} and {v = β′}.

The interest of this asymptotic model lies in the possible connection between
this line concentration of energy and the line tension phenomenon. In order to
establish such a connection, we first have to ensure that the transition of Tuε from
α′ and β′ does take place in a thin layer. This brings to the fore scaling (2.10),
which also provides a uniform control on the oscillations of Tuε. In fact we can
prove that under (2.10) the traces Tuε converge (up to a subsequence) to a function
v in BV (∂Ω, I ′), and then the boundary phases {v = α′} and {v = β′} are divided
by the rectifiable curve Sv.

At this stage, we investigate the relation between v and Tu. In particular we
wonder whether the boundary phases agree with the traces of the volume phases. In
general the answer is negative, and indeed this situation is quite similar to the one
described in the previous subsection: the asymptotic behavior of the functionals Fε

is described by a functional Φ which depends on the two variables u and v. Since
the total energy Fε(uε) is partly concentrated in a thin layer close to Su (where uε

has a transition from α to β), partly in a thin layer close to the boundary (where
uε has a transition from Tu to v), and partly in the vicinity of Sv (where Tuε has
a transition from α′ to β′), we expect that the limit energy is the sum of a surface
energy on concentrated on Su, a boundary energy on ∂Ω (with density depending
on the gap between Tu and v), and a line energy concentrated along Sv.

Precisely we have the following theorem (see section 4 for the proof), which is
the main result of this paper.

Theorem 2.6. For every u ∈ BV (Ω, I) and v ∈ BV (∂Ω, I ′) we set

Φ(u, v) := σ� 2(Su) +

∫

∂Ω

∣∣H(Tu) − H(v)
∣∣ + c� 1(Sv). (2.13)

Then the following three statements hold.

(i) Compactness: let (uε) ⊂ H1(Ω) be a sequence such that ε → 0 and Fε(uε) is
bounded. Then the sequence (uε, Tuε) is pre-compact in L1(Ω) × L1(∂Ω) and
every cluster point belongs to BV (Ω, I) × BV (∂Ω, I ′).

(ii) Lower bound inequality: for every (u, v) in BV (Ω, I)×BV (∂Ω, I ′) and every
sequence (uε) ⊂ H1(Ω) such that uε → u in L1(Ω) and Tuε → v in L1(∂Ω),
there holds

lim inf
ε→0

Fε(uε) ≥ Φ(u, v). (2.14)

(iii) Upper bound inequality: for every (u, v) in BV (Ω, I)×BV (∂Ω, I ′) there exists
an approximating sequence (uε) ⊂ H1(Ω) such that uε → u in L1(Ω), Tuε → v
in L1(∂Ω) and

lim sup
ε→0

Fε(uε) ≤ Φ(u, v). (2.15)

This theorem can be easily rewritten in term of Γ-convergence (for the definition
and the main properties of Γ-convergence we refer the reader to [DM, Chapters 6-9],
see also [Al]). To this end we extend each Fε to +∞ on L1(Ω) \ H1(Ω), and from
Theorem 2.6 we immediately deduce the following corollary.

Corollary 2.7. The Γ-limit on L1(Ω) of the functionals Fε is given by

F (u) :=





inf
{
Φ(u, v) : v ∈ BV (∂Ω, I ′)

}
if u ∈ BV (Ω, I),

+∞ elsewhere in L1(Ω).
(2.16)

Note that the functional F (u) is nonlocal with respect to u, in the sense that it
cannot be expressed by integration of a local density depending on u and Du.

Statement (iii) of Theorem 2.6 can be refined by choosing the approximating
sequence (uε) so that

∫
Ω

uε =
∫
Ω

u for every ε (we will not prove this refinement, in
fact one has to slightly modify the construction of the approximating sequence (uε)
in Lemma 4.15). In this way we can accommodate a prescribed mass constraint: if
we take m such that α|Ω| < m < β|Ω|, then the functionals Fε Γ-converge to F also
on the subspace of all u ∈ L1(Ω) such that

∫
Ω

u = m. By a well-known property
of Γ-convergence and statement (i) of Theorem 2.6, we immediately deduce the
following result:

Corollary 2.8. For every ε > 0 let uε be a solution of the problem

min
{
Fε(u) :

∫
Ω

u = m
}
. (2.17)

Then the sequence (uε) is pre-compact in L1(Ω), and every cluster point belongs to
BV (Ω, I) and solves

min
{
F (u) :

∫
Ω

u = m
}
. (2.18)
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2.4. Comparison of the Results

In this subsection we make a brief comparison of the results obtained in sub-
sections 2.2 and 2.3. The energies Φ0 and Φ that we have derived in the study of
the relaxation of F0 and of the Γ-limit of Fε can be written in the following general
geometric form:

Φgen(A,A′) := σAB |
�

AB| + σAA′ |�AA′ | + σAB′ |�AB′ | +

+σBA′ |�BA′ | + σBB′ |�BB′ | + c |�A′B′ |.
(2.19)

where (A,A′) belongs to the space of admissible configurations X × X ′. More
precisely, the functional Φ0 defined by (2.4) agrees with Φgen if we set

σAA′ := σAW, σAB′ := σAB + σBW,
σBB′ := σBW, σBA′ := σAB + σAW.

(2.20)

On the other hand, if for every u ∈ BV (Ω, I) and v ∈ BV (∂Ω, I ′) we consider the
bulk phase A := {u(x) = α

}
⊂ Ω and the boundary phase A

′ := {v(x) = α′
}
⊂ ∂Ω,

then the functional Φ defined in (2.13) satisfies the identity Φ(u, v) = Φgen(A,A′)
provided that we set

σAB := σ, c := c,
σAA′ :=

∣∣H(α) − H(α′)
∣∣, σAB′ :=

∣∣H(α) − H(β′)
∣∣,

σBA′ :=
∣∣H(β) − H(α′)

∣∣, σBB′ :=
∣∣H(β) − H(β′)

∣∣,
(2.21)

where H, σ and c are given in (2.11).
One can easily check that the coefficients of the functional Φgen can be written

in the form (2.20) (for a suitable choice of σAB, σAW and σBW) if and only if they
satisfy the relations

σAB′ = σAB + σBB′ , σBA′ = σAB + σAA′ . (2.22)

On the other hand, taking into account that the function H is strictly increasing it
is easy to show that that the coefficients in (2.21) fulfills the relations in (2.22) if
and only if the relative positions of the wells α, β, α′, β′ are the following:

α′ ≤ α < β ≤ β′. (2.23)

Therefore when (2.23) is assumed we derive in a rigorous way that the model of
capillarity with line tension (associated with F0) is recovered from the Cahn-Hilliard
model (associated with Fε) in the limit ε → 0. This carries out the main issue of
our initial program.

Now we briefly account for some general features of the energies Φ0, Φ and Φgen.
Clearly the functional Φgen is coercive on X × X ′ because the energy densities
σAB and c are strictly positive. The semicontinuity is discussed in the following
statement (proved in section 3).

Theorem 2.9. The functional Φgen is lower semicontinuous on X×X ′ if and only
if the coefficients in (2.19) verifies the following generalized wetting conditions (cf.
(1.2)): ∣∣σAA′ − σBA′

∣∣ ≤ σAB,
∣∣σAB′ − σBB′

∣∣ ≤ σAB. (2.24)

Remark 2.10. Obviously (2.24) is satisfied when the coefficients in Φgen are given
either by (2.20) or by (2.21); hence we recover the lower semicontinuity of Φ0 and
Φ (cf. Theorems 2.1 and 2.6).

We may compare the models associated with the energies Φ0, Φ and Φgen by
discussing the number N of independent parameters which drive the geometry of
the equilibrium configurations (i.e., the number of their degrees of freedom). Notice
that the equilibrium configurations of Φgen (subject to some volume constraint) do
not change if we multiply all the coefficients in (2.19) by a constant factor, or if
we add the same constant to the boundary coefficients σAA′ , σAB′ , σBA′ and σBB′ .
Hence for Φgen we have N = 4.

For Φ0 we have to consider the two additional conditions in (2.22), and then
N = 2.

For Φ the number N depends on the relative positions of α, β, α′, β′: in the case
α′ < α < β < β′, N = 2 because we can reduce to the case Φ0. We let the reader
check that N = 3 in the remaining five cases.

These considerations about the value of N suggest the possibility of an exper-
imental validation either of the line tension model F0 (i.e., Φ0), or of the model
derived from the Cahn-Hilliard model Fε (i.e. Φ), or of the more general Φgen. In
fact all these models seem to be physically acceptable. We conclude this section
with some comments on their physical background.

Capillary energy with line tension, like F0, is frequently considered in physics
(see [RW] or [WW]), and we have proved that the well-posed problems naturally
associated with F0 can only be defined through Φ0. In other words the interaction
between the fluids and the wall can be efficiently described only by considering two
boundary phases which are independent of the bulk phases. Notice that the idea
of phase transition between surface phases on the wall of the container has already
been suggested (see for instance [DG]).

As noticed before, Φ0 is obtained from Φgen imposing the restrictions (2.22). In
the relaxation procedure which leads to Φ0, the interface

�
AB′ is viewed as the part

of the wall where an infinitesimal layer of the phase B is interposed between the
phase A and the wall of the container (a similar argument applies to

�
BA′), and

the relations (2.22) are a consequence of the fact that the energy density of such a
layer is simply the sum of σAB (due to the transition from A to B) and σBW (due
to the transition from B to the wall). On a physical level, such a superposition
principle has no reason to hold: consider for instance a layer whose thickness has
the same order as the range of the interaction forces which generate the surface
tension. Then it is quite natural to consider generalized energies of the form Φgen.

The functional Φ which corresponds to the asymptotic limit of the Cahn-Hilliard
model, appears as an intermediate case between Φ0 and Φgen (and indeed for Φ we
have N = 2 or N = 3). The Cahn-Hilliard model, despite its relative simplicity, is



   

14 G. Alberti, G. Bouchitté & P. Seppecher Phase Transition with the Line-Tension Effect 15

known to describe efficiently many interfacial phenomena. In this paper we show
that it can be used to describe line tension phenomena as well. One may question
the physical ground of the boundary energy we postulated, and in particular on the
double-well potential V and the scaling (2.10) for λε. Indeed these assumptions are
totally different from those of Cahn & Hilliard [CH] or Modica [Mo2] (where
λε does not depend on ε and V is a monotone function). To our knowledge, the
boundary energy cannot be reached by direct experiments, but only through its
effects on the macroscopic equilibrium. We justify our assumptions a posteriori by
the relevance of the model associated with the limit energy Φ.

3. Proof of the Relaxation Result

This section is devoted to the proof of Theorem 2.1 and Theorem 2.9.
We follow here the notation introduced in subsection 2.2; in particular, given sets

A and B in Ω (resp. in ∂Ω) the identity A = B must be intended up to negligible
subsets, that is, in the sense of the space X (resp. X ′). We also recall that ∂A
denotes the essential boundary of A, and not the topological one. All statements and
proofs in this section can be adapted without essential modifications to arbitrary
dimension.

Lemma 3.1. Let be given B ⊂ ∂Ω. Then for every δ > 0 there exists E with finite
perimeter in Ω such that

(i) B is the trace of E on ∂Ω, that is, B = ∂E ∩ ∂Ω;

(ii) |E| ≤ δ and |∂E ∩ Ω| ≤ |B| + δ.

Proof. This statement is an immediate corollary of a well-known result of Gagliardo
(see for instance [Gi, Theorem 2.16]).

Lemma 3.2. Let be given M ⊂ ∂Ω. Then the functional A 7→ |∂A ∩Ω| − |∂A4M |
is lower semicontinuous on X.

Proof. We apply Lemma 3.1 with Ω and B replaced by R
3 \ Ω and ∂Ω \ M re-

spectively, and we find a set E ⊂ R
3 \ Ω with finite perimeter in R

3 \ Ω so that
∂E ∩ ∂Ω = ∂Ω \ M .

Thus ∂Ω\∂E = M and, since A∩E = ø for every A ∈ X, we have that ∂(A∪E)
is the disjoint union of ∂A ∩ Ω, ∂E \ Ω, and ∂Ω ∩ ∂(A ∪ E) = ∂Ω \ (∂A4M) (see
Figure 2).

E

 A
 M

Fig. 2. The sets M and E.

Hence
|∂A ∩ Ω| − |∂A4M | = |∂(A ∪ E)| − |∂E \ Ω| − |∂Ω|.

Since E is fixed, the thesis follows from the lower semicontinuity of the perimeter
|∂(A ∪ E)| with respect to A.

Proof of Theorem 2.9. We assume first that the generalized wetting condition
(2.24) does not hold, and in particular that σAA′ > σAB+σBA′ (the other three cases
can be treated in the same way). We argue now as for the lack of semicontinuity
of F0 (see subsection 2.2).

Fix a configuration (A,A′) ∈ X × X ′ such that |�AA′ | > 0. For every δ > 0 we
apply Lemma 3.1 to find a set Eδ ⊂ Ω such that ∂Eδ ∩∂Ω = A

′ ∩∂A, |Eδ| ≤ δ, and
|∂Eδ ∩ Ω| ≤ |A′ ∩ ∂A| + δ, and then we set Aδ := A \ Eδ.

A'

A, Aδ
A AAδ

Fig. 3. The sets A, A
′, and Aδ.

Hence Aδ converge to A in X as δ → 0. Moreover for the configuration (Aδ,A)
there holds

�
AδA′ = ø,

�
BδA′ = A

′ =
�

BA′ ∪ �AA′ , |�AδBδ
| ≤ |�AB| + |�AA′ | + δ,

while
�

AδB′ =
�

AB′ and
�

BδB′ =
�

BB′ . Then

Φgen(Aδ,A
′) ≤ Φgen(A,A′) − (σAB + σBA′ − σAA′) |�AA′ | + δ,

and since both (σAB + σBA′ − σAA′) and |�AA′ | are positive we obtain

lim inf
δ→0

Φgen(Aδ,A
′) < Φgen(A,A′),

which proves that Φgen is not lower semicontinuous at (A,A′).

We prove now the opposite implication. Let us assume that (2.24) holds and let
be given An → A in X and A

′
n → A

′ in X ′. We may assume that supn Φgen(An,A′
n)

is finite, so that |∂A ∩ Ω| and |�A′B′ | are finite. By applying Lemma 3.2 with
M := ∂A ∩ ∂Ω, we obtain the following lower bound:

lim inf
n→∞

(
|∂An ∩ Ω| − |∂A ∩ Ω| − |(∂An4∂A) ∩ ∂Ω|

)
≥ 0. (3.1)

By the lower semicontinuity of the perimeter, the functional A
′ 7→ Φgen(A,A′)

is lower semicontinuous on X ′. Hence

lim inf
n→∞

Φgen(A,A′
n) ≥ Φgen(A,A′). (3.2)

On the other hand, let ρn(x) and ρ̂n(x) denote respectively the surface energy
densities at x of the configurations (An,A′

n) and (A, A′
n) (for every n and every

x ∈ ∂Ω); one easily verifies that if x /∈ ∂An4∂A then ρn(x) = ρ̂n(x), while if
x ∈ ∂An4∂A the inequalities in (2.24) implies ρn(x) ≥ ρ̂n(x) − σAB. Thus we can
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write

Φgen(An,A′
n)

= σAA′ |∂An ∩ ∂Ω| +
∫

∂Ω

ρn(x) + c|�A′

nB′

n
|

≥ σAA′ |∂An ∩ ∂Ω| +
∫

∂Ω

ρ̂n(x) − σAB|(∂An4∂A) ∩ ∂Ω| + c|�A′

nB′

n
|

≥ Φgen(A,A′
n) + σAB

(
|∂An ∩ Ω)| − |∂A ∩ Ω)| − |(∂An4∂A) ∩ ∂Ω|

)
.

Now we take the lower limit as n → ∞, and with the help of (3.1) and (3.2) we
deduce

lim inf
n→∞

Φgen(An,A′
n) ≥ Φgen(A,A′).

Proof of Theorem 2.1. The coefficients in the functionals Φ0 given in (2.4) fulfill
the generalized wetting condition (2.24), and then Φ0 is lower semicontinuous on
X × X ′ by Theorem 2.9.

Let be given now An → A in X, and assume that F0(An) is bounded. The sets
An have uniformly bounded perimeters in ∂Ω (cf. (1.4)); then the sequence (

�
AnW)

is pre-compact in X ′, and, possibly passing to a subsequence, we may assume that
it converge to some A

′ ∈ X ′. Now identity (2.5) and the semicontinuity of Φ0 imply

lim inf
n→∞

F0(An) = lim inf
n→∞

Φ0(An,
�

AnW) ≥ Φ0(A,A′). (3.3)

Inequality (3.3) shows that the left hand side of (2.6) is larger than the right hand
side. To obtain the equality it suffices to find, for every configuration (A,A′) ∈
X × X ′ with finite energy Φ0, an approximating sequence An → A such that

lim inf
n→∞

F0(An) ≤ Φ0(A,A′). (3.4)

Here we use an argument similar to the first part of the proof of Theorem 2.9: by
Lemma 3.1, for every n > 0 we find a set En with finite perimeter in Ω such that

(i) ∂En ∩ ∂Ω = A
′4∂A,

(ii) |En| ≤ 1/n and |∂En ∩ Ω| ≤ |A′4∂A| + 1/n.

We set An := A4En: by (i) we have
�

AnW = ∂An ∩ ∂Ω = A
′ and by (ii)

An → A in X , |∂An ∩ Ω| ≤ |∂A ∩ Ω| + |A′4∂A| + 1/n.

Hence

F0(An) ≤ σAB

(
|∂A ∩ Ω| + |A′4∂A| + 1/n

)
+ σAW|A′| + σBW|B′| + c|∂A

′|
= σAB|∂A ∩ Ω| + σAW|A′ ∩ ∂A| + (σAW + σAB) |A′ \ ∂A| +

+ σBW|B′ \ ∂A| + (σBW + σAB) |B′ ∩ ∂A| + c|∂A
′| + σAB

n

= Φ0(A,A′) +
σAB

n
.

We obtain (3.4) by letting n tend to ∞.

4. Proof of the Γ-Convergence Result

In this section we prove Theorem 2.6. In order to simplify the proof, we will
make two additional assumptions: first we will assume that ∂Ω is of class C2. This
restriction is used in the proof of statement (iii) of Theorem 2.6, and can be relaxed
with some additional work to ∂Ω of class C1. However we cannot go below the C1

regularity. The second assumption concerns the potentials V and W :

there exists m so that −m ≤ α, α′, β, β′ ≤ m,
W (x) ≥ W (m) and V (x) ≥ V (m) for x ≥ m, and
W (x) ≥ W (−m) and V (x) ≥ V (−m) for x ≤ −m.

(4.1)

For instance, this condition is verified when V and W are increasing on [m, +∞)
and decreasing on (−∞. − m] for some positive m. Assumption (4.1) will allow us
to use the truncation argument given Lemma 4.1. It can be removed but in that
case the proof of Proposition 4.7 would require more delicates truncation arguments
which we prefer to avoid.

From now on we always use the term “sequence” also to denote families (of
functions) labelled by the continuous parameter ε, which tends to 0. On this line,
a subsequence of (uε) is any sequence (uεn) such that εn → 0 as n → ∞, and
we say that (uε) is pre-compact if every subsequence admits a converging sub-
subsequence. To simplify the notation we often omit to relabel subsequences, and
we say “a countable sequence (uε)” to mean a sequence defined only for countably
many ε = εn such that εn → 0 as n → ∞ (see for instance the statements (i) of
Theorems 4.2 and 4.4).

To begin we introduce the localization of the functionals Fε: for every domain
A ⊂ R

3, every set A′ ⊂ ∂A and every u ∈ H1(A) we set

Fε(u, A, A′) := ε

∫

A

|Du|2 +
1

ε

∫

A

W (u) + λε

∫

A′

V (Tu) (4.2)

(according to our convention the measure in the last integral is � 2). Notice that
Fε(u) = Fε(u, Ω, ∂Ω) for every u ∈ H1(Ω).

Lemma 4.1. Let be given a domain A ⊂ R
3 and a set A′ ⊂ ∂A, and a sequence

(uε) ⊂ H1(A) with uniformly bounded energies Fε(uε, A, A′). If we take the trun-
cated functions ūε(x) := (uε(x)∧m)∨−m, then Fε(ūε, A, A′) ≤ Fε(uε, A, A′), and
both ‖ūε − uε‖L1(A) and ‖T ūε − Tuε‖L1(A′) vanish as ε → 0.

Proof. The inequality Fε(ūε, A, A′) ≤ Fε(uε, A, A′) follows immediately from (4.1).
The rest of the statement follows from the fact that both W and V have growth
at least linear at infinity and the integrals

∫
W (uε) and

∫
V (Tuε) vanish as ε → 0.

This is a standard argument, and we omit it (see for instance [AB, Lemma 1.11]).
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In order to prove Theorem 2.6 we need some Γ-convergence results which we
group in the following subsection.

4.1. Preliminary Convergence Results

We begin with the basic Γ-convergence result for functionals of Cahn-Hilliard
type: for every domain A ⊂ R

3 and every real function u ∈ H1(A) we set

G1
ε(u, A) := ε

∫

A

|Du|2 +
1

ε

∫

A

W (u), (4.3)

where W is the double-well potential given in subsection 2.3. Notice that G1
ε(u, A) =

Fε(u, A,ø).

Theorem 4.2. ([MM, Mo]). For every domain A ⊂ R
3 the following three state-

ments hold:

(i) every countable sequence (uε) ⊂ H1(A) with uniformly bounded energies
G1

ε(uε, A) is pre-compact in L1(A) and every cluster point belongs to BV (A, I);

(ii) for every u ∈ BV (A, I) and every sequence (uε) ⊂ H1(A) such that uε → u in
L1(A) there holds

lim inf
ε→0

G1
ε(uε, A) ≥ σ� 2(Su);

(iii) for every u ∈ BV (A, I) there exists a sequence (uε) ⊂ H1(A) such that uε → u
in L1(A) and

lim sup
ε→0

G1
ε(uε, A) ≤ σ� 2(Su);

moreover when Su is a closed Lipschitz surface in A, the functions uε may be
required to be (C/ε)-Lipschitz continuous and to converge to u uniformly on
every set with positive distance from Su (here C is the supremum of

√
W in

[α, β]).

Proof. This version of the Modica-Mortola theorem can be found in [Mo1] (see
also [Al]). However the second part of statement (iii) is not explicitly stated there,
and therefore we briefly sketch its proof.

Let ϕ : R → [α, β] be an optimal profile for the 1-dimensional functional
∫

(v̇2 +

W (v)), that is, a global solution of the ordinary differential ϕ̇ =
√

W (ϕ) with ϕ(0)
arbitrarily taken in ]α, β[. Then ϕ is increasing, converges to β at +∞ and to α at
−∞, and satisfies

∫

R

(ϕ̇2 + W (ϕ)) =

∫

R

2
√

W (ϕ) ϕ̇ = H(β) − H(α) = σ. (4.4)

Let now be given u ∈ BV (Ω, I) such that Su is a Lipschitz surface, and denote by d
the oriented distance from Su given by d(x) := dist (x, Su) when x ∈ {u = β}, and
by d(x) := −dist (x, Su) when x ∈ {u = α}. We set uε(x) := ϕ

(
d(x)/ε

)
for every

ε > 0 and x ∈ Ω. One readily checks that each uε is (C/ε)-Lipschitz continuous

(because ϕ is C-Lipschitz continuous and d is 1-Lipschitz continuous) and converge
to u uniformly on every set with positive distance from Su. Taking into account
that |Dd| = 1 a.e. in Ω, by the coarea formula one gets

G1
ε(uε, A) =

∫

A

1

ε

(
ϕ̇2(d/ε) + W (d/ε)

)
=

∫

R

(
ϕ̇2(t) + W (t)

)
� 2(Σεt) dt, (4.5)

where Σs := {x : d(x) = s} is the s-level set of d. Since Su is Lipschitz regu-
lar, � 2(Σs) converges to � 2(Su) as s → 0, and if we use (4.4) and apply the
dominated convergence theorem in (4.5), we obtain that G1

ε(uε, A) converges to
σ� 2(Su) as ε → 0.

Theorem 4.2 captures completely the asymptotic behavior of the energies Fε

in the interior of Ω, and justifies the term σ� 2(Su) in the limit energy Φ (see
(2.13)). The second term in Φ, namely

∫
∂Ω

∣∣H(Tu) − H(v)
∣∣, will be derived from

the following proposition.

Proposition 4.3. Assume that A ⊂ R
3 is a domain with boundary piecewise

of class C1, and A′ is a subset of ∂A with Lipschitz boundary, and let be given
u ∈ L1(A), v ∈ L1(A′). Then

(i) for every sequence (uε) ⊂ H1(A) such that uε → u in L1(A) and Tuε → v in
L1(A′) there holds

lim inf
ε→0

G1
ε(uε, A) ≥

∫

A′

∣∣H(Tu) − H(v)
∣∣;

(ii) if v is constant on A′ and u is constant on A with u ≡ α or u ≡ β, there
exists a sequence (uε) such that Tuε = v on A′, uε converges uniformly to u
on every set with positive distance from A′ and

lim sup
ε→0

G1
ε(uε, A) ≤

∫

A′

∣∣H(Tu) − H(v)
∣∣;

moreover each uε can be taken (C/ε)-Lipschitz continuous, where C is the
supremum of

√
W over any interval which contains the values of u and v.

Proof. Statement (i) is the key lemma in the proof of the main result of [Mo2],
statement (ii) is essentially contained in that paper, but not stated in this form. The
proof is a modification of the argument of the proof of Theorem 4.2. We consider
the case u ≡ β and v ≡ γ, with α < γ < β (the other cases can be treated in a
similar way).

Let ϕ : [0,+∞[→ [γ, β] be a solution of the ordinary differential ϕ̇ =
√

W (ϕ)
with ϕ(0) = γ; then ϕ is increasing, converges to β at +∞, and satisfies (cf. (4.4))

∫ ∞

0

(ϕ̇2 + W (ϕ)) =

∫ ∞

0

2
√

W (ϕ) ϕ̇ = H(β) − H(γ).

Denote by d(x) the distance of x from A′ and set uε(x) := ϕ
(
d(x)/ε

)
for every

ε > 0 and x ∈ Ω. One readily checks that uε converges to u uniformly on every
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set with positive distance from A′, uε is (C/ε)-Lipschitz continuous, and G1
ε(uε, A)

converge to
(
H(β) − H(γ)

)
� 2(A′).

The last term in Φ, namely c� 1(Sv), requires a more delicate treatment. The
next steps are crucial in the proof of the statements (i) and (ii) of Theorem 2.6.
We begin with a singular perturbation theorem for one-dimensional functionals: for
every interval E ⊂ R and every function v ∈ L1(E) we set

G2
ε(v, E) :=

ε

2π

∫

E2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx + λε

∫

E

V (v). (4.6)

Here we have replaced the usual Dirichlet integral by a nonlocal energy which is
directly related to the square of the norm of the space H

1
2 (E). We will use G2

ε(v, E)
to write the value of Fε(u, B ∩Ω, B ∩ ∂Ω) in term of the trace v of u on B ∩ ∂Ω in
the particular case where B ∩ ∂Ω is a flat disk (see Proposition 4.7).

Theorem 4.4.(cf. [ABS1]). Let V be given as in subsection 2.3. Then the following
statements hold:

(i) every countable sequence (vε) ⊂ L1(E) with uniformly bounded energies
G2

ε(vε, E) is pre-compact in L1(E) and every cluster points belongs to the space
BV (E, I ′).

(ii) For every v ∈ BV (E, I ′) and every sequence (vε) such that vε → v in L1(E)
there holds

lim inf
ε→0

G2
ε(vε, E) ≥ c#(Sv) (4.7)

where #(Sv) denotes as usual the number of points in Sv.

In order to prove Theorem 4.4 we need the following estimate:

Lemma 4.5. Let be given δ such that 0 < δ < β′−α′

2 . For every interval J ⊂ E,
ε > 0 and v ∈ L1(E), let A = A(J, ε, v) and B = B(J, ε, v) be the sets of all points
x ∈ J such that v(x) ≤ α′ + δ and v(x) ≥ β′ − δ respectively, and set

a = a(J, ε, v) :=
|A ∩ J |
|J | , b = b(J, ε, v) :=

|B ∩ J |
|J | ,

ρ := inf
{
V (t) : α′ + δ ≤ t ≤ β′ − δ

}
.

(4.8)

Then

G2
ε(uε, J) ≥ ε

π
(β′ − α′ − 2δ)2

[
log(ab) + log(λε)

]
. for ε ≤ πρ|J |

(β′ − α′ − 2δ)2
(4.9)

Proof. The proof relies on the following key inequality, which is obtained by ap-
plying Proposition 6.1 with Ψ(s) := 1/s2 and [t, y] := J

∫

A×B

dx′dx

|x′ − x|2 ≥ log
[
1 +

ab

1 − a − b

]
. (4.10)

By (4.6) and (4.8) we get

G2
ε(v, J) ≥ ε

2π

∫

(A×B)∪(B×A)

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx + λε

∫

J\(A∪B)

V (v)

≥ ε

π
(β′ − α′ − 2δ)2

∫

A×B

dx′dx

|x′ − x|2 + λερ
∣∣J \ (A ∪ B)

∣∣

and by (4.10) this exceeds

ε

π
(β′ − α′ − 2δ)2 log

[
1 +

ab

1 − a − b

]
+ λερ(1 − a − b) |J |

≥ ε

π
(β′ − α′ − 2δ)2

[
log(ab) − log(1 − a − b) +

πλερ|J |
ε(β′ − α′ − 2δ)2

(1 − a − b)
]
.

Now we apply the inequality − log t + Mt ≥ log M with M := πλεσ|J|
ε(β2−α2−2δ)2 and

t := 1 − a − b, and recalling the assumptions on ε we get that our last expression
exceeds

ε

π
(β′ − α′ − 2δ)2

[
log(ab) + log

( πλερ|J |
ε(β′ − α′ − 2δ)2

)]

≥ ε

π
(β′ − α′ − 2δ)2

[
log(ab) + log λε

]
.

Proof of Theorem 4.4. The proof reduces to the following statement: given a
countable sequence (vε) such that G2

ε(vε, E) is bounded, possibly passing to a sub-
sequence we have that vε converge in L1(E) to some v ∈ BV (E, I ′), and inequality
(4.7) holds.

By a standard truncation argument we can assume from the beginning that
α′ ≤ vε ≤ β′ for every ε > 0. Possibly passing to a subsequence we can assume that
the sequence (vε) converges weakly* in L∞(E) to some function v and generates a
Young measure x 7→ νx (for a detailed exposition of the theory of Young measures,
we refer to [Va1, Va2]).

Since λε → ∞ as ε → 0 and G2
ε(vε, E) is bounded in ε, we deduce that the

integral
∫

E
V (vε) vanishes as ε → 0, and then

∫

E

( ∫

R

V (t) dνx(t)
)

dx = 0.

As W (t) = 0 if and only if t = α′ or t = β′, the probability measure νx is supported
on I ′ = {α′, β′} for a.a. x; in other words there exists a function η : E → [0, 1] such
that

νx = η(x) · δα′ + (1 − η(x)) · δβ′ for a.e. x ∈ E. (4.11)

We claim that η belongs to BV (E, {0, 1}). Take indeed an interval J ⊂ E and δ

such that 0 < δ < β′−α′

2 , and define aε := a(J, ε, vε) and bε := b(J, ε, vε) as in (4.8).
By Lemma 4.5 we obtain that for ε small enough

G2
ε(vε, J) ≥ ε

π
(β′ − α′ − 2δ)2

[
log(aεbε) + log λε

]
. (4.12)
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Furthermore one readily checks that when ε → 0

aε → a(J) := 1
|J|

∫
J

η and bε → b(J) := 1
|J|

∫
J
(1 − η).

If a(J) · b(J) > 0, when we pass to the limit in (4.12) we get

lim inf
ε→0

G2
ε(vε, J) ≥ K

π
(β′ − α′)2 = c (4.13)

(recall that ε log λε → K and δ can be taken arbitrarily small).
Consider now the set S of all x ∈ E such that the approximate limit of η at

x does not exists or belongs to ]0, 1[. For every finite integer m ≤ #(S) we can
find pairwise disjoint open intervals Ji, i = 1, . . . , m, such that Ji ∩ S 6= ø. Thus
a(Ji) · b(Ji) > 0 and (4.13) becomes

lim inf
ε→0

G2
ε(vε, Ji) ≥ c,

and since G2
ε(vε, ·) is super-additive on disjoint sets,

lim inf
ε→0

G2
ε(vε, E) ≥

m∑

i=1

lim inf
ε→0

G2
ε(vε, Ji) ≥ mc. (4.14)

Hence S is finite, and since η has approximate limit equal to 0 or 1 outside of S,
we deduce that η belongs to BV (E, {0, 1}) and Sη = S. The claim is proved.

According to (4.11) we deduce that νx is a Dirac mass for almost every x; hence
vε converge strongly to v and

v(x) := α′η(x) + β′(1 − η(x)) for a.e. x ∈ E.

Then v belongs to BV (E, I ′), Sv = Sη = S and by taking m = #(S) in (4.14) we
get

lim inf
ε→0

G2
ε(vε, E) ≥ c#(Sv).

Remark 4.6. In [ABS1], we proved that the lower bound given in (4.9) is in fact
optimal: for every v ∈ BV (E, I ′) we can find a sequence (vε) ⊂ H1(E) such that
vε 7→ v in L1(E) and

lim
ε→0

G2
ε(vε, E) = c#(Sv). (4.15)

Therefore the functionals G2
ε(·, E) Γ-converge in L1(E) to the functional which is

equal to c#(Sv) for every v ∈ BV (E, I ′) and to +∞ elsewhere.

Using Theorem 4.4 and a suitable slicing argument we can obtain the optimal
lower bound for the energies Fε(u, B ∩Ω, B ∩ ∂Ω) when B is a ball centered on ∂Ω
and B ∩∂Ω is a flat disk (Proposition 4.7). Later on we will show that this flatness
assumption can be dropped when B is sufficiently small.

Proposition 4.7. For every r > 0, let Dr be the open half-ball of all x =
(x1, x2, x3) ∈ R

3 such that |x| < r and x3 > 0, and Er the disk of all x such

that |x| < r and x3 = 0. Let (uε) ⊂ H1(Dr) be a countable sequence with uniformly
bounded energies Fε(uε, Dr, Er). Then the traces Tuε are pre-compact in L1(Er)
and every cluster point belongs to BV (Er, I

′); moreover if Tuε → v in L1(Er), then

lim inf
ε→0

Fε(uε, Dr, Er) ≥ c

∣∣∣
∫

Er∩Sv

νv

∣∣∣. (4.16)

Proof. By Lemma 4.1 we can assume that |uε| ≤ m where m is the constant in
(4.1). To simplify the notation we write D and E.

The idea is to reduce to statement (i) of Theorem 4.4 via a suitable slicing
argument. We fix now an arbitrary unit vector e in the plane P := {x3 = 0}, and
we denote by M the orthogonal complement of E in P and by π the projection
of R

3 onto M . The segment π(E) is called Ee; for every y ∈ Ee, Ey denotes the
segment π−1(y) ∩ E and Dy the half-disk π−1(y) ∩ D (see Figure 4 below).

 e

 M

 E

 Ee
 E y

 y

e Ee

M

E

D

x3
Dy

Fig. 4. The sets D, E, Ee, Ey and Dy.

For every y ∈ Ee and every function u on D, uy denotes the restriction of u
on Dy, and for every function v on E, vy denotes the restriction of v on Ey. If
u ∈ H1(D), then for a.e. y ∈ Ee the function uy belongs to H1(Dy), the gradient
of uy agrees a.e. in Dy with the projection of Du on the plane spanned by the
vector e and the axis x3, and the trace of uy on Ey agrees a.e. in Ey with (Tu)y

(cf. Proposition 6.8). Taking into account these facts and Fubini’s theorem, for
every ε > 0 we get

Fε(u, D, E) ≥ ε

∫

D

|Du|2 + λε

∫

E

V (Tu)

≥
∫

Ee

[
ε

∫

Dy

|Duy|2 + λε

∫

Ey

V (Tuy)
]
dy

We apply now the trace inequality (6.6) to each function uy on the half-disk Dy,

and then

Fε(u, D, E) ≥
∫

Ee

[ ε

2π

∫

(Ey)2

∣∣∣Tuy(x′) − Tuy(x)

x′ − x

∣∣∣ dx′dx + λε

∫

Ey

V (Tuy)
]
dy

=

∫

Ee

G2
ε(Tuy, Ey) dy. (4.17)

Let us prove that the sequence (Tuε) is pre-compact in L1(E). To this end it
suffices to show that the family F := {Tuε} satisfies the assumptions of Theorem
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6.6 for every of the unit vector e. Thus we fix δ > 0 and we choose a constant C
such that

Fε(uε, D, E) ≤ C, (4.18)

for every ε we take vε : E → [−m, m] defined by

vy
ε :=

{
Tuy

ε for all y ∈ Ee s.t. G2
ε(Tuy

ε , Ey) ≤ 2mrC/δ,

α′ otherwise.
(4.19)

By (4.17), (4.18) and (4.19) we have vy
ε = Tuy

ε for all y ∈ Ee apart a subset of
measure smaller than δ/(2mr). Hence vε = Tuε in E minus a set of measure
smaller that δ/m and, since |Tuε| ≤ m, we deduce that ‖vε − Tuε‖L1(E) ≤ δ.
Therefore the family Fδ := {vε} is δ-dense in F in the sense of subsection 6.3; by
(4.19), G2

ε(v
y
ε , Ey) ≤ 2mrC/δ for every y ∈ Ee and every ε, and hence statement

(i) of Theorem 4.4 implies that the sequence (vy
ε ) is pre-compact in L1(Ey). Thus

F satisfies condition (6.9) in Theorem 6.6 for every e, and then the sequence (Tuε)
is pre-compact in L1(E).

It remains to prove that if Tuε → v in L1(Er), then v belongs to BV (Er, I
′)

and inequality (4.16) holds. replacing u by uε in (4.17) and passing to the limit as
ε → 0, by Fatou’s lemma we deduce that

lim inf
ε→0

Fε(uε, D, E) ≥
∫

Ee

lim inf
ε→0

G2
ε(Tuy

ε , Ey) dy,

and then lim inf G2
ε(Tuy

ε , Ey) is finite for a.e. y ∈ Ee.
Since Tuε → v in L1(Er), possibly passing to a subsequence we have that

Tuy
ε → vy in L1(Er) for a.e. y ∈ Ee (cf. Remark 6.7). Then statements (i) and (ii)

of Theorem 4.4 yield vy ∈ BV (Ey, I ′) and

lim inf
ε→0

Fε(uε, D, E) ≥
∫

Ee

c#(Svy) dy. (4.20)

The right hand side of (4.20) is finite, and then Proposition 6.9 implies that v
belongs to BV (E, I ′), and that Svy agrees with Sv∩Ey for a.e. y ∈ Ee. By (6.13),
we may rewrite (4.20) as

lim inf
ε→0

Fε(uε, D, E) ≥ c

∫

D∩Sv

〈νv, e〉. (4.21)

Finally (4.16) follows from (4.21) by choosing a suitable unit vector e.

4.2. Reduction to the Flat Case

The contribution of the wall to the limit energy Φ will be obtained by estimating
the asymptotic behavior of Fε(u, B∩Ω, B∩∂Ω) when B is a small ball centered on
∂Ω. This estimate will be derived by Proposition 4.7, provided we can evaluate the

error we make when we perturb B∩Ω to get an half-ball. We expect of course that
this error goes to zero with the radius of B and that it is controlled by the flatness
of the boundary ∂Ω, but making this argument precise requires some computations.
We first describe the behavior of Fε under change of variable.

Definition 4.8. Given two domains A1, A2 ⊂ R
3 and a bi-Lipschitz homeomor-

phism Ψ : A1 → A2, the isometry defect δ(Ψ) of Ψ is the smallest constant δ such
that

dist
(
DΨ(x), O(3)

)
≤ δ for a.e. x ∈ A1. (4.22)

Here O(3) is the set of linear isometries on R
3, and DΨ(x) is regarded as a

linear mapping of R
3 into R

3; the distance between linear mappings is induced by
the norm ‖ · ‖, which for every T is defined as the supremum of |Tv| over all v such
that |v| ≤ 1.

Given T and L such that L is an isometry, the inequality ‖T −L‖ ≤ δ with δ < 1
implies that T is invertible and ‖T−1−L−1‖ ≤ δ

/
(1−δ). Hence (4.22) implies that

dist
(
DΨ−1(y), O(3)

)
≤ δ

/
(1−δ) for a.e. y ∈ A2, that is, δ(Ψ−1) ≤ δ(Ψ)

/
(1−δ(Ψ)).

Inequality (4.22) also implies that ‖DΨ‖ ≤ 1 + δ a.e. in A1, and then Ψ
is (1 + δ)-Lipschitz continuous on every convex subset of A1; similarly, Ψ−1 is
(1 − δ)−1-Lipschitz continuous on every convex subset of A2.

Proposition 4.9. Let be given A1, A2 and Ψ as above, and assume that Ψ maps a
certain set A′

1 ⊂ ∂A1 onto A′
2 ⊂ ∂A2. Then for every u ∈ H1(A2) there holds

Fε(u, A2, A
′
2) ≥

(
1 − δ(Ψ)

)5
Fε(u ◦ Ψ, A1, A

′
1). (4.23)

Proof. Let δ := δ(Ψ) and assume that δ < 1. By (4.22) we get ‖DΨ‖ ≤ 1 + δ a.e.
in A1, and then

∣∣D(u ◦ Ψ)
∣∣ ≤ (1 + δ)

∣∣(Du) ◦ Ψ
∣∣ a.e. in A1. (4.24)

Let g and g′ denote the inverse of Ψ and the restriction of the inverse of Ψ to the
boundary of A2. The maps g and g′ are locally (1− δ)−1-Lipschitz continuous, and
then the Jacobian determinants satisfy |Jg| ≤ (1 − δ)−3 a.e. on A2 and |Jg′| ≤
(1 − δ)−3 a.e. on ∂A2. Using these estimates and the inequality (1 − δ)−1 ≥ 1 + δ,
we derive (4.23) from (4.2) by (4.24) and the usual change of variable formula.

Proposition 4.10. For every x ∈ ∂Ω and every positive r smaller than a certain
critical value rx > 0, there exists a bi-Lipschitz map Ψr : Dr → Ω ∩ Br(x) such
that

(a) Ψr takes Dr onto Ω ∩ Br(x) and Er onto ∂Ω ∩ Br(x);

(b) Ψr is of class C1 on Dr and ‖DΨr − I‖ ≤ δr everywhere in Dr, where δr → 0
as r → 0.

(Here I denotes the identity map on R
3). In particular the isometry defect of Ψr

vanishes as r → 0.
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Proof. We assume that x = 0 and the tangent plane Tx(∂Ω) agrees with the plane
{x3 = 0}, and we write Br for Br(x). For every positive γ < 1 and for every r
sufficiently small, we construct a map Ψ which fulfills (a) and ‖DΨ − I‖ ≤ O(γ).

Since ∂Ω is of class C1, for r sufficiently small we reduce to the situation de-
scribed in Figure 5 below:

Ψ1

 A

 γr0

 x3 Dr

 Br
γ

Er ×(0,γr)
Ψ2

 graph of  f : Er→ (−γr,γr) 

Ψ1
−1

Ω∩Br
γ

 x=0

Ω

Fig. 5. Construction of Ψ := Ψ−1
1 ◦ Ψ2 ◦ Ψ1.

Here Bγ
r is the set of all x ∈ Br such that −γr < x3 < γr; the map Ψ1 which

takes Dr ∩ Bγ
r into the cylinder Er × (0, γr) is given by

Ψ1(x1, x2, x3) :=
( x1√

1 − (x3/r)2
,

x2√
1 − (x3/r)2

, x3

)
.

For r small enough, Ψ1 takes the set Ω ∩ Bγ
r into a set of the form A :=

{
x ∈ R

3

s.t. (x1, x2) ∈ Er and f(x1, x2) < x3 < γr
}
, where f is a suitable real function of

class C1 on Er and satisfies f(0) = 0, Df(0) = 0, |Df | ≤ γ2 on Er. The map Ψ2

which takes the cylinder Er × (0, γr) into A is given by

Ψ2(x1, x2, x3) :=
(
x1, x2, x3 +

(
1 −

(
x3

γr

)2)
f(x1, x2)

)
.

If I denote the identity map on R
3, then ‖DΨ1−I‖ = O(γ2) and ‖DΨ2−I‖ = O(γ);

therefore the map Ψ := Ψ−1
1 ◦Ψ2 ◦Ψ1 (extended to the identity in Dr \Bγ

r ) satisfies
(a), is of class C1 on Dr and ‖DΨ − I‖ = O(γ).

4.3. Proof of Theorem 2.6, Part I

Proof of statement (i). Let be given a countable sequence (uε) ⊂ H1(Ω) such
that Fε(uε) is bounded in ε. Since Fε(uε) ≥ G1

ε(uε,Ω) (see (2.12) and (4.3)), the
sequence (uε) is pre-compact in L1(Ω) by statement (i) of Theorem 4.2.

We have to prove that the sequence of the traces (Tuε) is pre-compact in L1(∂Ω).
In view of Proposition 4.10 we can cover ∂Ω with finitely many balls Bi centered on
∂Ω so that Ω∩Bi is the image of an half-ball under a map Ψi with isometry defect
smaller than 1. Hence it suffices to show that the sequence (Tuε) is pre-compact
in L1(∂Ω ∩ Bi) for every i.

For every fixed i, let ūε := uε ◦ Ψi. Since the isometry defect of Ψi is smaller
than 1, Proposition 4.9 implies that Fε(ūε, Dr, Er) is bounded. Hence the pre-
compactness of the traces Tuε in L1(∂Ω∩Bi) is implied by the pre-compactness of
the traces T ūε in L1(Er), which in turn follows from Proposition 4.7.

Proof of statement (ii). Let be given a sequence (uε) ⊂ H1(Ω) such that
uε → u ∈ BV (Ω, I) in L1(Ω) and Tuε → v ∈ BV (∂Ω, I ′) in L1(∂Ω). We have to
show that

lim inf
ε→0

Fε(uε) ≥ Φ(u, v). (4.25)

Clearly we can assume that the liminf at the left hand side of (4.25) is finite.
For every ε > 0 let µε be the energy distribution associated with the configu-

ration uε, that is, the positive measure which for every Borel set B ⊂ R
3 is given

by

µε(B) := ε

∫

Ω∩B

|Duε|2 +
1

ε

∫

Ω∩B

W (uε) + λε

∫

∂Ω∩B

V (Tuε). (4.26)

Then the total mass ‖µε‖ of the measure µε is equal to Fε(uε), and possibly passing
to a subsequence we can assume that ‖µε‖ is bounded and that µε converges in the
sense of measures to some finite measure µ on R

3.
We also associate to each of the three terms in (2.13) which give Φ(u, v) the

energy distributions µ1, µ2 and µ3 defined by

µ1(B) := σ� 2(Su∩B), µ2(B) :=

∫

∂Ω∩B

∣∣H(Tu)−H(v)
∣∣, µ3(B) := c� 1(Sv∩B).

Thus Φ(u, v) is equal to ‖µ1‖+‖µ2‖+‖µ3‖, and since the measures µi are mutually
singular and lim inf Fε(uε) = lim inf ‖µε‖ ≥ ‖µ‖, inequality (4.25) follows from

µ ≥ µi for i = 1, 2, 3. (4.27)

We prove that µ ≥ µ1 by showing that µ(B) ≥ µ1(B) for all sets B ⊂ R
3 such

that B ∩Ω is a Lipschitz domain and µ(∂B) = 0 (one readily checks that this class
is large enough to imply the inequality µ(B) ≥ µ1(B) for all Borel sets B). Indeed
for such a B there holds

µ(B) = lim
ε→0

µε(B) ≥ lim inf
ε→0

G1
ε(uε, B ∩ Ω) ≥ σ� 2(Su ∩ B) = µ1(B),

where the first equality follows from the assumption µ(∂B) = 0, the first inequality
follows from (4.26) and (4.3), and the second one by statement (ii) of Theorem 4.2
with A := B ∩ Ω.

We prove that µ ≥ µ2 in the same way: taken B as before we get

µ(B) ≥ lim inf
ε→0

G1
ε(uε, B ∩ Ω) ≥

∫

∂Ω∩B

∣∣H(Tu) − H(v)
∣∣ = µ2(B)

(apply statement (ii) of Proposition 4.3 with A := B ∩ Ω and A′ := B ∩ ∂Ω).

The inequality µ ≥ µ3 requires a different argument. Since µ3 is the restriction
of � 1 to the rectifiable set Sv multiplied by the factor c, the following density
estimate will suffice:

lim
r→0

µ(Br(x))

2r
≥ c for � 1-a.e. x ∈ Sv. (4.28)
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The limit at the left hand side of (4.28) is the one-dimensional density of the
measure µ at x. Since Sv is one-rectifiable, this density exists and agrees with the
Radon-Nikodym derivative of the measure µ with respect to µ3 for � 1-a.e. x ∈ Sv.

In fact we prove (4.28) for every point x in Sv such that the limit at left hand
side of (4.28) exists, the set Sv has 1-dimensional density equal to one, and the unit
normal νv is approximately continuous at x (notice that these three conditions are
verified for � 1-a.e. x ∈ Sv).

We fix such a point x. For r sufficiently small we choose a map Ψr as in
Proposition 4.10; we assume moreover that µ(∂Br(x)) = 0 (this condition is verified
by all r but countably many).

We set ūε := uε ◦Ψr and v̄ := v ◦Ψr. Hence T ūε → v̄ in L1(Er), v ∈ BV (Er, I
′)

and

µ(Br(x)) = lim
ε→0

µε(Br(x)) = lim
ε→0

Fε

(
uε,Ω ∩ Br(x), ∂Ω ∩ Br(x)

)

≥
(
1 − δ(Ψr)

)5
lim inf

ε→0
Fε(ūε, Dr, Er)

≥
(
1 − δ(Ψr)

)5
c

∣∣∣
∫

Sv̄∩Er

νv̄

∣∣∣, (4.29)

where the first inequality follows from (4.23) and the second from (4.16).
Notice that Sv ∩Br(x) = Ψr(Sv̄ ∩Er), and νv

(
Ψr(y)

)
= DΨr(y) · νv̄(y) for a.e.

y ∈ Sv̄; taking into account that ‖DΨr − I‖ ≤ δr and δ(Ψr) ≤ δr where δr vanishes
as r → 0 (cf. Proposition 4.10), and the choice of the point x, one can easily prove
that ∣∣∣

∫

Sv̄∩Er

νv̄

∣∣∣ = 2r + o(r). (4.30)

Inequality (4.28) follows from (4.29) and (4.30).

4.4. Proof of Theorem 2.6, Part II

We need the following extension result.

Lemma 4.11. Let a domain A ⊂ R
3 be given, and take ε ∈]0, 1], a set A′ ⊂ ∂A,

and a Lipschitz function v : A′ → [−m, m], where m is given in (4.1). Then v
admits an extension u : A → [−m, m] such that Lip(u) ≤ 1/ε + Lip(v) and

G1
ε(u, A) ≤

(
(εLip(v) + 1)2 + C

) (
|∂A| + o(1)

)
ρ, (4.31)

where C is the supremum of W on the interval [−m, m], the error o(1) is a function
of ε which depends only on the choice of A (and not on v), and ρ is the infimum
between ‖v − α‖∞ and ‖v − β‖∞.

Proof. Since we can extend v to the rest of ∂A without increasing its Lipschitz
constant, we assume from the beginning that A′ = ∂A. We also assume that
ρ := ‖v − α‖∞ (the other case is similar).

Let Ut be the set of all x ∈ A such that 0 < dist (x, ∂A) < t. We set u := v on
∂A and u = α on A\Uερ. Then u is (Lip(v)+1/ε)-Lipschitz continuous on A\Uρε,
and we extend it to the rest of A without increasing its Lipschitz constant. Then

G1
ε(u, A) =

∫

Uερ

ε|Du|2 + 1
εW (u) ≤

[
(εLip(v) + 1)2 + C

] |Uερ|
ε

. (4.32)

Finally it is enough to notice that |Ut| = t |∂A|+ o(t) because ∂A is Lipschitz.

Statement (iii) of Theorem 2.6 is a direct corollary of the following approxima-
tion result.

Lemma 4.12. Let be given u ∈ BV (Ω, I) and v ∈ BV (∂Ω, I ′) so that Su and Sv
are closed manifolds of class C2 without boundary respectively in Ω and ∂Ω. Then
for every η > 0 and every ε > 0 we can find uε ∈ H1(Ω) such that

lim sup
ε→0

‖uε − u‖L1(Ω) ≤ η, lim sup
ε→0

‖Tuε − v‖L1(∂Ω) ≤ η, (4.33)

lim sup
ε→0

Fε(uε) ≤ σ� 2(Su) +

∫

∂Ω

∣∣H(Tu) − H(v)
∣∣ + c� 1(Sv) + η. (4.34)

Proof. Possibly modifying u and v in a negligible subset we can assume that they
are constant in each connected component of Ω \ Su and ∂Ω \ Sv respectively.

Let us fix some notation. All the functions we consider in this proof will take
values in [−m, m], where m is given in (4.1). We fix a constant C > 2m which is
larger than the constant C in Lemma 4.11, and of the suprema of

√
W , W and V

on the interval [−m, m]. In particular C is larger than the constants in statement
(iii) of Theorem 4.2 and statement (ii) of Proposition 4.3. For every x ∈ Ω we set
d(x) := dist (x, ∂Ω), while d′ : ∂Ω → R is the oriented distance from Sv defined by

d′(x) :=





dist (x, Sv) if x ∈ {v = β′},

−dist (x, Sv) if x ∈ {v = α′}.

Since Sv is a boundary in ∂Ω, the intersection of a tubular neighborhood of Sv and
Ω is diffeomorphic to the product of Sv and an half-disk. Such diffeomorphism Ψ
can be constructed as follows: given x ∈ Ω, let x′ be the projection of x on ∂Ω, let x′′

be the projection of x′ on Sv, and set Ψ(x) :=
(
x′′, d′(x′), d(x)

)
∈ Sv×R× [0,+∞[.

Using the tubular neighborhood theorem one can show that the map Ψ is well-
defined and is a diffeomorphism of class C2 on Ω ∩ U for some neighborhood U of
Sv (here we use the fact that ∂Ω and Sv are of class C2). Moreover Ψ takes Ω∩U
into Sv×R×]0,+∞[ and ∂Ω∩U into Sv×R×{0}, and for every x ∈ ∂Ω, Ψ(x) = x
and DΨ(x) is an isometry.

Let Ar be the set of all x ∈ Ω such that dist (x, Sv) < r. Since DΨ is continuous,
we deduce that the isometry defect δr of the restriction of Ψ to the Ar satisfies

lim
r→0

δr = 0. (4.35)
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We denote by
�

r the set of all x ∈ Ω such that d(x) = r, and we fix now r > 0 so
that

(a)
�

r and
�

2r are Lipschitz surfaces,

(b) Su ∩ �r is a Lipschitz curve (not necessarily connected),

(c) the set Ar is included in U .

Notice that (a) and (c) are verified by every r sufficiently small, while (b) is verified
by a.e. r sufficiently small (apply Sard’s theorem to the function d on the surface
Su). We construct now a partition of Ω:

B1 :=
{
x ∈ Ω : dist

(
x, Sv ∪ (Su ∩ �r)

)
< 3r

}
,

A1 :=
{
x ∈ Ω \ B1 : d(x) < r

}
,

B2 :=
{
x ∈ Ω \ B1 : r < d(x) < 2r

}
,

A2 :=
{
x ∈ Ω \ B1 : 2r < d(x)

}
,

 A1  ∂Ω

 Sv

 Su∩Sr

 B1

 B2
 v=α'

 v=α'

 v=β'

 v=β'

 A2  A2
 u=α

 u=β
 Su

Fig. 6. The partition of Ω.

For every ε < r we construct the Lipschitz function uε in four steps: first we
define it on A2 and A1, and then on B2 and B1.

On the set A2 we take uε as in the second part of statement (iii) of Theorem
4.2 (with A replaced by A2) and we extend it to ∂A2 by continuity. Hence uε is
(C/ε)-Lipschitz continuous on A2, it converges to u pointwise on A2 and uniformly
on ∂A2 ∩ ∂B2, and

Fε(uε, A2,ø) = G1
ε(uε, A2) ≤ σ� 2(Su ∩ A2) + o(1) ≤ σ� 2(Su) + o(1). (4.36)

The function u is constant (equal to α or β) on every connected component A of
A1, while v is constant (equal to α′ or β′) on ∂A ∩ ∂Ω (cf. Figure 6); thus we take
uε as in statement (ii) of Proposition 4.3 (with A′ replaced by ∂A ∩ ∂Ω) and we
extend it to ∂A1 by continuity. Since the distance between two different connected
components of A1 is larger than r and C/ε > 2m/r, then uε is (C/ε)-Lipschitz
continuous on A1 and agrees with v on ∂A1 ∩ ∂Ω. Moreover it converges to u
pointwise on A1 and uniformly on ∂A1 ∩ ∂B2, and satisfies

Fε(uε, A1, ∂A1 ∩ ∂Ω) = G1
ε(uε, A1) ≤

∫

∂Ω

∣∣H(Tuε) − H(v)
∣∣ + o(1). (4.37)

Since the distance between A1 and A2 is equal to r and C/ε ≥ 2m/r, it follows
that uε is (C/ε)-Lipschitz continuous also on A1 ∪ A2. Then we can apply Lemma
4.11 to each connected component B of B2 to extend the function uε, which is
defined only on (∂A1 ∪ ∂A2) ∩ ∂B, to the rest of B; since u is constant (equal to
α or β) on each connected component of B1, if we denote by ρε the infimum of
|uε − u| on (∂A1 ∪ ∂A2) ∩ ∂B1, then ρε = o(1) and (4.31) yields

Fε(uε, B2,ø) = G1
ε(uε, B2) ≤

(
(1 + C)2 + C

) (
|∂B2| + o(1)

)
ρε = o(1). (4.38)

Moreover uε is (2C/ε)-Lipschitz continuous on B2.

It remains to construct uε on B1. This last step is slightly more elaborated than
the previous ones. First of all we define a function wε : R × [0,+∞[→ [−m, m] as
follows: in polar coordinates θ ∈ [0, π], ρ ∈ [0,+∞],

wε(θ, ρ) :=





(ρλε/ε) (θα′ + (1 − θ)β′) + (1 − ρλε/ε) α′+β′

2 if 0 ≤ ρ < ε/λε,

θα′ + (1 − θ)β′ if ε/λε ≤ ρ.

For every t > 0 let Dt be the half-disk of all y ∈ R×]0,+∞[ such that |y| < t, and
let Et be the segment of all y ∈ R × {0} such that |y| < t. A direct computation
gives ∫

D1

|Dwε|2 =
(β′ − α′)2

π
log(λε/ε) + O(1). (4.39)

We set w̄ε(x, y) := wε(y) for every x ∈ Sv and y ∈ R × [0, +∞[, and using (4.39)
we obtain

Fε(w̄ε, Sv × D2ε, Sv × E2ε) =

= � 1(Sv) ·
[
ε

∫

D2ε

|Dwε|2 +
1

ε

∫

D2ε

W (wε) + λε

∫

Eε/λε

V (wε)
]

≤ � 1(Sv) ·
[ (β′ − α′)2

π
ε log(λε/ε) + 2πεC + 2εC

]

= c� 1(Sv) + o(1). (4.40)

We define uε on the set Aε by uε := w̄ε ◦ Ψ, where Ψ and Aε are given at
the beginning of this proof. Since the isometry defect of Ψ on Aε tends to 0 as
ε → 0 (cf. (4.35)), for ε small enough the function Ψ is 2-Lipschitz continuous (see
Definition 4.8 and subsequent remarks), and then Ψ takes Aε into Sv × D2ε and
∂Aε ∩ ∂Ω into Sv × E2ε. Then (4.40) and Proposition 4.9 yield

(1 − δε)
5Fε(uε, Aε, ∂Aε ∩ ∂Ω) ≤ Fε(w̄ε, Sv × D2ε, Sv × E2ε)

≤ c� 1(Sv) + o(1). (4.41)

We extend uε by setting uε := v in the rest of ∂B1 ∩ ∂Ω; then uε = v on ∂Ω \
∂Aε. Now uε is defined on the whole boundary of B1 \ Aε and is (2C/ε)-Lipschitz
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continuous. Hence we can use Lemma 4.11 to extend uε to B1 \Aε, and inequality
(4.32) yields

Fε

(
uε, B1 \ Aε, ∂(B1 \ Aε) ∩ ∂Ω

)
= G1

ε

(
uε, B1 \ Aε

)

≤
(
(1 + 2C)2 + C

) |Uερ|
ε

, (4.42)

where ρ is the infimum of ‖uε−α‖ and ‖uε−β‖, and Uερ is the set of all x ∈ B1\Aε

such that dist (x, ∂(B1 \ Aε)) ≤ ρε. Since ρ ≤ 2m and |Uερ| = ερ |∂B1| + o(ερ),
(4.42) becomes

Fε

(
uε, B1 \ Aε, ∂(B1 \ Aε) ∩ ∂Ω

)
≤ C ′|∂B1| + o(1), (4.43)

where C ′ := (1 + 2C)2 + C.
The function uε is now defined on the whole of Ω and is Lipschitz continuous.

Putting together inequalities (4.36), (4.37), (4.38), (4.41) and (4.43) we finally
obtain

lim sup
ε→0

Fε(uε) ≤ σ� 2(Su) +

∫

∂Ω

∣∣H(Tu) − H(v)
∣∣ + c� 1(Sv) + C ′|∂B1|. (4.44)

Moreover uε → u pointwise on A1 and A2, and uε = v on ∂Ω \ ∂Aε, and then

lim sup
ε→0

‖uε − u‖L1(Ω) ≤ 2m
(
|B1| + |B2|

)
and lim

ε→0
‖Tuε − v‖L1(∂Ω) = 0. (4.45)

Notice that |∂B1|, |B1| and |B2| have order r, r2 and r respectively, then taking r
small enough we deduce (4.34) and (4.33) from (4.44) and (4.45).

Proof of statement (iii) of Theorem 2.6. We first remark that every pair
(u, v) ∈ BV (Ω, I) × BV (∂Ω, I ′) can be approximated in L1(Ω) × L1(∂Ω) by a se-
quence (un, vn) which fulfill the regularity assumptions of Lemma 4.12 and satisfies
� 2(Sun) → � 2(Su) and � 1(Svn) → � 1(Sv) (see for instance [Gi, Theorem
1.24]). Therefore Φ(un, vn) → Φ(u, v). To conclude the proof of statement (iii) of
Theorem 2.6, we just need to apply Lemma 4.12 to each pair (un, vn) and then
apply a suitable diagonal argument.

5. Application to Capillary Equilibrium with Line Tension

In this section we describe some mechanical features of the equilibrium config-
urations associated with the relaxation F 0 of the energy F0 (see subsection 2.2)
or with the limit energy F obtained in subsection 2.3. We follow the notation of
subsections 2.2 and 2.4.

We recall that F 0 and F are given in term of Φ0 and Φ (see (2.6), (2.16)), which
in turn can be viewed as special cases of the more general energy Φgen given in
(2.19) (following subsection 2.4, here we view F as a function of A ∈ X instead

of u ∈ BV (Ω, I), and Φ as a function of (A,A′) ∈ X × X ′ instead of (u, v) ∈
BV (Ω, I) × BV (∂Ω, I ′)).

The functional Φgen depends on the bulk phase A and the boundary phase A
′

(which determine respectively the other bulk phase B and the other boundary phase
B
′). A configuration A ∈ X is at equilibrium with respect to F 0 (resp. F ) under

the volume constraint |A| = v if and only if there exists A
′ ∈ X ′ such that (A,A′)

is an equilibrium configuration for Φ0 (resp. Φ).
In subsection 5.1 we briefly describe the equilibrium conditions for a configura-

tion (A,A′) with respect to the energy Φgen; in particular we notice that, at equi-
librium, the contact angle φ satisfies a different condition than the usual Young’s
law (prescribed by the capillary energy E0 in (1.1)). This modification depends
heavily whether the contact line �c and the dividing line �A′B′ coincide or not.
In subsection 5.2 we exhibit examples where �c and �A′B′ coincide and examples
where they do not.

5.1. Equilibrium Conditions for the Energy Φgen

The general model Φgen is characterized by the coefficients σAB, σAA′ , σAB′ ,
σBA′ , σBB′ and c; we assume that the generalized wetting conditions (2.24) are
verified. A configuration (A,A′) is in equilibrium if it minimizes Φgen under the
volume constraint |A| = v for some v such that 0 < v < |Ω|, that is, if it solves the
problem

min
A∈X,|A|=v

A′∈X′

{
σAB|

�
AB| + σAA′ |�AA′ | + σAB′ |�AB′ | +

+ σBA′ |�BA′ | + σBB′ |�BB′ | + c|�A′B′ |
}

.
(5.1)

We just recall here that since Φgen is lower semicontinuous on X×X ′ (Theorem
2.9), the minimum problem (5.1) admits a solution (A,A′) where A and A

′ have
finite perimeter (respectively in Ω and ∂Ω). By standard regularity results for sets
with minimal perimeter in dimension 3 and 2 (see for instance [Ta, Amb2]), the
essential boundary of A in Ω, that is, the interface

�
AB, is a closed analytic surface

with constant mean curvature, while the essential boundary of A
′ in ∂Ω, that is

�A′B′ , is a closed curve of class C1,1.

For the rest of this section we assume that all the objects we consider are
sufficiently smooth, and all statements are given without rigorous proofs. Let us
recall the geometrical parameters of the problem. Given a configuration (A,A′), the
contact line � c is the curve determined by the intersection of the interface

�
AB = ∂A

with the boundary of Ω, the contact angle θ is defined at every point of �c as the
angle between the outward normal νΩ to ∂Ω and the outward normal to

�
AB (viewed

as a part of the boundary of A); the dividing line �A′B′ is the boundary of A
′, and

at every point x ∈ �A′B′ we denote by Kg(x) the scalar product of the outward co-
normal versor of ∂A′ (denoted νA′) by the mean curvature vector of �A′B′ ; in other
words the real number Kg(x) represents the signed geodesic curvature of �A′B′ ,
oriented by the tangent vector t so that the Darboux system (t, νA′ , νΩ) is direct.
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 θ
dividing line A'B' contact line c 

 phase A

boundary phase A'
boundary phase B'

 phase A  phase B

Fig. 7. An example of equilibrium configuration

We define now the angles θ1, θ2 ∈ [0, π], the dimensionless parameter τ and the
characteristic length ` as follows:

cos(θ1) :=
σAA′ − σBA′

σAB

, cos(θ2) :=
σAB′ − σBB′

σAB

,

τ :=
σBB′ + σAB′ − σAA′ − σBA′

σAB

, ` :=
c

σAB

.
(5.2)

In the following we assume that θ1 ≥ θ2, the other case being similar.
Let (A,A′) be an equilibrium configuration for Φgen, that is, a solution of (5.1).

Then the mean curvature of the interface
�

AB is constant, moreover we can derive
some equilibrium conditions for Kg and θ. More precisely, the contact angle θ
verifies

θ =

{
θ1 on (�c \ �A′B′) ∩ A

′,
θ2 on (�c \ �A′B′) ∩ B

′,

θ ∈ [θ2, θ1] on �c ∩ �A′B′ ,

(5.3)

while the geodesic curvature Kg verifies

−2`Kg =

{
τ − cos θ1 + cos θ2 on (�A′B′ \ �c) ∩

�
AW,

τ + cos θ1 − cos θ2 on (�A′B′ \ �c) ∩
�

BW,
τ − cos θ1 − cos θ2 + 2 cos θ on �A′B′ ∩ �c

(5.4)

(we do not precise here in which weak sense the curvature must be intended; clearly
(5.3) and (5.4) will hold in the classical sense up to few exceptional points).

Both equilibrium conditions (5.3) and (5.4) can be easily interpreted in term
of forces. Notice that the first two lines in (5.3) are a restatement of Young’s law
(cf. (1.3) and (5.2)), while the first two lines in (5.4) are the usual constant mean
curvature condition for the minimizers of functionals of the type a|∂E|+b|E| E ⊂
∂Ω with E ⊂ ∂Ω, that is a Young’s law on the manifold ∂Ω. In the intersection of
� c and �A′B′ , the balance between forces due to surface tension, line tension and
boundary adhesion leads to the relation between θ and Kg stated in the last line of
(5.4).

We remark that the dividing line �A′B′ may be empty, namely when A
′ or B

′ is
empty; in this case condition (5.4) disappears and eventually (5.3) reduces to the
usual Young’s law θ = θ2 or θ = θ1 on �c, respectively.

Both (5.3) and (5.4) depends only on the four independent parameters θ1, θ2, τ
and ` which determine the equilibrium configurations of Φgen. This is in accordance
with subsection 2.4, where we claimed that the model associated with Φgen has
indeed four degrees of freedom.

5.2. An Example: A Bubble Growing in a Cylinder

In this subsection we give some explicit examples of equilibrium configurations.
We restrict our attention to the particular case

σAA′ = σBB′ = 0, σAB′ = σBA′ = σAB = σ. (5.5)

Then θ1 = π, θ2 = 0, τ = 0, and the only free parameter left is ` := c/σ (cf. (5.2)).
The expression of Φgen becomes

Φgen(A,A′) = σ

(
|�AB| + |�AB′ | + |�BA′ | + `|�A′B′ |

)
. (5.6)

Notice that (5.5) implies (2.22), and therefore Φgen is a particular case of Φ0 (cor-
responding to the relaxation of F0 when σAW = σBW = 0) or of Φ (when the wells
of V and W satisfy α = α′ < β = β′).

We consider now the (limit) case where the container Ω is an infinite cylinder
of radius r and the volume of the phase A is a finite number v, and we study the
behavior of the equilibrium configurations as v increases from 0 to +∞. Under the
additional assumption that r ≤ `/2, we obtain in fact a complete description of the
equilibrium configurations for every value of v.

Proposition 5.1. Assume that r ≤ `/2 and let v1 := 4πr3/3 and v2 := πr2(r/3 +
2`) (hence v1 ≤ v2). Then the equilibrium configurations (A,A′) are given as follows:

(i) when v ≤ v1, A is any sphere with radius ρ :=
(

3v
4π

)1/3
, A

′ is empty, and the
total energy is given by

E := 4πρ2
σ = (36π)1/3

σ v2/3; (5.7)

(ii) when v1 < v < v2, A is the union of two half-spheres of radius r and a
cylinder of radius r and height d (see Figure 8 below) where d := v−v1

πr2 , A
′ is

empty, and the total energy is

E := σ(4πr2 + 2πrd) = σ

(4πr2

3
+

2v

r

)
; (5.8)

(iii) when v ≥ v2, A is a cylinder of radius r and height π−1r−2v and A
′ agrees

with the interface
�

AW (see Figure 9 below); the total energy is

E := σ(2πr2 + 4πr`). (5.9)
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phase B 

 boundary phase B' 

contact line c 

 no boundary phase A' 

no dividing line A'B'

r
phase B 

phase A 

d

Fig. 8. Equilibrium configuration for v1 < v < v2.

phase B 

 bdry phase B' 

contact line c = dividing line A'B'

bdry phase A' 

phase B phase A 

 bdry phase B' 

Fig. 9. Equilibrium configuration for v2 ≤ v.

The result of Proposition 5.1 can be interpreted as follows: for v smaller than
the critical volume v2, the minimal energy is achieved when A

′ is empty; this means
that the dividing line �A′B′ is empty no line tension appears. When v is smaller
than v1, A is a spherical bubble which touches the wall of the container in at most
one point (and the contact line is empty); when v reaches the value v1 the sphere A

becomes tangent to the cylinder (on a circle) and then it grows as shown in Figure
8. In the intermediate range v1 < v < v2, the contact line �c consists of two circles
(delimiting the part of the wall corresponding to

�
AW) and the contact angle θ is

everywhere equal to θ2 = 0. When v passes the critical value v2 we have a sudden
change: the boundary phase A

′ appears and agrees with the interface
�

AW; the
contact line �c and the dividing line �A′B′ coincide and have vanishing geodesic
curvature Kg(x). Then (5.4) shows that the contact angle θ is equal to π

2 .
In other words, if we consider the quasistatic evolution of the system when the

volume v of phase A increases continuously from 0 to +∞, the bubble will experience
a discontinuity in θ (from θ = 0 to θ = π

2 ) when v reaches the critical value v2.
This example shows that for a good understanding of this model of capillarity with
line tension it is crucial to admit boundary phases which may not agree with the
interfaces between the bulk phases and the wall.

Remark 5.2. In the previous example we have assumed condition (5.5) only to
provide explicit computations. Another interesting situation is obtained when the
container Ω is an a half-space and the coefficients of Φgen satisfy, instead of (5.5),

σAA′ = σBB′ = 0 , 0 < σAB′ = σBA′ = σ
′ < σAB = σ.

In this case the angle θ2 lies in interval (0, π
2 ), θ1 = π − θ2, and τ = 0 (see (5.2)).

Under these assumptions we expect the following picture (which has been par-
tially confirmed by numerical computations): when the volume v of the phase A

is small, the optimal configuration is obtained when A
′ is empty and the interface�

AB is a spherical surface which meets the wall ∂Ω with constant contact angle
θ = θ2; in this regime A grows homotetically with v, the dividing line is empty and
there is no line tension.

When v is larger than a certain critical value v0, the optimal configuration is
obtained when A

′ agrees with
�

AW and
�

AB is a spherical surface which meets ∂Ω
with constant contact angle θ ∈ (θ2,

π
2 ). When v passes v0 the contact angle θ

increase discontinuously from θ2 to a certain θ0 ∈ (θ2,
π
2 ); also the radius of the

disk
�

AB admits a discontinuity at v = v0. In the regime v > v0 the dividing line
agrees with the contact line, the radius of the disk

�
AB increases with v, while the

relative contribution of line tension to the total energy decreases, and the contact
angle increases to π/2 as v → ∞.

Sketch of the proof of Proposition 5.1. Since �A′B′ = ∂A
′,
�

AB = ∂A ∩ Ω,�
AB′ = ∂A \ A

′,
�

BA′ = A
′ \ ∂A, and ` = c/σ, we can rewrite the functional Φgen

in (5.6) as

Φgen(A, A′) = σ

(
|∂A4A

′| + `|∂A
′|
)
. (5.10)

We consider now a minimizer (A,A′) of Φgen under the constraint |A| = v.

Assertion 1. If A
′ is empty, then A is a sphere as long as v ≤ v1 = 4πr3/3, and

otherwise is given as in Figure 8; the corresponding energies are given by (5.7) and
(5.8) respectively.

Proof. If A
′ is empty then A minimizes σ|∂A| under the volume constraint |A| = v

(cf. (5.10)). Then A must be a sphere as long as a sphere of volume v is contained
in Ω, that is, for v ≤ 4πr3/3. For larger v, we can easily prove that A is axially
symmetric (by a standard application of Steiner symmetrization), ∂A has constant
mean curvature in Ω and meets ∂Ω with constant contact angle θ = 0 (cf. (5.3)).
The only possibility is the one in Figure 8.

Assertion 2. if A
′ is not empty, then |∂A

′| ≥ 4πr.

Proof. We assume first that ∂A
′ consists of one connected component γ only.

Since the closed curve γ is a boundary within ∂Ω, it is homotopically trivial. Now
the Gaussian curvature of ∂Ω vanishes and by the theorem of Gauss-Bonnet, the
integral over γ of the modulus of the geodesic curvature Kg(x) is exactly 2π. But
we know from (5.4) that |Kg(x)| ≤ 1/` (recall that τ = 0). Then γ has length at
least 2π`, and the thesis follows by the assumption r ≤ `/2.

Clearly this argument runs also if we assume that ∂A
′ contains at least one

homotopically trivial connected component. In all other cases, ∂A
′ contains at

least two closed curves which wind around the cylinder and therefore we have again
|∂A

′| ≥ 4πr.

Assertion 3. if A
′ is not empty then v > π2r3.

Proof. By Step 2 we know that |∂A
′| ≥ 4πr, and then the energy of the con-

figuration (A,A′) is at least 4πr`σ, which is strictly larger than (5.7) and (5.8) if
v ≤ π2r3; by Step 1 we deduce that (A,A′) cannot be a minimizer for v ≤ π2r3.
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Assertion 4. if A
′ is not empty then A is given as in Figure 9, and the energy is

given in (5.9).

Proof. By Step 2 we know that |∂A
′| ≥ 4πr and by Step 3 that |A| > π2r3. Then

Proposition 6.10 yields |∂A∩Ω| ≥ 2πr2 and therefore the total energy is larger than
σ(2πr2+4πr`). On the other hand this lower bound is achieved by the configuration
described in Figure 9 only.

To conclude the proof, it is enough to notice that the configuration in Figure 9
is preferable to the one in Figure 8 only when v is larger than v2 = πr2(r/3 + 2`)
(just compare the values of the energy in (5.8) and (5.9)).

6. Appendix

We give here some technical lemmas we used in the previous sections.

6.1. A Rearrangement Result

Let ψ be a positive decreasing function on [0,+∞[. For every couple of Borel
sets A and B in R we set

Ψ(A, B) :=

∫

A×B

ψ(|x′ − x|) dx′dx. (6.1)

Now, for every t, y ∈ R, we denote by Lt(A) the interval [t, t + |A|] and by Ry(B)
the interval [y−|B|, y]. The following result can be found in [ABS1] (see also [Br]);
for the convenience of the reader we give also the proof.

Proposition 6.1. If A and B are disjoint sets included in the interval [t, y], then

Ψ(A, B) ≥ Ψ
(
Lt(A), Ry(B)

)
. (6.2)

In other words, if we fix an interval I and restrict our attention to the class of
all A, B ⊂ I with prescribed measures a and b (with a + b ≤ |I|), then the infimum
of Ψ is achieved when A and B are intervals and are taken as much distant as
possible.

Proof. We write A ≺ B if supA ≤ inf B. We remark that if t ≺ A ≺ B ≺ y then

Ψ(A, B) ≥ Ψ(Lt(A), B) and Ψ(A, B) ≥ Ψ(A, Ry(B)). (6.3)

Indeed, by setting h(x) := t +
∫ x

t
1A(s) ds, we have that h(x) ≤ x for all x ≥ t,

and since ψ is decreasing we get

Ψ(A, B) =

∫

B

[ ∫ +∞

t

ψ(x′ − x) 1A(x) dx
]
dx′

≥
∫

B

[ ∫ +∞

t

ψ(x′ − h(x))h′(x) dx
]
dx′

=

∫

B

[ ∫ t+a

t

ψ(x′ − u) du
]
dx′ = Ψ(Lt(A), B).

This proves the first inequality in (6.3). The second one may be proved in the same
way.

Next we observe that it suffices to prove inequality (6.2) when A and B are finite
unions of closed intervals, the general case will follow by a standard approximation
argument. Let A = A1 ∪ A2 ∪ . . . ∪ AnA

, B = B1 ∪ B2 ∪ . . . ∪ BnB
, where Ai and

Bj are pairwise disjoint closed intervals in [t, y].

The proof is achieved by induction on the total number of intervals n = nA+nB .
When n = 1, either A or B is empty and the proposition is trivial. Now, we assume
the proposition true for n and we prove it for n + 1.

Let be given A and B such that nA + nB = n + 1. With no loss in generality
we may assume that A is non-empty and A1 ≺ Ai for all i > 1 and A1 ≺ B; we
set c := |A1| and A′ := A2 ∪ A3 ∪ . . . ∪ AnA

. Then we may write Ψ(A, B) as
Ψ(A1, B) + Ψ(A′, B), and since t ≺ A1 ≺ B ≺ y, inequalities (6.3) yield

Ψ(A1, B) ≥ Ψ
(
Lt(A1), B

)
≥ Ψ

(
Lt(A1), Ry(B)

)
.

Moreover, A′ and B are disjoint subsets of [t + c, y] and nA′ + nB = n; therefore
the inductive hypothesis yields

Ψ(A′, B) ≥ Ψ
(
Lt+c(A

′), Ry(B)
)
.

Hence

Ψ(A, B) ≥ Ψ
(
Lt(A1), Ry(B)

)
+ Ψ

(
Lt+c(A

′), Ry(B)
)

and since Lt(A1) ∪ Lt+c(A
′) = Lt(A), we deduce (6.2).

6.2. Optimal Constants for Some Trace Inequalities

The following three statements are concerned with the optimal constant for
some trace inequalities involving the L2 norm of the gradient of a function defined
on a two-dimensional domain and the H1/2 norm of its trace on a line. For the
time being u = u(x, y) is a real function on R

2, v = v(x) is the trace of u on the
line R × {0}, û = û(ξ, ν) is the Fourier Transform of u and v̂ = v̂(ξ) is the Fourier
Transform of v.

Lemma 6.2. Let u be a function in L1
loc(R

2) with derivative in L2. Then u
belongs to H1

loc(R
2) and the trace of u on the line R×{0} is a well-defined function

v ∈ L2
loc(R). Moreover

∫

R2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx ≤ π

∫

R2

|Du|2 dx dy. (6.4)

Proof. First we prove inequality (6.4) when u is a smooth function with compact
support by a standard Fourier Transform argument (cf. [Ne, Chapter 2, Section
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5]):
∫

R2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx =

∫

R

[ ∫

R

|v(x + h) − v(x)|2dx
]dh

h2

=

∫

R

[ ∫

R

∣∣v̂(ξ)(e2πihξ − 1)
∣∣2dξ

]dh

h2

=

∫

R

[ ∫

R

2 − 2 cos(2πhξ)

h2
dh

]
|v̂(ξ)|2dξ

= 4π2

∫

R

|v̂(ξ)|2|ξ| dξ

(here the second equality follows from Plancherel Theorem and the identity
τ̂hv(ξ) = e2πihξ v̂(ξ), while the last equality follows from the identity

∫
R
(2 −

2 cos(2πhξ))h−2dh = 4π2|ξ|).
Now we notice that v̂(ξ) =

∫
R

û(ξ, ν) dν, and then

∫

R2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx = 4π2

∫

R

[ ∫

R

û(ξ, ν)|ξ|1/2 dν
]2

dξ

= 4π2

∫

R

[ ∫

R

(
û(ξ, ν)(ξ2 + ν2)1/2

)( |ξ|
ξ2 + ν2

)1/2

dν
]2

dξ

≤ 4π2

∫

R

[ ∫

R

|û|2(ξ2 + ν2) dν
][ ∫

R

|ξ|
ξ2 + ν2

dν
]
dξ

= 4π3

∫

R2

|û|2(ξ2 + ν2) dξ dν

= π

∫

R2

|Du|2 dx dy

(the inequality follows from Schwartz-Hölder inequality, while the last equality fol-

lows from Plancherel theorem and the identity D̂u(ξ, ν) = 2πi û(ξ, ν) · (ξ, ν)).

Now we want to extend inequality (6.4) to all functions in the Beppo-Levi space
X :=

{
u ∈ L1

loc(R
2) : Du ∈ L2

}
. We recall that X is Fréchet space whose topology

is generated by the L1
loc topology and the semi-norm ‖Du‖2. We will use a density

argument.
Notice that the right hand side of inequality (6.4) is continuous on X (by the

definition of the topology of X), while the left hand side is lower semicontinuous
in L1

loc, and then also in X, by the Fatou’s Lemma. Hence it is enough to prove
that the space D(R2) of all smooth functions with compact support is dense in X.
Since D(R2) is dense in H1(R2) and X ∩ L∞ is dense in X (any u ∈ X may be
approximated by the truncated functions un := (u∧n)∨ (−n)), it remains to show
that H1 is dense in X ∩ L∞ (with respect to the topology of X).

For every bounded function u in X and every integer n > 1 we set un(x) :=
gn(x)u(x) where

gn(x) =





1 if |x| ≤ n1/e,
log(log n) − log(log |x|) if n1/e ≤ |x| ≤ n,
0 if n ≤ |x|.

Each un belongs to H1 and un tends to u in L1
loc. Moreover Dun = gnDu+u Dgn,

and u Dgn → 0 in L2 because u is bounded and Dgn → 0 in L2 (this can be checked
by a direct computation); hence Dun → Du in L2, and thus we have proved that
un tends to u in X.

Corollary 6.3. Let A be the half-plane {(x, y) : y > 0} and let u be a function in
L1

loc(A) such that Du ∈ L2. Then the trace v of u on R × {0} is well-defined and

∫

R2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx ≤ 2π

∫

A

|Du|2 dx dy. (6.5)

Proof. Extend the function u to the whole R
2 by reflection and then apply Lemma

6.2.

Corollary 6.4. Let D be the half-disk
{
(x, y) : x2 + y2 < r, y > 0

}
where r > 0,

and let u be a function in H1(Ω). Then the trace of u on the segment E×{0} (with
E =] − r, r[) belongs to H1/2(E) and

∫

E2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx dx′ ≤ 2π

∫

D

|Du|2 dx dy. (6.6)

Proof. We extend the function u to the whole half-plane A := {(x, y) : y > 0} by
setting

ũ(z) =





u(z) if |z| < r,

u(r2/z̄) if |z| > r

(we identify the points (x, y) with the complex numbers z = x+iy). Since z 7→ r2/z̄
is a conformal mapping, we have

∫
A\D

|Dũ|2 =
∫

D
|Dũ|2 =

∫
D
|Du|2. Thus Dũ

belongs to L2(A) and by Corollary 6.3 we get

4π

∫

D

|Du|2 = 2π

∫

A

|Dũ|2

≥
∫

R2

∣∣∣ ṽ(x′) − ṽ(x)

x′ − x

∣∣∣
2

dx′dx

≥
∫

E2

∣∣∣ ṽ(x′) − ṽ(x)

x′ − x

∣∣∣
2

dx′dx +

∫

(R\E)2

∣∣∣ ṽ(x′) − ṽ(x)

x′ − x

∣∣∣
2

dx′dx

=

∫

E2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx +

∫

E2

∣∣∣ v(x′) − v(x)

r2/x′ − r2/x

∣∣∣
2 r4

(x′x)2
dx′dx

= 2

∫

E2

∣∣∣v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx.

Remark 6.5. The constants in the trace inequalities (6.4), (6.5) and (6.6) are opti-
mal. The proof of this claim clearly reduces to prove that the constant 2π in (6.6)
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is sharp. To this end we consider for every λ > 1/r the functions uλ : D → [0, 1]
given in polar coordinates θ ∈]0, π[, ρ ∈]0, r[ by

uλ(ρ, θ) :=





λ
π θρ for 0 < ρ < 1/λ,

1
π θ for 1/λ < ρ < r.

(6.7)

The trace of uλ on E is the function vλ(x) = 0 for x > 0 and vλ(x) = 1 for x < 0.
By a straightforward computation one gets

∫

E2

∣∣∣vλ(x′) − vλ(x)

x′ − x

∣∣∣
2

dx dx′ = 2 log λ + O(1)

and ∫

D

|Duλ|2 dx dy = 1
π log λ + O(1).

The conclusion follows by letting λ → +∞.

6.3. Some Slicing Results

We establish now a connection between the compactness of a family of functions
in L1(Rh) and the compactness of the traces of these functions on lines. We fix
L > 0 and we assume throughout this subsection that every function takes values
in the interval [−L, L].

Let us fix some notation: A is a bounded open subset of R
N , e is a unit vector

in R
N and u a function on A; we denote by M the orthogonal complement of e, by

Ae the projection of A onto M ; for every y ∈ M , Ay
e := {t ∈ R : y + te ∈ A} and

uy
e is the trace of u on Ay

e , that is, uy
e(t) := u(y + te). Accordingly, for every family

F of functions on A we set Fy
e := {uy

e : u ∈ F}, so that Fy
e is a family of functions

on Ay
e .

The simplest statement which connects the pre-compactness of F in L1(A) with
the pre-compactness of Fy

e in L1(Ay
e) is the following: assume that there exist N

linearly independent unit vectors e such that:

Fy
e is pre-compact in L1(Ay

e) for � N−1 a.e. y ∈ Ae. (6.8)

Then F is pre-compact in L1(A).

Unfortunately this statement does not fit our purposes. A sufficiently general
result is obtained by allowing the possibility of replacing F in (6.8) with a pertur-
bation of F . More precisely, for every δ > 0 we say that a family F ′ is δ-dense in
F if F lies in a δ-neighborhood of F ′ with respect to the L1(A) topology, and then
we have the following:

Theorem 6.6. Let F be a family of functions v : A → [−L, L] and assume
that there exists N linearly independent unit vectors e which satisfy the following
property:

for every δ > 0 there exists a family Fδ δ-dense in F such
that (Fδ)

y
e is pre-compact in L1(Ay

e) for � N−1 a.e. y ∈ Ae.
(6.9)

Then F is pre-compact in L1(A).

Proof. With no loss in generality, we may assume that L = 1 and |Ay
e | ≤ 1 for all

y. Every function defined on A is extended to 0 on R
N \ A, and accordingly every

function defined on Ay
e is extended to 0 on R\Ay

e . Fix for the moment a unit vector
e which satisfies (6.9). For all y ∈ Ae and all s > 0 we set

ωy
δ (s) := sup

{∫

R

∣∣vy
e (t + h) − vy

e (t)
∣∣ dt : v ∈ Fδ, h ∈ [−s, s]

}
. (6.10)

Since |vy
e | ≤ 1 and |Ay

e | ≤ 1, then ωy
δ (s) ≤ 2 for all s > 0, and since (Fδ)

y
e is

pre-compact in L1(Ay
e), the Fréchet-Kolmogorov Theorem yields that ωy

δ (s) ↘ 0 as
s ↘ 0. Take now u ∈ F and δ > 0, and choose v ∈ Fδ such that ‖u − v‖1 ≤ δ (in
L1(A)). By (6.10) we obtain, for every h

∫

RN

∣∣u(x + he) − u(x)
∣∣ dx ≤ 2δ +

∫

RN

∣∣v(x + he) − v(x)
∣∣ dx

= 2δ +

∫

Ae

( ∫

R

∣∣vy
e (t + h) − vy

e (t)
∣∣ dt

)
dy

≤ 2δ +

∫

Ae

ωy
δ (|h|) dy. (6.11)

For every δ > 0 and s > 0 we set ωδ(s) :=
∫

Ae
ωy

δ (s) dy. Then ωδ ≤ 2|Ae|
because ωy

δ ≤ 2, and ωδ(s) ↘ 0 as s ↘ 0 because the same holds true for all ωy
δ

(apply the dominated convergence theorem). Now, for all s > 0 we set ω(s) :=
infδ>0

(
2δ + ωδ(s)

)
: the function ω is bounded and ω(s) ↘ 0 as s ↘ 0, and (6.11)

yields ∫

Rh

∣∣u(x + he) − u(x)
∣∣ dx ≤ ω(|h|) ∀h ∈ R, v ∈ F . (6.12)

Finally we take linearly independent unit vectors ei with i = 1, . . . , N which
satisfy (6.9) and we take ωi such that (6.12) holds (with e and ω replaced by ei and
ωi resp.). Since the vectors ei span R

N , the Fréchet-Kolmogorov Theorem implies
that F is pre-compact in L1(A).

We conclude this subsection by recalling some results about the slicing of Sobolev
functions and finite perimeter sets, which are well-known to experts but not avail-
able in this form in standard reference books. For simplicity we consider only one-
dimensional slicings, but the following results are valid for slicings with arbitrary
dimension.

Remark 6.7. Let A, e, Ae and Ay
e be given as before, and take a Borel function u

on A; by Fubini’s theorem u belongs to Lp(A) (with 1 ≤ p < ∞) if and only if uy
e

belongs to Lp(Ay
e) for a.e. y ∈ Ae and the function y 7→ ‖uy

e‖p belongs to Lp(Ae).
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Similarly, given a sequence (un) ⊂ Lp(A) which converges to u in Lp(A), possibly
passing to a subsequence we have that (un)y

e converges to uy
e in Lp(Ay

e) for a.e.
y ∈ Ae. Conversely, if (un)y

e → uy
e in Lp(Ay

e) for a.e. y ∈ Ae and the functions
|un|p are equi-integrable, then un → u in Lp(A).

Proposition 6.8. (cf. [EG, Section 4.9]). Let be given u ∈ Lp(A). If e is an
arbitrary unit vector and u belongs to W 1,p(A), then uy

e ∈ W 1,p(Ay
e) for a.e. y ∈ Ae,

and the derivative Duy
e(t) agrees with the partial derivative Deu(y + te) for a.e.

y ∈ Ae and t ∈ Ay
e . Conversely u belongs to W 1,p(A) if there exist N linearly

independent unit vectors e such that uy
e ∈ W 1,p(Ay

e) for a.e. y ∈ Ae and the
function y 7→ ‖Duy

e‖p belongs to Lp(Ae).

Proposition 6.9. (see [Amb1], cf. also [EG, section 5.10]). Let be given a Borel
set E ⊂ A. If e is an arbitrary unit vector and E has finite perimeter in A, then
Ey

e has finite perimeter in Ay
e and ∂(Ey

e ∩ Ay
e) = (∂E ∩ A)y

e for a.e. y ∈ Ae, and
∫

Ae

#(∂Ey
e ∩ Ay

e) dy =

∫

∂E∩A

〈νE ; e〉. (6.13)

Conversely, E has finite perimeter in A if there exist N linearly independent unit
vectors e such that the integral of #(∂Ey

e ∩ Ay
e) over all y ∈ Ae is finite.

6.4. An Inequality of Isoperimetric Type

In this last subsection we consider finite perimeter sets A in R
3, as usual ∂A

denotes the essential boundary of A. The result we are interested in reads as follows:

Proposition 6.10. Let be given an open infinite cylinder Ω with radius r in R
3,

and a finite perimeter set A ⊂ Ω with volume |A| ≥ π2r3. Then |∂A ∩ Ω| ≥ 2πr2.

Proof. Let denote points in R
3 by (x, t) ∈ R

2 × R, and let P be the projection
on R

2, that is, P (x, t) := x. We assume Ω is of the form D × R where D is the
open disk with center 0 and radius r in R

2, and that every point of A is a point of
density one. For all t ∈ R we denote by At the set of all x such that (x, t) ∈ A, and
by δ the measure of D \P (A). We apply to each set At the isoperimetric inequality
on the disk D:

min
{
|At|, π r2 − |At|

}
≤ C |∂At ∩ D|2, (6.14)

where C := π/8.
By the definition of δ we obtain πr2 − |At| ≥ δ, and if we apply the inequality

min{a, b} ≥ a2b (valid for 0 ≤ a, b ≤ 1) with a := |At|
/
πr2 and b := δ

/
πr2,

we get min
{
|At|, πr2 − |At|

}
≥ δ

(
|At|/πr2

)2
. Then (6.14) yields |∂At ∩ D| ≥√

δ/C
(
|At|/πr2

)
, and integrating this inequality over all t leads to

∫

R

|∂At ∩ D| dt ≥
√

δ/C

πr2
|A|. (6.15)

We recall now that for every two-dimensional rectifiable set S ⊂ R
3 there holds

[
� 2(S)

]2

≥
[ ∫

D

#
(
S ∩ {x} × R

)
dx

]2

+
[ ∫

R

� 1(St) dt
]2

(this inequality can be easily derived for surfaces of class C1, and therefore immedi-
ately extended to any rectifiable set). Now we apply this inequality to S = ∂A∩Ω,
and since (∂A ∩ Ω)t = ∂At ∩ D for a.e. t ∈ R and #

(
∂A ∩ {x} × R

)
≥ 2 for a.e. x

in P (A) (cf. Proposition 6.9), by (6.15) we get

|∂A ∩ Ω|2 ≥ 4(πr2 − δ)2 +
δ|A|2
Cπ2r4

≥ (2πr2)2 +
( |A|2

Cπ2r4
− 8πr2

)
δ + 4δ2.

Finally, inequality |∂A ∩ Ω| ≥ 2πr2 follows when |A| ≥
√

8Cπ3r6 = π2r3.
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[MM] L. Modica & S. Mortola: Un esempio di Γ–-convergenza, Boll. Un. Mat. Ital.

B(5), 14 (1977), 285-299.
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