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1. Introduction

We consider a fluid in a container Ω and assume that every configuration of the system is
described by a function u : Ω → R which represents the (macroscopic) density of a scalar
intrinsic quantity, and the corresponding free energy is given by

E(u) :=
1

4

∫

Ω×Ω

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx +

∫

Ω

W
(
u(x)

)
dx ,

where J is a positive interaction potential which vanishes at infinity and W is double-well
potential which vanishes at ±1 only (see paragraph 1.2 for precise assumptions).

If we consider an energy minimizing configuration u, the second term in E forces u to
take values close to the “pure” states +1 and −1 (phase separation), while the first term
represents an interaction energy which penalizes the spatial inhomogeneity of u (surface
tension). Examples of this model are given in equilibrium statistical mechanics by contin-
uum limits of Ising spin systems on lattices; in that setting, u represents a macroscopic
magnetization density and J is a ferromagnetic Kac potential (cf. [ABCP] and references
therein).

When the potential W is large in comparison with J and we minimize E subject to the
mass constraint

∫
u = c, the second term in E prevails: the minimizer takes values close to

−1 or +1, and the transition between the two phases occurs in a thin layer. This situation
can be studied by passing to the thermodynamic limit, that is, studying the asymptotic
behavior as ε → 0 of the rescaled energies

Fε(u, Ω) :=
1

4ε

∫

Ω×Ω

Jε(x
′ − x)

(
u(x′) − u(x)

)2
dx′dx +

1

ε

∫

Ω

W
(
u(x)

)
dx , (1.1)

where ε is a positive scaling parameter, and Jε(y) := ε−NJ(y/ε).



  

2 G. Alberti and G. Bellettini

We note that this model closely resembles the Cahn–Hilliard model for phase separation
(see [CH]), which is described by the energy functional

Iε(u) :=
ε

2

∫

Ω

|∇u|2 +
1

ε

∫

Ω

W (u) . (1.2)

Indeed, Fε can be obtained from Iε by replacing the term
∣
∣∇u(x)

∣
∣ in the first integral

in (1.2) with the average of the finite differences 1

ε

∣
∣u(x + εh) − u(x)

∣
∣ with respect to the

measure distribution J(h) dh. Modica and Mortola proved [MM] (see also [Mo]) that in
the limit ε → 0 the functionals Iε converge in a suitable sense to a limit energy I which is
finite only when u = ±1 almost everywhere, and in that case is given by the area of the
interface Su which separates the phases {u = +1} and {u = −1} multiplied by a positive
surface tension σ.

It follows immediately from the convergence of the energies that the minimizers of Iε

with prescribed total mass converge to minimizers of I, that is, functions u : Ω → ±1 which
minimize the area of the interface Su. In this sense the classical model for phase separation
(due to van der Waals) can be derived from the Cahn–Hilliard model in the limit ε → 0.
This result was later extended to more general anisotropic functionals in [Bou], [OS], [BF].

A first result in this direction for the functionals Fε in (1.1) was proved in [ABCP] for a
particular choice of W and a radially symmetric J , that is, in the isotropic case. The limit
energy F has the same form as I, only the expression for the surface tension σ is different.
In this paper we extend this result to the anisotropic case; more precisely we prove (see
Theorem 1.4 and following remarks) that when ε → 0 the functionals Fε converge to a
limit energy F which is finite only when u = ±1 a.e., and in that case is given by the area
of the interface Su weighted by an anisotropic surface tension σ (cf. (1.10)). As before, the
convergence of the energies immediately implies that the minimizers of Fε with prescribed
mass converge to minimizers of F .

Beyond the relevance of the specific model we consider, our result suggests the following
consideration: the term

∫
|∇u|2 in (1.2) was derived in [CH] as a first order approximation

of a more general and complicated quadratic form, but our theorem suggests that the form
of the limit energy is largely independent of the choice of this quadratic form; a first result
in this direction was given in [ABS], but no general result is available so far.

In this paper we follow a different approach from [ABCP]; for instance, the existence of
the optimal profiles for transitions (cf. [AB1]) plays no rôle in the proof. In particular, it is
also possible to extend Theorem 1.4 to the multi-phase case (that is, when u takes values
in R

m and W is a function on R
m which vanishes at finitely many affinely independent

points) even though there are no existence results for the optimal profile (see paragraph
1.12). On the other hand, the assumption J ≥ 0, which in the statistical model is called
the ferromagnetic assumption, is crucial in all our proofs (cf. paragraph 1.13), and even
if Theorem 1.4 holds also for some potentials J with a small negative part (see [AB2]),
the problem of understanding what happens in the general case seems still largely open;
indeed a quite different asymptotic behavior is expected, since in particular the ground
states associated with the unscaled energy E may be not constant.

We finally recall that the evolution model associated with the energy Fε is described,
after a suitable time scaling, by the nonlocal parabolic equation ut = ε−2

(
Jε ∗u−u−f(u)

)

where f is the derivative of W and it is assumed ‖J‖1 = 1; the analogue for the energy
Iε is the scaled Allen–Cahn equation ut = 4u − ε−2f(u). The asymptotic behavior of the
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solutions of this equation has been widely studied and leads to a motion by mean curvature
in the sense of viscosity solutions (see, for instance, [DOPT1-3], [KS1-2] for the isotropic
nonlocal equation, and [KS3] for the anisotropic case; see [BK], [DS], [ESS], [Ilm] for the
Allen–Cahn equation).

This paper is organized as follows. In the rest of this section, we first give some defini-
tions, and then state the convergence result for the functionals Fε (Theorem 1.4) and briefly
discuss some immediate consequences. In paragraph 1.9 we outline the idea of the proof in
the one-dimensional case; in paragraph 1.12 we consider the generalization of Theorem 1.4
to the multi-phase case, while in paragraph 1.13 we discuss the assumptions on J and W .

In section 2 we study the decay of the locality defect Λε(u, A, A′), which is defined by

Λε(u, A, A′) :=
1

4ε

∫

A×A′

Jε(x
′ − x)

(
u(x′) − u(x)

)2
dx′dx (1.3)

for every A, A′ ⊂ R
N and every u : A ∪ A′ → R. The functionals Fε are not local, in

the sense that the energy Fε(u, A ∪ A′) stored in A ∪ A′ is strictly larger than the sum of
Fε(u, A) and Fε(u, A′) when A and A′ are disjoint, and more precisely we have

Fε(u, A ∪ A′) = Fε(u, A) + Fε(u, A′) + 2Λε(u, A, A′) . (1.4)

To guarantee that Λε(u, A, A′) vanishes as ε → 0 whenever the distance between A and
A′ is strictly positive, we must assume a proper decay of J at infinity, namely (1.6) (see
however paragraph 1.13).

Sections 3, 4, and 5 are devoted to the proof of Theorem 1.4.

Before passing to precise statements, we fix some notation. In the following Ω is a
bounded open subset of R

N , and it is called regular when it has a Lipschitz boundary (for
N = 1, when it is a finite union of distant open intervals). Unless otherwise stated all sets
and functions are assumed to be Borel measurable.

Every set in R
N is usually endowed with the Lebesgue measure

�
N , and we simply write

∫

B
f(x) dx for the integrals over B and |B| for

�
N (B), while we never omit explicit mention

of the measure when it differs from
�

N . As usual � N−1 denotes the (N − 1)-dimensional
Hausdorff measure.

1.1. BV functions and sets of finite perimeter

For every open set Ω in R
N , BV (Ω) denotes the space of all functions u : Ω → R with

bounded variation, that is, the functions u ∈ L1(Ω) whose distributional derivative Du is
represented by a bounded R

N -valued measure on Ω. We denote by BV (Ω,±1) the class
of all u ∈ BV (Ω) which take values ±1 only. For every function u on Ω, Su is the set of
all essential singularities, that is, the points of Ω where u has no approximate limit (in the
measure theoretic sense, cf. [EG], chapter 5); if u ∈ BV (Ω) the set Su is rectifiable, and
this means that it can be covered up to an � N−1-negligible subset by countably many
hypersurfaces of class C1.

The essential boundary of a set E ⊂ R
N is the set ∂∗E of all points in Ω, where E has

density neither unity nor zero. A set E ⊂ Ω has finite perimeter in Ω if its characteristic
function 1E belongs to BV (Ω), or equivalently, if � N−1(∂∗E ∩ Ω) is finite; in this case
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∂∗E is rectifiable, and we may endow it with a measure theoretic normal νE (defined up
to � N−1-negligible subsets) so that the measure derivative D1E is represented as

D1E(B) =

∫

∂∗E∩B

νE d� N−1 for every B ⊂ Ω.

A function u : Ω → ±1 belongs to BV (Ω,±1) if and only if {u = +1} (or {u = −1} as
well) has finite perimeter in Ω. In this case, Su agrees with the intersection of the essential
boundary of {u = +1} with Ω, and the previous formula becomes

Du(B) := 2

∫

Su∩B

νu d� N−1 for every B ⊂ Ω, (1.5)

where νu is a suitable normal field to Su. We claim that Su is the interface between the
phases {u = +1} and {u = −1} in the sense that it contains every point where both sets
have density different from zero. For further results and details about BV functions and
finite perimeter sets, we refer the reader to [EG], chapter 5.

1.2. Hypotheses on J and W

Unless otherwise stated, the interaction potential J and the double-well potential W which
appear in (1.1) satisfy the following assumptions:

(i) J : R
N → [0,+∞) is an even function (i.e., J(h) = J(−h)) in L1(RN ) and satisfies

∫

RN

J(h) |h| dh < ∞ . (1.6)

(ii) W : R → [0,+∞) is a continuous function which vanishes at ±1 only, and has at
least linear growth at infinity (cf. the proof of Lemma 1.14).

1.3. The optimal profile problem and the surface tension σ

We first define the auxiliary unscaled functional � by

� (u, A) :=
1

4

∫

x∈A, h∈RN

J(h)
(
u(x + h) − u(x)

)2
dx dh +

∫

x∈A

W
(
u(x)

)
dx (1.7)

for every set A ⊂ R
N and every u : R

N → R. Hence � (u, A) = F1(u, A)+Λ1(u, A, RN \A).
We fix now a unit vector e ∈ R

N and we denote by M the orthogonal complement of e.
Hence, every x ∈ R

N can be written as x = y + xee where y is the projection of x on M
and xe := 〈x, e〉.

We denote by �e the class of all (N − 1)-dimensional cubes centered at 0 which lie on
M ; for every C ∈ �e, TC is the strip TC :=

{
y + te : y ∈ C, t ∈ R

}
, while QC is the

N -dimensional cube centered at 0 such that QC ∩M = C. A function u : R
N → R is called

C-periodic if u(x + rei) = u(x) for every x and every i = 1, . . . , N − 1, where r is the side
length of C and e1, . . . , eN−1 are its axes. We denote by X(C) the class of all functions
u : R

N → [−1, 1] which are C-periodic and satisfy

lim
xe→+∞

u(x) = +1 and lim
xe→−∞

u(x) = −1 , (1.8)



  

A non-local anisotropic model for phase transitions 5

and finally we set

σ(e) := inf
{
|C|−1� (u, TC) : C ∈ �e, u ∈ X(C)

}
. (1.9)

The minimum problem (1.9) is called the optimal profile problem associated with the
direction e, and a solution is called an optimal profile for transition in direction e. In
[AB1] it was proved that the minimum in (1.9) is attained, and there exists at least one
minimizer u which depends only on the variable xe, and more precisely, u(x) = γ(xe) where
γ : R → [−1, 1] is the optimal profile associated with a certain one-dimensional functional
F e. However, we emphasize that the proof of Theorem 1.4 does not depend upon this
existence result (see Remark 1.10).

For the rest of this section, Ω is a fixed regular open subset of R
N ; the functionals Fε

are defined in (1.1), while the limit functional F is given by

F (u) :=

∫

Su

σ(νu) d� N−1 for u ∈ BV (Ω,±1). (1.10)

Theorem 1.4. Under the previous assumptions the following three statements hold:
(i) Compactness: let sequences (εn) and (un) ⊂ L1(Ω) be given such that εn → 0,

and Fεn
(un,Ω) is uniformly bounded; then the sequence (un) is relatively compact in

L1(Ω) and each of its cluster points belongs to BV (Ω,±1).
(ii) Lower bound inequality: for every u ∈ BV (Ω,±1) and every sequence (uε) such that

uε → u in L1(Ω), we have

lim inf
ε→0

Fε(uε,Ω) ≥ F (u) ;

(iii) Upper bound inequality: for every u ∈ BV (Ω,±1) there exists a sequence (uε) such
that uε → u in L1(Ω) and

lim sup
ε→0

Fε(uε,Ω) ≤ F (u) .

Remark 1.5. Statements (ii) and (iii) of Theorem 1.4 can be rephrased by saying that the
functionals Fε(·,Ω), or in short Fε, Γ-converge in the space L1(Ω) to the functional F given
by (1.10) for all functions u ∈ BV (Ω,±1) and extended to +∞ in L1(Ω) \ BV (Ω,±1).

For the general theory of Γ-convergence, we refer the reader to [DM]; for the applications
of Γ-convergence to phase transition problems, we refer to the early paper of Modica [Mo],
and to [Al] for a review of some results and the related mathematical issues.

Remark 1.6. As every Γ-limit is lower semicontinuous, we infer from the previous remark
that the functional F given in (1.10) is weakly* lower semicontinuous and coercive on
BV (Ω,±1).

The coercivity of F implies that the infimum of σ(e) over all unit vectors e ∈ R
N is

strictly positive, while the semicontinuity implies that the 1-homogeneous extension of the
function σ to R

N , namely the function x 7→ |x|σ
(
x
/
|x|

)
, is convex (see, for instance, [AmB],

Theorem 3.1). Notice that it is not immediate to recover this convexity result directly from
the definition of σ in (1.9).
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Remark 1.7. Statement (iii) of Theorem 1.4 can be refined by choosing the approximating
sequence (uε) so that

∫

Ω
uε =

∫

Ω
u for every ε (we will not prove this refinement of statement

(iii); in fact one has to slightly modify the construction of the approximating sequence (uε)
given in Theorem 5.2). In this way we can fit with a prescribed mass constraint: given
c such that |c| ≤ |Ω|, then the functionals Fε also Γ-converge to F on the class Yc of all
u ∈ L1(Ω) which satisfy the mass constraint

∫

Ω
u = c.

A sequence (vε) in Yc is called a minimizing sequence if vε minimizes Fε(·,Ω) in Yc for
every ε > 0, and is called a quasi-minimizing sequence if Fε(vε,Ω) = inf

{
Fε(u, Ω) : u ∈

Yc

}
+o(1). Using the semicontinuity result given in [AB1], Theorem 4.7, and the truncation

argument given in Lemma 1.14 below, we can prove that a minimizer of Fε(·,Ω) in Yc exists
provided that W is of class C2 and Ẅ (t) ≥ −dε for every t ∈ [−1, 1], where dε is defined
by

dε := ess inf
x∈Ω

1

2

∫

Ω

Jε(x
′ − x) dx′ .

Notice that dε tends to 1

4
‖J‖1 as ε → 0.

By a well-known property of Γ-convergence and statement (i) of Theorem 1.4 we infer
the following (cf. [DM], chapter 7):

Corollary 1.8. Let (vε) be a minimizing or a quasi-minimizing sequence for Fε on Yc.
Then (vε) is relatively compact in L1(Ω), and every cluster point v minimizes F among all
functions u ∈ BV (Ω,±1) which satisfy

∫

Ω
u = c. Equivalently, the set E := {v = 1} solves

the minimum problem

min
{∫

∂∗E

σ(νE) d� N−1 : E has finite perimeter in Ω and |E| = 1

2
(c + |Ω|)

}

.

1.9. Outline of the proof of Theorem 1.4 for N = 1

To explain the idea of the proof of Theorem 1.4 and the connection with the optimal profile
problem, we now briefly sketch the proof of statement (ii) and (iii) for the one-dimensional
case (the proof of statement (i) being slightly more delicate).

In this case, σ becomes the infimum of F1(·, R) over the class X of all u : R → [−1, 1]
which converge to +1 at +∞ and to −1 at −∞ (cf. (1.9)). We assume for simplicity that
Ω is the interval (−1, 1), and that u(x) = −1 for x < 0, u(x) = +1 for x ≥ 0. Then
Su = {0}, and σ� 0(Su) = σ; a standard localization argument can be used to prove the
result in the general case (cf. [Al], section 3a).

We first note that the functionals Fε satisfy the following rescaling property: given ε > 0
and u : R → R we set uε(x) := u(εx), and then a direct computation gives

Fε(u, R) = F1(u
ε, R) . (1.11)

Let us now consider the lower bound inequality. First, we reduce to a sequence (uε) which
converges to u in L1(Ω) and satisfies |uε| ≤ 1; then we extend each uε to the rest of R by
setting uε(x) := −1 for x ≤ −1, uε(x) := 1 for x ≥ 1. The key point of the proof is to show
that

Fε(uε,Ω) ' Fε(uε, R) as ε → 0. (1.12)
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By identity (1.4), (1.12) can be written in term of the locality defect Λε (see (1.3)), and
more precisely, it reduces to Λε(uε,Ω, R \ Ω) = o(1); notice that in general this equality
may be false, but using the decay estimates for the locality defect given in section 2 we can
prove that it is true if we replace Ω with another interval, which may be chosen arbitrarily
close to Ω.

By (1.11) and the definition of σ we get Fε(uε, R) = F1(u
ε
ε, R) ≥ σ, and then (1.12)

yields

lim inf
ε→0

Fε(uε,Ω) ≥ σ .

The proof of the upper bound inequality is even more simple: we take an optimal profile
γ (i.e., a solution of the minimum problem which defines σ) and we set uε(x) := γ(x/ε) for
every ε > 0. Then uε(x) converge to u(x) for every x 6= 0, and (1.11) yields

Fε(uε,Ω) ≤ Fε(uε, R) = F1(γ, R) = σ .

Remark 1.10. It is clear from this brief sketch that the shape of the optimal profile plays
no rôle in the proof of Theorem 1.4, nor does the fact that the minimum in (1.9) is attained:
in case no optimal profiles were available, it would suffice to replace γ with functions in X
which “almost” minimize F1(·, R). This could be indeed the case when one considers the
vectorial version of this problem (see paragraph 1.12)

Nevertheless, the existence of the optimal profile has a deeper meaning than appears
above. Indeed if (vε) is a sequence of minimizers of Fε which converges to some v ∈
BV (Ω,±1), then we would expect that if we blow-up the functions vε at some fixed singular
point x̄ of v by taking the functions γε(x) := vε(ε(x− x̄)), then γε more and more resembles
an optimal profile. In other words we expect the optimal profiles to be the asymptotic
shapes of the minimizers vε about the discontinuity points of v. Yet a precise statement in
this direction is beyond the scope of this paper.

1.12. The multi-phase model

To describe a multi-phase system, one may postulate a free energy of the form (1.1) where
u is a vector density function on a domain of R

N taking values in R
m, W : R

m → [0,∞) is
a continuous function which vanishes at k + 1 affinely independent wells {α0, . . . , αk} (and
therefore k ≤ m), and J is the usual interaction potential.

Theorem 1.4 holds provided we make the following modifications: BV (Ω,±1) is replaced
by the class BV

(
Ω, {αi}

)
of all functions u ∈ BV (Ω, Rm) which takes values in {α0, . . . , αk}

only, and the functional F is now defined by

F (u) :=
∑

i<j

∫

Sij

σij(νij) d� N−1 , (1.13)

where Sij is the interface which separates the phases {u = αi} and {u = αj}, and precisely
Sij := ∂∗{u = αi} ∩ ∂∗{u = αj} ∩ Ω (recall that both phases have finite perimeter in Ω),
and νij is the measure theoretic normal to Sij . For every unit vector e the value σij(e) is
defined by the following version of the optimal profile problem:

σij(e) := inf
{
|C|−1� (u, TC) : C ∈ �e, u ∈ Xij(C)

}
, (1.14)
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where we follow the notation of paragraph 1.3, and Xij(C) is the class of all functions
u : R

N → R
m which are C-periodic and satisfy the boundary condition

lim
xe→+∞

u(x) = αj and lim
xe→−∞

u(x) = αi .

This vectorial generalization of Theorem 1.4 can be proved by adapting the proof for the
scalar case given below, and using a suitable approximation result for the functions in
BV

(
Ω, {αi}

)
(cf. the approach in [Ba] for the vectorial version of the Modica–Mortola

theorem).
Notice that in this case it is not known whether the optimal profile problem (1.14)

admits a solution or not (cf. [AB1], section 4b).

1.13. The optimal assumptions on J

The ferromagnetic assumption J ≥ 0 plays an essential rôle in the proof of statement (i)
of Theorem 1.4, and in particular in the first step of the proof of Theorem 3.1. On the
other hand, the proofs of statements (ii) and (iii) do not require the positivity of J , and
therefore the task of extending Theorem 1.4 to potentials J which are not ferromagnetic
essentially reduces to proving the compactness result in statement (i); in fact, this seems
possible under certain restrictions on J (see [AB2]).

About the growth assumptions on J , we can replace the hypotheses in paragraph 1.3,
namely J ∈ L1(RN ) and (1.6), with the following more general ones (cf. [AB1], section
4c): J is even, non-negative, and satisfies

∫

RN

J(h)
(
|h| ∧ |h|2

)
dh < +∞ . (1.15)

We note that the proof of Theorem 1.4 needs no modifications at all if J does not belong
to L1(RN ) but still satisfies (1.6), while some additional care has to be taken in the fully
general case, and more precisely in the proof of statement (iii) (see in particular the third
step in the proof of Theorem 5.2, and the decay of the locality defect in Lemma 2.7), while
statements (i) and (ii) can always be recovered from the usual version of Theorem 1.4 by
approximating J with an increasing sequence of potentials which satisfy the assumptions
in paragraph 1.2.

Finally, we notice that if (1.15) does not hold, then the value of σ(e) as given by the
optimal profile problem (1.9) is always equal to +∞ (cf. [AB1], Theorem 4.6). This prob-
ably means that a different scaling should be considered in the definition of the functionals
Fε. For instance, if N = 1 and J(h) := 1/h2 the right scaling is given by

ε

∫

Ω×Ω

∣
∣
∣
u(x′) − u(x)

x′ − x

∣
∣
∣

2

dx′dx + e1/ε

∫

Ω

W
(
u(x)

)
dx ,

or equivalently by multiplying the functionals Fε defined in (1.1) by an infinitesimal factor
of order | log ε|−1. In this case, we again obtain a Γ-limit of the form (1.10) (see, for
instance, [ABS]). However, no general result is available when J does not satisfy (1.15).

Warning. Throughout the rest of the paper, we will always restrict ourselves to functions
which take values in [−1, 1]. We are allowed to do this by the following truncation lemma:
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Lemma 1.14. For every function u : Ω → R, let Tu denote the truncated function
Tu(x) :=

(
u(x) ∧ 1) ∨ −1. Then Fε(u, Ω) ≥ Fε(Tu, Ω) for every ε > 0, and for every

sequence (uε) such that Fε(uε,Ω) is bounded in ε there holds ‖uε − Tuε‖1 → 0 as ε → 0.

Proof. The inequality Fε(u, Ω) ≥ Fε(Tu, Ω) is immediate.
Let us now be given a sequence (uε) such that Fε(uε,Ω) ≤ C for every ε. Since W is

strictly positive and continuous out of ±1, and has growth at least linear at infinity (see
paragraph 1.2), for every δ > 0, we may find a > 0, M > 0 and b > 0 so that W (t) ≥ a
when 1 + δ ≤ |t| ≤ M and W (t) ≥ b|t| when |t| ≥ M . Then we define Aε and Bε as the
sets of all x ∈ Ω where uε(x) satisfies, respectively, 1 + δ ≤

∣
∣uε(x)

∣
∣ ≤ M and M ≤

∣
∣uε(x)

∣
∣.

Hence

‖uε − Tuε‖1 ≤ δ|Ω| + M |Aε| +

∫

Bε

|uε| ≤ δ|Ω| +
(M

a
+

1

b

) ∫

Ω

W (uε) .

Since
∫

Ω
W (uε) ≤ Cε, passing to the limit as ε → 0 we obtain that lim sup ‖uε − Tuε‖1 ≤

δ|Ω|, and since δ can be taken arbitrarily small, the proof is complete.

2. Decay estimates for the locality defect

In this section we study the asymptotic behavior as ε tends to zero of the locality defect
Λε (see (1.3)). Roughly speaking, the goal is to show that the limit of Λε(uε, A, A′) is
determined only by the asymptotic behavior of the sequence uε close to the intersection of
the boundaries of A and A′. The main result of this section is Theorem 2.8.

We first need to fix some additional notation. We define the auxiliary potential Ĵ by

Ĵ(h) :=

∫ 1

0

J
(h

t

) ∣
∣
∣
h

t

∣
∣
∣

dt

tN
for every h ∈ R

N . (2.1)

It follows immediately from the definition that Ĵ is even, non-negative, and satisfies

‖Ĵ‖1 =

∫

RN

J(h) |h| dh < ∞ . (2.2)

Definition 2.1. Throughout this section Σ always denotes a subset of a Lipschitz hy-
persurface in R

N and is endowed with the Hausdorff measure � N−1 (we often omit any
explicit mention to this measure). Now, let us give a set A of positive measure in R

N , a
sequence (un) of functions from A into [−1, 1], and a sequence (εn) of positive real num-
bers which tends to zero; we say that the εn-traces of un (relative to A) converge on Σ to
v : Σ → [−1, 1] when

lim
n→∞

∫

y∈Σ

[ ∫

{h: y+εnh∈A}

Ĵ(h)
∣
∣un(y + εnh) − v(y)

∣
∣ dh

]

dy = 0. (2.3)

Remark 2.2. We make no assumption on the relative position of A and Σ; in particular,
they may even be far apart. Notice, moreover, that the notion of “convergence of the εn-
traces” is introduced without defining what the εn-trace of a function is, and in fact, there
is no such notion. This is due to the fact, that for functions in the domain of Fε, the trace
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on an (N − 1)-dimensional manifold cannot be defined (while it is defined for functions in
the domain of the Γ-limit, that is, for BV functions).

In view of the definition of the locality defect, it would make more sense to replace
the term

∣
∣un(y + εnh) − v(y)

∣
∣ in (2.3) with its square. But since we restrict ourselves

to functions which take values in [−1, 1], the limit in (2.3) is independent of the power
of

∣
∣un(y + εnh) − v(y)

∣
∣, and we chose the first power because this simplifies many of the

following proofs.

Remark 2.3. We define the upper Ĵ-density of A at the point x ∈ R
N as the upper limit

lim sup
ε→0

∫

{h: x+εh∈A}

Ĵ(h) dh ,

and the lower Ĵ-density as the corresponding lower limit. Notice that such densities are
local, that is, they do not depend upon the behavior of A out of any open neighborhood
of x.

The function v which satisfies (2.3) is uniquely determined for (� N−1-) almost every
point of Σ where A has positive J-upper density.

If (2.3) holds for some set A, then it is satisfied by every A′ included in A. Moreover,
if Σ has finite measure, then (2.3) is also satisfied by every A′ such that A′ \ A has upper
Ĵ-density zero at almost every point of Σ. In particular, if are given sets A and A′ such
that the symmetric difference A4A′ has upper Ĵ-density zero at almost every point of Σ,
then A satisfies (2.3) if and only if A′ does.

Remark 2.4. Condition (2.3) is not easy to verify. If Σ has finite measure then (2.3) holds
when

lim
n→∞

un(y + εnh) = v(y) for a.e. y ∈ Σ and a.e. h ∈ A. (2.4)

Condition (2.4) holds, for instance, when un converge locally uniformly on some open
neighborhood of Σ to a function which, at every point of Σ, is continuous and agrees with
v.

Assume now that the functions un converge to u in L1(A). Unfortunately, this is not
enough to deduce that the εn-traces of un converge to u on every Lipschitz hypersurface
Σ ⊂ R

N , yet this holds for “most” Σ. More precisely, we have the following proposition:

Proposition 2.5. Take A, (εn) and (un) as in Definition 2.1; let g : A → R be a Lipschitz
function, and denote by Σt the t-level set of g for every t ∈ R. If un → u in L1(A) then,
possibly passing to a subsequence, the εn-traces of un (relative to A) converge to u on Σt

for a.e. t ∈ R.

(Since g admits a Lipschitz extension to R
N , Σt is a subset of an oriented closed Lipschitz

hypersurface in R
N for almost every t ∈ R.)

Proof. To simplify the notation we write ε, uε instead of εn, un, we assume that g is 1-
Lipschitz and A = R

N (the general case follows in the same way). For every ε > 0, x ∈ R
N

and t ∈ R we set

Φε(x) :=

∫

RN

Ĵ(h)
∣
∣uε(x + εh) − u(x)

∣
∣ dh and gε(t) :=

∫

Σt

Φε(x) dx . (2.5)
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By the co-area formula for Lipschitz functions (see [EG], section 3.3), we get

∫

R

gε(t) dt =

∫

RN

Φε(x)
∣
∣∇g(x)

∣
∣ dx ≤

∫

RN

Φε(x) dx

=

∫

RN×RN

Ĵ(h)
∣
∣uε(x + εh) − u(x)

∣
∣ dx dh

≤

∫

RN×RN

Ĵ(h)
[∣
∣uε(x + εh) − u(x + εh)

∣
∣ +

∣
∣u(x + εh) − u(x)

∣
∣

]

dx dh

≤

∫

RN

Ĵ(h)
[
‖uε − u‖1 + ‖τεhu − u‖1

]
dh , (2.6)

where τεhu(x) := u(x + εh).
Now ‖uε − u‖1 tends to zero by assumption and ‖τεhu − u‖1 tends to zero as ε → 0

for every h, and since Ĵ is summable (cf. (2.2)), we can apply the dominated convergence
theorem to the integrals in line (2.6), and we get

lim
ε→0

∫

R

gε(t) dt = 0 .

Hence the functions gε converge to zero in L1(R), and passing to a subsequence we may
assume that they also converge pointwise to zero for a.e. t ∈ R. Since gε(t) is equal to the
double integral in (2.3) (with v replaced by u), the proof is complete.

Definition 2.6. Let A, A′ ⊂ R
N be given. We say that the set Σ divides A and A′ when

for every x ∈ A, x′ ∈ A′ the segment [x, x′] intersects Σ. We say that Σ strongly divides
A and A′ when Σ is the (Lipschitz) boundary of some open set Ω such that A ⊂ Ω and
A′ ⊂ R

N \ Ω.

Now we can state and prove the first decay estimate for the locality defect. Let disjoint
sets A and A′ in R

N be given which are divided by Σ, then take positive numbers εn → 0
and functions un : A ∪ A′ → [−1, 1] and v, v′ : Σ → [−1, 1].

Lemma 2.7. Under the above stated hypotheses, if the εn-traces of un relative to A and
A′ converge on Σ to v and v′, respectively, then

lim sup
n→∞

Λεn
(un, A, A′) ≤

1

2
‖Ĵ‖1

∫

Σ

∣
∣v(y) − v′(y)

∣
∣ dy . (2.7)

Proof. To simplify the notation we write ε, uε and Λε instead of εn, un, Λεn
. By the

definition of Λε, and recalling that |uε| ≤ 1, we obtain

Λε(uε, A, A′) ≤
1

2ε

∫

RN

J(h)
[ ∫

Aεh

∣
∣uε(x + εh) − uε(x)

∣
∣ dx

︸ ︷︷ ︸

Iε(h)

]

dh , (2.8)

where Aεh is the set of all x such that x ∈ A and x + εh ∈ A′. Let us consider for the
moment the integral Iε(h) defined in (2.8): for every x in the integration domain Aεh, the
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segment [x, x + εh] intersects Σ, and then we can write x as x = y − tεh for some y ∈ Σ
and t ∈ [0, 1].

εh

 A Σ

 Aεh

 x

 x'=x+εh

 y

 A'

Fig.1. The set Aεh for given ε > 0 and h ∈ R
N .

Since the Jacobian determinant of the map which takes (y, t) ∈ Σ × [0, 1] into y − tεh
does not exceed ε|h|, by applying the change of variable x = y − tεh we get

Iε(h) ≤ ε|h|

∫

Σ

[ ∫

Shy

∣
∣uε(y + (1 − t)εh) − uε(y − tεh)

∣
∣ dt

]

dy ,

where Shy is the set of all t ∈ [0, 1] such that y − tεh ∈ A and y + (1 − t)εh ∈ A′. Hence
(2.8) yields

Λε(uε, A, A′) ≤
1

2

∫

h∈RN , y∈Σ

J(h) |h|
[ ∫

Shy

∣
∣uε(y+(1−t)εh)−uε(y−tεh)

∣
∣ dt

]

dy dh . (2.9)

Now by the triangle inequality we can estimate
∣
∣uε(y +(1− t)εh)−uε(y− tεh)

∣
∣ by the sum

of the following three terms:
∣
∣v(y) − v′(y)

∣
∣ +

∣
∣uε(y − tεh) − v′(y)

∣
∣ +

∣
∣uε(y + (1 − t)εh) − v(y)

∣
∣ .

Accordingly, we estimate the double integral at the right-hand side of (2.9) by the sum of
the corresponding double integrals I1

ε , I2
ε and I3

ε , that is,

Λε(uε, A, A′) ≤ I1
ε + I2

ε + I3
ε . (2.10)

We recall now that |Shy| ≤ 1 for every h and every y, and then

I1
ε : =

1

2

∫

h∈RN , y∈Σ

J(h) |h|
[ ∫

Shy

∣
∣v(y) − v′(y)

∣
∣ dt

]

dy dh

≤
1

2

[ ∫

RN

J(h) |h| dh
][ ∫

Σ

∣
∣v(y) − v′(y)

∣
∣ dy

]

. (2.11)

Since the first integral in line (2.11) is equal to ‖Ĵ‖1 (see (2.2)), inequality (2.7) will follow
from (2.10) once we have proved that I2

ε and I3
ε vanish as ε → 0. Let us consider I2

ε :

I2
ε : =

1

2

∫

h∈RN , y∈Σ

J(h) |h|
[ ∫

Shy

∣
∣uε(y − tεh) − v(y)

∣
∣ dt

]

dy dh

≤
1

2

∫

h′∈RN , y∈Σ

[ ∫

Shy

J
(h′

t

) ∣
∣
∣
h′

t

∣
∣
∣

∣
∣uε(y + εh′) − v(y)

∣
∣

dt

tN

]

dy dh′

≤
1

2

∫

Σ

[ ∫

{h′: y+εh′∈A}

Ĵ(h′)
∣
∣uε(y + εh′) − v(y)| dh′

]

dy
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(the first inequality in the previous computation follows from the change of variable h =
−h′/t, while the second one follows from (2.1), taking into account that |Shy| ≤ 1 for every
h, y).

Therefore, I2
ε vanishes as ε → 0 because the ε-traces of uε relative to A converge to v

on Σ. In a similar way, one can prove that I3
ε vanishes as ε → 0.

Now we can state the main result of this section. Let be given disjoint sets A, A′ ⊂ R
N ,

and Σ such that one of the following holds:
(a) the sets A and A′ are divided by Σ (cf. Definition 2.6);
(b) the sets A and A′ are strongly divided by a Lipschitz boundary S with finite measure

and Σ = ∂A ∩ ∂A′;
(c) either A or A′ is a bounded set with Lipschitz boundary and Σ = ∂A ∩ ∂A′.

Then take positive numbers εn → 0 and functions un : A ∪ A′ → [−1, 1].

Theorem 2.8. Under the above stated hypotheses we have

lim sup
n→∞

Λεn
(un, A, A′) ≤ ‖Ĵ‖1� N−1(Σ) . (2.12)

Moreover, if the εn-traces of un relative to A and A′ converge on Σ, respectively, to v and
v′, then

lim sup
n→∞

Λεn
(un, A, A′) ≤

1

2
‖Ĵ‖1

∫

Σ

∣
∣v(y) − v′(y)

∣
∣ dy . (2.13)

Proof. Notice that (2.12) follows by applying (2.13) to the functions un which are equal to
1 on A and to −1 on A′ (with v := 1 and v′ := −1) and then using the obvious inequality
Λεn

(un, A, A′) ≤ Λεn
(un, A, A′).

Let us prove (2.13). When (a) holds it is enough to apply Lemma 2.7, while (c) clearly
implies (b). Assume that (b) holds.

First, we notice that in this case we can always modify the boundary S so that S∩∂A =
S∩∂A′ = Σ. Now we extend v and v′ to zero in S \Σ, and then the εn-traces of un relative
to A and A′ converge on S to v and v′, respectively (use Remark 2.3, recalling that both
A and A′ have upper J-density zero at every point of S \ Σ). Now it is enough to apply
Lemma 2.7 with S instead of Σ.

3. Proof of the compactness result

The following theorem implies statement (i) of Theorem 1.4, and shows that the domain
of the Γ-limit of the functionals Fε is included in BV (Ω,±1).

Theorem 3.1. Let Ω be a regular open set and let sequences (εn) and (un) be given such
that εn → 0, un : Ω → [−1, 1], and Fεn

(un,Ω) is bounded. Then the sequence (un) is
relatively compact in L1(Ω) and each of its cluster points belongs to BV (Ω,±1).

Proof. To simplify the notation we replace as usual εn, un, and Fεn
with ε, uε, and Fε.

We need the following inequality, which may be proved by a direct computation: for
every non-negative g ∈ L1(RN ) and every u : R

N → R, we have

∫

RN×RN

(g∗g)(y)
∣
∣u(x+y)−u(x)

∣
∣ dy dx ≤ 2‖g‖1

∫

RN×RN

g(y)
∣
∣u(x+y)−u(x)

∣
∣ dy dx . (3.1)
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The proof of the theorem is now divided into two steps.

Step 1. We first prove the theorem under the assumption that each uε takes values ±1
only.

We extend each function uε to 1 in R
N \ Ω, and then we observe that

∫

RN×RN

Jε(y)
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx = O(ε) . (3.2)

Indeed, the assumption uε = ±1 implies
∣
∣uε(x

′) − uε(x)
∣
∣ = 1

2

(
uε(x

′) − uε(x)
)2

, and then
by the definition of Fε we obtain

1

ε

∫

RN×RN

Jε(x
′ − x)

∣
∣uε(x

′) − uε(x)
∣
∣ dx′dx =

= 2Fε(uε, R
N ) = 2Fε(uε,Ω) + 4Λε(uε,Ω, RN \ Ω) .

We apply inequality (2.12) with A = Ω and A′ = R
N \ Ω to show that Λε(uε,Ω, RN \ Ω)

is uniformly bounded in ε (recall that we are considering only a subsequence εn which
converges to zero), while Fε(uε, Ω) is uniformly bounded by assumption. Hence (3.2) is
proved.

Now we combine inequality (3.1), with g := Jε, and inequality (3.2), and we obtain

∫

RN×RN

(Jε ∗ Jε)(y)
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx = O(ε) . (3.3)

Since J ∗ J is a non-negative continuous function, we may find a non-negative smooth
function ϕ (not identically zero) with compact support such that

ϕ ≤ J ∗ J and |∇ϕ| ≤ J ∗ J . (3.4)

We set c :=
∫

RN ϕ(y) dy and for every y ∈ R
N and every ε > 0 we define

ϕε(y) :=
1

cεN
ϕ(y/ε) and wε(y) := ϕε ∗ uε (y) . (3.5)

The functions ϕε are smooth and non-negative, have integral equal to unity, and converge
to the Dirac mass centered at 0 as ε → 0. We claim that the sequence (wε) is asymptotically
equivalent to (uε) in L1(RN ), and that the gradients ∇wε are uniformly bounded in L1(RN ).
Once this claim is proved, we could infer that the sequence (wε) is relatively compact in
L1(Ω) and each of its cluster points belongs to BV (Ω,±1), and that the same holds for
the sequence (uε).

Now it remains to prove the claim. We have
∫

RN

|wε − uε| dx =

∫

RN

∣
∣
∣

∫

RN

ϕε(y)
(
uε(x + y) − uε(x)

)
dy

∣
∣
∣ dx

≤

∫

RN×RN

∣
∣ϕε(y)

∣
∣
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx

≤
1

c

∫

RN×RN

(Jε ∗ Jε)(y)
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx = O(ε)
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(here the second inequality follows from ϕε ≤ 1

cJε ∗ Jε, cf. (3.4) and (3.5), while the last
equality follows from (3.3)). Moreover

∫

RN

|∇wε| dx =

∫

RN

∣
∣
∣

∫

RN

∇ϕε(y)uε(x + y) dy
∣
∣
∣ dx

=

∫

RN

∣
∣
∣

∫

RN

∇ϕε(y)
(
uε(x + y) − uε(x)

)
dy

∣
∣
∣ dx

≤

∫

RN×RN

∣
∣∇ϕε(y)

∣
∣
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx

≤
1

cε

∫

RN×RN

(Jε ∗ Jε)(y)
∣
∣uε(x + y) − uε(x)

∣
∣ dy dx = O(1)

(to obtain the second equality we use the fact that
∫

RN ∇ϕε(y) dy = 0 because ϕε has

compact support; the second inequality follows from |∇ϕε| ≤
1

cεJε ∗ Jε, cf. (3.4) and (3.5),
while the last equality follows from (3.3)).

Step 2. We now consider the general case. For every s ∈ R we set

T (s) :=

{
−1 if s < 0,
+1 if s ≥ 0,

(3.6)

and then we define

vε := T (uε) . (3.7)

The functions vε take values ±1 only, and we claim that the sequence (vε) is asymptotically
equivalent to (uε) in L1(Ω) and that Fε(vε,Ω) is uniformly bounded. Once we have proved
this claim, the theorem will follow from Step 1.

Take δ so that 0 < δ < 1, and let Kε be the set of all x ∈ Ω such that uε(x) ∈
[−1 + δ, 1 − δ]. Then |uε − vε| ≤ δ in Ω \ Kε, and we deduce

∫

Ω

|uε − vε| dx ≤ δ|Ω| +

∫

Kε

(
|uε| + |vε|

)
dx ≤ δ|Ω| + 2|Kε| . (3.8)

Since δ > 0 and W is zero only at ±1, there exists a positive constant ρ (which depends
on δ) such that W (t) ≥ ρ for every t ∈ [−1 + δ, 1 − δ]. Hence

|Kε| ≤
1

ρ

∫

Kε

W
(
uε(x)

)
dx ≤

ε

ρ
Fε(uε,Ω) =

O(ε)

ρ
. (3.9)

The inequalities (3.8) and (3.9) imply

lim sup
ε→0

∫

Ω

|uε − vε| dx ≤ δ|Ω| .

As δ is arbitrary, the sequences (uε) and (vε) are asymptotically equivalent in L1(Ω).
It remains to prove that Fε(vε, Ω) is uniformly bounded in ε. Since

∫

Ω
W (vε) dy = 0,

we have only to estimate the first integral in the definition of Fε. Given s1, s2 ∈ [−1, 1] we
have that
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either |s1| ≤ 1/2 or
∣
∣T (s1) − T (s2)

∣
∣ ≤ 4|s1 − s2|.

Hence, if we denote by Hε the set of all x ∈ Ω such that
∣
∣uε(x)

∣
∣ ≤ 1/2, we deduce

Fε(vε,Ω) =
1

4ε

∫

Ω×Ω

Jε(x
′ − x)

(
Tuε(x

′) − Tuε(x)
)2

dx′dx

≤
4

ε

∫

Ω×Ω

Jε(x
′ − x)

(
uε(x

′) − uε(x)
)2

dx′dx +
1

ε

∫

Hε×Ω

Jε(x
′ − x) dx′dx

≤ 16 Fε(uε,Ω) +
1

ε
‖J‖1|Hε| . (3.10)

By the properties of W , there exists a positive constant ρ such that W (t) ≥ ρ for every t
such that |t| ≤ 1/2, and, reasoning as in (3.9), we get |Hε| = O(ε); together with (3.10)
this proves that Fε(vε,Ω) is uniformly bounded in ε.

4. Proof of the lower bound inequality

In this section we prove statement (ii) of Theorem 1.4.
We begin with some notation. For every ε > 0, A ⊂ R

N and u : R
N → [−1, 1] we define

the rescaling of the functional � given in (1.7) by

� ε(u, A) :=
1

4ε

∫

x∈A, h∈RN

Jε(h)
(
u(x + h) − u(x)

)2
dx dh +

1

ε

∫

x∈A

W
(
u(x)

)
dx . (4.1)

Recalling the definitions of Fε and Λε, we obtain

� ε(u, A) = Fε(u, A) + Λε(u, A, RN \ A) . (4.2)

Let us now be given a function u defined on (a subset of) R
N , a point x̄ ∈ R

N and a
positive number r. We define the blow-up of u centered at x̄ with scaling factor r as the
function Rx̄,ru given by

(Rx̄,ru)(x) := u(x̄ + rx) ; (4.3)

when x̄ = 0 we write Rru instead of R0,ru. For every set A ⊂ R
N we set, as usual,

x̄ + rA := {x̄ + rx : x ∈ A}, and then we easily obtain the following scaling identities:

Fε(u, x̄ + rA) = rN−1Fε/r(Rx̄,ru, A) (4.4)

� ε(u, x̄ + rA) = rN−1� ε/r(Rx̄,ru, A) . (4.5)

In the proof we also make use of the following well-known results about the blow-up of
finite perimeter sets and measures:

4.1. Some blow-up results

Let S be a rectifiable set in R
N with normal vector field ν; let µ be the restriction of the

Hausdorff measure � N−1 to the set S, that is, µ := � N−1 S, and let λ be a finite
measure on R

N . Then for � N−1-a.e. x̄ ∈ S the density of λ with respect to µ at x̄ is
given by the following limit:

dλ

dµ
(x̄) = lim

r→0

λ
(
x̄ + rQ

)

rN−1
(4.6)
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where Q is any unit cube centered at 0 such that ν(x) is one of its axes.
Let u be a fixed function in BV (Ω,±1). For every x̄ ∈ Su, we denote by vx̄ : R

N → ±1
the step function

vx̄(x) :=

{
+1 if 〈x, νu(x̄)〉 ≥ 0,
−1 if 〈x, νu(x̄)〉 < 0.

(4.7)

Then for � N−1-a.e. x̄ ∈ Su, and more precisely for all x̄ ∈ Su such that the density of
the measure Du with respect to |Du| exists and is equal to νu(x̄), we have the limit

Rx̄,ru −→ vx̄ in L1
loc(R

N ) as r → 0 (4.8)

(if u is not defined on the whole of R
N , we take an arbitrary extension).

4.2. Proof of statement (ii) of Theorem 1.4

We can now begin the proof of statement (ii) of Theorem 1.4. We assume, therefore, that
we are given a sequence (uε) which converges to u ∈ BV (Ω,±1) in L1(Ω); we have to prove
that

lim inf
ε→0

Fε(uε,Ω) ≥

∫

Su

σ(νu) d� N−1 . (4.9)

In the following, uε and u are fixed. We shall often extract from all positive ε a subsequence
(εn) which converges to zero; to simplify the notation, we shall keep writing ε, Fε, and uε

instead of εn, Fεn
, uεn

.

First, we notice that it is enough to prove inequality (4.9) when the lower limit at the
left-hand side is finite, and then, passing to a subsequence, we may also assume that it is
a limit.

Now we follow the approach of [FM]; the main feature of this method consists of the
reduction of the lower bound inequality (4.9) to a density estimate (see (4.13)) which has
to be satisfied point-by-point. What follows, up to equation (4.18), is a straightforward
adaptation of this general method (see also [BF], [BFM]).

For every ε > 0 we define the energy density associated with uε at the point x ∈ Ω as

gε(x) :=
1

4ε

∫

Ω

Jε(x
′ − x)

(
uε(x

′) − uε(x)
)2

dx′ +
1

ε
W

(
uε(x)

)
, (4.10)

and then we consider the corresponding energy distribution

λε := gε ·
�

N Ω . (4.11)

Thus the total variation ‖λε‖ of the measure λε (on Ω) is equal to Fε(uε,Ω), and since
Fε(uε,Ω) is equibounded with respect to ε, possibly passing to a subsequence we can assume
that there exists a finite positive measure λ on Ω such that

λε ⇀ λ weakly* on Ω as ε → 0.

Since Fε(uε,Ω) = ‖λε‖ and lim inf
ε→0

‖λε‖ ≥ ‖λ‖, the inequality (4.9) is implied by the

following:

‖λ‖ ≥

∫

Su∩Ω

σ(νu) d� N−1 . (4.12)



  

18 G. Alberti and G. Bellettini

In fact, we prove a stronger result: the density of λ with respect to µ := � N−1 Su is
greater than or equal to σ(νu) at � N−1-a.e. point of Su, that is

dλ

dµ
(x̄) ≥ σ

(
νu(x̄)

)
for � N−1-a.e. x̄ ∈ Su. (4.13)

More precisely, we have the following lemma:

Lemma 4.3. With the previous notation, the inequality (4.13) holds for every x̄ ∈ Su
which satisfies (4.6) and (4.8).

Proof. We fix such a point x̄ ∈ Su, and we denote by ν the vector νu(x̄) and by v
the step function vx̄ defined in (4.7). Following the notation of paragraph 1.3 we fix an
(N − 1)-dimensional unit cube C ∈ �ν , and we take Q = QC and T = TC accordingly.

As the measures λε converge in the weak* sense to λ on Ω as ε → 0, we have that
λε(A) → λ(A) for every set A such that λ(∂A) = 0. Since λ

(
x̄+r(∂Q)

)
= 0 for all positive

r up to an exceptional countable set N , we deduce that λε(x̄ + rQ) → λ(x̄ + rQ) for every
positive r /∈ N . Therefore, recalling (4.6), we write

lim
r→0

r/∈N

(

lim
ε→0

λε(x̄ + rQ)

rN−1

)

= lim
r→0

r/∈N

λ(x̄ + rQ)

rN−1
=

dλ

dµ
(x̄) . (4.14)

Since uε → u in L1(Ω) by assumption, by (4.8) we also have

lim
r→0

(
lim
ε→0

Rx̄,ruε

)
= lim

r→0
Rx̄,ru = v in L1(Q). (4.15)

By a diagonal argument we can choose subsequences (rn) and (εn) so that

lim
n→∞

rn = lim
n→∞

(
εn

/
rn

)
= 0 , (4.16)

lim
n→∞

λεn
(x̄ + rnQ)

rN−1
n

=
dλ

dµ
(x̄) , (4.17)

lim
n→∞

Rx̄,rn
uεn

= v in L1(Q), (4.18)

and then we set ε
¯n := εn/rn, vn := Rx̄,rn

uεn
. To simplify the notation, in the following we

write ε, ε
¯
, r, uε and vε

¯
instead of εn, ε

¯n, rn, uεn
and vn, respectively.

From the scaling identity (4.4) and the definition of λε we infer

λε(x̄ + rQ)

rN−1
≥

Fε(uε, x̄ + rQ)

rN−1
= Fε

¯
(vε

¯
, Q) . (4.19)

Keeping in mind (4.17) and (4.19), we can try to prove (4.13) by establishing a precise
relation between Fε

¯
(vε

¯
, Q) and σ(ν) (see paragraph 1.3).

One possibility is the following: we extend vε
¯

to the strip T by setting vε
¯

:= v in T \Q,
and then we take the C-periodic extension in the rest of R

N . Now, by the scaling identity
(4.5) we know that

� ε
¯
(vε

¯
, T ) ≥ σ(ν) ,
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and then it would remain to prove that the difference between � ε
¯
(vε

¯
, T ) and Fε

¯
(vε

¯
, Q)

vanishes as ε
¯
→ 0; this difference can be written as (cf. (4.20) below)

� ε
¯
(vε

¯
, T ) − Fε

¯
(vε

¯
, Q) = Λε

¯
(vε

¯
, T, RN \ T ) + 2Λε

¯
(vε

¯
, Q, T \ Q) ;

unfortunately, we cannot use Theorem 2.8 to show that it vanishes as ε
¯
→ 0 because we

have no information about the convergence of the ε
¯
-traces of vε

¯
on the boundaries ∂Q and

∂T .
We overcome this difficulty as follows: as vε

¯
→ v in L1(Q), Proposition 2.5 shows that

for a.e. t ∈ (0, 1) the ε
¯
-traces of vε

¯
converge to v on the boundary Σt of the cube tQ (notice

that each Σt is the t-level set of the Lipschitz function g(x) := 1 − dist(x, ∂Q)).
We fix for the moment such a t, and we define ṽε

¯
on the strip tT by

ṽε
¯
(x) :=







vε
¯
(x) if x ∈ tQ,

v(x) if x ∈ tT \ tQ,

and then we take the tC-periodic extension in the rest of R
N . Hence ṽε

¯
belongs to X(tC)

(cf. paragraph 1.3), and since ṽε
¯

= vε
¯

in tQ

Fε
¯
(vε

¯
, Q) ≥ Fε

¯
(vε

¯
, tQ) = Fε

¯
(ṽε

¯
, tQ) =

= Fε
¯
(ṽε

¯
, tT ) − 2Λε

¯
(ṽε

¯
, tQ, tT \ tQ)

= � ε
¯
(ṽε

¯
, tT ) − Λε

¯
(ṽε

¯
, tT, RN \ tT )

︸ ︷︷ ︸

L1
ε
¯

−2 Λε
¯
(ṽε

¯
, tQ, tT \ tQ)

︸ ︷︷ ︸

L2
ε
¯

. (4.20)

Now we claim that both locality defects L1
ε
¯

and L2
ε
¯

vanish as ε
¯
→ 0; once this is proved we

can deduce from the previous formula that

lim sup
ε
¯
→0

Fε
¯
(vε

¯
, Q) ≥ lim sup

ε
¯
→0

� ε
¯
(ṽε

¯
, tT ) . (4.21)

Let us consider first L2
ε
¯

: the sets tQ and tT \ tQ are divided by the boundary Σt of tQ, and
by the choice of t, the ε

¯
-trace of ṽε

¯
relative to tQ converge to v on Σt (recall that ṽε

¯
= vε

¯
on tQ). On the other hand, ṽε

¯
= v in tT \ tQ, and then also the ε

¯
-trace relative to tT \ tQ

converge to v on Σt. Hence Theorem 2.8 applies, and L2
ε
¯

vanishes as ε
¯
→ 0. In a similar

way one can prove that also L1
ε
¯

vanishes as ε
¯
→ 0 (in fact it is enough to verify that the

ε
¯
-trace of ṽε

¯
relative to R

N converges to v on the boundary of tT ).
Eventually, we use the scaling identity (4.5) and the definition of σ(ν) to get

� ε
¯
(ṽε

¯
, tT ) = ε

¯
N−1�

(
Rε

¯
ṽε
¯
, t

ε
¯

T
)
≥ tN−1σ(ν) , (4.22)

and putting together (4.17), (4.19), (4.21) and (4.22), we obtain

dλ

dµ
(x̄) ≥ tN−1σ(ν) ;

the proof of inequality (4.13) is thus completed by taking t arbitrarily close to unity.
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5. Proof of the upper bound inequality

Throughout this section Ω is always a regular open set.

Definition 5.1. A N -dimensional polyhedral set in R
N is an open set E whose boundary

is a Lipschitz manifold contained in the union of finitely many affine hyperplanes; the faces
of E are the intersections of the boundary of E with each one of these hyperplanes, and
an edge point of E is a point which belongs to at least two different faces (that is, a point
where ∂E is not smooth). We denote by νE the inner normal to ∂E (defined for all points
in the boundary which are not edge points).

A k-dimensional polyhedral set in R
N is a polyhedral subset of a k-dimensional affine

subspace of R
N . A polyhedral set in Ω is the intersection of a polyhedral set in R

N with Ω.
We say that u ∈ BV (Ω,±1) is a polyhedral function if there exists an N -dimensional

polyhedral set E in R
N such that ∂E is transversal to ∂Ω (that is, � N−1(∂E ∩ ∂Ω) = 0)

and u(x) = 1 for every x ∈ Ω ∩ E, u(x) = −1 for every x ∈ Ω \ E.

Theorem 5.2. Let u ∈ BV (Ω,±1) be a polyhedral function. Then there exists a sequence
of functions (uε) defined on Ω such that |uε| ≤ 1 for every ε, uε converge to u uniformly
on every compact set K ⊂ Ω \ Su, and

lim sup
ε→0

Fε(uε,Ω) ≤

∫

Su

σ(νu) d� N−1 . (5.1)

Proof. Let us fix some notation: E is the polyhedral set associated with u in Definition
5.1; we denote by S the set of all edge points of E which belong to Ω and by Σ a general
face of Su (that is, a face of E). Then S is a finite union of (N −2)-dimensional polyhedral
sets in Ω, ∂E = Su, and we may choose the orientation of Su so that νE = νu (for every
point in Su \ S).

Given two open sets A1, A2, we denote by A1 tA2 the interior of A1 ∪A2. We define �
as the class of all sets A such that

(i) A is an N -dimensional polyhedral set in Ω, and ∂A and Su are transversal (that is,
� n−1(Su ∩ ∂A) = 0);

(ii) there exists a sequence of functions (uε) defined on A such that |uε| ≤ 1 and

uε → u uniformly on every compact set K ⊂ A \ Su, (5.2)

lim sup
ε→0

Fε(uε, A) ≤

∫

A∩Su

σ(νu) d� N−1 . (5.3)

The proof of Theorem 5.2 is achieved by showing that Ω ∈ � ; this is a consequence of the
following three statements:

(a) if A is an N -dimensional polyhedral set in Ω such that � N−1(A ∩ Su) = 0, then
A ∈ � ;

(b) let Σ be a face of Su and let π be the projection map on the affine hyperplane which
contains Σ: if A is an N -dimensional polyhedral set in Ω such that Su ∩ A = Σ and
π(A) = Σ, then A ∈ � ;

(c) if A1, A2 belong to � and are disjoint, then A1 t A2 ∈ � .

Step 1: proof of statement (a).
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In this case, � N−1(∂A∩ Su) = 0 and A∩ Su = ø; then u is constant (−1 or 1) in A, and
it is enough to take uε := u for every ε > 0.

Step 2: proof of statement (b).
Property (i) is immediate; let us prove (ii). We denote by e the constant inner normal to Σ;
therefore, Σ lies on some affine hyperplane which is parallel to the orthogonal complement
to e, M ; we may assume that Σ lies exactly on M . Following the notation of paragraph
1.3, for every fixed η > 0, we can find C ∈ �e and w ∈ X(C) such that

|C|−1� (w, TC) ≤ σ(e) + η , (5.4)

and then we define
uε(x) := w(x/ε) for every x ∈ R

N . (5.5)

Property (5.2) holds because w(x) → ±1 as xe → ±∞ (see paragraph 1.3). We claim that

lim sup
ε→0

Fε(uε, A) ≤ � N−1(Σ) ·
(
σ(e) + η

)
. (5.6)

For the sake of simplicity, we assume that C is a unit cube.
Since Σ is a polyhedral set in the (N − 1)-dimensional space M , for every ε > 0 we can

cover it by a finite number h = h(ε) of copies of the closed cube εC (denoted by xi + εC,
with xi ∈ M for i = 1, . . . , h) so that

hεN−1 =
∑

i

� N−1
(
xi + εC

)
−→ � N−1(Σ) as ε → 0. (5.7)

Notice that A is included in the union of the strips xi + εTC because Σ is the projection
of A on M , and then by (4.1) we have

Fε(uε, A) ≤ Fε

(
uε,∪i(xi + εTC)

)
≤ � ε

(
uε,∪i(xi + εTC)

)
≤

h∑

i=1

� ε(uε, εTC) , (5.8)

where the last inequality follows from the fact that � ε(uε, ·) is translation invariant and
subadditive. Applying now the scaling identity (4.5) with x̄ = 0 and ε = r, we get
� ε(uε, εTC) = εN−1� (w, TC), so that by (5.8) and (5.4) we deduce

Fε(uε, A) ≤ hεN−1
(
σ(e) + η

)
.

Taking into account (5.7) we get (5.6).
Since e coincides with νu in Σ = Su∩A, (5.3) follows from inequality (5.6) by a simple

diagonal argument, and the proof of statement (b) is complete.

Step 3: proof of statement (c).
Given disjoint A1, A2 ∈ � , we set A := A1 t A2 and we take sequences (u1

ε), (u2
ε) which

satisfy property (ii) for A1 and A2, respectively. Then we set

uε(x) :=







u1
ε(x) if x ∈ A1,

u2
ε(x) if x ∈ A2.
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One can check that properties (i) and (5.2) are satisfied, and that (5.3) reduces to

lim
ε→0

Λε(uε, A1, A2) = 0 .

Notice that by (5.2) the ε-traces of ui
ε relative to Ai converge to u on every Lipschitz

hypersurface Σ ⊂ Ai such that � N−1(Σ ∩ Su) = 0 for i = 1, 2 (cf. Remark 2.4); in
particular, this holds true for Σ = ∂A. Hence the previous identity follows from Theorem
2.8.

Step 4: proof of Theorem 5.2.
It is clear that Ω can be written as Ω = tAi with finitely many sets Ai which are pairwise
disjoint and satisfy either the assumptions of statement (a) or of statement (b) above.
Therefore Ω belongs to � by statement (c), and Theorem 5.2 follows from property (ii).

To complete the proof of Theorem 1.4 we need the following lemma:

Lemma 5.3. The function σ defined in paragraph 1.3 is upper semicontinuous on the unit
sphere of R

N .

Proof. Fix a unit vector ν in R
N , and for every linear isometry I of R

N set

σ̂(I) := inf
{
|C|−1� (u ◦ I, TC) : C ∈ �ν , u ∈ X(C)

}
(5.9)

(here we follow the notation of paragraph 1.3). One easily verifies that for every u ∈ X(C)
the map I 7→ � (u ◦ I, TC) is continuous on the space � of all linear isometries of R

N ,
and therefore σ̂ is upper semicontinuous on � because it is defined in (5.9) as an infimum
of continuous functions. We deduce the thesis by remarking that σ(e) = σ̂(I) whenever
e = Iν.

5.4. Proof of statement (iii) of Theorem 1.4

For every R
N -valued Borel measure µ on Ω we set

G(µ) :=

∫

Ω

σ
(
µ
/
|µ|

)
d|µ| , (5.10)

where µ
/
|µ| stands for the density of µ with respect to its total variation. Now statement

(iii) of Theorem 1.4 reads as follows: for every function u ∈ BV
(
Ω,±1

)
there exists a

sequence (uε) such that uε → u in L1(Ω) and lim supFε(uε,Ω) ≤ G(Du).
By Theorem 5.2 this is true when u is a polyhedral function, and then the general

case follows by a simple diagonal argument once we have proved that every function u ∈
BV

(
Ω,±1

)
can be approximated (in L1(Ω)) by a sequence of polyhedral functions (un)

so that lim supG(Dun) ≤ G(Du). Now, every u ∈ BV
(
Ω,±1

)
can be approximated by

polyhedral functions (un) in variation, that is, un → u in L1(Ω) and ‖Dun‖ → ‖Du‖ (in
fact, when Ω is regular, every set of finite perimeter can be approximated in variation by
smooth sets, and hence also by polyhedral sets, see, for instance, [Gi], Theorem 1.24), and
then it is enough to prove that G is upper semicontinuous with respect to convergence in
variation of measures. Since σ is a non-negative upper semicontinuous function on the unit
sphere of R

N (Lemma 5.3), this follows by a well-known result due to Reshetnyak (see, for
instance, the appendix of [LM]).
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Conclusions

In this paper we have proved that the variational limit F (u) of the rescaled functionals
Fε(u) defined in (1.1) is finite only when u is equal to ±1 a.e., and in this case is equal
to the area of the (measure theoretic) interface which separates the sets {u = +1} and
{u = −1} weighted by a positive anisotropic function σ which depends only on the normal
to the interface (see formula (1.10) and Theorem 1.4).

The functionals Fε can be viewed as rescalings of the free energy of a continuum Ising
system with two stable phases u = ±1, and our result shows that in the thermodynamic
limit the classical surface tension model for phase separation is recovered. The extension
to the multi-phase case is also briefly sketched (see paragraph 1.12).

A key rôle in the proof is played by the ferromagnetic assumption, namely that the
interaction potential J in (1.1) is positive (cf. paragraph 1.13). Even if our result holds for
potentials J with a small negative part (see [AB2]), the problem of understanding what
happens in the general case seems still wide open; indeed a quite different asymptotic
behavior is expected, since in particular the ground states associated with the unscaled
energy may be not constant.
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