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Abstract: This paper studies a conjecture made by E. De Giorgi in 1978 concerning
the one-dimensional character (or symmetry) of bounded, monotone in one direction,
solutions of semilinear elliptic equations ∆u = F ′(u) in all of Rn. We extend to all
nonlinearities F ∈ C2 the symmetry result in dimension n = 3 previously established
by the second and the third authors for a class of nonlinearities F which included the
model case F ′(u) = u3 − u. The extension of the present paper is based on a new
energy estimates which follow from a local minimality property of u.
In addition, we prove a symmetry result for semilinear equations in the halfspace R4

+.
Finally, we establish that an asymptotic version of the conjecture of De Giorgi is true
when n ≤ 8, namely that the level sets of u are flat at infinity.
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1. Introduction

In 1978, E. De Giorgi [16] stated the following conjecture:

Conjecture (DG). - Let u : Rn → (−1, 1) be a smooth entire solution of the
semilinear equation ∆u = u3 − u satisfying the monotonicity condition

∂xn
u > 0 in Rn. (1.1)

Then all level sets {u = s} of u are hyperplanes, at least if n ≤ 8.

The flatness of the level sets of u can be rephrased by saying that u depends only
on one variable. For the model equation chosen by De Giorgi, this is equivalent to
the existence of a unit vector a ∈ Rn and a constant b ∈ R such that

u(x) = tanh
(

1√
2
〈a, x〉+ b

)
∀x ∈ Rn.

When n = 2, this conjecture was proved in 1997 by N. Ghoussoub and C. Gui
[23] (see also [21] for further extensions of this result). More recently, the second
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and third authors [2] have established the conjecture in the case n = 3. The
higher dimensional cases are still open. The proofs for n = 2 and 3 use some
techniques developed by H. Berestycki, L. Caffarelli and L. Nirenberg in [8] for the
study of symmetry properties of positive solutions of semilinear elliptic equations
in halfspaces.

More generally, the same symmetry question can be raised for bounded entire
solutions of semilinear equations of the form

∆u− F ′(u) = 0 in Rn, (1.2)

under the monotonicity assumption (1.1). By “u is an entire solution”, we simply
mean that u is a solution in all space Rn. The results of [23] for n = 2 and the
results of the present paper for n = 3 establish the following:

Theorem 1.1. - Assume that F ∈ C2(R). Let u be a bounded solution of (1.2)
satisfying (1.1). If n = 2 or n = 3, then all level sets of u are hyperplanes, i.e.,
there exist a ∈ Rn and g ∈ C2(R) such that u(x) = g(〈a, x〉) for all x ∈ Rn.

In this paper we make a short survey on this problem and, at the same time, we
prove Theorem 1.1 in dimension three. This extends to all nonlinearities F ∈ C2

the results of the second and third authors [2], where Theorem 1.1 was proved when
n = 3 for a class of nonlinearities F which included the model case F ′(u) = u3−u.
The extension of the present paper is based on new energy estimates which follow
from a local minimality property of u, discussed in Section 4 below. In addition,
we prove in Section 6 a symmetry result for semilinear equations in the halfspace
R4

+. Finally, in Section 7 we establish that an asymptotic version of the conjecture
of De Giorgi (already considered by L. Modica in [30]) is true when n ≤ 8, namely
that the level sets of u are flat at infinity. As we will see below, this result is
related to the Bernstein problem about the flatness of entire minimal graphs.

In some cases it is helpful to make the additional hypothesis (consistent with
the original conjecture of De Giorgi, but not present in it) that

lim
xn→−∞

u(x′, xn) = inf u and lim
xn→+∞

u(x′, xn) = supu ∀x′ ∈ Rn−1 , (1.3)

where x = (x′, xn), x′ ∈ Rn−1 and xn ∈ R. Here, the limits are not assumed to
be uniform in x′ ∈ Rn−1. Even in this simpler form, conjecture (DG) was first
proved in [23] for n = 2, in [2] for n = 3, and it remains open for n ≥ 4.

In Theorem 1.1 the direction a of the variable on which u depends is not known
a priori. Indeed, if u is a one-dimensional solution satisfying (1.1), we can slightly
rotate coordinates to obtain a new one-dimensional solution still satisfying (1.1).
The same remark holds in the case when the additional assumption (1.3) is made.
Instead, if one further assumes that the limits in (1.3) are uniform in x′ ∈ Rn−1

then an a priori choice of the direction a is imposed, namely a · x = xn, and
furthermore one knows a priori that every level set of u is contained between two
parallel hyperplanes. With the additional assumption that the limits in (1.3) are

uniform in x′ ∈ Rn−1, the question of De Giorgi is known as “Gibbons conjecture”,
and it is by now completely settled. The conclusion u = u(xn) has been recently
proved by N. Ghoussoub and C. Gui [23] for the case n ≤ 3 and, independently and
using different techniques, for general n by M.T. Barlow, R.F. Bass and C. Gui [4],
H. Berestycki, F. Hamel and R. Monneau [9], and A. Farina [20]. These results
apply to equation (1.2) for various classes of nonlinearities F which always include
the Ginzburg-Landau model ∆u = u3 − u.

The first positive partial result on conjecture (DG) was established in 1980 by
L. Modica and S. Mortola [34]. They proved the flatness of the level sets in the
case n = 2, under the additional assumption that the level sets {u = s} are the
graphs of an equi-Lipschitz family of functions of x′. Note that, since ∂xn

u > 0,
each level set of u is the graph of a function of x′. Their proof was based on
a Liouville-type theorem for non-uniformly elliptic equations in divergence form,
due to J. Serrin, and on the observation that the bounded ratio σ := ∂x1u/∂x2u
solves, after an appropriate change of independent variables, an equation of this
type.

The idea of considering σ occurs also in [8], [23], [2]. But this time a different
Liouville-type theorem, due to H. Berestycki, L. Caffarelli and L. Nirenberg [8], is
used (see Theorem 3.1 below). This theorem does not require the assumption that
σ is bounded, but instead a suitable compatibility condition between the growth
of σ and the degeneracy of the coefficients of the equation.

L. Modica proved in [31] that if u is a bounded solution of (1.2) and F ≥ 0
on the range of u, then the pointwise gradient bound |∇u|2 ≤ 2F (u) holds in Rn.
This bound was extended in [12] by L. Caffarelli, N. Garofalo and F. Segala to
more general equations. They also proved that if equality holds at some point,
then the level sets of u are hyperplanes (regarding this fact, see also the survey
article [27] by B. Kawohl).

2. On the relation between (DG) and the Bernstein problem

In this section we describe the heuristic argument (that we make rigorous
in Section 7) establishing a relation between the conjecture of De Giorgi and the
Bernstein problem about the flatness of entire minimal graphs. This problem, after
a long series of partial results starting with S. Bernstein, was completely settled
in 1969 with the famous work [10] of E. Bombieri, E. De Giorgi and E. Giusti (see
also the nice presentations in [25], [29] on this and related problems). It is now
known that the following two statements hold:

(a) Every smooth entire solution ψ : Rm → R of the minimal surface equation

div

(
∇ψ√

1 + |∇ψ|2

)
= 0 (2.1)

is an affine function if m ≤ 7.
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(b) If m ≥ 8 there exist non affine entire and smooth solutions of (2.1).

A natural method in the analysis of entire solutions of PDE’s, first used by
W.H. Fleming in [18] (precisely in connection with the Bernstein problem), is the
analysis of the blow-down family of functions associated to the solution. This leads
in some cases to an understanding of the behaviour at infinity of the solution.

In our case, we assume that u is a bounded solution of (1.2) satisfying (1.1)
and (1.3), and that F ∈ C2(R) satisfies

F > F (m) = F (M) in (m,M)

where m = inf u and M = supu. Note that for the model case ∆u = u3 − u
in conjecture (DG), we have F (u) = (1 − u2)2/4, m = −1 and M = 1, so that
the previous condition is satisfied. We then define uR(x) = u(Rx) and study the
behaviour of uR as R→∞. The functions uR are bounded entire solutions of the
rescaled PDE’s

1
R

∆uR = RF ′(uR)

corresponding to the first variation of the functionals ER(·,Ω), defined by

ER(v,Ω) :=
∫

Ω

{
1

2R
|∇v|2 +RF (v)

}
dx (2.2)

(where we emphasize also the dependence on the domain of integration). A clas-
sical result of L. Modica and S. Mortola [33] states that the functionals ER(·,Ω)
Γ-converge to a constant multiple of the area functional. Specifically, setting

cF =
∫ M

m

√
2F (s) ds ,

the following three properties hold:
(i) (Lower semicontinuity) If E has locally finite perimeter in Rn, then

lim inf
i→∞

ERi(ui,Ω) ≥ cFP (E,Ω)

whenever Ω ⊂ Rn is an open set, Ri → ∞ and ui converge to 1E in L1
loc(Rn).

Here 1E denotes the function equal to M on E and equal to m on Rn \ E, and
P (E,Ω) denotes the perimeter of E in Ω, which coincides with the surface measure
of Ω ∩ ∂E if ∂E is sufficiently regular (see for instance [25]).

(ii) (Approximation) If E has locally finite perimeter in Rn, then there exists
a family (vR) ⊂ H1

loc(Rn) converging to 1E in L1
loc(Rn) and such that

lim sup
R→∞

ER(vR,Ω) ≤ cFP (E,Ω)

whenever Ω ⊂ Rn is a bounded open set with P (E, ∂Ω) = 0.
(iii) (Coercivity) If Ri →∞ and (ui) ⊂ H1

loc(Rn) satisfies

sup
i

ERi
(ui,Ω) <∞ ∀Ω ⊂⊂ Rn ,

then there exists a subsequence ui(k) and a set of locally finite perimeter E in Rn
such that ui(k) converge to 1E in L1

loc(Rn) as k →∞.

The Modica-Mortola theorem states that the functionals ER converge (in an
appropriate variational sense) to the perimeter functional as R → ∞. Consider
now a level set {u = s} of an entire solution of (1.2) satisfying (1.1) and (1.3), and
an arbitrary radius r > 0. Then {uR = s} ∩Br, a rescaled copy of {u = s} ∩BRr,
is expected (heuristically) to be closer and closer in Br to a stationary surface of
the area functional, as R → ∞. We notice also that, due to (1.1), {u = s} is a
graph along the xn direction, so we may expect the limiting stationary surface to
be a graph as well. For the purpose of this heuristic discussion we have identified
stationary solutions and local minimizers, but this issue is far from being trivial
(see Section 4).

Since r is arbitrary and we know that every entire minimal graph defined on
Rm = Rn−1 is a hyperplane for m = n − 1 ≤ 7, we may conclude that the
level sets {u = s} are expected to be “flat” at infinity whenever n ≤ 8. This
provides a strong indication of why De Giorgi’s conjecture should be true, at least
asymptotically, for n ≤ 8.

This argument will be made rigorous in Section 7, where we establish that the
rescaled level sets R−1({u = s} ∩ BRr) are closer and closer to a minimal graph
in Br as R tends to ∞ through subsequences —see also the nice results in [26] on
convergence of stationary solutions of (1.2).

3. Proof of Theorem 1.1 for n = 2

In this section we present the method leading to Theorem 1.1 in dimensions two
and three. In dimension two, the proof coincides with the one given by Ghoussoub
and Gui in [23], and it will be completed in this section. When n = 3 the method
described here is the first step towards the theorem, but in this dimension the
proof needs some additional work and will be completed in Section 5. Note that in
dimension three, Theorem 1.1 extends the results of [2], in which only a particular
class of nonlinearities (including the model case F ′(u) = u3 − u) was considered.

The idea is the following. Consider the functions

ϕ := ∂xnu > 0 and σi :=
∂xiu

∂xn
u

=
∂xiu

ϕ

for each i = 1, . . . , n − 1. The goal is to prove that every σi is constant in Rn,
since this clearly implies that ∇u = a|∇u| for some constant unit vector a, and
hence that the level sets of u are hyperplanes orthogonal to a.
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Notice that since
ϕ2∇σi = ϕ∇∂xi

u− ∂xi
u∇ϕ ,

and since both ∂xi
u and ϕ solve the same linear equation ∆v = F ′′(u)v, we have

div(ϕ2∇σi) = ϕ∆∂xiu− ∂xiu∆ϕ = 0 .

The conclusion that σi is necessarily constant in dimensions two and three uses the
following Liouville-type theorem due to H. Berestycki, L. Caffarelli and L. Niren-
berg [8].

Theorem 3.1. - Let ϕ ∈ L∞loc(Rn) be a positive function. Assume that σ ∈
H1

loc(Rn) satisfies
σ div(ϕ2∇σ) ≥ 0 in Rn (3.1)

in the distributional sense. For every R > 1, let BR = {|x| < R} and assume that
there exists a constant C independent of R such that∫

BR

(ϕσ)2 dx ≤ CR2 ∀R > 1 . (3.2)

Then σ is constant.

The proof of this result is based on a simple Caccioppoli type estimate for the
function σ (see [8] or [2]).

To apply this theorem to the conjecture of De Giorgi, note that ϕσi = ∂xi
u.

Therefore, in this case, condition (3.2) will hold if∫
BR

|∇u|2 dx ≤ CR2 ∀R > 1 (3.3)

for some constant C independent of R.
Next, we point out that since u ∈ L∞(Rn) is a solution of ∆u−F ′(u) = 0, then

|∇u| also belongs to L∞(Rn). This is easily proved using standard interior W 2,p

estimates for the Laplacian in every ball of radius 1 in Rn. Therefore, estimate
(3.3) is obviously true when n = 2. This finishes the proof of Theorem 1.1 for
n = 2.

We conclude this section with some comments on the sharpness of the previous
argument. In Section 5 we will prove the energy upper bound

∫
BR
|∇u|2 dx ≤

CRn−1 in every dimension n, and wee will see that this bound is sharp. However,
the optimal (maximal) exponent γn such that∫

BR

(ϕσ)2 dx ≤ CRγn ∀R > 1 =⇒ σ constant (3.4)

in the Liouville-type theorem above (assuming that equality holds in (3.1)) is not
presently known; this is an interesting open problem. In [3] it is proved that γn
is strictly less than n for n ≥ 3. Also, a sharp choice of the exponents in the
counterexamples of [23] shows that γn < 2 + 2

√
n− 1 when n ≥ 7. Finally, note

that if we had γn ≥ n − 1 for some n, then the argument above would establish
the conjecture of De Giorgi in dimension n.

4. The monotonicity assumption and local minimality

In this section we investigate in detail the consequences of the monotonicity
assumption (1.1). We begin by introducing the notion of stability.

Definition 4.1 (Stability). - We say that a solution u of (1.2) is stable if the
second variation of energy δ2E1/δ

2
ξ with respect to compactly supported pertur-

bations ξ is nonnegative, that is, if∫
Rn

{
|∇ξ|2 + F ′′(u)ξ2

}
dx ≥ 0 ∀ξ ∈ C∞c (Rn). (4.1)

We have used the notation E1 for the energy, as in (2.2). It is a well known fact
in the theory of maximum principles that the stability condition (4.1) is equivalent
to the existence of a strictly positive solution ϕ of ∆ϕ = F ′′(u)ϕ. That is, we have
the following:

Proposition 4.2. - Let H : Rn → R be a bounded continuous function. Then∫
Rn

{
|∇ξ|2 +H(x)ξ2

}
dx ≥ 0 ∀ξ ∈ C∞c (Rn) (4.2)

if and only if there exists a continuous function ϕ : Rn → (0,∞) such that ∆ϕ =
H(x)ϕ in the sense of distributions.

Proof. - Condition (4.2) implies that the first eigenvalue of the Schrödinger
operator −∆ + H(x) in each ball BR is nonnegative. Since the first eigenvalue
in BR is a decreasing function of R, it follows that all these first eigenvalues are
positive. This implies that, for every constant cR > 0, there exists a unique
solution ϕR of {

∆ϕR = H(x)ϕR in BR,
ϕR = cR on ∂BR,

and, moreover, ϕR > 0 in BR. We choose the constant cR such that ϕR(0) = 1.
Then, by the Harnack inequality, a subsequence of (ϕR) converges locally to a
solution ϕ > 0 of ∆ϕ = H(x)ϕ.

Conversely, multiplying the equation ∆ϕ = H(x)ϕ by ξ2/ϕ, integrating by
parts, and using the Cauchy-Schwarz inequality, we obtain (4.2).

As a corollary, we can prove that every monotone solution is stable.

Corollary 4.3 (monotonicity implies stability). - Every bounded entire so-
lution u of (1.2) satisfying the monotonicity assumption (1.1) is stable.

Proof. - We simply have to notice that ϕ = ∂xnu is strictly positive and
solves the linearized equation ∆ϕ = F ′′(u)ϕ. Then, the stability of u follows from
Proposition 4.2 with H = F ′′(u).
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We say that u is a local minimizer of E1 if the energy does not decrease under
compactly supported perturbations, i.e.,

E1(u,Ω) ≤ E1(v,Ω) whenever {u 6= v} ⊂ Ω ⊂⊂ Rn.

Corollary 4.3 indicates a connection between the monotonicity assumption and the
local minimality of u with respect to the energy E1, since the stability property
is a necessary condition for local minimality. In fact, we will now see that the
monotonicity assumption (1.1) implies the local minimality of u in a certain class
of compactly supported perturbations —a stronger property than stability.

For this purpose, let us introduce the functions u and u : Rn−1 → R defined
by

u(x′) := lim
xn→−∞

u(x′, xn) and u(x′) := lim
xn→+∞

u(x′, xn) . (4.3)

Notice that u and u are well defined if (1.1) holds. Moreover, if u is bounded
and satisfies (1.2), then a simple limiting argument (see [2] for details) shows that
u and u are also bounded entire solutions of the same equation (1.2), now on
Rn−1. In particular, u and u belong to C2,α

loc (Rn−1) for each α ∈ (0, 1) (this follows
from local W 2,p estimates applied to the equation and to the linearized equations
satisfied by u, u, and their first derivatives).

The following is the main result of this section.

Theorem 4.4 (monotonicity implies local minimality). - Let u be a bounded
entire solution of (1.2) satisfying (1.1), and let Ω ⊂ Rn be a smooth bounded
domain. Then ∫

Ω

{
1
2
|∇u|2 + F (u)

}
dx ≤

∫
Ω

{
1
2
|∇v|2 + F (v)

}
dx

for every function v ∈ C1(Ω) such that v ≡ u on ∂Ω and

u(x′) ≤ v(x′, xn) ≤ u(x′) for all x = (x′, xn) ∈ Ω. (4.4)

It seems that L. Modica was already aware (see [30]) of the connection between
the monotonicity assumption (1.1) and the local minimality of u, although [30] does
not contain an explicit proof of this fact.

We now give the proof of Theorem 4.4, which is based on some more or less
known results about calibrations for scalar functionals of the Calculus of Varia-
tions. After giving the proof of the theorem, we will explain in more detail its
geometric motivation and, at the same time, we will prove an analogous result
fore more general functionals.

Proof of Theorem 4.4. - We denote the energy in Ω of a function w ∈ C1(Ω)
by

E (w) =
∫

Ω

{
1
2
|∇w|2 + F (w)

}
dx,

and we consider the set

U = {(x, s) ∈ Ω× R : u(x′) < s < u(x′)} ⊂ Ω× R

and the class of functions

A = {w ∈ C1(Ω) : u(x′) < w(x) < u(x′) ∀x ∈ Ω}
= {w ∈ C1(Ω) : (x,w(x)) ∈ U ∀x ∈ Ω} .

Note that the function v in the statement of the theorem may not belong to A ,
since the inequalities in (4.4) are not strict. However, since ∂xnu > 0, we have
that u ∈ A . In particular, we have that u+ τ(v−u) ∈ A for every τ ∈ [0, 1), and
that u + τ(v − u) ≡ u on ∂Ω. Hence, by letting τ → 1, we see that the theorem
will be proved if we show that

E (u) ≤ E (w) for every w ∈ A such that w ≡ u on ∂Ω. (4.5)

We are going to prove the last inequality using the theory of calibrations and
extremal fields of the Calculus of Variations. We construct a calibration F for
the functional E and the solution u, that is, a functional F = F (w) defined for
w ∈ A satisfying the three following properties:

(a) F (u) = E (u).
(b) F (w) ≤ E (w) for all w ∈ A .
(c) F is a null-lagrangian, i.e., F (w) = F (w̃) for every pair of functions w ∈ A

and w̃ ∈ A such that w ≡ w̃ on ∂Ω.
The existence of such functional F immediately implies (4.5) and hence the

theorem. Indeed, for each w ∈ A such that w ≡ u on ∂Ω, we have F (u) = F (w)
by (c), and therefore

E (u) = F (u) = F (w) ≤ E (w)

by (a) and (b).
To construct F , we consider the one-parameter family of functions {ut}t∈R

defined by
ut(x) := u(x′, xn + t) for x ∈ Ω and t ∈ R.

The functions ut are all solutions of the same semilinear equation (the Euler-
Lagrange equation of E ) and, moreover, their graphs are pairwise disjoint (due to
the assumption ∂xn

u > 0). Because of these two properties, the family {ut}t∈R
is called an extremal field with respect to E . Next, we define the vector field
φ = (φx, φs) : U ⊂ Ω× R −→ Rn+1 by

φx(x, s) := ∇ut(x) , φs(x, s) =
1
2
|∇ut(x)|2 − F (s) ,

where t = t(x, s) is the unique real number such that

ut(x) = ut(x,s)(x) = s . (4.6)
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Note that t exists and is unique due to the hypothesis ∂tut > 0 and the fact that
(x, s) ∈ U , i.e.,

lim
t→−∞

ut(x) = u(x′) < s < u(x′) = lim
t→+∞

ut(x) .

Finally, we define the calibration F by

F (w) =
∫

Ω

{
〈φx(x,w(x)),∇w(x)〉 − φs(x,w(x))

}
dx

=
∫

Ω

{
〈∇ut,∇w〉 − 1

2
|∇ut|2 + F (w)

}
dx ,

for w ∈ A , where t = t(x,w(x)) is defined by (4.6), i.e., by ut(x) = w(x), and ∇
denotes always the gradient with respect to x ∈ Rn.

We need to show that F satisfies properties (a), (b) and (c). Note that (b) is
obvious, by the Cauchy-Schwarz inequality. Property (a) is also immediate, since
t(x, u(x)) ≡ 0. Property (c) will follow from the fact that φ is a divergence-free
vector field.

To verify that div φ = 0, note first that u is a C2 function in Rn, since the
linearized equation ∆∂xi

u = F ′′(u)∂xi
u implies (by local W 2,p estimates) that

∂xi
u ∈ W 2,p and hence u ∈ W 3,p ⊂ C2 for p > n. Now, the implicit function

theorem applied to (4.6) gives that t = t(x, s) is a C2(U) function. Moreover,
differentiating (4.6) we obtain

∂tu
t ∂st = 1 , ∇ut + ∂tu

t∇xt = 0 . (4.7)

In particular, φ is a C1 vector field on U . We have

divx φx = ∆ut + 〈∇∂tut,∇xt〉 = ∆ut − 〈∇∂tut, ∂st∇ut〉

by (4.7), and
∂sφ

s = 〈∇ut, ∂st∇∂tut〉 − F ′(s) ,

and therefore div φ = ∆ut − F ′(s) = ∆ut − F ′(ut) = 0.
Finally, we can verify property (c). Let w ∈ A and w̃ ∈ A satisfy w ≡ w̃ on

∂Ω. Define ζ = w̃ − w and wτ = w + τ(w̃ − w) = w + τζ for 0 ≤ τ ≤ 1. We have
that ζ ≡ 0 on ∂Ω and wτ ∈ A for all τ ∈ [0, 1]. For these values of τ , we have

d

dτ
F (wτ ) =

d

dτ

∫
Ω

{
〈φx(x,wτ ),∇wτ 〉 − φs(x,wτ )

}
dx

=
∫

Ω

{
〈∂sφx(x,wτ ),∇wτ 〉ζ + 〈φx(x,wτ ),∇ζ〉 − ∂sφs(x,wτ )ζ

}
dx .

Integrating by parts the second term in the last expression, using ζ ≡ 0 on ∂Ω
and div φ ≡ 0 in U , we finally obtain

d

dτ
F (wτ ) =

∫
Ω

{
〈∂sφx(x,wτ ),∇wτ 〉ζ − divx φx(x,wτ )ζ

− 〈∂sφx(x,wτ ),∇wτ 〉ζ − ∂sφs(x,wτ )ζ
}
dx

=
∫

Ω

−div φ(x,wτ )ζ dx = 0 ,

and hence F (w) = F (w̃).

Let us explain the construction of the previous proof in a more geometric way
and, at the same time, include more general functionals E of the form

E (w,Ω) :=
∫

Ω

f(x,w,∇w) dx for w ∈ C1(Ω),

where the integrand f(x, s, p) is bounded from below, of class C1 in all arguments,
and convex with respect to p. Here, and in the following, we use the standard
notation f(x,w,∇w) for f(x,w(x),∇w(x)).

Given a vector field φ = (φx, φs) defined on an open subset W of Rn × R and
satisfying

φs(x, s) ≥ f∗(x, s, φx(x, s)) ∀(x, s) ∈W ,

where f∗(x, s, p∗) is the conjugate function of f(x, s, p) with respect to p, there
holds (by definition)

f(x, s, p) ≥ 〈φx(x, s), p〉 − φs(x, s) ∀(x, s, p) ∈W × Rn . (4.8)

Then, by integration, we obtain

E (w,Ω) ≥
∫

Ω

{〈φx(x,w),∇w〉 − φs(x,w)} dx (4.9)

for every w ∈ C1(Ω) whose graph is contained in W . On the other hand, we have
equality in (4.9) for a given function u if, in addition,{

φx(x, u) = ∂pf(x, u,∇u)
φs(x, u) = −f(x, u,∇u) + 〈∂pf(x, u,∇u),∇u〉 ∀x ∈ Ω . (4.10)

We are assuming, in particular, that W contains the graph {(x, u(x)) : x ∈ Ω} of
u. Note that (4.8) and (4.10) imply

φs(x, u) = f∗(x, u, φx(x, u)) ∀x ∈ Ω .

Assume now that φ is divergence free in W , and take any other function v ∈
C1(Ω) whose graph is contained in W and such that {u 6= v} ⊂⊂ Ω (by this
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we mean that {u 6= v} has compact closure contained in Ω). Then, denoting by
Γu and Γv the graphs of u and v on Ω respectively (both oriented so that the
s-component of the normal is negative), we get

E (v,Ω) ≥
∫

Ω

{〈φx(x, v),∇v〉 − φs(x, v)} dx

= flux of φ through Γv = flux of φ through Γu

=
∫

Ω

{〈φx(x, u),∇u〉 − φs(x, u)} dx = E (u,Ω) .

Notice that the second equality follows by the divergence theorem using the fact
that φ is divergence-free in W , and that Γu and Γv have the same boundary in
W . Here, we have assumed that the x-slice of W is an interval for each x. We
have thus proved the following result.

Theorem 4.5. - Let Ω ⊂ Rn and W ⊂ Ω×R be open sets and let u ∈ C1(Ω) be
such that its graph Γu is contained in W . Let us assume that {s ∈ R : (x, s) ∈W}
is an interval for each x ∈ Ω, and that there exists a divergence-free vector field
φ = (φx, φs) in W satisfying (4.8) and (4.10). Then u is a local minimizer of
E (·,Ω) with respect to compact perturbations in W , i.e.,

E (u,Ω) ≤ E (v,Ω) whenever {u 6= v} ⊂⊂ Ω and Γv ⊂W .

This method applies to minimizers with Dirichlet boundary conditions. By
analogy with the theory of minimal surfaces, we call the vector field φ a calibration
for u in W relative to the integrand f ; see [35], [36]. The existence of a calibration
is not only sufficient for minimality but, to a certain extent, also necessary (a
statement in this directions in the context of Geometric Measure Theory can be
derived from Sections 4 and 5 of [22]). The previous proof is based on the fact
that, for divergence-free φ, integrals of the type

Fφ(w,Ω) :=
∫

Ω

{〈φx(x,w),∇w〉 − φs(x,w)} dx (4.11)

are invariant integrals or null-lagrangians, that is, as we have seen before they
depend only on the value of w on the boundary of Ω (see also Section 3.3.2.2 of [14],
or Sections 1.4.1, 1.4.2 and 6.1.3 of [24]). Both null-lagrangians and calibrations
are classical tools to prove minimality and, in fact, are essentially the same.

A more analytic proof of the null-lagrangian property of Fφ, which hides the
geometric significance of this property, can be obtained as in the proof of The-
orem 4.4. That is, first one notices that, since φ is divergence-free in W , the
Euler-Lagrange equation of Fφ

div (φx(x,w))− 〈∂sφx(x,w),∇w〉+ ∂sφ
s(x,w)

= (divx φx + ∂sφ
s) (x,w) = 0

(4.12)

is satisfied by every w ∈ C1(Ω) whose graph is contained in W (this property is
also sometimes taken as definition of null-lagrangian, see [17]). Then, if w and w̃
belong to C1(Ω) are such that their graphs are contained in W and {w 6= w̃} ⊂⊂ Ω,
we can define wτ = w + τ(w̃ − w) for τ ∈ [0, 1] and use the fact that all functions
wτ solve (4.12), to obtain

d

dτ
Fφ(wτ ,Ω) = 0 ∀τ ∈ [0, 1] .

Hence Fφ(w,Ω) = Fφ(w̃,Ω). As in the previous proof, the assumption that the
x-slices of W are intervals plays a role (here it guarantees that the graph of each
function wτ is contained in W ).

When trying to apply Theorem 4.5, the delicate part is obviously the construc-
tion of φ. There is however a simple way to accomplish it whenever the solution u
can be embedded in a one-parameter family of solutions ut of the Euler-Lagrange
equation of E ,

div
(
∂pf(x, ut(x),∇ut(x))

)
= ∂sf(x, ut(x),∇ut(x)) for all (x, t), (4.13)

whose graphs foliate the open region W . Such a family of solutions is called an
extremal field with respect to E (see [24], Section 6.3).

More precisely, we assume that W is covered by a regular family of pairwise
disjoint graphs Γt of solutions ut of (4.13), where t belongs to an open interval
I ⊂ R. Then, for every (x, s) ∈ W we take the unique t = t(x, s) ∈ I such that
ut(x) = s, and set{

φx(x, s) = ∂pf(x, ut(x),∇ut(x)) ,
φs(x, s) = −f(x, ut(x),∇ut(x)) + 〈∂pf(x, ut(x),∇ut(x)),∇ut(x)〉 . (4.14)

By regular family we mean the following: locally the graphs Γt can be represented
as level sets {ũ = t} of a C2(W ) function ũ, which obviously satisfies the condition
∂sũ 6= 0. This property is fulfilled if, for instance, ∂tut(x) 6= 0 for every t ∈ I and
every x ∈ Ω. The integral Fφ associated to such a vector field φ through (4.11)
is the Hilbert invariant integral relative to the extremal field {ut}, and in fact the
following theorem holds (see [24], Section 6.3).

Theorem 4.6. - The vector field φ defined by (4.14) is a calibration of each
ut in W , that is, φ is a divergence-free vector field satisfying (4.8) and (4.10).
Consequently, all functions ut are local minimizers of E (·,Ω) in W .

Proof. - The vector field φ satisfies (4.10) for each ut by construction. It also
satisfies (4.8) on W , by the definition (4.14) and the assumption that f is convex
with respect to p. It remains to prove that φ is divergence-free. This can be done
in two different ways.

The first way consists of simply computing the divergence. Since ut(x,s)(x) = s,
we deduce {

∂tu
t ∂st = 1 ,

∇ut + ∂tu
t∇xt = 0 .

(4.15)
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Now, using definition (4.14), we compute the divergence at a point (x, s). All
expressions are evaluated at x, s = ut(x) and p = ∇ut(x), where t = t(x, s). We
have

divxφx = div
(
∂pf(x, ut(x),∇ut(x))

)
+ 〈∂psf, ∂tut∇xt〉

+ 〈∂ppf · ∇∂tut,∇xt〉

and, using (4.15),

∂sφ
s = −∂sf ∂tut ∂st− 〈∂pf,∇∂tut ∂st〉+ 〈∂psf ∂tut ∂st,∇ut〉

+ 〈∂ppf · ∇∂tut ∂st,∇ut〉+ 〈∂pf,∇∂tut ∂st〉
= −∂sf + 〈∂psf,∇ut〉+ 〈∂ppf · ∇∂tut ∂st,∇ut〉 .

Using (4.13) and (4.15), we see that each one of the three terms in the last ex-
pression is the opposite of the corresponding term in the expression for divxφx.
Hence, we conclude div φ = 0 in W .

Let us present a second way, more geometric, to prove that φ is divergence-free.
Since this property is local, we can assume in the following that, in a sufficiently
small ball B ⊂ W , there exists ũ ∈ C2(B) such that Γt ∩ B = {ũ = t} for each
t ∈ I. We denote by J the interval ũ(B).

Next, we consider the following auxiliary functional: for every w̃ ∈ C1(B)
taking values in J and such that ∂sw̃ > 0, the level set {w̃ = t} is the graph of a
C1 function wt defined on an open subset of Ωt of Rn, and therefore we can set

G (w) =
∫
J

E (wt,Ωt) dt.

Using this definition, we first prove that ũ is a stationary point for G . The proof
is based on the following lemma, whose elementary proof is left to the reader.

Lemma 4.7. - Let B ⊂ Rn+1 be a ball and let ũ ∈ C2(B) be satisfying ∂sũ > 0
on B. Let also B′ ⊂⊂ B be a concentric ball. Then, denoting by π : B → Rn
the orthogonal projection on {s = 0} and setting Ωt = π({ũ = t}), there exist
constants ε > 0 and M > 0 such that

π({w̃ = t}) = Ωt and ‖wt − ut‖C1(Ωt) ≤M‖w̃ − ũ‖C1(B)

for each t ∈ v(B), provided ‖w̃− ũ‖C1(B) ≤ ε and the support of w̃− ũ is contained
in B′.

Proof of Theorem 4.6 continued. - Let ζ ∈ C1
c (B) and consider w̃ =

ũ+ δζ for δ small enough. Lemma 4.7 gives

d

dδ
G (ũ+ δζ)

∣∣∣∣
δ=0

=
∫
J

d

dδ
E ((ũ+ δζ)t,Ωt)

∣∣∣∣
δ=0

dt = 0 .

Hence ũ is a stationary point for G .

Using the coarea formula (see for instance [25]), we can give a canonical rep-
resentation of G with the Lagrangian

L(y, q) = f

(
y,−p

x

ps

)
ps where y = (x, s) and q = (px, ps).

Indeed, we have∫
J

E (wt,Ωt) dt =
∫
J

∫
Ωt

f(x,wt,∇wt) dx dt

=
∫
J

∫
Γt

f(y,−∂xw̃/∂sw̃))√
1 + |∇wt|2

dH n(y) dt

=
∫
J

∫
{w̃=t}

f

(
y,−∂xw̃

∂sw̃

)
∂sw̃

|∇w̃|
dH n(y) dt

=
∫
B

f

(
y,−∂xw̃

∂sw̃

)
∂sw̃ dy .

Since ũ is a stationary point of G , it follows that ũ satisfies the Euler-Lagrange
equation

div (∂qL(y,∇ũ)) = 0 in B.

Substituting the expression for L, we eventually obtain

div
(
−∂pf(x, s,−∂xũ

∂sũ
), f(x, s,−∂xũ

∂sũ
)− 〈∂pf(x, s,−∂xũ

∂sũ
),
∂xũ

∂sũ
〉
)

= 0 (4.16)

for each (x, s) ∈ B. Finally, if we take φ as in (4.14) and take into account that

−∂xũ(x, s)
∂sũ(x, s)

= ∇ut(x) ,

(4.16) reduces to div φ = 0 in B.

5. Energy estimates. Completion of the proof of Theorem 1.1 for n = 3

In this section we establish some a priori estimates for bounded entire solu-
tions u of (1.2). The first one, stated below, does not require the monotonicity
assumption on u and was proved by L. Modica in [32]. Throughout this section,
we consider the constant

cu = min{F (s) : inf u ≤ s ≤ supu} ,

that is, the infimum of F on the range of u.
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Theorem 5.1 (monotonicity formula and lower bounds). - Let u be a bounded
entire solution of (1.2). Then

φ(R) := R1−n
∫
BR

{
1
2
|∇u|2 + F (u)− cu

}
dx

is nondecreasing in (0,∞). In particular, if u is not constant then there exists a
positive constant c such that∫

BR

{
1
2
|∇u|2 + F (u)− cu

}
dx ≥ cRn−1 ∀R > 1 . (5.1)

Modica also proved in [31] the pointwise gradient bound

|∇u|2 ≤ 2(F (u)− cu) in Rn,

where, as before, the monotonicity assumption on u is not required.
The proof of the energy upper bound∫

BR

{
1
2
|∇u|2 + F (u)− cu

}
dx ≤ CRn−1 ∀R > 1 , (5.2)

which plays a crucial role in our proof of the De Giorgi conjecture in dimension
three, is more delicate and requires some additional work. Here, the monotonicity
assumption on u is needed. In [2] we gave a simple proof of this estimate for a
special class of nonlinearities F . It was based on a “sliding” argument using the
functions ut(x) = u(x′, xn + t) of the previous section. In the present paper, we
use the local minimality property of u to extend the energy upper bound (5.2) to
every nonlinearity F ∈ C2. The precise result is the following:

Theorem 5.2 (upper bounds). - Let u be an entire solution of (1.2) satisfying
(1.1). If either n ≤ 3 or u satisfies (1.3), then (5.2) holds for some constant C
independent of R. In particular, we have that∫

BR

|∇u|2 dx ≤ CRn−1 ∀R > 1 .

When n = 3, the previous theorem establishes estimate (3.3). As we saw in
Section 3, this completes the proof of Theorem 1.1 and of De Giorgi’s conjecture
in dimension three.

Proof of Theorem 5.2. - Let m = inf u, M = supu, and s ∈ [m,M ] be
such that cu = F (s). If u satisfies (1.3) then u ≡ m and u ≡M , and hence we can
perform a simple energy comparison argument. Indeed, let φR ∈ C∞(Rn) satisfy

0 ≤ φR ≤ 1 in Rn, φR ≡ 1 in BR−1, φR ≡ 0 in Rn \ BR and ‖∇φR‖∞ ≤ 2, and
consider

vR := (1− φR)u+ φRs.

This function satisfies the conditions stated for v in Theorem 4.4 when Ω = BR,
and hence we can compare the energy of u with the energy of vR in BR. Taking
into account that F (s) = cu, we obtain∫

BR

{
1
2
|∇u|2 + F (u)− cu

}
dx

≤
∫
BR

{
1
2
|∇vR|2 + F (vR)− cu

}
dx

=
∫
BR\BR−1

{
1
2
|∇vR|2 + F (vR)− cu

}
dx ≤ C|BR \BR−1| ≤ CRn−1

for every R > 1, with C independent of R.
We now consider the case when condition (1.3) is dropped but n ≤ 3. When

n = 2, Theorem 5.2 is a consequence of Theorem 1.1, which is already proved in
dimension 2. Indeed, that the energy is bounded by CR (and not only by CR2)
follows easily from the one-dimensionality of u and an ODE argument (see [2]).

Assume now that n = 3. Notice that m = inf u and M = supu, and define

m̃ = supu and M̃ = inf u .

Obviously m̃ and M̃ belong to [m,M ]. By Lemma 3.1 and Lemma 3.2 of [2] we
know that u and u are either constant or monotone one dimensional solutions in
R2. The proof of this fact is based on the stability of u and on the proof of the
conjecture of De Giorgi in Rn−1 = R2 (see [2] or next section, where we will recall
the ideas involved in the proof). Moreover, by a simple ODE argument (see also
[2]), we have

F > F (m) = F (m̃) in (m, m̃) (5.3)

in case m < m̃ (i.e., u is not constant) and

F > F (M̃) = F (M) in (M̃,M) (5.4)

in case M̃ < M (i.e., u is not constant).
In all four possible cases (that is, each u and u is constant or one dimensional)

we deduce from (5.3) and (5.4) that m̃ ≤ M̃ and that there exists s ∈ [m̃, M̃ ] such
that F (s) = cu (recall that cu is the infimum of F in the range of u). We conclude
that

u(x′) ≤ m̃ ≤ s ≤ M̃ ≤ u(x′) ∀x′ ∈ R2 ,

and hence we can apply Theorem 4.4 to make the comparison argument with the
function vR = (1 − φR)u + φRs as before, and hence obtain the desired energy
upper bound.
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6. A symmetry result in R4
+

In this section we continue the study of symmetry properties for semilinear
elliptic equations, that we write here in the form ∆u + f(u) = 0, but now in
halfspaces Rn+ = {x ∈ Rn : xn > 0}. More precisely, we study bounded solutions
of the problem 

∆u+ f(u) = 0 in Rn+,
u > 0 in Rn+,
u = 0 on ∂Rn+.

(6.1)

We always assume that f is a Lipschitz function on [0,∞) and that u ∈ C2(Rn+)
is a bounded solution of (6.1) continuous up to the boundary of Rn+. Applying
standard W 2,p estimates in every ball or half ball of radius 1 in Rn+, we see that
|∇u| is globally bounded in Rn+ as well.

As in the previous sections, the goal is to establish that the level sets of u
are hyperplanes or, equivalently, that u = u(xn) is a function of xn alone. This
symmetry question is slightly easier than the question in the whole of Rn, since
we know that at least one level set of u is a hyperplane, namely the 0-level set.

In [6] and [8], H. Berestycki, L. Caffarelli and L. Nirenberg proved that every
solution u of (6.1) (not necessarily bounded) satisfies ∂xn

u > 0 in Rn+ when n = 2
or when n ≥ 3 and f(0) ≥ 0. In [8] the same authors developed the technique
that we have used in Section 3 (that is, the idea of applying a Liouville theorem
to the equation satisfied by the quotient of partial derivatives of u) to prove the
following result.

Theorem 6.1 (symmetry in R2
+ and R3

+). - Let u be a bounded solution of
(6.1). If n = 2 then u depends only on xn, i.e., u = u(xn). If n = 3 the same
conclusion holds if one assumes in addition that f(0) ≥ 0 and f ∈ C1 ([0,∞)).

S.B. Angenent [1], P. Clément and G. Sweers [13], and H. Berestycki, L. Caf-
farelli and L. Nirenberg [7], have also proved the same symmetry property in any
number of dimensions, but under more restrictive assumptions on f . More pre-
cisely, in [7] the authors established (in all dimensions n) that every bounded
solution of (6.1) is symmetric, i.e. u = u(xn), if one assumes in addition the three
following conditions on f :

Condition (1). For some µ > 0 we have f > 0 in (0, µ) and f ≤ 0 in [µ,∞).

Condition (2). For some s0 ∈ (0, µ) and some δ0 > 0, f(s) ≥ δ0s in [0, s0].

Condition (3). For some s1 ∈ (s0, µ), f is nonincreasing in (s1, µ).

When n = 4 we can improve this symmetry result by requiring essentially only
condition (1) on f . The precise statement is the following:

Theorem 6.2 (symmetry in R4
+). - Let f ∈ C1([0,∞)) and assume that f ≥ 0

in [0,∞) or that f ≥ 0 in [0, µ] and f ≤ 0 in [µ,∞) for some µ > 0. Then, when
n = 4, every bounded solution u of (6.1) depends only on x4.

For the proof of this theorem we will need the following result established in
[5], which was also used by the same authors in [8] to prove Theorem 6.1 in Rn+,
n = 2, 3. This result states that if u is a bounded solution of (6.1) in Rn+ and if

f(supu) ≤ 0 , (6.2)

then u is symmetric, i.e., u = u(xn).

Proof of Theorem 6.2.. - We first prove, following [7], that

∆u ≤ 0 in R4
+. (6.3)

This is obvious in the case when f is nonnegative. Suppose now that f ≥ 0 in
[0, µ] and f ≤ 0 in [µ,∞) for some µ > 0, and define M = supu. If we show that
M ≤ µ then (6.3) follows immediately. Arguing by contradiction, suppose that
M > µ. Then the open set A = {u > µ} is not empty, is contained in R4

+, and
the bounded function u−µ vanishes on ∂A and is subharmonic in A. A version of
the maximum principle in unbounded domains having an exterior open cone (see
Section 2 of [7]) gives that u − µ ≤ 0 in A, a contradiction. We have therefore
established (6.3).

Next, we use (6.3) to show that∫
QR

|∇u|2 dx ≤ CR3 (6.4)

for every cylinder QR = B′R× (a, a+R) ⊂ R4
+, where C is a constant independent

of R and a. Indeed, since −∆u ≥ 0 we have u(−∆u) ≤M(−∆u) and hence∫
QR

|∇u|2 dx =
∫
∂QR

u
∂u

∂ν
dH 3 +

∫
QR

u(−∆u) dx

≤
∫
∂QR

u
∂u

∂ν
dH 3 −M

∫
QR

∆u dx

=
∫
∂QR

(u−M)
∂u

∂ν
dH 3 ≤ CH 3(∂QR) = CR3 .

Since f(0) ≥ 0, the result of [6] previously mentioned gives that ∂x4u > 0 in
R4

+. Hence the function

u(x′) = lim
x4→+∞

u(x′, x4) for x′ ∈ R3

is well defined and satisfies ∆u+f(u) = 0 in R3. Estimate (6.4) implies, by letting
a→∞, that ∫

B′
R

|∇u|2 dx′ ≤ CR2 (6.5)
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for every ball B′R ⊂ R3 of radius R.
Next we show that there exists a strictly positive function ϕ in R3 such that

∆ϕ+ f ′(u)ϕ = 0 in R3. (6.6)

This is shown using the ideas on stability of Section 4 and arguing as in Section 3
of [8] or as in Section 3 of [2]. Let us recall briefly the argument; since ∂x4u > 0
solves the linearized equation then∫

R4
+

{
|∇ξ|2 − f ′(u)ξ2

}
dx ≥ 0 ∀ξ ∈ C∞c (R4

+)

(see Proposition 4.2). Then, using the continuity of f ′, one deduces that∫
R3

{
|∇η|2 − f ′(u)η2

}
dx ≥ 0 ∀η ∈ C∞c (R3)

(see the proof of Lemma 3.1 of [2] for details). Using Proposition 4.2 we deduce
the existence of ϕ > 0 satisfying (6.6).

For this choice of function ϕ, we can now consider the functions σi = ∂xi
u/ϕ

and argue as in the proof of De Giorgi’s conjecture given in Section 3, since we
have (6.5) and (6.6). We deduce that each partial derivative of u is a constant
multiple of ϕ (and hence has constant sign). In particular, u is either a constant
or a monotone function of only one variable. Then the ODE u′′ + f(u) = 0 gives
that f(supu) = 0. Since supu = supu we deduce f(supu) = 0 and hence (6.2).
This implies that u = u(x4), by the result of [5] mentioned above.

7. A partial result for n ≤ 8

In this section we make rigorous the heuristic discussion of Section 2 and prove
that in dimensions n ≤ 8 all entire solutions of (1.2) satisfying (1.1) and (1.3) are
“flat at infinity”. Precisely, we can prove the following result.

Theorem 7.1. - Assume that n ≤ 8, that u is a bounded entire solution of
(1.2), that both (1.1) and (1.3) hold and

F > F (inf u) = F (supu) in (inf u, supu).

Let (Ri) ⊂ (0,∞) be converging to ∞. Then there exist a subsequence Ri(k) and a
unit vector a ∈ Rn such that

lim
k→∞

R1−n
i(k)

∫
BRi(k)

{
|∇u|2 − |∂au|2

}
dx = 0 . (7.1)

Moreover, uk(x) = u(Ri(k)x) converge in L1
loc(Rn) to the characteristic function

(with values inf u and supu) of a halfspace orthogonal to a.

The theorem above is a slight improvement of an analogous result stated by L.
Modica, under the local minimality assumption, in [30].

The distance between the property proved in Theorem 7.1 and the full
De Giorgi conjecture could be significant because of the following two facts:

(a) A priori the direction a depends on the sequence (Ri), or the subsequence
(Ri(k)). Notice that Theorem 7.1 implies, by a simple contradiction argument, the
existence of unit vectors vectors aR such that

lim
R→∞

R1−n
∫
BR

{
|∇u|2 − |∂aR

u|2
}
dx = 0 .

However, it is not clear how a “spiraling” behaviour of the level sets of u at infinity
could be ruled out.

(b) Even if we were able to solve the problem raised in (a), and prove that

lim
R→∞

R1−n
∫
BR

{
|∇u|2 − |∂au|2

}
dx = 0

for some unit vector a, then it is not clear how the stronger conclusion that ∇u is
everywhere parallel to a could be drawn.

Sketch of the proof of Theorem 7.1. - In the proof we denote by Dau
the distributional derivative along a ∈ Rn of a function u. Notice that, since

|Dau|(Ω) = sup
{
Dau(ζ) : ζ ∈ C1

c (Ω) , ‖ζ‖∞ ≤ 1
}

= sup
{
−
∫

Ω

u ∂aζ dx : ζ ∈ C1
c (Ω) , ‖ζ‖∞ ≤ 1

}
,

the mapping u 7→ |Dau|(Ω) is lower semicontinuous with respect to the L1
loc(Ω)

convergence for every a ∈ Rn and every open set Ω ⊂ Rn.
Step 1. Let ui(x) = u(Rix). With no loss of generality, we may assume that

cu = 0, m = −1 and M = 1. By the energy upper bound (5.2) we infer

ERi(ui, Br) = R1−n
i E1(u,BRir) ≤ Crn−1

as soon as Ri ≥ 1 and r ≥ 1 (we use the notation ERi from Section 2). Hence, the
coercivity property (iii) of Γ-convergence (see Section 2) gives a subsequence ui(k)

and a set E of locally finite perimeter in Rn such that

lim
k→∞

ui(k) = 1E in L1
loc(Rn).

For notational simplicity in the following we assume convergence of the original
sequence (ui).
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Step 2. It is well known that properties (i) and (ii) of Γ-convergence ensure
convergence of global minimizers to global minimizers. It is perhaps less known
that under some additional assumptions (satisfied by the functionals ER) also the
local minimality property is preserved in the limit (see Section 5 in [15] and [30]
for details). Hence, since by Theorem 4.4 the functions ui are local minimizers of
ERi

, we obtain that E is a local minimizer of the perimeter, i.e.

P (E,Ω) ≤ P (F,Ω) whenever E∆F ⊂⊂ Ω ⊂⊂ Rn (7.2)

(where E∆F denotes the symmetric diference). Moreover, the same proof of this
fact shows that the energies ERi

(ui, ·) are locally weakly∗ converging as measures
to cFP (E, ·), i.e.,

lim
i→∞

∫
Rn

{
1

2Ri
|∇ui|2 +RiF (ui)

}
ξ dx = cF

∫
Rn

ξ dP (E, ·) ∀ξ ∈ Cc(Rn) .

By De La Vallée Poussin theorem (see for instance [25], Appendix A) we obtain

lim
i→∞

R1−n
i

∫
BrRi

{
1
2
|∇u|2 + F (u)

}
dx = lim

i→∞
ERi

(ui, Br) = cFP (E,Br) (7.3)

for each r > 0 such that P (E, ∂Br) = 0 (this condition holds with at most count-
ably many exceptions). In particular (5.1) gives P (E,Br) ≥ crn−1/cF > 0, and
hence E is neither the empty set nor the whole space.

Step 3. If n ≤ 7 it is well known that every set E satisfying (7.2) and with
nonzero perimeter is a halfspace. This is not the case in R8, a counterexample being
the Simons cone (see for instance [25]). In our case we can extend the conclusion
up to R8 noticing that the condition (1.1) yields Dxn

χE ≥ 0 in the sense of
distributions. This implies that χE is the hypograph of a function ψ : Rn−1 → R
(with values in the extended real line R), i.e., E = {(x′, xn) : xn > ψ(x′)}.

Since E is a local minimizer, we may consider ψ to be an entire solution of
the mean curvature equation (2.1) in a generalized sense. Indeed, this viewpoint
was adopted by M. Miranda in [28], [29] (see also Chapter 16 in E. Giusti [25]) to
define generalized solutions of least area problems. He proved that for every such
generalized solution ψ the sets

P :=
{
x ∈ Rn−1 : ψ(x) = +∞

}
, N :=

{
x ∈ Rn−1 : ψ(x) = −∞

}
are both local minimizers of the perimeter in Rn−1, and this allows us to prove
that the solution to the Bernstein problem is unchanged if we consider generalized
solutions of (2.1) instead of classical ones. Indeed, we distinguish the following
two cases:

(a) Both P and N are negligible. In this case M. Miranda proved that ψ is
(equivalent to) a classical solution of (2.1). In particular ψ is an affine function,
since n− 1 ≤ 7.

(b) N has positive measure. Then N must be a halfspace of Rn−1 (since
n − 1 ≤ 7) and therefore E contains a halfspace of Rn. This implies (see [25],
Theorem 17.4) that E itself is a halfspace. The case when P has positive measure
can be handled in a similar way.

Step 4. In the previous step we proved that E is a halfspace. Let a be a unit
vector perpendicular to ∂E. We will prove that

lim inf
i→∞

R1−n
i

∫
BRi

{
1
2
|∂au|2 + F (u)

}
dx ≥ cFP (E,B1) , (7.4)

which, together with (7.3) with r = 1, gives (7.1).
In order to show (7.4) we follow the same path of the Modica and Mortola

proof of the lower semicontinuity inequality (i) of Γ-convergence. Indeed, let

G(t) :=
∫ t

−1

√
2F (s) ds

and notice that the Young inequality gives

R1−n
i

∫
BRi

{
1
2
|∂au|2 + F (u)

}
dx

=
∫
B1

{
1

2Ri
|∂aui|2 +RiF (ui)

}
dx

≥
∫
B1

√
2F (ui) |∂aui| dx =

∫
B1

|∂a(G ◦ ui)| dx .

Notice that G ◦ ui converge in L1
loc(Rn) to G ◦ 1E , i.e., cFχE (χE is equal to 1

on E and equal to 0 on Rn \ E). Hence, the lower semicontinuity of directional
derivatives under L1

loc(Rn) convergence gives

lim inf
i→∞

R1−n
i

∫
BRi

{
1
2
|∂au|2 + F (u)

}
dx

≥ cF |DaχE |(B1) = cF

∫
B1∩∂E

|〈νE , a〉| dH n−1 ,

where νE is the inner normal to E. Since a is parallel to νE , (7.4) follows.
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