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Abstract. When f is a convex function of R
h, and k is an integer with 0 < k < h,

then the set Σk(f) :=
{

x : dim(∂f(x)) ≥ k
}

may be covered by countably many
manifolds of dimension h − k and class C2 except an

� h−k negligible subset.
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Introduction

The aim of this paper is to study the structure of the singular set (points of non-
differentiability) of a convex function. When f is a convex function of R

h and k is
an integer such that 0 ≤ k ≤ h, we define

Σk(f) :=
{

x : dim(∂f(x)) ≥ k
}

where ∂f is the subdifferential of f (see Definitions 1.2 and 1.5). It is well-known
that f is differentiable out of the union of all Σk(f) with k > 0 (cf. Proposition 1.6)
and that Σh(f) is a countable set and then it seems a natural problem to study the
dimension and the structure of the sets Σk(f) when 0 < k < h. In the recent paper
[2] it was proved that Σk(f) is a (

�
h−k, h − k) rectifiable set of class C1 (following

[5] we say that a Borel set S ⊂ R
h is a (

� n, n) rectifiable set of class Cm when
� n

almost all of S may be covered by a countable family of n-dimensional submanifolds
of R

h of class Cm, and
�

n denotes as usual the n-dimensional Hausdorff measure
in R

h, see for instance definition 1.1).
The main theorem of this paper improves that result.

Theorem 1. Let f : R
h → R be a convex function and let k be an integer such that

0 < k < h. Then Σk(f) is a (
�

h−k, h−k) rectifiable set of class C2 (cf. Definitions
1.1 and 1.5) and this means that

� h−k almost all of it may be covered by countably
many (h − k)-dimensional submanifolds of class C2.

We recall that when Ω is a convex open subset of R
h and f a real convex function

on Ω, then for every compact set K ⊂ Ω there exists a real convex function f ′ on R
h

? The author is supported by INdAM
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which agrees with f on K. Hence the statement of Theorem 1 may be extended to
every real convex function defined on a convex open subset of R

h.

The next theorem shows that the class of regularity given in Theorem 1 cannot
be improved.

Theorem 2. Let k be a fixed integer such that 0 < k < h and let S be a subset of R
h

which may be covered by countably many (h − k)-dimensional submanifolds of class
C2 included in R

h. Then there exists a convex function f such that S ⊂ Σk(f).

Theorem 1 may be extended to the singularities of convex surfaces (boundary of
h-dimensional convex subsets of R

h). When C is an h-dimensional closed convex
subset of R

h and x ∈ ∂C, we may consider the set � (C, x) of all outer normals of C
in x and then we take Σk(C) :=

{

x ∈ ∂C : dim(� (C, x)) ≥ k
}

for all integers k with
0 ≤ k < h (see Definition 1.7). Then the boundary of C is a Lipschitz manifold of
co-dimension 1 and it is differentiable in every point x out of the union of all Σk(C)
with k > 0. The structure of the set Σk(C) with k > 0 is described by the following
straightforward corollary of Theorem 1.

Theorem 3. Let C be an h-dimensional closed convex subset of R
h and let k be

an integer with 0 ≤ k < h. Then Σk(C) is a (
� h−k−1, h − k − 1) rectifiable subset

of R
h of class C2 (cf. Definitions 1.1 and 1.7). In particular, if we take k = 0 we

obtain that the boundary of C is a rectifiable set of class C2 and co-dimension 1.

Theorem 1 and Theorem 3 may be very useful when studying the generalized
curvatures of convex surfaces in R

h (see [4]) and the structure of weakly defined
minors of second order derivatives of convex functions (see [3] and [1]).

The proof of the C1 rectifiability in [2] is based upon a particular rectifiability
criterion and it may be extended to the singular sets of semi-convex functions as
well. Different proofs of this theorem (for convex functions only) are given in [1] and
[4]. The former paper deals in general with singular sets (points of discontinuity)
of monotone functions (cf. Proposition 1.4) and the rectifiability result is an almost
straightforward corollary of some simple properties of monotone functions. On the
contrary the latter paper approaches the problem from a GMT viewpoint and a
rectifiability theorem is stated for the singularities of a class of surfaces which includes
convex surfaces (and then graphs of convex functions) as a particular case. Moreover
a geometric proof (due to B. White) of the C2 rectifiability of singularities of convex
surfaces in R

3 is given.
In our paper we follow a quite different approach: we prove that the singular

set Σk(f) may be covered by countably many graphs of locally Lipschitz functions
which belong to BV 2

loc (i.e. sets which may be written in the form Φ(G) where Φ
is a linear isometry of R

h and G is the graph of a locally Lipschitz function g in
BV 2

loc(R
h−k, Rk)) and then we show that these graphs are rectifiable sets of class C2.

1. Definitions and Preliminary Results

In the following we shall deal with monotone and convex functions and rectifiable
sets as well and so we need to recall some basic facts and definitions about these
topics. For the general theory of monotone and convex functions see for instance [6]
and [10].

When n is a positive integer, we denote by �n the Lebesgue measure in R
n and

by
� n the n-dimensional Hausdorff measure in every metric space. For the general

properties of Hausdorff measures we refer essentially to [11] and [12].

Definition 1.1. If m, n and h are positive integers with n < h and S is a Borel
subset of R

h, we say that S is a (
� n, n) rectifiable set of class Cm if, for i = 1, 2, . . .,

there exist n-dimensional submanifolds Mi ⊂ R
h of class Cm such that

� n
(

S \
⋃

i

Mi

)

= 0.

in particular every (
� n, n) rectifiable set is the union of countably many sets with

finite n-dimensional Hausdorff measure and then its Hausdorff dimension is at most
n, moreover every countable union of (

� n, n) rectifiable sets of class Cm is a (
� n, n)

rectifiable sets of class Cm.
When no doubts can arise, we simply say Cm rectifiable instead of (

�
n, n) rec-

tifiable of class Cm. The concept of rectifiability of class Cm has been recently
introduced in [5] (unlike our definition, in that paper a (

�
n, n) rectifiable sets are

assumed to have finite n-dimensional Hausdorff measure).
If u and u′ are multifunctions of R

h into R
h (i.e. functions of R

h which take
values in the class of all subsets of R

h), then u + u′ and u−1 are the multifunctions
which take every x in the sets {y + y′ : y ∈ u(x), y′ ∈ u′(x)} and {y : x ∈ u(y)}
respectively. We write u ⊃ u′ when u(x) ⊃ u′(x) for every x. The domain of u is the
set of all x such that u(x) is not empty.

A monotone function of R
h is any multifunction u of R

h into R
h such that

〈y1 − y2;x1 − x2〉 ≥ 0 for all xi ∈ R
h, yi ∈ u(xi) with i = 1, 2. (1.1)

A monotone function is maximal if it is maximal in the class of all monotone functions
with respect to inclusion (⊃). It is obvious that u is a (maximal) monotone function
if and only if u−1 is.

Definition 1.2. By convex functions on R
h we mean real convex functions only, i.e.

functions which are allowed to take finite values only. When f is a convex function
of R

h and x is a point of R
h, we define the subdifferential of f in x as the set ∂f(x)

of all points y ∈ R
h such that

f(x′) ≥ f(x) + 〈y;x′ − x〉 for all x′ ∈ R
h (1.2)

(cf.[6], section II.3, and [10], section 23).

Remark 1.3. When f is a real function of R
h, the subdifferential of f in a point x

is sometimes defined as the set of all y ∈ R
h such that

lim inf
x′→x

f(x′) − f(x) − 〈y;x′ − x〉

|x′ − x|
≥ 0. (1.3)

It is not difficult to prove that when f is convex, (1.2) holds if and only if (1.3) does
and then these two definitions of subdifferential are equivalent for convex functions.

Moreover we remark that a function f : R
h → R is a convex if and only if for

every x ∈ R
h there exists y ∈ R

h such that (1.2) holds. Indeed, if f is convex then
∂f is never empty (cf. Proposition 1.4) and every function f such that ∂f is never
empty is the supremum of all affine functions λ such that f ≥ λ everywhere and then
it is convex (see section 23 of [10]).

About the subdifferential of a convex function, we shall need the following imme-
diate result (cf. [10], sections 23 and 24, and [6], example 2.3.4).
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Proposition 1.4. If f is a convex function on R
h then ∂f is a maximal monotone

function with domain R
n and then ∂f(x) is always a non-empty closed convex set.

Definition 1.5. When C is a non-empty convex set, the dimension of C is defined
as the dimension of the affine hull of C (the affine space spanned by C), that is the
least integer k such that there exists a k-dimensional affine space which includes C
(we remark that every convex set has non-empty interior relative to its affine hull and
then the dimension of a convex set is its Hausdorff dimension; see also [10], section
2). Then, when f is a convex function on R

h, taking into account Proposition 1.4 it
is clear what the dimension of ∂f(x) is. For every integer k with 0 < k ≤ h we set

Σk(f) :=
{

x : dim(∂f(x)) ≥ k
}

.

It may be proved that Σk(f) is always a Borel set (actually a countable union of
closed sets).

Eventually we recall some elementary properties of convex functions and subd-
ifferentials and then we give the definitions of outer normals and singularities of a
convex surfaces.

Proposition 1.6. Let f be convex functions on R
h. Then

(i) f is differentiable in x if and only if ∂f(x) consists of just one element which
actually is the gradient of f in x;
(ii) x is a minimum point of f if and only if 0 ∈ ∂f(x);
(iii) when f ′ is a convex function of R

h, ∂(f + f ′) ⊃ ∂f + ∂f ′ and in particular the
dimension of ∂(f + f ′)(x) is never less than the dimension of ∂f(x);

Statement (i) follows from Theorem 25.1 of [10]; (ii) and (iii) are trivial. Notice
that (iii) may be improved by showing that ∂(f + f ′) = ∂f + ∂f ′ but this is a little
more difficult (see for instance [6], Corollary 2.11).

Definition 1.7. By convex surface in R
h we mean the boundary of any (closed)

convex subset of R
h with non-empty interior (i.e. with dimension h). When C is a

closed subset of R
h with non empty interior, its boundary is an (oriented) Lipschitz

surface of co-dimension 1, and for every x ∈ ∂C we define the set of all outer normals
to C in x, � (C, x), as the set of all unitary vectors y ∈ R

h such that

〈y;x − x′〉 ≥ 0 for all x′ ∈ C. (1.4)

Eventually, for every integer k with 0 ≤ k < h we set

Σk(C) :=
{

x ∈ ∂C : dim(� (C, x)) ≥ k
}

.

Notice that � (C, x) is given by the the intersection of the unitary sphere of
R

h, Sh−1, and the convex cone D of all y ∈ R
h which satisfy (1.4) (actually the

subdifferential in x of the indicator function of C, i.e. the convex function which
takes every point of C in 0 and every point outside C in +∞) and then it is always
non-empty and its (Hausdorff) dimension is the dimension of D minus one.

It may be proved that a closed half-space M is tangent to C in x (i.e. satisfies
C ⊂ M and x ∈ ∂M , cf. [10], section 18) if and only if it may be written in the
form M = {x′ ∈ R

h : 〈y;x − x′〉 ≥ 0} for some y ∈ � (C, x) and ∂C is differentiable
in x (i.e. admits an ordinary (h − 1)-dimensional tangent space in x) if and only if
� (C, x) consists of only one vector.

Moreover, when C is the epigraph of a convex function on R
h, ∂C is the graph of

f and ∂f(t) is closely connected to � (C, x) where x = (t, f(t)); in particular ∂f(t)
is the set of all points −y1/y2 with (y1, y2) in � (C, x). Hence the dimension of ∂f(t)
and � (C, x) are always the same and for every k, Σk(f) = π(Σk(C)) where π is the
projection of R

h × R onto R
h.

2. Proof of the Results

We begin with some important remarks about the conjugate of a convex function.

Proposition 2.1. Let f : R
k → R be a convex function such that f(x) ≥ |x|2 for

all x and let f∗ be its conjugate function (cf. [10], section 12, and [6], section II.3),
i.e. the function defined by

f∗(y) = sup
x∈Rk

[〈y;x〉 − f(x)] for all y ∈ R
k.

Then
(i) f∗ is a real convex function such that f∗(y) ≤ |y|2/4 for all y;
(ii) ∂f∗ = (∂f)−1, and this means that y ∈ ∂f(x) if and only if x ∈ ∂f∗(y).

Proof. (i) is trivial.
Since ∂f is a maximal monotone functions and (∂f∗)−1 is a monotone function, it

is enough to prove the inclusion ∂f ⊂ (∂f∗)−1, namely that y ∈ ∂f(x) always implies
x ∈ ∂f∗(y). Let x ∈ R

k and y ∈ ∂f(x) be fixed. By definition of subdifferential we
obtain that

f(x′) ≥ f(x) + 〈y;x′ − x〉 for all x′. (2.1)

Then (2.1) yields 〈y;x′〉 − f(x′) ≤ 〈y;x〉 − f(x) for all x′. Hence

f∗(y) = sup
x′∈Rn

[〈y;x′〉 − f(x′)] = 〈y;x〉 − f(x)

and moreover

f∗(y′) = sup
x′∈Rn

[〈y′;x′〉 − f(x′)] ≥ 〈y′;x〉 − f(x)

= 〈y′ − y;x〉 + 〈y;x〉 − f(x) = f∗(y) + 〈x; y′ − y〉

and this means that x ∈ ∂f∗(y).

Lemma 2.2. Let f : R
k → R be a convex function such that f(x′) ≥ |x′|2 for all x′,

and suppose that x is a point of R
k such that ∂f(x) includes the open set A. Then

∂f∗(y) = x for all y ∈ A.

Proof. By Proposition 1 we have that ∂f∗(y) = {x′ : y ∈ ∂f(x′)} for all y ∈ R
k.

Hence x ∈ ∂f∗(y) for all y ∈ A. Let y ∈ A and x′ ∈ ∂f∗(y) be fixed. I want to
show that x′ = x. Since A is open, there exist r > 0 such that y + r(x′ − x) belongs
to A. Then x belongs to ∂f∗(y + r(x′ − x)) and, taking into account that ∂f∗ is a
monotone function,

0 ≤
〈

x − x′; (y + r(x′ − x)) − y
〉

= −r|x − x′|2.

Hence x = x′.



  

6 G. Alberti On the structure of singular sets of convex functions 7

Proposition 2.3. Let f : R
k → R be a convex function such that f(x′) ≥ |x′|2 for

all x′ and let x, y ∈ R
k and ε > 0 be given so that ∂f(x) ⊃ B(y, 2ε). Then

xi =
1

ε

[

f∗(y + εei) − f∗(y)
]

for i = 1, . . . , k (2.2)

where x = (x1, . . . , xk) and {e1, . . . , ek} is the standard basis of R
k.

Proof. By Lemma 2.2, ∂f∗(y′) = x for all y′ ∈ B(y, 2ε) and then f∗ is differentiable
with gradient x in every point of B(y, 2ε) (cf. statement (i) of Proposition 1.6) and
(2.2) immediately follows.

In the following we shall consider convex functions defined on the product space
R

n × R
k where n and k are positive integers. We denote by π the projection of

R
n ×R

k on R
k, and when f is a function of R

n ×R
k, for every t ∈ R

n we denote by
ft the function of R

k given by ft : x 7→ f(t, x).
Our strategy is the following: when f is a convex function of R

n×R
k, we consider

the function f̂ given by

f̂(t, y) = [ft]
∗(y) for all (t, y) ∈ R

n × R
k. (2.3)

If we denote by S the set of all points (t, x) such that ∂ft(x) includes a fixed open
ball B(y, 2ε), by Proposition 2.3 we obtain that S is included in the graph of the
function g = (g1, . . . , gk) : R

n → R
k which is given by

gi(t) =
1

ε

[

f̂(t, y + εei) − f̂(t, y)
]

for all t ∈ R
n and i = 1, . . . , k (2.4)

where {e1, . . . , ek} is the standard basis of R
k (cf. formula (2.2)). Then we prove

that g is a Lipschitz function which belongs to BV 2
loc, we show that its graph is a C2

rectifiable set and then we obtain that S is a C2 rectifiable set. Eventually we prove
that the set Σk(f) may be covered by countably many sets of the kind of S.

We begin with a description of the relation between the subdifferential of a convex
function f of R

n × R
k and the subdifferential of ft.

Proposition 2.4. Let f be a convex function of R
n × R

k and let (t, x) be a point
of R

n × R
k. Then ∂ft(x) = π[∂f(t, x)].

Proof. It is obvious that ∂ft(x) ⊃ π[∂f(t, x)]; let’s prove the opposite inclusion.
Let v ∈ ∂ft(x) be fixed and set λ(x′) := f(t, x) + 〈v;x′ − x〉 for all x′ ∈ R

k. By
definition of subdifferential, ft ≥ λ and then the open epigraph of f (i.e. the set of
all points (t′, x′, s) ∈ R

n × R
k × R such that s > f(t′, x′)) and the graph of λ (i.e.

the set of all points (t′, x′, s) such that t′ = t and s = λ(x′)) are disjoint convex sets.
Hence we may apply Hahn-Banach theorem to find an affine function φ such that
f ≥ φ and φt ≥ λ everywhere.

Then f(t, x) ≥ φ(t, x) ≥ λ(x) and since λ(x) = f(t, x) by construction, φ(t, x) =
f(t, x) and then the gradient of φ, w, belongs to ∂f(t, x) because f ≥ φ. Furthermore,
the inequality φt ≥ λ can hold if and only if the gradients of φt and λ are the same,
i.e. π(w) = v. Hence the thesis.

Proposition 2.5. Let f : R
n × R

k be a convex function such that f(t, x) ≥ |x|2 for

all t, x and let f̂ be the function given by formula (2.3), i.e.

f̂(t, y) = [ft]
∗(y) for all t ∈ R

n, y ∈ R
k.

Then f̂ is a real function which is concave with respect to the first variable and is
convex with respect to to the second one.

Proof. By Proposition 2.1 we have that for all t ∈ R
n, f̂t = [ft]

∗ is a real convex

function of R
k. It remains to prove that t 7→ f̂(t, y) is concave for every y ∈ R

k.
Let y ∈ R

k be fixed; then

f̂(t, y) = − inf
x∈Rk

g(t, x) for all t ∈ R
n

where g is the function given by g(t, x) = f(t, x)−〈y;x〉 for all t, x. Since g is convex
and satisfies lim

|x|→∞
g(t, x) = +∞ for every t, it is enough to apply the following

lemma.

Lemma 2.6. Let g : R
n × R

k → R be a convex function such that

lim
|x|→∞

g(t, x) = +∞ for every t ∈ R
n. (2.5)

Then the function h given by t 7→ inf{g(t, x) : x ∈ R
k} is a convex real function of

R
n.

Proof. Let t ∈ R
n be fixed. By (2.5) we have that gt is a coercive convex function

and then it admits at least one minimum point x. Then h(t) = g(t, x) and 0 ∈ ∂gt(x)
(statement (ii) of Proposition 1.6). By Proposition 2.4 there exists v ∈ R

n such that
(v, 0) ∈ ∂g(t, x) and this means that

g(t′, x′) ≥ g(t, x) + 〈v, t′ − t〉 = h(t) + 〈v, t′ − t〉 for all (t′, x′) ∈ R
n × R

k

and then
h(t′) ≥ h(t) + 〈v, t′ − t〉 for all t′ ∈ R

n.

Hence h is a convex function (cf. Remark 1.3).

Let Ω be an open subset of R
n, we recall that function g in the Sobolev space

W 1,1(Ω, Rk) belongs to BV 2(Ω, Rk) when its distributional second order derivative
is (represented by) a finite Radon measure on Ω (see for instance [8] and [9]), and
this means that for all integers i, j, h with 1 ≤ i, j ≤ n and 1 ≤ h ≤ k, there exists a
finite Radon measure on Ω, which we denote by Dijgh, such that

∫

Ω

φ d(Dijgh) =

∫

Ω

(Dijφ)gh d�n for all φ ∈ C∞
c (Ω).

A function g belongs to BV 2
loc(R

n, Rk) when it belongs to BV 2(Ω, Rk) for every
bounded open set Ω ⊂ R

n.

Lemma 2.7. Let f : R
n ×R

k → R be a convex function such that f(t, x) ≥ |x|2 for
all t, x. Let y ∈ R

k and ε > 0 be given and let S be the set of all points (t, x) ∈ R
n×R

k

such that π[∂f(t, x)] ⊃ B(y, 2ε). Then S is included in the graph of a locally Lipschitz
function g : R

n → R
k which belongs to BV 2

loc.

Proof. Let g = (g1, . . . , gk) : R
n → R

k be the function given by (cf. formula (2.4))

gi(t) =
1

ε
[f̂(t, y + εei) − f̂(t, y)] for all t ∈ R

n and i = 1, . . . , k.
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where f̂ is given as in formula (2.3) and Proposition 2.5, and {e1, . . . , ek} is the
standard basis of R

k. By proposition 2.4, π[∂f(t, x)] = ∂ft(x) for every t, x and
then (t, x) ∈ S yields ∂ft(x) ⊃ B(y, 2ε) and Proposition 2.3 yields x = g(t) because

f̂t = [ft]
∗ for all t.

By Proposition 2.5, for every y ∈ R
k, t 7→ f̂(t, y) is a concave real function and

then it is locally Lipschitz (see [10], Theorem 10.4) and belongs to BV 2
loc(R

n) (see
[9]). Hence g too is locally Lipschitz and belongs to BV 2

loc(R
n, Rk).

Now we want to use Lemma 2.7 to prove that given a convex function f of R
n×R

k,
the set of all points (t, x) such that π[∂f(t, x)] has dimension k is a C2 rectifiable set.
In order to do this we need two preliminary lemmas.

Lemma 2.8. Let g : R
n → R

k be a continuous function in BV 2
loc. Then for every

R > 0 and every ε > 0 there exists a function u : R
n → R

k of class C2 and an open
set A such that �n(A) < ε and u(t) = f(t) for all t ∈ BR \A, where BR is the closed
ball with center 0 and radius R (cf. [5], section 3).

Proof. It is enough to consider the case k = 1 only.
Since g is a (continuous) function in BV 2

loc, by statement (i) of Theorem 1 of [8],
for �n almost every point of R

n g has a second order Ln/n−2 differential (an ordinary
second order differential if n ≤ 2) and this means that for �n almost every x ∈ R

n

there exists a polynomial Px with degree less than or equal to 2 such that

(

−

∫

B(x,r)

|g(t) − Px(t)|n/n−2dt
)n−2/n

= o(r2) (2.6)

where the barred integral stands for the mean on the set B(x, r) (with respect to
Lebesgue measure) and the left term of (2.6) must be replaced by sup

{

|g(t)−Px(t)| :

t ∈ B(x, r)
}

if n ≤ 2.
Then Px(x) = g(x) for all x such that (2.6) holds because g is continuous and by

Egoroff’s theorem we may find an open set A such that �n(A) ≤ ε and (2.6) holds
uniformly in x for all x ∈ BR \ A, where BR is the closed ball with center 0 and
radius R. Hence Theorem 3.6.3 (and definition 3.5.3) of [12] yields a function u of
class C2 such that u(x) = g(x) for all x ∈ BR \ A (see also [7]).

Lemma 2.9. Let g : R
n → R

k be a locally Lipschitz function which belongs to
BV 2

loc. Then the graph of g is a (
�

n, n) rectifiable subset of R
n × R

k of class C2.

Proof. It is enough to show that for every R > 0 the set
{

(t, g(t)) : t ∈ B(0, R)
}

is a
C2 rectifiable set.

Let R > 0 be fixed. By Lemma 2.8 we may find functions um : R
n → R

k of
class C2 and open sets Am ⊂ B(0, R) for m = 1, 2, . . . such that g(x) = um(x) for all
x ∈ B(0, R) \ Am and �n(∩Am) = 0.

Set B = ∩Am. Then the graph of the restriction of g on B(0, R) may be written
as D1∪D2 where D1 and D2 are the sets of all points (t, g(t)) with t ∈ B(0, R)\B and
t ∈ B respectively. Since D1 is included in the union of the graphs of the functions
um (which are n-dimensional submanifolds of class C2 of R

n × R
k), it is enough to

prove that
�

n(D2) = 0.
But D2 = g′(B) where g′ : B(0, R) → R

n × R
k is the Lipschitz function given by

g′(t) = (t, g(t)) for all t ∈ B(0, R). Hence a well-known formula gives

� n(D2) =
� n(g′(B)) ≤ (Lip(g′))n�n(B) = 0.

Theorem 2.10. Let f : R
n×R

k → R be a convex function and let S be the set of all
points (t, x) such that π[∂f(t, x)] has dimension k. Then S is a (

� n, n) rectifiable
set of class C2.

Proof. We begin with proving that this statement holds when f satisfies f(t, x) ≥ |x|2

for all t, x.
For every y ∈ R

k and every ε > 0 let S(y, ε) be the set of all points (t, x) such
that π[∂f(t, x)] ⊃ B(y, 2ε) and let � be a countable dense subset of R

k. Since a
convex set in R

k has dimension k if and only if its interior is not empty, S is included
in the (countable) union of all S(y, 1/m) with y ∈ � and m positive integer. Hence
it is enough to prove that S(y, ε) is a C2 rectifiable set for every y ∈ R

k and ε > 0.
Let y and ε be fixed. By Lemma 2.7 there exists a locally Lipschitz function

g : R
n → R

k which belongs to BV 2
loc such that S is included in the graph of g and

then S(y, ε) is a C2 rectifiable set by Lemma 2.9.
Suppose now that f does not satisfy f(t, x) ≥ |x|2 for all t, x. Since f is convex,

there exists an affine function λ with gradient w such that f ≥ λ everywhere and
then we may consider the function f ′ : R

n × R
k → R given by

f ′(t, x) = f(t, x) − λ(t, x) + |x|2 for all t, x;

f ′ is a convex function such that, for all t, x, f ′(t, x) ≥ |x|2, ∂f ′(t, x) ⊃ ∂f(t, x)−w+
(0, 2x) (statement (iii) of Proposition 1.6) and π[∂f ′(t, x)] ⊃ π[∂f(t, x)]− π(w) + 2x.
Hence π[∂f(t, x)] has dimension k only if π[∂f ′(t, x)] has dimension k and then it is
enough to apply Theorem 2.10 to the function f ′.

Proof of Theorem 1. Let k be a fixed integer 0 < k < h.
Let E be a k-dimensional linear subspace of R

h, let πE be the projection of R
h

on E and set
S(E) :=

{

x : dim
[

πE(∂f(x))
]

= k
}

.

Then we may find a linear isometry Φ : R
h−k × R

k → R
h which takes {0} × R

k into
E and R

h−k ×{0} into E⊥. Hence we may apply Theorem 2.10 to the function f ◦Φ
to obtain that S(E) is an (

�
h−k, h− k) rectifiable set of class C2 (we must use the

obvious identity ∂f(Φ(x)) = Φ∗(∂(f ◦ Φ)(x)), see [10], Theorem 23.9).
Furthermore, let � be a countable dense subset of the Grassmann manifold of

all k-planes of R
h. Then a convex set C has dimension greater than or equal to k if

and only if there exists E ∈ � such that πE(C) has dimension k. Hence

Σk(f) :=
{

x : dim(∂f(x)) ≥ k
}

=
⋃

E∈�
S(E)

and then Σk(f) is a (
�

n, n) rectifiable set of class C2.

Lemma 2.11. Let g : R
n → R

k be a function of class C2 with bounded second order
derivative. Then there exists a convex function f : R

n × R
k → R such that Σk(f)

includes the graph of g.

Proof. The proof is divided in two steps.

First we suppose that k = 1. Let c be a constant such that 2c ≥ |D2g(t)| for all
t ∈ R

n and consider the function t 7→ c|t|2 + g(t). This is a function of class C2, its
Hessian matrix in every t is 2cI + D2g(t) and for every v ∈ R

n,

〈

(2cI + D2g(t))v; v
〉

≥ 2c|v|2 − |D2g(t)| |v|2 ≥ 0.
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This means that 2cI + D2g(t) is a positive semi-definite quadratic form for every t
and then t 7→ c|t|2 + g(t) is a convex function (cf. [10], Theorem 4.5). Now take

f(t, x) := (x + c|t|2) ∨ (g(t) + c|t|2) for all t, x ∈ R
n × R: (2.7)

f is convex because it is the supremum of two convex functions and for every t we
have that ft(x) is equal to x + c|t|2 when t ≥ g(t) and to g(t) + c|t|2 when t ≤ g(t).
Hence

∂ft(x) =







{1} if x > g(t),
[0, 1] if x = g(t),
{0} if x < g(t),

π[∂f(t, g(t))] = [0, 1] for all t by Proposition 2.4 and then Σ1(f) includes the graph
of g. Let now k be taken without restriction and write g = (g1, . . . , gk).

Take c such that 2c ≥ |D2gi(t)| for all t ∈ R
n, i = 1, . . . , k, and then set (cf.

formula (2.7))

fi(t, s) := (s + c|t|2) ∨ (gi(t) + c|t|2) for all (t, s) ∈ R
n × R:

we have just proved that every fi is a convex function of R
n × R which satisfies

π[∂fi(t, (gi(t))] = [0, 1] for all t ∈ R
n. Eventually we take

f(t, x) :=

k
∑

i=1

fi(t, xi) for all (t, x) ∈ R
n × R

k.

Then f is a convex function of R
n × R

k such that π[∂f(t, (g(t))] = [0, 1]k for all
t ∈ R

n and then Σk(f) includes the graph of g.

Proof of Theorem 2. We say that a set G ⊂ R
h is a graph if there exists a function

g : R
h−k → R

k of class C2 with bounded second order derivative, and a linear
isometry Φ on R

h such that Φ(G) =
{

(t, x) ∈ R
h : t ∈ R

h−k, x = g(t)
}

. If D
is a subset of R

h which may be covered by countably many (h − k)-dimensional
submanifolds of R

h of class C2, we may find graphs Gm for m = 1, 2, . . . such that
[

∪ Gm

]

⊃ D.
By Lemma 2.11, for every m there exists a convex function fm such that Σk(fm) ⊃

Gm. Then we may find positive real numbers εm so that

εm sup
x∈B(0,m)

|fm(x)| ≤ 2m for all m.

Hence the series
∑

εmfm converges uniformly on every compact set to a convex
function f and since

[

∪ Σk(fm)
]

⊃
[

∪ Gm

]

⊃ D, the proof is complete if we show
that

Σk(f) ⊃
[

⋃

m

Σk(fm)
]

.

Let m and x ∈ Σk(fm) be fixed; we may write f = εmfm + f ′
m where f ′

m is the
convex function given by the sum of all εnfn with n 6= m. Then the dimension of
∂f(x) is not less than the dimension of ∂fm(x) (statement (iii) of Proposition 1.6)
and so x ∈ Σk(f).

Proof of Theorem 3. Let C be a closed convex subset of R
h of dimension h and take

f(x) := dist(, Cx) for all x ∈ R
h. Then f is a convex function (cf. [10], sections 4

and 5) and we claim that

∂f(x) ⊃
{

ty : t ∈ [0, 1], y ∈ � (C, x)
}

for all x ∈ ∂C. (2.8)

Hence Σk+1(f) ⊃ Σk(C) and the thesis follows from Theorem 1.
Let x ∈ ∂C, t ∈ [0, 1] and y ∈ � (C, x) be fixed.
We want to show that f(x′) ≥ 〈ty;x′−x〉 for all x′ ∈ R

h. By definition of � (C, x),
〈y;x−x′′〉 ≥ 0 for all x′′ ∈ C; then the half-space M := {x′′ : 〈y;x−x′′〉 ≥ 0} includes
C and this yields, for every x′ ∈ R

h,

f(x′) := dist(x′, C) ≥ dist(x′, M) = 0 ∨ 〈y, x′ − x〉 ≥ 〈ty, x′ − x〉.
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