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Synopsis
In this paper we introduce a new tool in geometric measure theory and then we apply it to study
the rank properties of the derivatives of vector functions with bounded variation.

Introduction

When u is a function of bounded variation of the open set Ω ⊂ Rn into Rm, Du is a
measure on Ω which takes values in the space Rm×n of all m×n matrices such that
(Du)i,j = ∂ui/∂xj for every i, j with 1 ≤ i ≤ m, 1 ≤ j ≤ n and we denote by DSu
the part of the measure Du which is singular with respect to Lebesgue measure.

We recall that the rank of a matrix A ∈ Rm×n is dimension of the space spanned
by its columns (in Rm) or by its rows (in Rn) and in particular the rank of A is one
if and only if there exist e ∈ Rm and η ∈ Rn with e 6= 0, η 6= 0, so that A = e⊗ η
i.e. Ai,j = eiηj for all i, j (cf. Remark 1.7). When λ is a measure which takes
values in the space Rm×n and

[
dλ
/
d|λ|

]
denotes the Radon–Nikodym derivative of

λ with respect to the total variation |λ|, we say that λ has rank one when the rank
of the matrix

[
dλ
/
d|λ|

]
(x) is one for |λ| almost every x.

In this paper we prove we prove the following statement (see Theorem 4.5, Corol-
lary 4.6 and Remark 4.9):

Let Ω be an open subset of Rn, let u be a function of bounded variation of Ω into
Rm and denote by DSu the part of Du which is singular with respect to Lebesgue
measure. Then DSu is a rank one measure and this means that for |DSu| almost
all x the matrix

[
dDSu

/
d|DSu|

]
(x) has rank one.

This property of the singular parts of derivatives was conjectured by Ambrosio
and De Giorgi in a note about some variational problems which involve vector
valued functions with bounded variation (see [5]), and it is very useful in dealing
with quasiconvex integral functionals with linear growth. In particular it has been
used to study the relaxation on the space BV (Ω,Rm) (that is, the space of all
functions of Ω into Rm with bounded variation) with respect to the strong topology
of L1(Ω,Rm) of the functional

F (u) =

∫
Ω

f
(
x, u(x), Du(x)

)
dx, u ∈ C1(Ω,Rm),

where f is a quasiconvex function of the third variable (see [4] for the case
f(x, u,Du) = g(Du) and [11] and [12] for the general case).
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When u is a function of bounded variation of Ω into Rm, an important decom-
position of the derivative is Du = fu ·Ln + DSu where Ln is Lebesgue measure,
fu is a Lebesgue summable function of Ω which takes values in Rm×n and DSu is
a measure on Ω which takes values in Rm×n and is singular with respect Lebesgue
measure. Moreover coarea formula (cf. Theorem 1.12) yields |DSu|(B) = 0 for
every Borel set B such that H n−1(B) = 0 (H n−1 is the (n − 1)–dimensional
Hausdorff measure) and then we may write DSu = DCu + gu ·H n−1 where gu is
an H n−1 summable function of Ω into Rm×n and DCu is a measure on Ω which
takes values in Rm×n, is singular with respect to Lebesgue measure and satisfies
|DCu|(B) = 0 for all Borel sets B with H n−1(B) < ∞. Hence (cf. [2], section 3,
and [3], Proposition 2.4)

Du = fu ·Ln +DCu+ gu ·H n−1.

When S is an (n− 1)–dimensional submanifold of Ω of class C1, we may choose a
vector η(x) with |η(x)| = 1 which is orthogonal to the tangent space of S in x for
every x. It is well–known that Du S (namely, the restriction of the measure Du
to the set S) may be written in the form g ·H n−1 S where, for H n−1 almost
all x, g(x) is a matrix of the form e(x) ⊗ η(x) for some e(x) ∈ Rm (in particular
e(x) = u+(x)−u−(x), where u+(x) and u−(x) are the approximate limits of u in x
in the semispaces

{
y : 〈η(x); y − x〉 ≥ 0

}
and

{
y : 〈η(x); y − x〉 ≤ 0

}
respectively),

and this means that
[
g(x)

]
i,j

=
[
e(x)

]
i

[
η(x)

]
j

for every i, j (cf. Proposition 1.9).

In particular, if S is the set of all x such that gu(x) 6= 0, S is a rectifiable set (see
Definition 1.6), that is, there exist countably many (n− 1)–dimensional manifolds
of Ω of class C1 which cover H n−1 almost all of S and then we obtain that gu(x)
is a rank one matrix for H n−1 almost all x and gu ·H n−1 is a rank one measure.

Taking into account this fact, Ambrosio and De Giorgi conjectured in [5] that
also DSu is a rank one measure. We shall prove this statement in the following
way: when µ is a positive measure on Rn and x is a point of Rn, we define E(µ, x)
as the set of all vectors v such that there exists a real function of bounded variation
u and

lim
r→0

∣∣Du− v · µ∣∣(B(x, r))

µ(B(x, r))
= 0

(see Definitions 2.1 and 2.3). It follows immediately from definition that E(µ, x)
is always a linear subspace of Rn and we show that when µ is a singular measure,
the dimension of E(µ, x) is 0 or 1 for µ almost all x (Theorem 3.1). We say that a
singular measure µ is rectifiable when the dimension of E(µ, x) is one for µ almost
every x (Definition 4.1). In this case we may choose a vector η(x) so that |η(x)| = 1
and E(µ, x) is the span of η(x) for µ almost all x and we prove (see Theorem 4.5
and Remark 4.9) that if u is a function of bounded variation and we decompose Du
as Du = f · µ+ θ with θ ⊥ µ, then, for µ almost all x, f(x) is a matrix of the form
e(x)⊗ η(x) for some e(x) ∈ Rm and in particular its rank is 1 or 0.

Since |DSu| is always a rectfiable measure (cf. statement (v) of Proposition 4.4),
if we take µ = |DSu| we obtain that the rank of the matrix

[
dDSu

/
d|DSu|

]
(x) is

one for |DSu| almost all x and DSu is a rank one measure (see Corollary 4.6 and
Remark 4.9). In Theorem 4.13 and Corollary 4.14 we extend this result to higher
order derivatives.
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Eventually we want to make some important remarks.
About the definition of rectifiable measure, notice that if µ is a measure of the

form H n−1 S, then µ is rectfiable if and only if S is a rectifiable set and in this
case E(µ, x) agrees with the approximate normal space of S in x for H n−1 almost
all x ∈ S (see statements (iii) and (iv) of Proposition 4.4).

Notice that the rank theorem may be extended to higher order derivatives and
in particular a partial positive answer has already been given in [6] in the case of
second order derivatives of scalar functions (see Corollary 4.14 and Remarks 4.16
and 4.17).
E(µ, x) has already been introduced in [7], with a slightly different definition,

and turns out to be a useful tool in studying the integral representation of convex
functionals on the space BV (Ω,Rm).

For technical reasons we shall consider functions with bounded variation which
are defined in general on (open subsets of) n–dimensional linear subspaces N of
some Rk instead of Rn and take values in a generic finite dimensional Banach space
E instead of Rm. Hence derivatives will be measures (or functions) which take
values in the space L (N,E) of all linear application of N into E instead of the
space Rm×n of all m × n matrices. We shall consider apart the meanings of the
main results (Theorems 4.5 and 4.13 and Corollaries 4.6 and 4.14) when N = Rn
and E = Rm (see Remarks 4.9, 4.16 and 4.17).

This paper is divided in five sections. In section 1 we give some basic notation and
some preliminary results about measures and BV functions, almost every statement
in this section is a well–known result but sometimes it is not given in the standard
form.

In section 2 we give the definition of E(µ, x) (Definition 2.3), we describe some
of its main properties (essentially Proposition 2.6 and Theorem 2.12) and then we
consider some concrete examples.

Section 3 is dedicated to prove the key result of this paper (Theorem 3.1): when
µ is a singular measure, the dimension of E(µ, x) is 1 or 0 for µ almost all x. Except
for Theorem 3.1, the content of this section is not necessary for the comprehension
of section 4.

In section 4 we give the definition and a characterization of rectifiable measure
(Definition 4.1 and Proposition 4.2) and eventually we prove the rank conjecture
in its full generality (Theorem 4.5 and Corollary 4.6). Then we generalize these
results to higher order derivatives and we give some open problems (Remark 4.18).
All results in this section are almost immediate corollaries of Theorem 3.1.

Section 5 is devoted to the proofs of some technical results given in the previous
sections.

1. Basic Notation and Preliminary Results

In this paper we refer to customary measure theory and functional analysis nota-
tion whenever possible. Unusual definition are given in two particular cases: the
standard domain we deal with and the definition of derivatives (see 1.7 and 1.8).
Regarding the definitions and the statements in this section, we give proofs (when
needed) and references in section 5.

Unless differently stated, throughout this paper N is always a linear subspace
with dimension n of some euclidean space, Ω is an open subset of N and E is a finite



4 Giovanni Alberti

dimensional Banach space. In general we deal with (weakly differentiable) functions
and measures which are defined on (open subsets of) N instead of Rn only: this
notation is necessary because sometimes we have to study traces of measures and
functions on a generic subspace of the original domain (see for instance Propositions
1.5, 1.10 and 3.6).

Rn and all the linear subspaces of Rn are always endowed with their Hilbert
space structure by the standard scalar product 〈 ; 〉. When e is a vector in N we
denote by e∗ the linear functional on N given by x 7→ 〈e;x〉. Unless differently
stated, we do not identify an Hilbert space and its dual space.

When S is a subset of N , the annihilator of S is the linear subspace S⊥ of all
linear functionals v ∈ N∗ such that v x = 0 for all x ∈ S. When S is a subset of
N∗, the annihilator of S is the linear subspace ⊥S of all x ∈ N such that v x = 0
for all v ∈ S.

When A is a subset of N and f is a function the domain of which includes A,
f A is the function defined by

[
f A

]
(x) = f(x) when x ∈ A and 0 when

x ∈ N \A.
We say that a subset X of E is a cone if ax ∈ X whenever x ∈ X and a is a

positive real number. When E is a subspace of some euclidean space (in general,
an Hilbert space), e ∈ E, |e| = 1, and a ∈]0, 1[, we denote by X(e, a) and X∗(e, a)
the closed convex cones respectively in E and in the dual of E given by

X(e, a) =
{
x ∈ E : 〈e;x〉 ≥ a |x|

}
and X∗(e, a) =

{
v ∈ E∗ : v e ≥ a |v|

}
.

(1.1)
For every integer (real) k, H k is the k–dimensional Hausdorff measure on any

metric space M . We write H k M when we want to point out the metric space.
To simplify the notation, we denote also Lebesgue measure in Rn by H n Rn.

By positive measure we mean any locally finite positive measure on the σ–field of
all Borel sets, by real or vector measure we mean any real or vector valued measure
on the σ–field of all Borel sets with finite total variation. We denote by M (Ω, E),
the Banach space of all E valued measures on Ω with finite total variation, |µ| is the
total variation of µ and ‖µ‖ = |µ|(Ω) is the norm of µ. Of course, every measure µ
admits a natural extension to the σ–field of all |µ| measurable sets: we denote also
this extension with µ.

When X is a subset of E, M (Ω, X) is the set of all measures ψ ∈ M (Ω, E)
which take values in X.

When µ is an element of M (Ω, E) and φ is an element of C0(Ω, E∗) (the space
of all continuous function of Ω into E∗ which vanishes at infinity, endowed with the
supremum norm), we write

〈µ;φ〉 =

∫
Ω

[
φ(x) · dµ

d|µ|
(x)
]
d|µ|(x) (1.2)

(notice that for every x, φ(x) ∈ E∗,
[
dµ/d|µ|

]
(x) ∈ E and then φ(x)·

[
dµ/d|µ|

]
(x) ∈

R). For every µ, the application Iµ : C0(Ω, E∗) → R given by Iµ : φ 7→ 〈µ;φ〉
is a continuous linear functional on C0(Ω, E∗) and I is an isometric immersion of
M (Ω, E) into the dual of C0(Ω, E∗) and is surjective and then we identify M (Ω, E)
and the dual of C0(Ω, E∗).

When µ is a positive measure on Ω, we denote by Lp(µ,E) the Banach space
of all µ measurable functions f : Ω → E such that

∫
|f |pdµ < ∞. We write f
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either for the function or for the equivalence class, the distinction being clear from
the context, and when needed we always take f Borel measurable instead of µ
measurable.

Sometimes in the following Ω happens to be a generic separable locally compact
topological space and E an infinite dimensional Banach space (some cares must be
taken in this cases). When E = R, we omit to write it. For the general properties
of Borel measures we refer to [10], [15], [16], and [17].

We write λ ⊥ µ when the measures |λ| and |µ| are mutually singular, λ � µ
when |λ| is absolutely continuous with respect to |µ|, λ ≤ µ when λ and µ are real
measures and λ(B) ≤ µ(B) for all Borel sets B. As usual, [dλ/dµ] is the Radon–
Nikodym derivative with respect to µ of the part of λ which is absolutely continuous
with respect to µ. We say that a measure µ is concentrated in a (|µ| measurable)
set B when |µ|(BC) = 0.

When µ is a measure on Ω, f is a Borel function of Ω into Ω′, f#µ is the measure
on M (Ω′, E) given by

[
f#µ

]
(B) = µ

(
f−1(B)

)
for all Borel sets B. When µ is a

positive measure and f ∈ L1(µ,E), f · µ is the measure defined by
[
f · µ

]
(B) =∫

B
f dµ for all Borel sets B ⊂ Ω. When µ is a measure and A is a |µ| measurable

set, µ A is the measure defined by
[
µ A

]
(B) = µ(A ∩B) for all Borel sets B.

Remark 1.1. It is well–known that the space M (Ω, E) is a non–separable Banach
space which admits a strong topology s and a weak* topology w* because it is the
dual of C0(Ω, E∗), and s ⊃ w*. Since M (Ω, E) is non–separable, the Borel σ–fields
generated by these topologies are not the same. In the following we shall consider
M (Ω, E) endowed with the Borel σ–field B generated by w* only. In particular,
when (X,E ) is a measurable space and f : E → M (Ω, E), f is measurable when
f−1(B) ∈ E for every set B ∈ B or, it is the same, when the function t→ 〈f(t);φ〉
(see (1.2)) is measurable for every φ in (a dense subset of) C0(Ω, E∗). Hence, when
λ is a positive measure on a separable locally compact space M , the functions in
Lp
(
λ,M (Ω, E)

)
are Borel measurable or µ measurable in the above sense.

It is important to notice that the topology induced by w* on every closed ball in
M (Ω, E) is compact and metrizable and then the σ–field of all Borel subsets of a
closed ball is induced by a complete separable metric. The same remark holds when
we consider spaces such as BV (Ω, E), Mloc(Ω, E) or BVloc(Ω, E) (see for instance
Definitions 1.8 and 1.13).

Definition 1.2. (Integration of Measures, see [9], nos. 70 to 74). Let M be a
separable locally compact topological space. Let λ be a positive measure on M and
suppose that t 7→ µt is a function in L1

(
λ,M (Ω, E)

)
. We denote by µ =

∫
µt dλ(t)

the E valued measure on Ω which corresponds to the continuous linear functional
on C0(Ω, E∗) given by

φ 7−→
∫
M

〈µt;φ〉dλ(t)

where 〈µt;φ〉 is given in (1.2).
Consider the measures |µ| and

∫
|µt| dλ(t): it may be easily proved that |µ| ≤∫

|µt| dλ(t) but in general they are not equal (of course, they are equal if and only if
‖µ‖ =

∫
‖µt‖ dλ(t) ). Notice that equality holds, for example, in the following two

particular cases: (λ almost) all the measures µt are real and positive or (λ almost)
all the measures µt are pairwise mutually singular.
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When f is a function in L1
( ∫
|µt|dλ(t)

)
, f belongs to L1

(
|µt|
)

for λ a.a. t,
t 7→

∫
f dµt belongs to L1(λ,E) and∫

Ω

f dµ =

∫
M

[ ∫
Ω

f dµt

]
dλ(t) (1.3)

Equality (1.3) does not make sense in general for every function f in L1
(
|µ|
)

when
‖µ‖ <

∫
‖µt‖ dλ(t), but it always holds when f is a bounded Borel function, and

in particular µ(B) =
∫
µt(B) dλ(t) for every Borel set B ⊂ Ω.

In the following we often use measures which take values in a given closed convex
cone and we need some of their properties.

Proposition 1.3. Let Ω be an open subset of N and let M be a separable locally
compact topological space. Let E be a subspace of some euclidean space and X a
closed convex cone in E. Let ψ be a measure in M (Ω, E), λ a positive measure on
M and t 7→ ψt a function in L1

(
λ,M (Ω, E)

)
so that ψ =

∫
ψtdλ(t) (see. Definition

1.2). Then

(i) ψ belongs to M (Ω, X) if and only if
[
dψ/d|ψ|

]
(x) ∈ X for |ψ| a.a. x,

(ii) M (Ω, X) is a weak* closed convex cone in M (Ω, E) and in particular
this means that a series of elements of M (Ω, X) may converge to an element of
M (Ω, X) only,

(iii) f ·ψ ∈M (Ω, X) whenever ψ ∈M (Ω, X) and f is a non–negative function
in L1(|ψ|),

(iv) ψ ∈M (Ω, X) whenever ψt ∈M (Ω, X) for λ a.a. t ∈M ,

(ii) ψt ∈ M (Ω, X) for λ a.a. t ∈ M whenever ψ ∈ M (Ω, X) and ‖ψ‖ =∫
‖ψt‖dλ(t) (notice that this hypothesis cannot be dropped).

Remark 1.4. We are also interested in a particular case of integration of measures.
Let M and N be two linear subspaces of an euclidean space with dimensions m

and n respectively. Let πM and πN be the standard projections of M ×N onto M
and N respectively.

For every t ∈ M , let εt ∈ M (M) be Dirac delta mass concentrated in t (i.e.
εt(B) = 1 if t ∈ B and 0 otherwise). For every set B ⊂ M ×N and every t ∈ M ,
set Bt = {s ∈ N : (t, s) ∈ B}. For every function f of M ×N and every t ∈M , ft
is the function of N defined by ft(s) = f(t, s) for all s ∈ N .

Let λ be a positive measure on M and let t 7→ µt be a function in
L1
(
λ,M (N,E)

)
. Then, for every t,

[
εt⊗µt

]
is the product measure on M×N which

is given by
[
εt⊗µt

]
(B) = µt(Bt) for all Borel sets B ⊂M×N , µ =

∫ [
εt⊗µt

]
dλ(t) is

an E valued measure on M×N , |µ| =
∫ [
εt⊗|µt|

]
dλ(t), and, for every f ∈ L1

(
|µ|
)
,

ft belongs to L1
(
|µt|
)

for λ a.a. t, t 7→
∫
ftdµt belongs to L1(λ,E) and∫

M×N
f dµ =

∫
M

[ ∫
N

ftdµt(Bt)
]
dλ(t) (1.4)

and in particular µ(B) =
∫
µt(Bt) dλ(t) for every Borel set B in M ×N .

Let λ = λA + λS be the Lebesgue decomposition of λ with respect to H m M .
Then

∫ [
εt ⊗ µt

]
dλ(t) is absolutely continuous with respect to H m+n M ×N if

and only if µt = 0 for λS a.a. t ∈M and µt �H n N for λA a.a. t ∈M .
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Proposition 1.5. (Disintegration of Measures). When µ is a measure in

M (M × N,E) and λ is a positive measure on M such that π#
M |µ| � λ, there

exists a function t 7→ µt in L1
(
λ,M (N,E)

)
such that

µ =

∫
M

[
εt ⊗ µt

]
dλ(t).

The function t 7→ µt is λ essentially unique and we refer to it as the disintegration
of µ with respect to λ.

Definition 1.6. (Rectifiable and Purely Unrectifiable Sets). We say that a
Borel set S ⊂ N is rectifiable when there exist (n − 1)–dimensional submanifolds
Mn ⊂ N of class C1 for n = 1, 2, . . . which cover H n−1 almost all of S, i.e.
H n−1

(
S \ ∪Mn

)
= 0 (in this paper we deal with manifolds and rectifiable sets

with codimension 1 only and we simply write “rectifiable” instead of the standard
“countably (H n−1, n− 1) rectifiable”).

In order to define the tangent bundle of a rectifiable set, we recall the following
well–known proposition: when M and M ′ are two (n−1)–dimensional submanifold
of N , the tangent spaces of M and M ′ in x agree for H n−1 almost all x ∈M ∩M ′.

Let G(N) be the Grassman manifold of all (n− 1)–dimensional subspaces of N
and let S be a rectifiable set in N . Taking into account the proposition above, it
is not difficult to show that there exists a Borel function x 7→ Tan(S, x) which take
N into G(N) and satisfies the following property: for every (n − 1)–dimensional
submanifold M of N of class C1, Tan(S, x) is the usual tangent space of M in x for
H n−1 almost all x ∈ S ∩M .

This function is unique up to sets which are negligible for the measure H n−1 S,
and we refer to it as the tangent bundle of S. It follows immediately that when S
and S′ are rectifiable sets,

Tan(S, x) = Tan(S′, x) for H n−1 almost all x ∈ S ∩ S′.

We say that a Borel function η : N → N is an orientation of S if |η(x)| = 1 and
η(x) ⊥ Tan(S, x) for H n−1 a.a. x ∈ S. A Borel set T ⊂ N is purely unrectifiable
when H n−1(M ∩ T ) = 0 for all (n− 1)–dimensional submanifold M of N of class
C1. Notice that every Borel set S which is σ–finite with respect to H n−1 may be
written as the union of a rectifiable set and a purely unrectifiable set.

Suppose that S is a set such that H n−1(S ∩K) <∞ for every compact set K.
In the usual approach to rectifiability (see [16], chapter 3), a definition is given of
((n − 1)–dimensional) approximate tangent space of S in a point x and it may be
shown that S is rectifiable if and only if there exist approximate tangent spaces for
H n−1 almost all points of S. Of course, Tan(S, x) agrees with the approximate
tangent space for H n−1 almost every x ∈ S and then our definition of tangent
bundle is consistent with the usual one. Since we are not interested in the pointwise
differentiability of rectifiable sets and we need the tangent space for all rectifiable
sets, we have preferred an “axiomatic” definition instead of the standard one.

Remark 1.7. Let N and E be taken as usual. We denote by L (N,E) the
Banach space of all linear applications of N into E, endowed with the usual norm
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‖T‖ = sup
{
|Ty| : y ∈ N, |y| = 1

}
for every T ∈ L (N,E). As usual we write N∗

instead of L (N,R), we do not identify N and N∗.
The rank of a linear application T ∈ L (N,E) is the dimension of the space

T (N), that is, the codimension of the kernel of T .
Suppose that the rank of T is 1 and let M be the kernel of T . Then the dimension

of M is n − 1 and there exists a vector η with norm 1 which is orthogonal to M .
Set e = Tη and let T ′ be the element of L (N,E) given by T ′y = 〈η; y〉 e for every
y ∈ N . Then T ′η = 〈η; η〉 e = Tη and T ′y = Ty = 0 for every y ∈ M . As N is the
span of M and η, T ′ = T .

Hence we have proved that the rank of T is one if and only if there exist η ∈ N
with |η| = 1 and e ∈ E, e 6= 0, such that

Ty = 〈η; y〉 e for every y ∈ N . (1.5)

In general, when Ω is an open subset of N , the derivative (in any sense) of a
function f : Ω→ E always takes values in the space L (N,E) (see Definition 1.8).
This notation is not very easy when we consider real valued functions, but it is
essential when either we deal with vector valued functions or we consider higher
order derivatives (see Definitions 4.10 and 4.12).

Definition 1.8. (Functions of Bounded Variation). Let N and E be taken as
usual and let Ω be an open subset of N . We recall that a function u ∈ L1(H n

Ω, E) is a function of bounded variation, and we write u ∈ BV (Ω, E), when its
distributional derivative is (represented by) a measure in M

(
Ω,L (N,E)

)
. This

means that∫
Ω

[
Dφ(x) · y

]
u(x) dH n(x) = −

∫
Ω

φ(x) d
[
Du · y

]
(x)

for all y ∈ N and all φ ∈ C∞C (Ω),

(1.6)

where the measure
[
Du · y

]
is defined by

[
Du · y

]
(B) = Du(B) · y for all Borel sets

B.
When M is a subspace of N we denote by DMu the derivative of u with respect

to M , i.e. the measure in M
(
Ω,L (M,E)

)
given by

[
DMu

]
(B) = Du(B) M for

all Borel sets B. When e is a vector in N ,
[
∂u/∂e

]
is the directional derivative of

u with respect to e, that is the E valued measure given by[
∂u

∂e

]
(B) =

[
Du(B)

]
· e for all Borel sets B.

For the general properties of BV functions, we refer to [10], [14] and [17].

Now we give some well–known results about functions of bounded variation which
we need in this paper. An essential result is the coarea formula; in Theorem 1.12
we state a particular version of this theorem.

Proposition 1.9. (Behaviour of Derivatives on Rectifiable Sets). Let u be
a function in BV (Ω, E) and let (S, η) be an oriented rectifiable set (see Definition
1.6). For every x ∈ S, let B+(x, r) and B−(x, r) be the sets of all points y ∈ B(x, r)
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such that 〈η(x); y−x〉 > 0 and 〈η(x); y−x〉 < 0 respectively. Then, for H n−1 almost
all x ∈ S there exists u+(x) and u−(x) in E such that

lim
r→0

1

rn

∫
B+(x,r)

∣∣u(y)− u+(x)
∣∣ dH n(y) = 0,

lim
r→0

1

rn

∫
B−(x,r)

∣∣u(y)− u−(x)
∣∣ dH n(y) = 0.

We denote the functions u+ and u− as the traces of u on (S, η), they belong to
L1(H n−1 S,E) and moreover

Du S = (u+ − u−) η∗H n−1 S (1.7)

and this means that for every Borel set B ⊂ S and every y ∈ N

[
Du(B)

]
: y 7−→

∫
B

[
u+(x)− u−(x)

]
〈η(x); y〉 dH n−1(x).

Proposition 1.10. (Disintegration of BV Functions). Let M and N be two
linear subspaces of an euclidean space with dimensions m and n respectively (cf.
Remark 1.4). We identify M and N with M × {0} and {0} × N . Let u be a
real function of bounded variation of M × N and let DNu be the derivative of u
with respect to N (see Definition 1.8), then π#

M (DNu) is absolutely continuous with
respect to H m M . Let t 7→ (DNu)t be the disintegration of DNu with respect
to H m M (see Proposition 1.5), then, for H m a.a. t ∈ M , ut is a function of
bounded variation of N and Dut = (DNu)t.

Definition 1.11. (Sets with Finite Perimeter). A set E ⊂ Ω has finite perimeter
in Ω when the derivative of its characteristic function v is (represented by) a measure
in M (Ω, N∗). We recall that by structure theorem (see [14], Theorem 3.4, or [17],
section 5.8 or [10], section 5.7.3) when E is a set with finite perimeter there exists
an oriented rectifiable set (S, η) such that

Dv = η∗ ·H n−1 S. (1.8)

Notice that the characteristic function of a set with finite perimeter E belongs to
BV (Ω) if and only if H n(E) <∞.

Theorem 1.12. (Coarea Formula). Let u be a function in L1(H n Ω). For
every t ∈ R, let vt be the characteristic function of the set {x : u(x) > t}. Then

(i) t 7→ vt is a H 1 measurable function of R into L1(H n Ω), in particular
the set B of all t such that Ft has finite perimeter is H 1 measurable and t 7→ Dvt
is an H 1 measurable function of B into M (Ω, N). By formula (1.8) there exist,
for all t ∈ B, oriented rectifiable sets (St, ηt) such that

Dvt = η∗t ·H n−1 St.
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(ii) u belongs to BV (Ω) if and only if H 1(R\B) = 0 and
∫
R ‖Dvt‖ dH

1(t) <
∞. Moreover (cf. Definition 1.2)

Du =

∫
R
Dvt dH

1(t) =

∫
R
η∗t ·

[
H n−1 St

]
dH 1(t) (1.9)

|Du| =
∫
R
|Dvt| dH 1(t) =

∫
R

[
H n−1 St

]
dH 1(t). (1.10)

Definition 1.13. Sometimes the following generalized spaces may occur. We
extend to these spaces many of the results we have just stated (for example, Propo-
sitions 1.3, 1.5 and 1.10, and Theorem 1.12).
Lploc(µ,E) is the Fréchet space of all functions f : Ω → E which belong to

Lp(µ A,E) for all open sets A which are relatively compact in Ω.
Mloc(Ω, E) is the Fréchet space of all E valued set functions µ defined on the

family of all relatively compact Borel subsets of Ω such that the restriction of µ to
the family of all Borel subsets of A belongs to M (A,E) for all open sets A which
are relatively compact in Ω. When X is a subset of E, Mloc(Ω, X) is the set of all
measures in Mloc(Ω, E) which takes values in X.

We denote by BVloc(Ω, E) the Fréchet space of all functions u : Ω → E
which belong to BV (A,E) for all open sets A which are relatively compact in
Ω. Strictly speaking, the derivative of a function in BVloc(Ω, E) is an element of
Mloc

(
Ω,L (N,E)

)
.

Remark 1.14. (Measurable Multifunctions). In many technical steps, we need
some measurable selection theorems for measurable multifunctions (namely func-
tions which take values in the class of all closed subsets of a given space). Of course,
they are not essential to the comprehension of the general ideas but we must spend
some words about them.

Let X be a locally compact complete metric space, let F (X) be the collection
of all closed subsets of X endowed with the usual Hausdorff metric δ. Following [8]
we say that when (E,E ) is a measurable space and F is (multi)function of E into
F (X), then F is measurable if one of the following equivalent statements holds:

(a) for every open set A ⊂ X,
{
t ∈ E : F (t) ∩A 6= ø

}
∈ E ,

(b) for every x ∈ X, t 7→ d
(
x, F (t)

)
is a measurable real function,

(c) for every compact set K ⊂ X, t 7→ F (t)∩K is measurable if considered as
a map of (E,E ) into the metric space F (X).

When µ is a positive measure on N and F is a function of N into F (X), we say
that F is µ approximately lower semicontinuous when for every open set A ⊂ X,
the set S(A) of all points t such that F (t) ∩ A 6= ø has µ density 1 in everyone of
its points, and this means that

lim
r→0

µ
(
B(t, r) ∩ S(A)∗

)
µ
(
B(t, r)

) = 1 for every t ∈ S(A), (1.11)

where S(A)∗ is a µ maximal Borel set included in S(A), i.e. µ
(
B \ S(A)∗

)
= 0

for every Borel set B ⊂ S(A). It may be proved that every µ approximately lower
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semicontinuous function is µ measurable (for further details, see section 5 and [8],
chapters II and III).

Theorem 1.15. (Measurable Selection Theorem). Let X be a (closed subset of)
a finite dimensional Banach space, M a locally compact space and µ a locally finite
positive measure on M . Let F : M → F (X) be a µ measurable function such that
F (x) 6= ø for µ almost all x.

Then there exist Borel functions fn : M → X for n = 1, 2, . . . such that F (x) is
the closure of the set

{
fn(x) : n = 1, 2, . . .

}
for µ almost all x. In particular there

always exists a Borel function f : M → X such that f(x) ∈ F (x) for µ almost all
x. Moreover, if F (x) is a always a linear space, we may take each fn in L1(µ,X).

2. Definition and Main Properties of E(µ, x)

In this section we give the definition of E(µ, x) (see 2.1, 2.3 and 2.4). Since E(µ, x)
is the essential tool of this paper, it is important to make clear its meaning; we
show what E(µ, x) really is in some particular cases (Remarks 2.7, 2.8, 2.9 and
2.10) and we state some of its general properties (essentially Proposition 2.6 and
Theorem 2.12) without detailed proofs (which can be found in section 5).

Definition 2.1. Let ψ and λ be two measures in M (Ω, E) (or in Mloc(Ω, E) )
and let x be a point of Ω. We say that λ is tangent to ψ in x when x ∈ supp ψ and

lim
r→0

|λ− ψ|(B(x, r))

|ψ|(B(x, r))
= 0. (2.1)

Remark 2.2. When λ is tangent to ψ in x, the inequalities |ψ| − |λ− ψ| ≤ |λ| ≤
|ψ|+ |λ− ψ| yield

lim
r→0

|λ|(B(x, r))

|ψ|(B(x, r))
= 1 (2.2)

and in particular x ∈ supp λ. It follows immediately from (2.2) that tangency in x
is an equivalence relation and in particular that λ is tangent to ψ in x if and only
if ψ is tangent to λ in x.

Suppose that λ belongs to M (Ω, E) and let µ be a positive measure. By Radon–
Nikodym theorem we may write λ = f ·µ+ θ where f ∈ L1(µ,E) and θ ⊥ µ. Then,
λ is tangent to v · µ with v 6= 0 in a point x ∈ suppµ if an only if

lim
r→0

|θ|(B(x, r))

µ(B(x, r))
= 0 and lim

r→0

1

µ(B(x, r))

∫
B(x,r)

∣∣f(t)− v
∣∣ dµ(t) = 0 (2.3)

and well–known theorems about derivation of measures and approximate continuity
ensure that (2.3) holds with v = f(x) for µ a.a. x with f(x) 6= 0 (see for instance
[10], sections 1.6 and 1.7, or [16], section 1.4, or [17], section 1.3). When |λ| and
|ψ| are mutually singular they are tangent in no points.

Definition 2.3. Let µ be a positive measure on N and let x be a point of N .
We define E(µ, x) as the set which contains 0 and all linear functionals v ∈ N∗
such that there exists a function u ∈ BV (N) the derivative of which is tangent to
v · µ in x.
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Remark 2.4. Notice that in Definition 2.3 it makes no difference to take u ∈
BVloc(A), where A is any open set of N which contains x, instead of u ∈ BV (N).

Definition 2.5. We denote by D(N) the class of all vector measures ψ ∈
M (N,N∗) such that[

dψ

d|ψ|

]
(x) ∈ E

(
|ψ|, x

)
for ψ almost all x ∈ N . (2.4)

This class of measures is relevant because it turns out to be exactly the class of all
vector measures which may be written as Du B with suitable u ∈ BV (Ω) and
B ⊂ Ω (see Corollary 2.13 and Remark 2.14).

Proposition 2.6. Let µ and λ be positive measures on N , ψ a measure in
M (N,N∗) and u a function in BV (N). Then

(i) E(µ, x) is a linear space for all x and E(µ, x) = {0} for every x /∈ suppµ,

(ii) E(λ, x) = E(µ, x) whenever λ is tangent to c · µ in x for some c > 0,

(iii) E(λ, x) = E(µ, x) for λ almost all x whenever λ� µ,

(iv)
[
dDu

/
d|Du|

]
(x) ∈ E(µ, x) for µ almost all x whenever µ� Du, and in

particular
[
dDu

/
d|Du|

]
(x) ∈ E

(
|Du|, x

)
for |Du| almost all x,

(v) ψ ∈ D(N) whenever ψ = f ·Du with f ∈ L1(|Du|), in particular ψ ∈ D(N)
whenever ψ = Du B,

(vi) D(N) is a strongly closed subspace of M (N,N∗),

Now we want to show what happens in some particular cases.

Remark 2.7. (N has dimension 1). When N has dimension 1 (roughly speak-
ing, when N = R), every measure in M (N,N∗) is the derivative of a function in
BVloc(N) and then we have that D(N) = M (N,N∗) and E(µ, x) = N∗ for every
positive measure µ on N and every point x ∈ suppµ.

Remark 2.8. (Measures of the Form f ·H n N). Let v be a linear functional on
N ; v is a function in BVloc(N) with derivative v ·H n N . Then v ∈ E(H n N, x)
for all points x and this yields E(H n N, x) = N∗ for all x. By Proposition 2.6(iii),
E(µ, x) = N∗ for µ almost all x whenever µ is a positive measure on N which is
absolutely continuous with respect to Lebesgue measure.

In other words we have that every vector measure ψ ∈ M (N,N∗) which is
absolutely continuous with respect to H n N belongs to D(N) (cf. Remark 2.14).

Remark 2.9. (Measures of the form f ·H n−1 N). Let A be a bounded open
subset of N with boundary ∂A of class C1. It is well–known that the characteristic
function of A belongs to BV (N) (i.e. A is a set of finite perimeter) and in particular
we have that its derivative is η∗ ·H n−1 ∂A where η is the inner normal of ∂A
(see for instance [10], sections 5.8 and 5.11, or [14], Example 3.4, or [17], Remark
5.8.3). Hence η(x)∗ ∈ E(H n−1 ∂A, x) for all points x.

Moreover, for every function u ∈ BV (N), the following formula holds (cf. (1.7)):

Du ∂A = (u+ − u−)η∗ ·H n−1 ∂A. (2.5)

Hence, if Du is tangent in x to v ·H n−1 ∂A for some v, we have that v = |v|η(x)∗

or −|v|η(x)∗ (see Remark 2.2) and then E(H n−1 ∂A, x) is included in the span
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of η(x)∗ for all x. By previous observation, we have just proved that for every
bounded open set A with boundary of class C1

E(H n−1 ∂A, x) = Span
{
η(x)∗

}
for all x ∈ ∂A. (2.6)

It follows immediately that the same holds when ∂A is replaced by a (n − 1)–
dimensional manifold M of class C1 with locally finite H n−1 measure because for
every point x of M we may find a bounded open set A with a C1 boundary such
that M = ∂A in a neighborhood of x.

Suppose that µ = f ·H n−1 where f is a non–negative function in L1(H n−1 N)
and S = {x : f(x) 6= 0} is a rectifiable set (for example, take µ = H n−1 S where
S is a rectifiable set with H n−1(S) < ∞). Let η be an orientation of S, then
Definition 1.6, Proposition 2.6(iii) and (2.6) yield

E(µ, x) = Span
{
η(x)∗

}
for µ a.a. x. (2.7)

Remark 2.10. (Measures Concentrated on Purely Unrectifiable Sets). Suppose
that µ is a positive real measure on N which is concentrated in a purely unrectifiable
set T . By Definition 1.6, we obtain that H n−1(S ∩ T ) = 0 for every rectifiable set
S and then, when u is a function in BV (N), taking into account coarea formula
(1.10) we get

|Du|(T ) =

∫
R

H n−1(St ∩ T )dH 1(t) = 0.

Then Du ⊥ µ and Du is tangent to v · µ in no points (Remark 2.2). Hence
E(µ, x) = {0} for all points x.

In particular, taking into account previous remark, a measure f ·H n−1 with
f ∈ L1(H n−1 N,N∗) belongs to D(N) if and only if the set S = {x : f(x) 6= 0}
is rectifiable and Ker

[
f(x)

]
= Tan(S, x) for H n−1 a.a. x ∈ S (cf. Remark 2.14).

In many technical steps, we shall need some measurability properties of the
(multi)function x 7→ E(µ, x)

Proposition 2.11. (Regularity Property of x 7→ E(µ, x)). When µ is a positive
measure on N , x 7→ E(µ, x) is a function of N into F (N∗) which is µ approximately
lower semicontinuous and then it is µ measurable. Hence also x 7→ dimE(µ, x) is
a µ approximately lower semicontinuous and µ measurable real function of N (cf.
Remark 1.14).

We have just given all the immediate properties of E(µ, x). Now we want to
state a deeper theorem which is one of the basic ingredients of our method.

We recall that Proposition 2.6(iv) may be formulated as follows: when u is a
function in BV (N) and µ is a positive measure on N , we may write Du = f ·µ+ θ
where f belongs to L1(µ,N∗) and θ is a vector measure such that θ ⊥ µ. Then f(x)
belongs to E(µ, x) for µ a.a. x. The next theorem is a converse of this statement.

Theorem 2.12. Let µ be a positive measure on N and suppose that f ∈ L1(µ,N∗)
is a function such that

f(x) ∈ E(µ, x) for µ almost all x. (2.8)
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Then there exist u ∈ BV (Ω) and θ ∈M (Ω, N∗) such that θ ⊥ µ and Du = f ·µ+θ.
Moreover u may be taken so that ‖u‖BV ≤ C‖f‖L1(µ) where C is a constant which
depends on the dimension of N only.

An equivalent formulation of the first part of Theorem 2.12 is the following.

Corollary 2.13. Let ψ be a measure in M (N,N∗), then ψ belongs to D(N) if
and only if there exists θ ∈M (N,N∗) such that θ ⊥ ψ and ψ + θ is the derivative
of some BV function of N .

Remark 2.14. It is interesting to notice what happens if we apply Theorem 2.12
in two particular cases. In the following examples N = Rn and we identify Rn with
its dual space.

Suppose that f is a vector function in L1(H n Rn,Rn). In Remark 2.8 we
proved that f ·H n Rn ∈ D(Rn) and by the previous corollary there exists a
function u ∈ BV (Rn) so that the Radon–Nikodym derivative of Du with respect to
Lebesgue measure agrees with f almost everywhere. This means that the approxi-
mate gradient of u agrees with f for H n almost all points of Rn (cf. [1], Theorem
3).

Suppose that f is a vector function in L1(H n−1 Rn,Rn). In Remarks 2.9 and
2.10 we showed that the measure f ·H n−1 belongs to D(Rn) if and only if the set
S = {x : f(x) 6= 0} is rectifiable and f(x) ⊥ Tan(S, x) for H n−1 a.a. x ∈ S. By
Corollary 2.13, these two statements and the following are equivalent: there exists
u ∈ BV (Rn) such that Du S = f ·H n−1.

This results is reminiscent of a well–known result about traces of BV functions
due to Gagliardo (see [13] or [14], Theorem 2.16).

3. The Dimension of E(µ,x)

This section is devoted to the proof of the following result.

Theorem 3.1. Let N be an n–dimensional linear subspace of some euclidean
space and let µ be a positive measure on N which is singular with respect to H n N .
Then the dimension of E(µ, x) is 1 or 0 for µ almost all x.

Remark 3.2. Notice that by Proposition 2.11, the dimension of E(µ, x) is a µ
approximately lower semicontinuous function of x and then Theorem 3.1 yields that
the dimension of E(µ, x) is 0 or 1 everywhere and not only µ almost everywhere.

Theorem 3.1 is the essential result of this paper and both the definition of recti-
fiable measures and the rank theorems in the following section are essentially based
upon it.

To begin with, we state the following particular result.

Lemma 3.3. Let N be a 2–dimensional linear subspace of some euclidean space,{
e1, e2

}
an orthonormal basis of N and µ a positive measure on N . Suppose that

there exists a bounded function u = (u1, u2) in BVloc(N,R2) such that, for i = 1, 2,
Dui ∈M

(
N,X∗(ei,

√
3/2)

)
(see (1.1) ) and µ� Dui. Then µ�H 2 N .

This is the key lemma in the proof of Theorem 3.1. We apply it to study
the dimension of E(µ, x) in the following way: suppose that N has dimension
2 and µ is a measure on N such that E(µ, x) has dimension 2 for µ almost all
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points, by Theorem 3.5(v) and definition 3.4 there exists a function u which satisfies
the hypothesis of Lemma 3.3 and then µ is absolutely continuous with respect to
H 2 N . Hence E(µ, x) has dimension at most 1 whenever N has dimension 2 and
µ is a measure on N which is singular with respect to H 2 N . We prove that
the same holds when the dimension of N is arbitrary studying the disintegration
behaviour of E(µ, x) (cf. Proposition 3.6).

The proof of Lemma 3.3 is very simple and disclose the essential idea of the main
results, so we like better to give it immediately. Then we state the technical results
(Theorem 3.5 and Proposition 3.6) that we need together with Lemma 3.3 in the
proof of Theorem 3.1 (their proofs can be found in section 5) and eventually we
prove it.

Proof of lemma 3.3. Possibly replacing u with the function v = (v1, v2) given by
vi(x) = ui(x) + arctan〈x; e1〉 for all x ∈ N and i = 1, 2, we may suppose that the
support of Dui is N for i = 1, 2.

Let ρε denote as usual some positive mollifiers of class C∞ on N , set uε =
(u1
ε, u

2
ε) = u ∗ ρε for every ε > 0, and notice that the following facts hold:

(a) Since u is bounded, there exists r > 0 so that |u(x)| ≤ r for every x. For
i = 1, 2, Dui ∈M

(
N,X∗(ei,

√
3/2)

)
yields

∂ui/∂ei ≥
√

3/2 · |Dui| (3.1)

and then µ � ∂ui/∂ei. Moreover ∂ui/∂ei is a positive measure with support N
because the support of Dui is N .

(b) uε is a function of class C∞, and taking into account (a), for i = 1, 2 and
every x ∈ N , |u(x)| ≤ r,

∂uiε
∂ei

(x) > 0 and Duiε(x) ∈ X∗(ei,
√

3/2) (3.2)

and then
1√
3

∂u1
ε

∂e1
(x) ≥

∣∣∣∣∂u1
ε

∂e2
(x)

∣∣∣∣ , 1√
3

∂u2
ε

∂e2
(x) ≥

∣∣∣∣∂u2
ε

∂e1
(x)

∣∣∣∣ (3.3)

(c) uε is an injective function: indeed, let x, y ∈ N with y 6= 0, then

uε(x+ y)− uε(x) =

∫ 1

0

Duε(x+ ty) · y dH 1(t). (3.4)

Now, since

X(e1,
√

2/2) ∪X(−e1,
√

2/2) ∪X(e2,
√

2/2) ∪X(e2,
√

2/2) = N

(see formula (1.1) ), y has to belong to one at least of these four cones. If it belongs
to the first one, we have that vy > 0 for all v ∈ X∗(e1,

√
3/2) with v 6= 0 and in

particular, taking into account (3.2), Du1
ε(z) · y > 0 for all z ∈ N . Hence (3.4)

yields u1
ε(x + y) > u1

ε(x) and then uε(x + y) 6= uε(x). In a similar way it may be
proved that uε(x+ y) 6= uε(x) when y belongs to anyone of the other three cones.
Hence we have proved that uε is injective.
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(d) As uε is an injective function of class C∞, the area formula yields

3πr2

2
≥
∫
N

∂u1
ε

∂e1

∂u2
ε

∂e2
dH 2. (3.5)

Indeed, taking into account (b), (c) and (3.3),

πr2 ≥H 2(Imuε) =

∫
N

JuεdH
2 =

∫
N

∣∣∣∣ ∂u1
ε

∂e1

∂u2
ε

∂e2
− ∂u1

ε

∂e2

∂u2
ε

∂e1

∣∣∣∣ dH 2

≥ 2

3

∫
N

∂u1
ε

∂e1

∂u2
ε

∂e2
dH 2.

Now, for every δ > 0, set

Sδ =

{
x :

[
d
(∂ui
∂ei

)/
dµ
]
(x) ≥ δ for i = 1, 2

}
(3.6)

and set λ = δ ·µ Sδ. Hence
∂ui

∂ei
≥ λ and

∂uiε
∂ei

(x) ≥ λ∗ρε(x) for i = 1, 2, for every

ε > 0 and every x ∈ N , and then (3.5) yields

3πr2

2
≥
∫
N

∂u1
ε

∂e1

∂u2
ε

∂e2
dH 2 ≥

∫
N

(λ ∗ ρε)2dH 2.

This implies that λ is (represented by) a function in L2(H 2 N) and in particular
µ Sδ � H 2 N for all positive δ. The proof is complete because µ � ∂ui/∂ei
for i = 1, 2 (see (a)) and then (cf. (3.6))

µ
(
N \

∞⋃
n=1

S1/n

)
= 0.

Definition 3.4. Let X be a strongly closed convex cone in N∗. We define
E (N,X) as the set of all finite positive measures µ on N such that there exists a
function u in BVloc(N) which satisfies

(a) ‖u‖∞ ≤ 1 (we mean the L∞(H n N) norm),

(b) Du ∈Mloc(N,X) and µ� Du.

We remark that when u is a function which fulfills (b) but not (a), then v =
(2/π) arctan ◦u is a function in BVloc(N) which satisfies both (a) and (b) (this fact
may be proved using coarea formula (Theorem 1.12) and statements (iv) and (v)
of Propositions 1.3) and then (a) does not play an essential role in this definition
but it is useful in the proofs of Theorem 3.5 and Lemma 3.8.

Theorem 3.5. (Properties of E (N,X)). Let X be a closed convex cone in N∗ of
the form X = X∗(e, a) (see formula (1.1) ) and let M be a separable locally compact
topological space. Let (S, η) be an oriented rectifiable set in N with H n−1(S) <∞,
µ a finite positive measure on N , λ a positive measure on M and t 7→ µt a function
in L1

(
λ,M (N,N∗)

)
so that µ =

∫
µtdλ(t) (see Definition 1.2). Then
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(i) E (N,X) is a strongly closed convex cone in M (N) and in particular a
series of elements of E (N,X) may converge in norm to an element of E (N,X)
only,

(ii) µ ∈ E (N,X) whenever µ is absolutely continuous with respect to a measure
in E (N,X),

(iii) µ ∈ E (N,X) whenever µt ∈ E (N,X) for λ a.a. t ∈M ,

(iv) H n−1 S ∈ E (N,X) whenever η(x) belongs to the interior of X(e, a)
for H n−1 a.a x ∈ S,

(v) µ ∈ E (N,X) whenever the intersection of E(µ, x) and the interior of X is
not empty for µ a.a. x.

Proposition 3.6. (Disintegration Property of E(µ, x)). Let µ be a finite positive
measure on M ×N , λ a finite positive measure on M such that π#µ � λ and let
t 7→ µt be the disintegration of µ with respect to λ (see Proposition 1.5). Let
λ = λA + λS be the Lebesgue decomposition of λ with respect to H m M . Then

(i) for λA a.a. t ∈ M and for µt a.a. s ∈ N , v N ∈ E(µt, s) for all
v ∈ E

(
µ, (t, s)

)
,

(ii) for λS a.a. t ∈M and for µt a.a. s ∈ N , v N = 0 for all v ∈ E
(
µ, (t, s)

)
.

Remark 3.7. In Proposition 3.6(i) we have that for λA a.a. t and µt a.a. s,

E(µt, s) ⊃
{
v N : v ∈ E

(
µ, (t, s)

)}
.

In general equality does not hold. Take for example N = R and let f : M → R be
a Borel function the graph of which, Γf , is a purely unrectifiable subset of M ×R.
For all t ∈ M , let µt ∈ M (R) be Dirac delta mass concentrated in the point f(t)
(i.e. the measure given by µt(B) = 1 if f(t) ∈ B and 0 otherwise) and set

µ =

∫
M

[
εt ⊗ µt

]
dH n(t)

(see Remark 1.4). Then π#
Mµ = H m M and µ is concentrated in the set Γf .

Hence E
(
µ, (t, s)

)
= {0} for all (t, s) ∈M ×R (Remark 2.10) but E(µt, s) = R∗ for

all t ∈M and µt a.a. s ∈ R (Remark 2.7).

Taking into account Theorem 3.5 and Proposition 3.6, we may apply Lemma 3.3
to prove the essential result of this section.

Lemma 3.8. Let N be an n–dimensional linear subspace of some euclidean space
and let µ be a positive measure on N such that E(µ, x) has dimension greater than
1 for µ a.a. x. Then µ is absolutely continuous with respect to H n N .

Proof. With no loss in generality we may suppose that µ is finite. The proof of
this lemma is divided in two cases.

Case 1: n = 2.
Let {e1, e2} be a orthonormal basis of N . Since E(µ, x) has dimension

greater than 1, E(µ, x) = N∗ for µ a.a. x and then Theorem 3.5(v) yields
µ ∈ E

(
N,X∗(e, a)

)
for all e ∈ N with |e| = 1 and a ∈]0, 1[. In particular, for i = 1, 2
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we may find H 2 essentially bounded functions ui in BVloc(N) such that µ� Dui

and Dui ∈ M
(
N,X∗(ei,

√
3/2)

)
(cf. Definition 3.4) and then µ � H 2 N by

Lemma 3.3.

Case 1: n is arbitrary.

(a) Let P be a 2–dimensional subspace of N and let M be the orthogonal
complement of P , we identify M × P and N . Let B be the set of all x such that{
v P : v ∈ E(µ, x)

}
has dimension 2 and set µ′ = µ B, λ = π#

Mµ
′. By

Proposition 2.6(iii),
{
v P : v ∈ E(µ′, x)

}
has dimension 2 for µ′ a.a. x and

Proposition 3.6 implies that λ is absolutely continuous with respect to H n−2 M
and{

v P : v ∈ E
(
µ′, (t, y)

)}
⊂ E(µ′t, y) for λ a.a. t ∈M and µ′t a.a. y ∈ P .

By Case 1 we have that µ′t �H 2 P for λ a.a. t. and then µ B = µ′ �H n N
(cf. Remark 1.4).

(b) Let {e1, . . . , en} be an orthonormal basis of N and let Pi,j be the span of
ei, ej for all i, j = 1, . . . , n. It is well–known from linear algebra that two linear
functionals v1, v2 ∈ N∗ are linearly dependent if and only if their restrictions on
Pi,j are linearly dependent for all i, j. This means that a linear subspace M of N∗

has dimension greater than 1 if and only if there exists at least one pair i, j such
that

{
v Pi,j : v ∈M

}
is a subspace of dimension 2 of P ∗i,j .

Let Bi,j be the set of all x such that
{
v Pi,j : v ∈ E(µ, x)

}
has dimension 2.

(a) yields µ Bi,j �H n N for all i, j and the proof is complete since (b) yields

µ
(
N \

⋃
i,j

Bi,j

)
= 0.

Proof of Theorem 3.1. Let B be the set of all points x such that E(µ, x) has
dimension greater than 1 and set µ′ = µ B. By Proposition 2.6(iii) we have that
E(µ′, x) = E(µ, x) has dimension greater than 1 for µ′ a.a. x and Lemma 3.8 yields
µ′ �H n N . Hence µ(B) = 0.

4. Rectifiable Measures and Rank One Property of Derivatives

In this section we give the definition and a characterization of rectifiable measures
(Definitions 4.1 and Proposition 4.2) and some of their properties (Proposition 4.3
and 4.4). In Theorem 4.5 we show that when µ is a rectifiable measure and u is a
(vector valued) function with bounded variation, the structure of the part of Du
which is absolutely continuous with respect to µ is tightly connected to E(µ, x)
(formula (4.3)) and in particular we show that the singular part of a derivative
has rank one (Corollary 4.6). In Theorem 4.13 and Corollary 4.14 we extend the
previous results to higher order derivatives. We end this section with some open
questions (Remark 4.18). Every result in this section is almost a straightforward
corollary of Theorem 3.1.

Let µ is a positive measure on N of the form f ·H n−1 and set S =
{
x : f(x) 6= 0

}
.

In Remark 2.9 we showed that when S is a rectifiable set, then E(µ, x) is the
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annihilator of Tan(S, x) for µ a.a. x while E(µ, x) = {0} for (µ almost) all x
whenever S is a purely unrectifiable set (Remark 2.10). In general, when µ is a
positive measure measure on N which is singular with respect to H n N , by
Theorem 3.1 we have that the dimension of E(µ, x) is 0 or 1 for µ almost every x.

These considerations suggest to use E(µ, x) to give a definition of rectifiable
and unrectifiable for those positive measures µ which are singular with respect to
H n N .

Definition 4.1. (Rectifiable and Purely Unrectifiable Measures). Let µ be a
positive measure on N which is singular with respect to H n N . We say that µ is
rectifiable when E(µ, x) has dimension 1 for µ a.a. x (taking into account Theorem
3.1, this means that µ is rectifiable when E(µ, x) 6= {0} for µ a.a. x).

We say that a Borel function η : N → N is an orientation of µ when
∣∣η(x)

∣∣ = 1
and E(µ, x) is the span of η(x) for µ almost all x.

We say that µ is purely unrectifiable whenever E(µ, x) has dimension 0 for µ
a.a. x.

Using Theorems 2.12 and 3.5, in the following proposition we give a characteri-
zation of those finite positive measure µ such that E(µ, x) has dimension at least 1
for µ almost all x and in particular of rectifiable measures. The same result holds,
with suitable, modifications if we take µ locally finite instead of finite.

Proposition 4.2. Let µ be a finite positive measure in N and let E be a finite
dimensional Banach space as usual. Then the following statements are equivalent:

(i) dimE(µ, x) > 0 for µ almost all x.

(ii) µ = |Du| B for some function u ∈ BV (N) and some Borel set B ⊂ N ,

(ii’) µ� Du for some function u ∈ BV (N,E),

(iii) there exists a function t 7→ µt in L1
(
H 1 R,M (N)

)
such that µ =∫

R µtdH
1(t) and, for H 1 almost all t ∈ R, µt = H n−1 St where St is a

rectifiable set.

(iii’) there exist a separable locally compact space M , a positive measure λ on
M and a function t 7→ µt in L1

(
λ,M (N)

)
such that µ =

∫
M
µtdλ(t) and, for λ

almost all t ∈M , dimE(µt, x) > 0 for µt a.a. x.

Proof. We prove the following implications: (i) ⇒ (ii) ⇒ (ii’) ⇒ (i) and (ii) ⇒
(iii) ⇒ (iii’) ⇒ (i).

(i) ⇒ (ii): set C =
{
v ∈ N∗ : |v| = 1

}
; as dimE(µ, x) > 0, E(µ, x)∩C 6= ø for µ

a.a x and by Proposition 2.11 and Remark 1.14, x 7→ E(µ, x)∩C is a µ measurable
function of N into F (N∗). By Theorem 1.15 we may find a function f ∈ L1(µ,N∗)
such that f(x) ∈ E(µ, x) and |f(x)| = 1 for µ a.a x and then it is enough to apply
Theorem 2.12.

(ii) ⇒ (ii’): trivial.

(ii’) ⇒ (i): let {p1, . . . , pm} be a basis of E∗, for every i with 1 ≤ i ≤ m let ui
be the function given by ui(x) = pi

(
u(x)

)
for every x ∈ N . Each ui is a function

in BV (N) and dimE
(
|Dui|, x

)
> 0 for |Dui| almost all x (cf. statement (iv) of

Proposition 2.6). Taking into account statement (iii) of Proposition 2.6 and the
fact that µ� |Du1|+ . . .+ |Dum|, we obtain that (i) holds.

(ii) ⇒ (iii): apply the coarea formula (Theorem 1.12).
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(iii) ⇒ (iii’): trivial.

(iii)⇒ (i): let X1, . . . Xn be closed convex cones of the form X∗(e, a) the interiors
of which cover N∗ \ {0}. Let i be fixed. For every t ∈ M , let Bit be the set of all
points x such that E(µt, x) ∩ Int(Xi) 6= {0}, and set

µit = µt Bit and µi =

∫
M

µitdλ(t).

Then µ �
∑
i µ

i and by Proposition 2.6(iii), for every t, E(µit, x) ∩ Int(Xi) 6= {0}
for µit almost all x. Then µit ∈ E

(
N,Xi

)
for every t by Theorem 3.5(v) and

µi ∈ E
(
N,Xi

)
by Theorem 3.5(iii). In particular E(µi, x) 6= {0} for µi a.a. x

and then E(µ, x) 6= {0} for µ a.a. x because µ�
∑
µi (cf. Proposition 2.6).

In the following proposition we show that every positive singular measure is the
sum of a rectifiable measure and a purely unrectifiable measure and moreover this
decomposition is unique. In Proposition 4.4 we recall some immediate properties
of rectifiable and purely unrectifiable measures.

Proposition 4.3. (Decomposition of Singular Measures). For every positive
measure µ on N which is singular with respect to H n N , let B be the set of all
x such that E(µ, x) has dimension 1 and set

Rµ = µ B , Sµ = µ (N \B). (4.1)

Then

(i) Rµ is rectifiable, Sµ is purely unrectifiable, Rµ ⊥ Sµ and µ = Rµ+ Sµ,

(ii) the above decomposition is unique in the following sense: when µ = µ1 +µ2

with µ1 rectifiable and µ2 purely unrectifiable, µ1 = Rµ and µ2 = Sµ.

Proof. Taking into account Proposition 2.6(iii) and Definition 4.1, (i) immediately
follows and moreover we obtain µ2 B = 0 and µ1 (N \ B) = 0 and then
µ = µ1 + µ2 yields µ1 = µ B and µ2 = µ (N \B).

Proposition 4.4. Let E be a finite dimensional Banach space, let µ and λ be
positive measures on N which are singular with respect to H n N and λ � µ.
Then

(i) Rλ� Rµ and Sλ� Sµ and E(Rλ, x) = E(Rµ, x) for Rλ almost all x,

(ii) in particular, when µ is rectifiable, also λ is rectifiable and E(λ, x) =
E(µ, x) for λ almost all x,

(iii) when µ � H n−1 S and S is a rectifiable set (see Definition 1.6), µ is
rectifiable and E(µ, x) = Tan(S, x)⊥ for µ almost all x,

(iv) when µ is concentrated in a purely unrectifiable set (see Definition 1.6), µ
is purely unrectifiable,

(v) when µ� Du for some function u ∈ BV (N,E), µ is rectifiable and E(µ, x)
is the annihilator of the kernel of

[
dDu

/
dµ
]
(x) for µ almost all x and in particular

the dimension of the kernel of
[
dDu

/
dµ
]
(x) is n− 1 for µ almost all x,

(vi) when µ is a purely unrectifiable measure, µ ⊥ Du for every function
u ∈ BV (N,E).
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Proof. (i) follows from Propositions 4.2 and 2.6(iii) and (ii) follows from (i).

(iii) follows from Remark 2.9 and (iv) follows from Remark 2.10.

(v): write Du = fµ + θ with θ ⊥ µ and let {p1, . . . , pm} be a basis of E∗. For
every i with 1 ≤ i ≤ m let ui be the function given by ui(x) = pi

(
u(x)

)
for every

x ∈ N . Each ui is a function in BV (N) and Dui = fi ·µ+θi where fi ∈ L1
loc(µ,N∗),

θi ∈ M (N,N∗), θi ⊥ µ and for every x, fi(x) is the element of N∗ given by the
superposition of f(x) and pi.

By Proposition 2.6(iv), for µ almost every x and every i we have that fi(x) ∈
E(µ, x) and this means that E(µ, x) includes the annihilator of the kernel of fi(x).
Hence, taking into account that {p1, . . . , pm} is a basis of E∗, we obtain that for µ
almost all x

E(µ, x) ⊃ Span
{

Ker
[
f1(x)

]⊥
, . . . ,Ker

[
fm(x)

]⊥}
=
[ m⋂
i=1

Ker
[
fi(x)

]]⊥
= Ker

[
f(x)

]⊥
. (4.2)

But f(x) 6= 0 for µ almost all x because µ� Du, hence the dimension of Ker
[
f(x)

]
is lower or equal to n− 1 and the dimension of its annihilator is greater or equal to
1. Since the dimension of E(µ, x) is 1 or 0 for µ almost every x, by inclusion (4.2)
we obtain that E(µ, x) is the annihilator of the kernel of f(x) and its dimension is
1 for µ almost all x and (v) is proved.

(vi) follows form (v).

Suppose that B is a Borel set with H n−1(B) < ∞, and let B1 and B2 be the
rectifiable and purely unrectifiable part of B respectively. Set µ = H n−1 B:
taking into account previous proposition, we obtain that Rµ = H n−1 B1 and
Sµ = H n−1 B2 and so the decomposition given in Proposition 4.3 corresponds in
this case to the usual decomposition of an H n−1 finite set as union of a rectifiable
and a purely unrectifiable set (cf. Definition 1.6).

Now we have the essential result of this section.

Theorem 4.5. Let µ be a rectifiable measure on N and let η be an orientation of
µ. Let E be a finite dimensional Banach space and let u be a function in BV (N,E).
As usual we write Du = f ·µ+ θ where f ∈ L1

(
µ,L (N,E)

)
, θ ∈M

(
N,L (N,E)

)
and θ ⊥ µ (cf. Definition 1.8).

Then, for µ almost all x, f(x) is a linear map of N into E of the form f(x) =
e(x)η(x)∗, i.e. [

f(x)
]

: y 7−→ 〈η(x); y〉 e(x) for every y ∈ N , (4.3)

where e is the function in L1(µ,E) given by

e(x) = f(x)η(x) for µ a.a. x ∈ B (4.4)

(we recall that for every x, f(x) ∈ L (N,E), η(x) ∈ N and then f(x)η(x) is an
element of E).
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Proof. Set B = {x : f(x) 6= 0}: it is enough to show that (4.3) holds for µ almost
all x ∈ B. Set µ′ = µ B and notice that µ′ � Du and

[
dDu

/
dµ′
]
(x) = f(x)

for µ′ almost all x. By Proposition 4.4(v), for µ almost all x the the dimension of
the kernel of f(x) is n − 1, i.e. the rank of f(x) is one, and η(x) is orthogonal to
Ker

[
f(x)

]
and then (4.3) follows from Remark 1.7.

Suppose that µ is a finite positive measure on N which is singular with respect
to H n−1 N , take Rµ and Sµ as in Proposition 4.3 and let η be an orientation of
Rµ. Notice that when u is a function in BV (N,E), we may write Du = f ·µ+ θ as
in Theorem 4.5 and then f(x) = 0 for Sµ almost all x because Du ⊥ Sµ (statement
(vi) of Proposition 4.4) while formula (4.3) holds for Rµ almost all x. Hence we
have the following corollary of Theorem 4.5.

Corollary 4.6. (Rank One Property of Derivatives). Let µ be a positive mea-
sure on N which is singular with respect to H n N . Let E be a finite dimensional
Banach space and let u be a function in BV (N,E). Then[

dDu/dµ
]
(x) has rank 1 or 0 for µ a.a. x ∈ N .

In particular, if λ is the singular part Du with respect to H n N ,
[
dλ/d|λ|

]
(x)

has rank 1 for |λ| a.a. x ∈ N , i.e. the singular part of a derivative has rank one.

Remark 4.7. Of course Theorem 4.5 and Corollary 4.6 hold, with suitable modi-
fications, even if we take u in BVloc(Ω, E), where Ω is an open subset of N , instead
of BV (N,E).

Remark 4.8. Theorem 4.5 admits the following converse (cf. Theorem 2.12):
when µ is a rectifiable measure on N , η is an orientation of µ, E is a finite dimen-
sional Banach space and e ∈ L1(µ,E), then there exist a function u ∈ BV (N,E)
and a measure θ ∈M

(
N,L (N,E)

)
such that θ ⊥ µ and Du = e η∗ ·µ+θ. This fact

may be proved as a corollary of Theorem 2.12 or by a straightforward generalization
of the proof of Theorem 2.12.

Remark 4.9. (The Case N = Rn and E = Rm). When N = Rn and E = Rm,
L (Rn,Rm) is usually identified with the space Rm×n of all m × n matrices. In
particular, when Ω is an open subset of Rn and u is a function in BV (Ω,Rm), Du
is the measure in M

(
Ω,Rm×n

)
given by (Du)i,j = ∂ui/∂xj for every i and j with

1 ≤ i ≤ m, 1 ≤ j ≤ n.
In this case Theorem 4.5 may be written in the following form: when µ is a

rectifiable measure on Rn, η is an orientation of µ and u is a function in BV (Ω,Rm),
we may write Du = f ·µ+ θ where f is a function which takes values in Rm×n and
θ ⊥ µ and for µ almost all x, f(x) = e(x) ⊗ η(x) and this means that fi,j(x) =
ei(x) ηj(x) for all i, j, where ei(x) =

∑
j fi,j(x) ηj(x) for all i.

Eventually we want to show what happens when we consider higher order deriva-
tives. In order to do this, we need some preliminary definitions. As usual, let Ω be
an open subset of N , E a finite dimensional Banach space and k a positive integer.

Definition 4.10. (Symmetric k–linear Applications). We denote by Symk(N,E)
the Banach space of all E valued symmetric k–linear applications on N , i.e. the
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space of all maps ω : Nk → E which are separately linear with respect to every
variable and satisfy

ω
(
y1, . . . , yk

)
= ω

(
yσ(1), . . . , yσ(k)

)
for every

(
y1, . . . , yk

)
∈ Nk and every permutation σ of the indices. Then

Sym1(N,E) = L (N,E). Moreover we set Sym0(N,E) = E. We denote by
y =

(
y1, . . . , yk

)
a generic element of Nk and sometimes we write ω y or ω · y

instead of ω(y). The norm of an element ω in Symk(N,E) is the supremum of all
|ω y| where y is taken so that |yi| ≤ 1 for i = 1, . . . , k.

When k > 0, there exists a standard immersion of Symk(N,E) into the space
L
(
N, Symk−1(N,E)

)
: for every ω ∈ Symk(N,E) we may consider the element Iω

in L
(
N, Symk−1(N,E)

)
which is given by, for all y ∈ N ,

[Iω]y :
(
y1, . . . , yk−1

)
7−→ ω

(
y1, . . . , yk−1, y

)
for all

(
y1, . . . , yk−1

)
∈ Nk−1.

(4.5)
I is an injective linear application of Symk(N,E) into L

(
N, Symk−1(N,E)

)
and

the rank of a symmetric k–linear application ω is the rank of the the linear map
Iω.

Remark 4.11. (Symmetric k–linear Applications with Rank One). When p ∈ N∗
and e ∈ E, we denote by e · p⊗ . . .⊗ p︸ ︷︷ ︸

k times

the element of Symk(N,E) given by

y 7→
[ k∏
h=1

p(yh)
]
e for all y ∈ Nk.

When p 6= 0 and e 6= 0, the rank of this symmetric k–linear application is 1. On
the contrary, every rank one element of Symk(N,E) may be written in this form
for suitable p and e.

Indeed, suppose that ω is a rank one element of Symk(N,E). By Remark 1.7
there exist η ∈ N with |η| = 1 and ω′ ∈ Symk−1(N,E) such that [Iω]y = 〈η; y〉ω′
for every y ∈ N and then

ω y = ω′
(
y1, . . . , yk−1

)
· 〈η; yk〉 for every y ∈ Nk. (4.6)

Let A be the open set of all y ∈ Nk such that 〈η; yh〉 6= 0 for h = 1, . . . , k and let
ψ : A→ E be the function given by

ψ(y) =
ωy∏k

h=1〈η; yh〉
for all y ∈ A.

Taking into account equality (4.6), we obtain

ψ(y) =
ω′
(
y1, . . . , yk−1

)∏k−1
h=1〈η; yh〉

for all y ∈ A

and then ψ is a function on A which does not depend on the k-th variable and
admits a continuous extension to the set of all y ∈ Nk such that 〈η; yh〉 6= 0 for
h = 1, . . . , k − 1.
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Taking into account that ψ is a symmetric function, we obtain that it is locally
constant on A and admits a continuous extension to the set Nk \C where C is the
closed set of all y such that 〈η; yh〉 = 0 for at least two different integers h.

Since the dimension of Nk is kn and C is a finite union of manifolds with dimen-
sion nk−2, Nk \C is a connected open set and then ψ is constant and in particular
ψ(y) = ψ(η, . . . , η) = ω(η, . . . , η) for every y ∈ A. Since A is dense in Nk, we have
that

ωy = ω(η, . . . , η)

k∏
h=1

〈η; yh〉 for every y ∈ Nk (4.7)

and this means that ω = e · η∗ ⊗ . . .⊗ η∗︸ ︷︷ ︸
k times

where e = ω(η, . . . , η).

Definition 4.12. (Derivatives of k-th Order). Let Ω be an open subset of N .
When u is a function of Ω into E of class Ck and x is a point of Ω, Dku(x) denotes
the element of Symk(N,E) given by

[
Dku(x)

]
: y 7−→ ∂ku

∂y1 . . . ∂yk
(x) for all y ∈ Nk.

The usual recursive formula Dku = D
(
Dk−1u

)
becomes

I
[
Dku(x)

]
=
[
D(Dk−1u)

]
(x) for every x.

We say that a function u ∈ L1(H n Ω, E) belongs to BV k(Ω, E) when its k-th
derivative is (represented by) a measure in M

(
Ω,Symk(N,E)

)
and this means that∫

Ω

[
Dkφ(x) · y

]
u(x) dH n(x) =(−1)k

∫
Ω

φ(x) d
[
Dku · y

]
(x)

for all y ∈ Nk and all φ ∈ C∞C (Ω),

(4.8)

where the measure
[
Dku · y

]
is defined by

[
Dku · y

]
(B) =

[
Dku(B)

]
· y for all

Borel sets B. It may be proved that when u is a function in BV k(Ω, E), Dhu is
(represented by) a function in L1

loc

(
Ω,Symh(N,E)

)
for every h with 1 ≤ h ≤ k1.

The following generalizations of Theorem 4.5 holds.

Theorem 4.13. Let k be a positive integer, let µ be a rectifiable measure on
N and η an orientation of µ. Let E be a finite dimensional Banach space and u
a function in BV k(N,E). As usual we write Dku = f · µ N + θ where f ∈
L1
(
µ,Symk(N,E)

)
, θ ∈M

(
N, Symk(N,E)

)
and θ ⊥ µ.

Then, for µ almost all x, f(x) is an E valued symmetric k–linear application on
N of the form f(x) = e(x) η(x)∗ ⊗ . . .⊗ η(x)∗︸ ︷︷ ︸

k times

, i.e.

[
f(x)

]
: y 7−→ e(x)

k∏
h=1

〈η(x); yh〉 for every y ∈ Nk, (4.9)
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where e is the function in L1(µ,E) given by

e(x) = f(x) ·
(
η(x), . . . , η(x)︸ ︷︷ ︸

k times

)
for µ a.a. x ∈ B (4.10)

(we recall that for every x, f(x) ∈ Symk(N,E), η(x) ∈ N , and then f(x) ·(
η(x), . . . , η(x)

)
is an element of E).

Proof. Notice that v = Dk−1u is a function in BVloc

(
N, Symk−1(N,E)

)
and[

Dv(B)
]

= I
[
Dku(B)

]
for all Borel sets B. Then it is enough to apply Theorem

4.5 to the function v = Dk−1u and take into account Remark 4.11.

As for Theorem 4.5 we have the following straightforward corollary.

Corollary 4.14. (Rank One Property of Higher Order Derivatives). Let µ be
a positive measure on N which is singular with respect to H n N and let k be a
positive integer. Let E be a finite dimensional Banach space and let u be a function
in BV k(N,E). Then[

dDku/dµ
]
(x) has rank 1 or 0 for µ a.a. x ∈ N .

In particular, when λ is the singular part Dku with respect to H n N , we obtain
that

[
dλ/d|λ|

]
(x) has rank 1 for |λ| a.a. x ∈ N , i.e. the singular part of a k-th

order derivative has rank one.

Remark 4.15. Of course Theorem 4.13 and Corollary 4.14 hold, with suitable
modifications, even if we take u in BV kloc(Ω, E), where Ω is an open subset of N ,
instead of BV k(N,E).

Remark 4.16. (The Case N = Rn, E = R and k = 2). When N = Rn and E = R
and k = 2, Sym2(Rn,R) is usually identified with the space S(n) of all symmetric
n× n matrices. In particular, when Ω is an open subset of Rn and u is a function
in BV 2(Ω,R), Du is the measure in M

(
Ω, S(n)

)
given by (Du)i,j = ∂2u/∂xi∂xj

for every i and j with 1 ≤ i, j ≤ n.
In this case Theorem 4.13 may be written in the following form: when µ is a

rectifiable measure on Rn, η is an orientation of µ and u is a function in BV 2(Ω,R),
we may write Du = f · µ + θ where f is a function which takes values in S(n)
and θ ⊥ µ and for µ almost all x, f(x) = c(x) · η(x) ⊗ η(x) and this means
that fi,j(x) = c(x) ηi(x) ηj(x) for all i, j, where c(x) =

∑
i,j fi,j(x) ηi(x) ηj(x). In

particular we have that the rank of the matrix f(x) is 1 or 0 for µ almost all x.

A similar result has just been proved in some particular cases by Aviles and Giga
in [6]: suppose that µ is a positive singular measure on the open set Ω ⊂ Rn and
that there exists q < n so that, for µ almost every x,

0 < lim sup
r→0

µ(B(x, r))

rq
<∞.

Then, when u is a function in BV 2(Ω,R), the rank of the matrix
[
dD2u/dµ

]
(x) is

1 or 0 for µ almost all x.
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The basic idea of their method is to study the blow–up of the function u in every
point x and the density hypothesis on µ seems to be essential in the proof of the
result.

Remark 4.17. (The Case N = Rn and E = R). Suppose that N = Rn and
E = R. For every ω ∈ Symk(Rn,R), the function [Jω] : y 7→ ω(y, . . . , y) is a
function on N which is an homogeneous polynomial with degree k and J turns out
to be a one-to-one linear application of Symk(Rn,R) into the linear space P (n, k)
of all homogeneous polynomials of n variables with degree k and then Symk(Rn,R)
is sometimes identified with P (n, k).

Taking into account Remark 4.11 we have that the rank of p ∈ P (n, k) is 1 (that
is, J−1p is a rank one element of Symk(Rn,R)) if and only if there exists c ∈ R and

η ∈ Rn with |η| = 1 such that p(y) = c〈η; y〉k = c
(∑

i ηiyi
)k

for every y ∈ Rn.

In particular we have that Theorem 4.13 may be stated as follows: when µ
is a rectifiable measure on Rn, η is an orientation of µ and u is a function in
BV k(Ω,R), we may write Du = f · µ+ θ where f is a function which takes values
in P (n, k) and θ ⊥ µ, and for µ almost all x, f(x) is a polynomial of the form

y 7→ c(x)
(∑

i ηi(x) yi
)k

.

Remark 4.18. (Open Questions). Eventually, we want to state two open questions
which seem to be interesting.

Statement (iv) of Proposition 4.4 says that every measure which is concentrated
in a purely unrectifiable set is purely unrectifiable. Then it is natural to consider
the opposite problem: when µ is a purely unrectifiable measure, is it concentrated
on a purely unrectifiable set? In other words, when µ is a singular measure such
that µ(T ) = 0 for every purely unrectifiable set T , is µ rectifiable?

The second problem is the following: when k is a positive integer greater than 1,
we may consider the class of all positive singular measure µ such that there exists a
function u ∈ BV k(N) and µ� Dku (cf. Proposition 4.2). Of course, any measure
in this class is rectifiable and we conjecture that every rectifiable measure belongs
to this class but we are not able to prove it.

This problem is somehow connected with the following: when S is an (n − 1)–
dimensional submanifold of N of class C1, is there a function u ∈ BV k(N) such
that H n−1 S � Dku? The answer is positive when S is a manifold of class Ck

but it is not clear whether the same holds when S is a manifold of class Ch with
1 ≤ h < k.

5. Proof of Technical Results

Statements (i), (ii), (iii) and (iv) of Proposition 1.3 are trivial and we omit to prove
them.

Proof of Proposition 1.3(v). Let Y be a closed convex cone in E of the form
Y = X(e, a) (cf. (1.1)) and suppose that Y ∩ X = {0}. Then there exists a real
number b < 1 such that

〈y;x〉 ≤ b |x| |y| for every y ∈ Y , x ∈ X. (5.1)
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For every t ∈M , let St be the set of all points x such that[
dψt
d|ψt|

]
(x) ∈ Y (5.2)

and set ψ1
t = ψt St, ψ

2
t = ψt Ω \ St, ψ1 =

∫
ψ1
t dλ(t) and ψ2 =

∫
ψ2
t dλ(t) (see

Definition 1.2, it may be verified that both t 7→ ψ1
t and t 7→ ψ2

t are λ measurable
function of M into M (Ω, E)).

Then ψ1
t ∈M (Ω, Y ) for every t by (5.2) and Proposition 1.3(i), ψ1 ∈M (Ω, Y )

by Proposition 1.3(iv) and ψ = ψ1 + ψ2. Hence, for every Borel set B such that
|ψ(B)| > 0 we have ψ(B) = ψ1(B) + ψ2(B) and taking into account (5.1),

∣∣ψ(B)
∣∣ =

〈
ψ(B);ψ(B)

〉∣∣ψ(B)
∣∣ =

〈
ψ1(B);ψ(B)

〉
+
〈
ψ2(B);ψ(B)

〉∣∣ψ(B)
∣∣ ≤ b

∣∣ψ1(B)
∣∣+
∣∣ψ2(B)

∣∣.
It follows immediately from the definition of total variation of a measure that |ψ| ≤
b|ψ1|+ |ψ2| and in particular

‖ψ‖ ≤ b‖ψ1‖+ ‖ψ2‖. (5.3)

Moreover, by hypothesis we have that

‖ψ‖ =

∫
M

‖ψt‖ dλ(t) =

∫
M

(
‖ψ1

t ‖+ ‖ψ2
t ‖
)
dλ(t) ≥ ‖ψ1‖+ ‖ψ2‖. (5.4)

(5.3) and (5.4) yield b‖ψ1‖ ≥ ‖ψ1‖ and then ‖ψ1‖ = 0 because b < 1. Since
Y = X(e, a) and ψ1

t ∈M (Ω, Y ) for every t,

0 = |ψ1| ≥ 〈e;ψ1〉 =

∫
M

〈e;ψ1
t 〉 dλ(t) ≥ a

∫
M

|ψ1
t | dλ(t) (5.5)

(when ψ ∈ M (Ω, E) and e ∈ E, 〈e;ψ〉 is the real measure given by 〈e;ψ〉(B) =
〈e;ψ(B)〉 for all Borel sets B). Then ψ1

t = 0 for λ a.a. t and this means that for
λ a.a. t,

[
dψt/d|ψt|

]
(x) /∈ Y for |ψt| a.a. x. Since this fact holds for every closed

convex cone Y of the form X∗(e, a) such that Y ∩ X = {0} and N∗ \ X may be
covered by countably many cones of this kind, Proposition 1.3(v) is proved.

Proposition 1.5 may be found in [9], nos. 70 to 74. Proposition 1.9 is a straight-
forward generalization of well–known results about the traces of BV (cf. [10],
section 5.4, or [14], Remark 2.13, or [17], section 5.10). Proposition 1.10 follows
from Proposition 1.5 (see for instance [2], Theorem 3.3). Statement (i) of Theo-
rem 1.12 is standard while statement (ii) (cf. [2], formulas (1.7) and (1.8)) is a
straightforward generalization of the usual coarea formula for BV functions (see
for instance [10], section 5.5, or [14], Theorem 1.23, or [17], Theorem 5.4.4).

In order to prove the statements in Remark 1.14, we need a preliminary lemma.

Lemma 5.1. Let µ be a finite positive measure in N and let B be a subset of N .
Suppose that B has µ density one in everyone of its points, and this means that

lim
r→0

µ
(
B(t, r) ∩B∗

)
µ
(
B(t, r)

) = 1 for every t ∈ B, (5.6)
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where B∗ be a µ maximal Borel set included in B (i.e. µ
(
C \ B∗

)
= 0 for every

Borel set C ⊂ B). Then B is µ measurable.

Proof. With no loss in generality we may suppose that the support of µ is N .
For every r > 0 set

ur(t) =
µ
(
B(t, r) ∩B∗

)
µ
(
B(t, r)

) for every t ∈ N .

Each ur is a Borel function of N and well–known theorems about densities ensure
that ur converge to the characteristic function of the set B∗ for µ almost all x. In
particular, if B1 is the Borel set of all x such that limur(x) = 1, we have that
µ(B1 \ B∗) = 0 and taking into account (5.6), B1 ⊃ B ⊃ B∗. Hence B is µ
measurable.

Proof of statements in Remark 1.14. For the equivalence of statements (a),
(b) and (c) see for instance [8], section II.1 and chapter III). The fact that every
µ approximately lower semicontinuous function of N into F (X) is µ measurable
immediately follows from (1.11), Lemma 5.1 and statement (a) of Remark 1.14.

Theorem 1.15 is a straightforward corollary of Theorem III.8 in [8]. The proof
of Propositions 2.6 is standard and we omit it.

Proof of Proposition 2.11. We want to show that x 7→ E(µ, x) is a µ approx-
imately lower semicontinuous function of N into F (N∗) and this means that for
every open set A ⊂ N∗, the set S(A) of all points x ∈ N such that E(µ, x)∩A 6= 0
has µ density 1 in everyone of its points (see (1.11)).

If 0 ∈ A, we have that 0 ∈ E(µ, x) ∩ A for every x and then S(A) = N . Hence
we may suppose that 0 /∈ A. Let x be a fixed point of S(A). Then there exists
v ∈ A and u ∈ BV (N) such that Du is tangent to v · µ in x (see Definition 2.3).
Write Du = f ·µ+ θ with θ ⊥ µ and let B be the Borel set of all points t such that
f(t) ∈ A. Remark 2.2 shows that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

∣∣f(t)− v
∣∣ dµ(t) = 0 (5.7)

and that Du is tangent to f(t) · µ for µ almost all t with f(t) 6= 0 and this means
that f(t) belongs to E(µ, x) ∩ A for µ almost all x ∈ B and then B ⊂ S(A). Take
ε > 0 such that B(v, ε) ⊂ A, then ε−1

∣∣f(t)− v
∣∣ ≥ 1 for every t ∈ N \ B and (5.7)

yields

lim sup
r→0

µ
(
B(x, r) \B

)
µ
(
B(x, r)

) ≤ lim
r→0

1

µ(B(x, r))

∫
B(x,r)

ε−1
∣∣f(t)− v

∣∣ dµ(t) = 0

and this means that B has µ density 1 in x and then S(A) has µ density 1 in x.

To prove Theorem 2.12 we need some preliminary lemmas.

Remark 5.2. Let Ω be an open subset of N . We denote by BV
(
Ω
)

the subspace

of all functions u ∈ BV (N) with support included in Ω (i.e. all functions u which
take value 0 H n a.e. in N \ Ω). Poincaré inequalities (see [10], section 5.6.1, or
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[17], section 5.11) yield a constant C1, which depends on the dimension of N only,
such that

‖u‖1 ≤ C1r‖Du‖ (5.8)

whenever u ∈ BV (N) and the support of u is included in a ball with radius r.
Hence, when Ω is bounded, ‖Du‖ is a norm in BV

(
Ω
)

which is equivalent to the
usual BV norm ‖u‖1 + ‖Du‖.

Let B be an open ball of N and let η be the inner normal of ∂B. For every real
function u of B, let Tu be the real function of N defined by

[
Tu
]
(x) = u(x) when

x ∈ B and
[
Tu
]
(x) = 0 when x /∈ B. Tu ∈ BV (N) whenever u ∈ BV (B), T is

a continuous linear operator of BV (B) into BV (N) (more precisely, into BV
(
B
)
),

and for every u ∈ BV (B)

D[Tu] = Du+ u+η ·H n−1 ∂B (5.9)

where u+ is the (inner) trace of u on ∂B (see Proposition 1.9). As T is continuous,
Poincaré inequalities yield a constant C2 such that∥∥D[Tu]

∥∥ ≤ C2‖Du‖ for all u ∈ BV (B) with mean value 0. (5.10)

A simple homogeneity argument shows that the best constant in (5.10) does not
depends on the choice of B and this means that C2 may be taken in (5.10) which
depends on the dimension of N only. In particular, when u is a function in BV (N),
(5.9) and (5.10) yield

D[u B] = Du B + t η ·H n−1 ∂B (5.11)∥∥D[u B]
∥∥ ≤ C2|Du|(B) for all u ∈ BV (N) with mean value 0 on B.(5.12)

Lemma 5.6. Suppose that Ω is a bounded open subset of N . Let φ be a positive
real measure on N and let ψ ∈ D(N) be a measure whose support is included in Ω.
Then there exist u ∈ BV

(
Ω
)

and λ ∈M (N,N∗) such that

(i) Du− λ ⊥ λ and Du− λ ⊥ φ,

(ii) ‖λ− ψ‖ ≤ 1
2‖ψ‖,

(iii) ‖Du‖ ≤ 2C2‖ψ‖ where C2 is the same constant as in (5.12).

Proof. We denote by f the function
[
dψ/d|ψ|

]
.

Let E be the (Borel) set of all points x ∈ suppψ such that f(x) · |ψ| is tangent
to ψ in x and f(x) belongs to E

(
|ψ|, x

)
. Then there exists a function ux ∈ BV (N)

the derivative of which is tangent to f(x) · |ψ|, and then to ψ, in x. Using the
Radon–Nikodym theorem, the fact that f(x) ∈ E

(
|ψ|, x

)
for |ψ| almost all x, and

Proposition 2.6, we obtain that |ψ|
(
Ω \ E

)
= 0.

Let F be the collection of all balls B(x, r) ⊂ Ω such that x ∈ E,

∣∣Dux − ψ∣∣(B(x, r)) ≤ 1

2
|ψ|(B(x, r)) (5.13)

and φ
(
∂B(x, r)

)
= 0. Verify that for all x ∈ E there exist balls B(x, r) in F

with arbitrary small radius r and then we may apply a well–known corollary of
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Besicovitch lemma (see [10], section 1.5, or [16], Lemma 4.6, or [17], section 1.3) to
obtain pairwise disjoint balls Bn = B(xn, rn) ∈ F for n = 1, 2, . . . such that

|ψ|
(

Ω \
⋃
n

Bn

)
= 0. (5.14)

For all n, set un = uxn
, let an be then mean value of un in Bn, ηn the inner normal

of the sphere ∂Bn, tn the inner trace of un on ∂Bn.
Taking into account (5.12), (5.13), (5.14) and recalling that the balls Bn are

pairwise disjoint,

∞∑
1

∥∥D[(un− an) Bn
]∥∥ ≤ ∞∑

1

C2|Dun|(Bn) ≤
∞∑
1

2C2|ψ|(Bn) = 2C2‖ψ‖. (5.15)

Finally set u =
∑

(un − an) Bn and notice that the series converges in the norm
of BV

(
Ω
)

by (5.15) and u is well–defined. Then (5.11) yields

Du =

∞∑
1

[
Dun Bn

]
+

∞∑
1

[
(tn − an)ηn ·H n−1 ∂Bn

]
. (5.16)

Notice that both series converge in norm to mutually singular measures. Then
λ =

∑[
Dun Bn

]
is well–defined, Du − λ ⊥ λ by construction, Du − λ ⊥ φ

because Du − λ is null out of the union of all ∂Bn and we have chosen the balls
Bn so that φ

(
∂Bn

)
= 0 for all n. Hence (i) is proved and (iii) follows from (5.15).

Eventually (5.13) and (5.14) yield

‖λ− ψ‖ =

∞∑
1

|Dun − ψ|(Bn) ≤
∞∑
1

1

2
|ψ|(Bn) =

1

2
‖ψ‖

and (ii) is proved.

Remark 5.4. Regarding Lemma 5.3, notice that Du − λ ⊥ λ and 2.6(v) yields
that both λ and Du − λ belong to D(N). Since ψ ∈ D(N) by hypothesis, ψ − λ
belongs to D(N) by Proposition 2.6(vi).

Lemma 5.5. Suppose that Ω is a bounded open subset of N . Let φ be a positive
real measure on N and let ψ be a measure in D(N) with support included in Ω.
Then there exists a function u ∈ BV

(
Ω
)

such that Du−ψ ⊥ φ and ‖Du‖ ≤ 4C2‖ψ‖
where C2 is the same constant as in (5.12).

Proof. Set ψ0 = ψ, u0 = 0 and λ0 = 0. Taking into account Lemma 5.3 and
Remark 5.4, for all integers n > 0 we may define by induction on n functions
un ∈ BV

(
Ω
)

and measures ψn, λn ∈M (N,N∗) such that

(a) ψn = ψn−1 − λn−1,

(b) ψn ∈ D(N),

(c) Dun − λn ⊥ λn, Dun − λn ⊥ φ and Dun − λn, λn ∈ D(N),

(d) ‖λn − ψn‖ ≤ 1
2‖ψn‖,

(e) ‖Dun‖ ≤ 2C2‖ψn‖.
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Notice that (a) and (d) yield ψ1 = ψ0 = ψ and, for all n > 1, ‖ψn‖ = ‖ψn−1 −
λn−1‖ ≤ 1

2‖ψn−1‖. Hence, for all n > 0

‖ψn‖ ≤ 21−n‖ψ‖ (5.17)

and taking into account (e)

∞∑
1

‖Dun‖ ≤ 2C2

∞∑
1

‖ψn‖ ≤ 2C2

∞∑
1

21−n‖ψ‖ = 4C2‖ψ‖. (5.18)

Finally set u =
∑
un. By (5.18) the series

∑
un converges in the norm of BV

(
Ω
)

and ‖Du‖ ≤ 4C2‖ψ‖. Moreover (c) yields∑
‖λn‖ ≤

∑
‖Dun‖ <∞,

hence λ =
∑
λn is well–defined and Du− λ =

∑
Dun − λn ⊥ φ.

The proof is complete if we show that ψ = λ. For all integers m > 1, (a) yields

ψ −
∑m−1

1 λn = ψm and then

‖ψ − λ‖ ≤
∥∥∥ψ − m−1∑

1

λn

∥∥∥+

∞∑
m

‖λn‖ = ‖ψm‖+

∞∑
m

‖λn‖.

The sequence m 7→ ‖ψm‖ converges to 0 by (5.17), the sequence m 7→
∑∞
m ‖λn‖

converges to 0 because
∑
n ‖λn‖ <∞ and then ψ = λ.

Proof of Theorem 2.12. Let {En : n = 1, 2, . . .} be a sequence of pairwise disjoint
Borel sets with diameter smaller than 1 which cover N . Each En is included in an
open ball Bn with radius smaller than 1.

For every integer n set fn(x) = f(x) when x ∈ En and fn(x) = 0 when x /∈ En
and apply Lemma 5.5 with ψn = fn · µ and φ = µ to get un ∈ BV

(
Bn
)

such that
Dun − ψn ⊥ φ and ‖Dun‖ ≤ 4C2‖ψn‖.

Set θn = Dun − ψn, notice that Dun = fn · µ + θn, θn ⊥ µ and, taking into
account (5.8),

‖un‖1 + ‖Dun‖ ≤ 4C2(1 + C1)‖fn‖L1(µ).

Finally, set u =
∑
un and θ =

∑
θn. Both u and θ are well-defined and satisfy the

assertion of Theorem 2.12 with C = 4C2(1 + C1).

Regarding Theorem 3.5, statements (i) and (ii) are trivial and we omit to prove
them. In order to prove statement (iii) we need some preliminary lemmas.

Lemma 5.6. Let X∗(e, a) be a closed convex cone in N∗. When u is a function
in L∞(H n N) such that u ∈ BVloc(N) and Du ∈Mloc

(
N,X∗(e, a)

)
, then

(2C/a) ‖u‖∞rn−1 ≥ |Du|
(
B(0, r)

)
for every r > 0, (5.19)

where C is the measure H n−1 of the unit ball in Rn−1.

Proof. The proof is divided in two cases.
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Case 1: u is a function of class C∞. In this case Du(x) ∈ X∗(e, a) for every x ∈ N
and

2‖u‖∞ ≥ lim
t→+∞

u(x+ te)− lim
t→−∞

u(x+ te) =

∫
R

∂u

∂e
(x+ te) dH 1(t). (5.20)

Let M be the orthogonal complement of e, πM the projection of N into M and
B =

{
x ∈ N :

∣∣πM (x)
∣∣ < r

}
. Then B ⊃ B(0, r) and taking into account (5.20) and

the fact that
[
∂u/∂e] ≥ a|Du| in every point,

2‖u‖∞Crn−1 ≥
∫
B

∂u

∂e
dH n ≥

∫
B(0,r)

∂u

∂e
dH n ≥ a

∫
B(0,r)

|Du| dH n. (5.21)

Case 2: u is a function in BVloc(N). For every ε > 0, let ρε denote as usual some
positive mollifiers of class C∞ on N and set uε = u ∗ ρε. For every ε > 0, uε
is a function of class C∞, ‖uε‖∞ ≤ ‖u‖∞, Duε(x) ∈ X∗(e, a) for every x and
Duε ·H n N converges to Du in the weak* topology of Mloc(N,N∗) as ε → 0.
Then, taking into account (5.21),

(2C/a) ‖u‖∞rn−1 ≥ lim inf
ε→0

(2C/a) ‖uε‖∞rn−1

≥ lim inf
ε→0

∫
B(0,r)

|Duε|dH n ≥ |Du|(B(0, r)).

Lemma 5.7. Let X∗(e, a) be a closed convex cone in N∗ and let S be the set
of all functions u ∈ L∞(H n N) such that u ∈ BVloc(N), ‖u‖∞ ≤ 1 and Du ∈
Mloc

(
N,X∗(e, a)

)
(cf. Definition 3.4).

If S is endowed with the topology induced by the weak* topology of L∞(H n N),
then it is compact and separable, and moreover the derivative is a continuous linear
application of S into Mloc(N,N∗) (endowed with the weak* topology).

Proof. Since S is bounded and L∞ is the dual of a separable Banach space, it
is enough to prove that when {un} is a sequence of functions in S which weakly*
converges to u ∈ L∞, then u belongs to S and Dun weakly* converge to Du. Notice
that ‖u‖∞ ≤ 1 and taking into account (5.19)

(2C/a)rn−1 ≥ |Dun|(B(x, r)) for every n and every r > 0.

Hence u belongs to BVloc(N), Dun weakly* converges to Du and Du belongs to
Mloc

(
N,X∗(e, a)

)
because Mloc

(
N,X∗(e, a)

)
is weak* closed (cf. statement (ii) of

Proposition 1.3).

Lemma 5.8. Let Y1 be the class of all positive finite measures on N and let
Y2 = Mloc(N,N∗), both endowed with the w* topology. Let T : Y1 × Y2 → [0,∞[ be
the function which associate to each pair (µ, ψ) the total variation of the part of µ
which is absolutely continuous with respect to ψ, i.e.

T (µ, ψ) =

∫
N

dµ

d|ψ|
d|ψ|.
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Then T is a Borel function of Y1 × Y2. Notice that in general T (µ, ψ) ≤ ‖µ‖ and
equality holds if and only µ is absolutely continuous with respect to ψ.

Proof. For every µ ∈ Y1 and every ψ ∈ Y2, let µ ∧ |ψ| be the positive measure
given by

[
µ ∧ |ψ|

]
(B) =

∫
B

[
1 ∧ dµ

d|ψ|
(x)
]
d|ψ|(x) for every Borel set B. (5.22)

One easily checks that µ ∧ |ψ| ≤ µ, ψ and∥∥µ ∧ |ψ|∥∥ = inf
{
µ(B) + |ψ|(N \B) : B is a Borel subset of N

}
. (5.23)

Let F1 be the class of all functions f in CC(N) such that 0 ≤ f ≤ 1 and F2 =
CC(N,N), let G1 and G2 be countable dense subsets of F1 and F2 respectively.
Then (5.23) yields

∥∥µ ∧ |ψ|∥∥ = inf
f∈F1

[ ∫
f dµ+

∫
(1− f) d|ψ|

]
= inf
f∈F1

[ ∫
f dµ+ sup

g∈F2

|g|≤1−f

∫
g d|ψ|

]
= inf
f∈G1

sup
g∈G2

|g|≤1−f

[ ∫
f dµ+

∫
g dψ

]
.(5.24)

Since both µ 7→
∫
f dµ and ψ 7→

∫
g dψ are continuous linear functional on Y1 and

Y2 respectively, (5.24) yields that (µ, ψ) 7→
∥∥µ ∧ |ψ|∥∥ is a Borel function of Y1 × Y2

(and then also (µ, ψ) 7→
∥∥µ∧|n ·ψ|∥∥ is a Borel function for every integer n). Taking

into account (5.22) we obtain

T (µ, ψ) =

∫
N

dµ

d|ψ|
d|ψ| = sup

n

∫
N

[
n ∧ dµ

d|ψ|

]
d|ψ| = sup

n

∥∥µ ∧ |n · ψ|∥∥
and then T is a Borel function of Y1 × Y2.

Proof of Theorem 3.5(iii). The proof of this statement is divided in two steps.

Step 1: Let S be taken as in Lemma 5.7. For λ almost every t ∈M , µt belongs
to E (N,X) and then Definition 3.4 yields a function ut ∈ S so that µt � Dut.
I want to show that for λ almost all t, functions ut ∈ S may be chosen so that
µt � Dut and t 7→ ut is a Borel function of M into S.

For every t ∈M , let Ft be the set of all u ∈ S such that µt � Du, Ft is assumed
not empty for λ almost all t. Let F the set of all pairs (t, u) ∈ M × S such that
t ∈M and u ∈ Ft, let T be given as in Lemma 5.8 and notice that (t, u) belongs to
F if and only if T (µt, Du) = ‖µt‖.

Taking into account Lemmas 5.7 and 5.8 and the fact that t 7→ µt may be taken
Borel measurable, we have that

(t, u) 7−→ T (µt, Du)− ‖µt‖

is a Borel function of M × S and then F is a Borel subset of M × S.
Since Ft is not empty for λ almost every t, M is locally compact and separable

and S is a compact and separable, we may apply Aumann’s measurable selection
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theorem (see [8], Theorem III.22) to find a Borel function t 7→ ut such that ut ∈ Ft
for λ almost all t.

Step 2: let c be a positive function in L1(λ) such that
∫
c dλ = 1, taking into

account Lemma 5.6 and Proposition 1.3(iv), it may be verified that function u given
by

u(x) =

∫
M

c(t)ut(x) dλ(t) for H n a.a. x ∈ N (5.25)

is well–defined, belongs to S and Du =
∫
M

[
c(t) ·Dut

]
dλ(t) and then (cf. formula

(5.5) )

|Du| ≥ ∂u

∂e
=

∫ [
c(t) · ∂ut

∂e

]
dλ(t) ≥ a

∫ [
c(t) · |Dut|

]
dλ(t) (5.26)

In particular, for every Borel set B, |Du|(B) = 0 yields |Dut|(B) = 0 for λ a.a. t
because c(t) > 0 for λ a.a t, hence µt(B) = 0 because µt � |Dut| and eventually
µ(B) = 0. This shows that µ� Du and then µ ∈ E

(
N,X∗(e, a)

)
.

Lemma 5.9. Let (S, η) be an oriented rectifiable set in N such that η belongs to
the interior of the closed convex cone X(e, a) for H n−1 a.a. x ∈ S. Then we may
find countably many open sets An with Lipschitz boundary and inner normal ηn so
that ηn(x) ∈ X(e, a) for all n and H n−1 a.a. x ∈ ∂An and the sets ∂An cover
H n−1 almost all of S.

Proof. To begin with, notice that it is enough to prove this lemma when S is a
subset of a manifold M of class C1 in N .

In this case we have that η(x) is orthogonal to the tangent space of M in x for
H n−1 a.a. x ∈ S (see Definition 1.6).

Let x be a fixed point of S such that η(x) is orthogonal to the tangent space of M
in x and belongs to the interior of X(e, a). Then there exists an open neighborhood
B of x and a continuous orientation ν of M ∩ B such that ν belongs to X(e, a) in
every point of B. Hence η agrees with ν in H n−1 almost every point of S ∩B.

Then we may find r > 0 and an open set D ⊂ B(x, r) so that B(x, r) ⊂ B and
∂D ∩ B(x, r) = M ∩ B(x, r). Then ν is the inner normal of D for every point of
B(x, r). Now we may choose a point t in B(x, r) \D so that x belongs to the open
cone with vertex t given by

C =
{
y : 〈y − t; e〉 ≥

√
1− a2 |y − t|

}
and ∂D ∩ C is relatively compact in B(x, r). Notice that C is an open set with
Lipschitz boundary and the inner normal of C always belongs to X(e, a). Finally
we take A =

{
y ∈ C : y /∈ B(x, r) or y ∈ D

}
.

M x

e
D

r
M

x

t

A

X(e,a)

e e

X*(e,a)

Figure 1
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It may be verified that A is an open set with Lipschitz boundary and its inner
normal belongs to X(e, a) for H n−1 a.a. points of ∂A. Moreover ∂A covers a
neighborhood of x in S and Lemma 5.9 is proved because S may be covered by
countably many neighborhoods of this kind.

Proof of Theorem 3.5(iv). Since η(x) belongs to the interior of X(e, a) for H n−1

a.a. x ∈ S, by Lemma 5.9 we may find countably many open sets An with Lipschitz
boundary and inner normals ηn such that ηn(x) ∈ X(e, a) for all n and H n−1 a.a.
x ∈ ∂An, so that the sets ∂An cover H n−1 almost all of S. For all n, let un be
the characteristic function of the set An. It is well known that each un belongs to
BVloc(N) and

Dun = η∗n ·H n−1 ∂An (5.27)

(see for instance [14], Remark 2.13, or [17], Remark 5.8.3) and then Dun ∈
E
(
N,X∗(e, a)

)
. For every positive integer m, set

Sm =
(
S ∩ ∂Am

)
\
( ⋃
n<m

∂An

)
.

Then H n−1 Sm ∈ E
(
N,X∗(e, a)

)
for all m because it is absolutely continuous

with respect to Dun (see Definition 3.4) and H n−1 S belongs to E
(
N,X∗(e, a)

)
because H n−1 S =

∑
m H n−1 Sm (apply statement (i) of Theorem 3.5).

Proof of Theorem 3.5(v). For every integer n, let Xn be the cone X∗(e, a−1/n),
Bn the set of all points x such that E(µ, x)∩Xn 6= {0} and E(µ, x)∩Xn−1 = {0},
and set µn = µ Bn. Then the sets Bn are pairwise disjoint µ measurable sets
which cover µ a.a. of N and then µ =

∑
µn.

Let n be a fixed integer.
Set C =

{
v ∈ N∗ : |v| = 1

}
. Since E(µn, x) ∩ Xn = E(µ, x) ∩ Xn 6= {0} for

µn a.a. x (cf. statement (iii) of Proposition 2.6), E(µn, x) ∩ Xn ∩ C 6= ø for µ
almost all x and by Proposition 2.11 and Remark 1.14 x 7→ E(µn, x)∩Xn ∩C is µ
measurable.

Hence, by Theorem 1.15 we may find a µ measurable function f : N → N∗ such
that f(x) ∈ E(µn, x) ∩ Xn and |f(x)| = 1 for µn a.a. x. By Theorem 2.12 there
exists a function u ∈ BV (N) such that Du = f · µn + θ where θ ∈M (N,N∗) and
θ ⊥ µn and then there exists a set B such that µn(N \B) = 0 and |θ|(B) = 0.

Hence f · µn = Du B and by the coarea formula (equality (1.9) and (1.10) )
we have that

f · µn = Du B =

∫
R

(
Dut B

)
dH 1(t) =

∫
R
η∗t ·

(
H n−1 St ∩B

)
dH 1(t)(5.28)

µn = |Du B| =
∫
R

∣∣Dut B
∣∣ dH 1(t) =

∫
R

(
H n−1 St ∩B

)
dH 1(t) (5.29)

Since f ·µn ∈M (N,Xn) and (5.28) and (5.29) hold, η∗t ·H n−1 St∩B ∈M
(
N,Xn)

for H 1 a.a. t by Proposition 1.3(v). In particular, η∗t (x) belongs to the interior
of X∗(e, a) for H 1 a.a. t and H n−1 a.a. x ∈ St ∩ B. By Theorem 3.5(iv),
H n−1 St ∩ B ∈ E

(
N,X∗(e, a)

)
for H 1 a.a. t and then µn ∈ E

(
N,X∗(e, a)

)
by Theorem 3.5(iii) and (5.29). Hence µ ∈ E

(
N,X∗(e, a)

)
because µ =

∑
µn and

E
(
N,X∗(e, a)

)
is a strongly closed subset of M (N) (Theorem 3.5(i)).
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Proof of Proposition 3.6. By Theorem 1.15 there exist functions fn ∈ L1(µ,N∗)
for n = 1, 2, . . . such that E(µ, x) is the closure of the set

{
fn(x) : n = 1, 2, . . .

}
for

µ almost all x.
By Theorem 2.12 there exist functions un ∈ BV (N) such that

[
dDun

/
dµ
]
(x) =

fn(x) for µ almost all x and all n and then, for µ almost all x, E(µ, x) is the closure
of the set of all

[
dDun

/
dµ
]
(x). Now it is enough to apply Proposition 1.10.
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zioni in piú variabili. Rend. Sem. Mat. Padova 27 (1957) 284-305.
14 E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathe-

matics 80 (Boston: Birkhäuser, 1984).
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