

Model network training

For a given dataset D_n , we aim to minimize the empirical risk

$$\hat{R}(\theta) = \hat{R}(f_\theta) = \frac{1}{n} \sum_{j=1}^n \epsilon(f_\theta(x_j), y_j) \quad (\text{training error})$$

For an algorithm \mathcal{A} , we aim to characterize the optimization error

$$\hat{R}(\mathcal{A}(D_n)) - \inf_{f \in \mathcal{F}} \hat{R}(f)$$

While in some cases this can be done explicitly (e.g. linear regression) in general the problem of finding the minimum of a function \hat{R} is hard.

One method to (hopefully) solve this problem: move sequentially in the direction (in Θ) of steepest descent of \hat{R} by updating

$$\theta \leftarrow \theta - \gamma D_\theta \hat{R}(\theta)$$

for a small timestep parameter γ . This method is called gradient descent:

The update reads:
$$\theta_{k+1} = \theta_k - \gamma_k D_\theta \hat{R}(\theta_k) \quad (\text{GD})$$

Note: Why using this and not trying to solve $D_\theta \hat{R}(\theta) = 0$?

Computation of $D_\theta \hat{R}$ is cheap: consider

$$D_{w_{11}^1} f(\theta) = \sigma_{L+1}^{-1}(z_{L+1}(x)) W^L \sigma_L^{-1}(z_L(x)) \dots \sigma_1^{-1}(z_1(x)) \cdot x$$

In the above update, provided that we know σ'_e and z_e we are computing a complicated derivative by taking a product of known numbers (z_e were evaluated to find $f_e(x)$)

so that

$$\begin{aligned}\theta_{e+1} &= \theta_e - \gamma_e D_s \hat{R}(\theta_e) \\ &= \theta_e - \gamma_e \underbrace{\frac{1}{n} \sum_{j=1}^n}_{\text{"easy"}} \underbrace{D_s f_{\theta_e}(x_j)}_{\text{"easy": just evaluate } f_{\theta_e}} \underbrace{D_f e(f_{\theta_e}(x_j), y_j)}_{\text{just evaluate } f_{\theta_e}}\end{aligned}$$

To study the dynamics of θ_e we write formally

$$\theta_{e+1} = \theta_e - \gamma D_s R(\theta_e) \rightarrow \frac{\theta_{e+1} - \theta_e}{\gamma} = - D_s R(\theta_e)$$

Based on the above, one expects that $\theta_e \approx \bar{\theta}_{e_0}$ where $\bar{\theta}: \mathbb{R}_+ \rightarrow \Theta$ solves

$$\begin{cases} \frac{d}{dt} \bar{\theta}_t = - D_s R(\bar{\theta}_t) \\ \bar{\theta}_0 = \theta_0 \end{cases} \quad (\text{gradient flow})$$

Def a differentiable function $F: \Theta \rightarrow \mathbb{R}$ is L -Lipschitz smooth if

$$\|F(\theta') - F(\theta) - D_\theta F(\theta)(\theta' - \theta)\| \leq \frac{L}{2} \|\theta - \theta'\|^2 \quad \text{for a } L \geq 0$$

Lemma: F L -Lipschitz smooth $\Leftrightarrow D_\theta F$ is L -Lipschitz continuous

Pf: " \Leftarrow " Taylor $F(\theta') = F(\theta) + \int_{\theta}^{\theta'} D_\theta F(\eta) d\eta$

$$= F(\theta) + \int_{\theta}^{\theta'} D_\theta F(\theta) + (D_\theta F(\eta) - D_\theta F(\theta)) d\eta$$

$$\begin{aligned}
 &= F(\theta) + D_\theta F(\theta)(\theta' - \theta) + \int_{\theta}^{\theta'} D_\theta F(\eta) - D_\theta F(\theta) d\eta \\
 &\leq F(\theta) + D_\theta F(\theta)(\theta' - \theta) + \frac{L}{2} \|\theta - \theta'\|^2
 \end{aligned}$$

$$\Rightarrow (D_\theta F(\theta) - D_\theta F(\theta'))(\theta - \theta')$$

Remark: Let $F \in C^2(\Theta)$. Then if F is L -Lipschitz smooth we have

$$-L \leq \|D_\theta^2 F(\theta)\| \leq L$$

$$\text{Indeed for } \|\eta\|=1: \| \eta^T D_\theta^2 F(\theta) \| = \lim_{h \rightarrow 0} \left\| \frac{D_\theta F(\theta + h\eta) - D_\theta F(\theta)}{h} \right\| \leq \frac{L \|h\eta\|}{h} = L$$

Lemma: The solution to (GF) exists and is unique

PF: Consequence of classic existence and uniqueness of solution to ODEs with Lipschitz vector fields.

From now on we set $F = R$

Lemma: Let $D_\theta R$ be Lipschitz. For every $T > 0$ there exists $C > 0$ s.t

$$\|\bar{\theta}_{t+\delta} - \bar{\theta}_t\| \leq C \delta. \quad \forall \delta \in \{0, \dots, \lfloor \frac{T}{\delta} \rfloor\}$$

Proof: $\bar{\theta}_{t+\delta} = \bar{\theta}_t + \delta D_\theta R(\bar{\theta}_t) + \underbrace{\int_t^{t+\delta} D_\theta R(\bar{\theta}_s) - D_\theta R(\bar{\theta}_t) ds}_{\delta^2}$

And we have

$$\left\| \int_t^{t+\delta} D_\theta R(\bar{\theta}_s) - D_\theta R(\bar{\theta}_t) ds \right\| \leq \delta \sup_{s \in (t, t+\delta)} \|D_\theta R(\bar{\theta}_s) - D_\theta R(\bar{\theta}_t)\| \leq \delta \sup_{s \in (t, t+\delta)} \|\bar{\theta}_s - \bar{\theta}_t\|$$

$$\leq \delta^2 \sup_{s \in [t, t+\delta]} \|D_\theta R(\bar{\theta}_s)\|$$

By Lipschitz smoothness we have that $\sup_{t \in [0, T]} D_\theta R(\bar{\theta}_t) \leq C$

$$\begin{aligned} e_{\theta_{t+1}} &= \|\bar{\theta}_{(\theta_t)_t} - \theta_{\theta_{t+1}}\| = \|\bar{\theta}_{\theta_t} - \delta D_\theta R(\bar{\theta}_t) - \theta_t + \delta D_\theta R(\theta_t)\| + C\delta^2 \\ &\leq (1 + \delta\lambda) e_{\theta_t} + C\delta^2 \end{aligned}$$

$$\Rightarrow e_{\theta_{t+1}} = C\delta^2 \sum_{j=1}^t (1 + \lambda\delta)^j = \frac{C\delta^2}{\lambda\delta} ((1 + \lambda\delta)^{t+1} - 1) \leq \frac{C\delta}{\lambda} (e^{\lambda\delta(t+1)} - 1) \leq C\delta$$

□

This result justifies the use of GF instead of GD.

Q: when does (GF) converge, and when can we bound

$$\hat{R}(f_\theta) - \inf_{f \in \mathcal{F}} \hat{R}(f) \quad ?$$

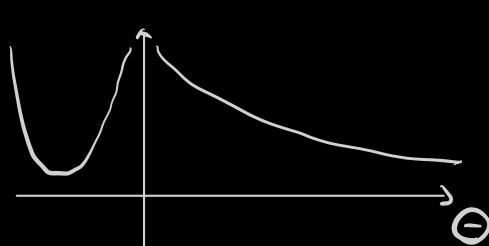
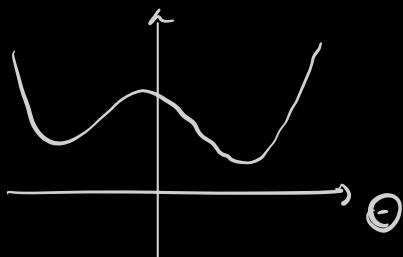
Remark: Since

$$\frac{d}{dt} R(\theta_t) = D_\theta R(\theta_t) \cdot (-D_\theta R(\theta_t)) = -\|D_\theta R(\theta_t)\|^2 \leq 0$$

we have $R(\theta_t) \leq R(\theta_0)$.

So if R is bounded from below, as $t \rightarrow \infty$ by monotone convergence theorem $R(\theta_t)$ converges.

⚠ This does NOT show that θ_t converges!



However, we can't say much about optimality of limit points.

Example (Linear regression) and $X^T X \succeq \lambda \mathbb{1}$

$$\hat{R}(\theta) = \frac{1}{n} \|X\theta - y\|_2^2 \implies \theta_* = (X^T X)^{-1} X^T y$$

$$\implies R(\theta_*) = \frac{1}{n} \|X(X^T X)^{-1} X^T y - y\|_2^2$$

$$\frac{d}{dt} \|\theta_t - \theta_*\|_2^2 = \langle \theta_t - \theta_*, -D_\theta \hat{R}(\theta_t) \rangle = -\langle \theta_t - \theta_*, X^T (X\theta_t - y) \rangle$$

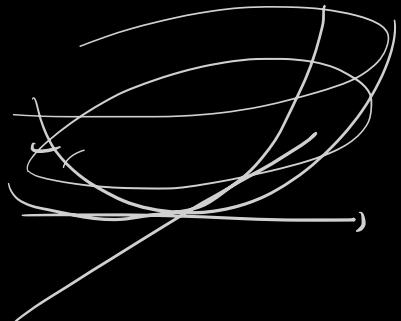
$$= -\langle \theta_t - \theta_*, X^T X (\theta_t - \theta_*) \rangle \leq -\lambda \|\theta_t - \theta_*\|_2^2$$

$$\stackrel{G}{\implies} \|\theta_t - \theta_*\|_2^2 \leq e^{-\lambda t} \|\theta_0 - \theta_*\|_2^2$$

Thus happens because \hat{R} is strongly convex.

$$\hat{R}(\theta) \cdot \hat{R}'(\theta_*) = D_\theta \hat{R}(\theta_*) \cdot (\theta - \theta_*) + \frac{1}{2} (\theta - \theta_*)^T D_\theta^2 \hat{R}(\theta_*) (\theta - \theta_*)$$

$$= \frac{1}{2} (\theta - \theta_*)^T X^T X (\theta - \theta_*)$$



The convergence properties of GF are guaranteed when R is convex.

Def: a differentiable $\hat{R}: \Theta \rightarrow \mathbb{R}$ is λ -strongly convex for $\lambda \in \mathbb{R}$ if.

$$(*) \quad \hat{R}(\theta') \geq \hat{R}(\theta) + \langle D_{\theta} \hat{R}(\theta), \theta' - \theta \rangle + \frac{\lambda}{2} \|\theta' - \theta\|^2 \quad \text{for any } \theta, \theta' \in \Theta$$

Lemma: If R is convex (λ -strongly convex with $\lambda=0$) if $D\hat{R}(\theta_*) = 0$, $\theta_* \in \min R$

Pf: trivial from definition.

Lemma Let \hat{R} be λ -convex, then the following holds:

$$\langle D_{\theta} \hat{R}(\theta') - D_{\theta} \hat{R}(\theta), \theta' - \theta \rangle \geq \lambda \|\theta' - \theta\|^2$$

Proof: Consider:

$$\hat{R}(\theta') \geq \hat{R}(\theta) + \langle D_{\theta} \hat{R}(\theta), \theta' - \theta \rangle + \frac{\lambda}{2} \|\theta' - \theta\|^2$$

adding the above to the definition of λ -strongly convex we are done \square

Thm: Let R be λ -strongly convex and θ_* be the minimizer, then

$$\|D_{\theta} R(\theta)\|_2^2 \geq 2\lambda (R(\theta) - R(\theta_*))$$

Proof: Setting $\theta' = \theta - \frac{1}{\lambda} D_{\theta} R(\theta)$ in $(*)$ we get

$$R(\theta_*) \geq R(\theta) - \frac{1}{\lambda} \|D_{\theta} R(\theta)\|^2 + \frac{1}{2\lambda} \|D_{\theta} R(\theta)\|^2 = R(\theta) - \frac{1}{2\lambda} \|D_{\theta} R(\theta)\|^2$$

Thm: Let $R(\theta)$ be λ -convex, ^{L-smooth.} Then there exists a unique θ^* and

$$\|\bar{\theta}_t - \theta_*\|^2 \leq \|\bar{\theta}_0 - \theta_*\|^2 e^{-2\lambda t}$$

$$R(\bar{\theta}_*) - R(\theta_*) \leq (R(\bar{\theta}_0) - R(\theta_*)) e^{-2\lambda t}$$

$$\begin{aligned}
 \text{Proof: } \frac{d}{dt} \frac{1}{2} \|\bar{\theta}_t - \theta_*\|^2 &= \langle \bar{\theta}_t - \theta_*, \frac{d}{dt} \theta_t \rangle \\
 &= - \langle \bar{\theta}_t - \theta_*, D\mathcal{R}(\bar{\theta}_t) - D\mathcal{R}(\theta_*) \rangle \\
 &\leq -\lambda \|\bar{\theta}_t - \theta_*\|^2
 \end{aligned}$$

→ Grönwall

$$\text{Similarly } \frac{d}{dt} \mathcal{R}(\theta_t) - \mathcal{R}(\theta_*) = \langle D\mathcal{R}(\theta_t), \dot{\theta}_t \rangle$$

$$\begin{aligned}
 \text{Then } &= - \|D\mathcal{R}(\theta_t)\|^2 \\
 &\leq -2\lambda (\mathcal{R}(\theta_t) - \mathcal{R}(\theta_*))
 \end{aligned}$$

→ Grönwall

Lemma: Assume \mathcal{R} is L -smooth, λ strongly convex.

$$\text{Choose } \delta = \frac{1}{L}. \text{ Then. } \mathcal{R}(\theta_t) - \mathcal{R}(\theta_*) \leq e^{-\frac{t}{L}}(\mathcal{R}(\theta_0))$$

$$\text{PF: } \mathcal{R}(\theta_t) = \mathcal{R}(\theta_{t-1} - \frac{1}{L} D\mathcal{R}(\theta_{t-1})) \leq \mathcal{R}(\theta_{t-1}) - \frac{1}{L} \|D\mathcal{R}(\theta_{t-1})\|^2$$

$$\begin{aligned}
 \implies \mathcal{R}(\theta_t) - \mathcal{R}(\theta_*) &\leq \mathcal{R}(\theta_{t-1}) - \mathcal{R}(\theta_*) - \frac{1}{L} \|D\mathcal{R}(\theta_{t-1})\|^2 \\
 &\quad + \frac{1}{L} \|D\mathcal{R}(\theta_{t-1})\|^2 \\
 &\leq \left(1 - \frac{1}{L}\right) (\mathcal{R}(\theta_{t-1}) - \mathcal{R}(\theta_*))
 \end{aligned}$$

D

Gradient flows for convex functionals.

Example: Consider now the case where some eigenvalues of $X^T X$ are 0.

$$\frac{d}{dt} \theta_t - \theta_* = -X^T X (\theta_t - \theta_*) \Rightarrow \theta_t - \theta_* = e^{-X^T X t} (\theta_0 - \theta_*)$$

$$R(\theta_t) - R(\theta_*) = \left(\frac{1}{2} (\theta_t - \theta_*) X^T X (\theta_t - \theta_*) \right) = \frac{1}{2} (\theta_0 - \theta_*) \underbrace{e^{-X^T X t} e^{-X^T X t}}_{A(t)} (\theta_0 - \theta_*)$$

$$\text{Eig}(A(t)) = e^{-\lambda t} \cdot \lambda \cdot e^{-\lambda t} = \frac{1}{t} (\lambda t) e^{-\lambda t} \leq \frac{1}{t}$$

Theorem: Let $R(\theta)$ be convex and Lipschitz smooth. Then

$$R(\bar{\theta}_t) - R(\bar{\theta}_*) \leq C \frac{1}{t}$$

$$\text{Proof: } R(\theta') \geq R(\theta) - D_\theta R(\theta)(\theta' - \theta)$$

$$\Rightarrow \frac{d}{dt} \frac{1}{2} \|\theta_t - \theta_*\|^2 = (\theta_t - \theta_*) (-D_\theta R(\theta_t)) \\ \leq R(\theta^*) - R(\theta_t)$$

$$\Rightarrow \int_0^t R(\theta_s) - R(\theta_*) ds \leq -\frac{1}{2} \|\theta_t - \theta_*\|^2 + \frac{1}{2} \|\theta_0 - \theta_*\|^2 \leq \frac{1}{2} \|\theta_0 - \theta_*\|^2$$

$$\Rightarrow \frac{1}{t} \int_0^t R(\theta_s) ds - R(\theta_*) \leq \frac{1}{2t} C_0$$

$$\text{but } \frac{1}{t} \int_0^t R(\theta_s) ds \geq R(\theta_*) \quad \frac{d}{dt} R(\theta_t) \leq 0$$

$$\Rightarrow R(\theta_*) - R(\theta_*) \leq \frac{1}{2t} C_0$$

□

Lemma: Let $\bar{\theta}_t$ converge to θ_* and there exists $N(\theta_*)$, s.t $DR(\theta) \geq \varepsilon^2/4 \quad \forall \theta \in N$ then for γ sufficiently small.

$$\sup_t \|\bar{\theta}_t - \theta_t\| \leq C\gamma$$

Pf: Let T be such that $\bar{\theta}_T \in N$.