
 

Networking
For a given dataset Du we aim to minimise the empirical risk

10 Effo f elf.ly y tuning error

For an alorithm ft we aim to characterise theoptimisation ena
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While in some cases this can bedone explicitly e.g linearregression in general

the problem of findingtheminimumof a function is hard

Onemethod to hopefully solve thisproblem move sequentially in the

direction in ofsteepestdescent of 9 byupdating
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for a smell timestepparameter p This method is called gradientdescent

the updatereeds One re DoRlea GD

ate Why usingthis and not trying to solve DORIO o

Computation of DOR is cheap consider
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In the above update provided that we know and ze

we are computing a complicated derivative bytaking a

product of known numbers te were evaluated to findfolx
so that
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To study the dynamics of te we write formally
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Based on the above one expects that Oa Tap where I R

solves

R
gradient flow

Def a differentiablefunction F R is L lipschitrsmooth if
11Flo Flo D F10to o 11 1100112 for a L o

Lemurs if l Lipschitr smooth Dof is L lipschitr continuous
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Read Let Fe 210 Then if F is L lipschittsmooth we have
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Lemme The solution to GF exists and is unique

PE Consequence of classical existence and uniqueness of solution
to ODEs with Lipschitz vector fields

From now on we set F R

Lemurs Let DR he lipschitt For every Tso there exists so at
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By lipschitz smoothness we havethat ftp oRIE c
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This resultjustifiesthe useof GF instead of GD

Q whendoes GF converge and when can we found
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Reward Since
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we have R Ot Rla
So if R is bounded frombelow as t.sn bymonotone convergen

theorem R 19 converges

thisdoes NOT show that it converges
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However wecan't say muchaboutoptimalityoflimitpoint



Example linear regression used TX A1

210 FIX 0 yl G XX X'y

RIG f 1 1 7 ix 1yl

f 119 0 11 OA Q Darlet C Ot Q XT Ot y s

c 0 9 TX 19 0 1 d 10 0 1
I 119 0 1 e

t
11 0 1

This happen because is strongly convex

10 RIA DoR10 0 07 4100 1DIR E 10 0 1

10 G TX10 0 3

8



The convergence properties of GF are guaranteed when R is convex

Def a differentiable R is dstrongly convex for ie IR if
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Lemma If P is convex x stronglyconvexwith i e if DR 0 1 0 GeminR

PE trivial fromdefinition

Lemme Let R be 1 convex then the following holds
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Proof Consider
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adding the above to the definition of Astronglyconvexwe are done

Tem Let R be d strongly convex end be theminimizer then
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Pef Setting 0 O f DRIO in we get
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Let Rle be d convex ÉÉ thereexists a unique tend
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Lemme Essonne R is L smooth I strongly convex
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Gradient flowsfor convex functionals

Example Consider now the case where some eigenvalues of TX are 0
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Lee Let It converge to and there exists N Q at

DRIO e e't OEN then for a sufficientlysmall

Ip 115 0 1 Cp

Pf Let T be such that It e N


