TEORIA DELLE CORRENTI / THEORY OF CURRENTS Dottorato in Matematica, a.a. 2023-24

Proposte per i seminari d'esame [versione: 2 agosto 2025].

Per ogni seminario verra data una traccia più dettagliata di quella riportata sotto (anche se la maggior parte dei risultati sono contenuti nel libro di Federer). La stella indica i seminari a mio parere più impegnativi.

1. Approssimazione in massa delle correnti intere e normali tramite correnti poliedrali.

Vale il seguente miglioramento del teorema di approssimazione poliedrale: una k-corrente T intera (risp. normale) in \mathbb{R}^n è il limite in norma flat da una successioni di correnti poliedrali T_n a molteplicità intera (risp. reale) tali che $\mathbb{M}(T_n) \to \mathbb{M}(T)$ e $\mathbb{M}(\partial T_n) \to \mathbb{M}(\partial T)$ (nel teorema di deformazione poliedrale si ha solo che le masse $\mathbb{M}(T_n)$ e $\mathbb{M}(\partial T_n)$ sono controllate da $\mathbb{M}(T)$ e $\mathbb{M}(\partial T)$ rispettivamente).

Il seminario consiste nel dare una dimostrazione dettagliata di questo fatto, completando la traccia data sul libro di Federer.

Non ancora assegnato.

2. Decomposizione delle correnti intere in componenti indecomponibili.

Una k-corrente intera T si dice decomponibile se può essere scritta come $T = T_1 + T_2$ con T_1 , T_2 correnti intere non banali tali che $\mathbb{M}(T) = \mathbb{M}(T_1) + \mathbb{M}(T_2)$ e $\mathbb{M}(\partial T) = \mathbb{M}(\partial T_1) + \mathbb{M}(\partial T_2)$. Ogni corrente intera T si scrive come somma di una successione di correnti intere indecomponibili. Il seminario consaiste nel dare una dimostrazione dettagliata di questo fatto, completando la traccia data sul libro di Federer.

Assegnato a Virginia Lorenzini, presentato il 30 settembre 2024.

3. Struttura delle correnti intere di dimensione 1.

Una 1-corrente T intera in \mathbb{R}^n si scrive come somma di una successione di correnti T_i associate a curve Lipschitziane semplici γ_i , tutte chiuse tranne un numero finito, e tali che $\mathbb{M}(T)$ è uguale alla somma delle lunghezze delle curve γ_i .

Assegnato a Luca Vantaggio, presentato il 30 ottobre 2024.

4. Decomposizione di Smirnov per 1-correnti normali.*

Un noto teorema di S. Smirnov (Decomposition of solenoidal vector charges into elementary solenoids...) dice che una 1-corrente T normale in \mathbb{R}^n si scrive come integrale di una famiglia di 1-correnti T_s con il parametro s che varia in un opportuno spazio di misura, in modo tale che: a) l'integrale di $\mathbb{M}(T_s)$ è uguale a $\mathbb{M}(T_s)$; b) l'integrale di $\mathbb{M}(\partial T_s)$ è uguale a $\mathbb{M}(\partial T)$; c) ogni T_s è la 1-corrente associata ad un cammino Lipschitziano oppure è una 1-corrente "solenoidale". Una variante di questo enunciato dice che si può ottenere una decomposizione analoga in cui tutte le T_s sono 1-correnti associate a cammini Lipschitziani, a patto di modificare la richiesta b) come segue: l'integrale di $\mathbb{M}(\partial T_s)$ è minore o uguale a $\mathbb{M}(\partial T)$ più ε (numero positivo scelto in precedenza).

Il seminario consiste nel presentare una dimostrazione di questi enunciati completando la traccia fornita dal docente.

Assegnato a Matteo Palmieri, presentato il 4 giugno 2024.

5. Slicing di correnti di massa finita e di correnti normali.*

Si tratta di completare la teoria accennata a lezione, dando una definizione precisa di slicing per una corrente di massa finita rispetto ad una funzione di classe C^1 , dimostrando l'unicità dello slicing; le formule vista a lezione per lo slicing delle correnti rettificabili e normali, ed infine estendendo lo slicing delle correnti normali alle mappe Lipschitziane.

Assegnato a Filippo Paiano, presentato il 13 giugno 2024.

6. Calibrazioni.*

Una calibrazione per una k-corrente T_0 in \mathbb{R}^n è una k-forma esatta ω di co-massa al più 1 (in ogni punto di \mathbb{R}^n) tale che $T_0(\omega) = \mathbb{M}(T_0)$. L'esistenza di una calibrazione implica che T_0 minimizza

la massa tra tutte le correnti normali T con lo stesso bordo di T_0 ; come esempio si mostra la calibrazione del cono singolare di Simons (una versione particolarmente semplice è stata proposta da G. De Philippis ed E. Paolini, A short proof of the minimality of Simons cone).

Si dimostra inoltre che ogni corrente T_0 che minimizza la massa tra tutte le correnti normali T con lo stesso bordo ammette una calibrazionem anche se definita in senso molto debole (H. Federer, Real Flat Chains, Cochains and Variational Problems).

Assegnato a Federico Vitillaro, presentato il 31 maggio 2024.

7. Forma di Kähler e minimalità delle superfici complesse.

La forma di Kähler è una 2k-forma esatta a coefficienti costanti in $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ che calibra ogni (pezzo di) superficie complessa, anche singolare; ne segue che ogni superficie complessa è una superficie minima; questo fatto è una conseguenza immediata della disuguaglianza di Wirtinger. Il seminario consiste nella dimostrazione della disuguaglianza di Wirtinger (e delle varie conseguenze) e nel far vedere che sotto opportune ipotesi è possibile associare al luogo di zeri E di un polinomio complesso una struttura di corrente rettificabile, e che l'insieme dei punti singolari di E non "genera" bordo.

Assegnato a Marco Vergamini, presentato il 17 maggio 2024.

8. Un primo risultato di regolarità per le correnti minime.*

Sia T una k-corrente intera che risolve il problema di Plateau. Si dimostra che in tutti i punti del supporto di T la densità k dimensionale di T è limitata dall'alto e dal basso da costanti positive e finite. Ne segue che il supporto coincide a meno di un insieme \mathscr{H}^k -nullo con l'insieme rettificabile E associato alla corrente, ovvero che E può essere preso chiuso.

Il seminario consiste nel completare una traccia di dimostrazione proposta dal docente.

Assegnato a Matteo Carducci, presentato il 31 maggio 2024.

9. Teorema isoperimetrico per correnti intere.*

Consideriamo una k-corrente intera T con supporto contenuto in U aperto regolare di \mathbb{R}^n (o superfice n-dimensionale) tale che $T = \partial S_0$ con S_0 corrente con supporto contenuto in U. Allora T si scrive come $T = \partial S$ con S corrente con supporto contenuto in U che soddisfa la disuguaglianza isoperimetrica $\mathbb{M}(S) \leq C\mathbb{M}(T)^{1+1/k}$ con C = C(n,k)

Assegnato a Chiara Gambicchia, presentato il 6 giugno 2024.

10. Omologia definita in termini di correnti e problema di Plateau omologico.*

Consideriamo una k-corrente intera T con supporto contenuto in U aperto regolare di \mathbb{R}^n (o superfice n-dimensionale) e indichiamo con [T] la classe di tutte le correnti intere T' cobordanti a T in U, vale a dire che si scrivono come $T' = T + \partial S$ con S corrente intera con supporto contenuto in U. Vale allora che: (i) [T] è chiusa; (ii) [T] contiene una corrente poliedrale. Ne segue che l'omologia di U definita in termini di correnti intere coincide con quella definita in termini di catene poliedrali, e che ogni classe di omologia ammette un elemento di massa minima.

Non ancora assegnato.

11. Jacobiani distribuzionali di mappe a valori in sfere.

Dato Ω aperto in \mathbb{R}^d e una mappa regolare $u:\Omega\to\mathbb{R}^k$ con $2\leq k\leq d$, si definisce lo Jacobiano k-dimensionale $J_ku:=du_1\wedge\cdots\wedge du_k$, che può essere canonicamente identificato con una corrente senza bordo di dimensione d-k in Ω .

Per p sufficientemente grande l'operatore J_k può essere esteso per continuità alle mappe u nello spazio di Sobolev $W^{1,p}(\Omega,\mathbb{R}^k)$, e in tal caso si parla di Jacobiano distribuzionale. Un caso particolarmente interessante è quello delle mappe u a valori nella sfera \mathbb{S}^{k-1} : mentre per le mappe regolari $J_k u = 0$, per quelle di Sobolev $J_k u$ può essere non nullo: per esempio, se k = d e u(x) := x/|x| allora $J_k u$ è una delta di Dirac concentrata nella singolarità di u (cioè nell'origine). Più in generale si può dimostrare che se $J_k u$ ha massa finita allora $J_k u$ è una (n - k)-corrente intera senza bordo che codifica la "singolarità topologica" della mappa u.

La letteratura sulla struttura degli Jacobiani distribuzionali è vasta; il teorema summenzionato si trova in G. Alberti, S. Baldo, G. Orlandi, Functions with prescribed singularities).

Non ancora assegnato.

12. Un'altra dimostrazione del teorema di compattezza per le correnti intere.

Oltre a quella illustrata nel corso ci sono diverse dimostrazioni relativamente elementari del teorema di compattezza (o di chiusura) delle correnti intere di Federer e Fleming, per esempio quella dovuta a Brian White, A new proof of the compactness theorem for integral currents. Non ancora assegnato.

13. Correnti a coefficienti in gruppi.*

È possibile modificare la definizione di corrente rettificabile chiedendo che la molteplicità sia una funzione a valori in un gruppo abeliano normato G invece che in \mathbb{Z} o in \mathbb{R} ; Si definisce quindi per completamento rispetto alla norma flat lo spazio delle correnti flat a coefficienti in un gruppo e il relativo operatore di bordo. Uno dei teoremi più significativi in questo ambito, dovuto a Brian White, caratterizza i gruppi G per cui vale l'analogo del teorema di compattezza di Federer e Fleming (chiaramente \mathbb{Z} è uno di questi gruppi, mentre \mathbb{R} non lo è).

Referenza: B. White, Rectifiability of Flat Chains.

Assegnato a Matteo Gori.