

Deep Learning theory - Lecture 2

[0,1]

for a given $P, \epsilon, \mathcal{F}_0, \mathcal{F}$ we study

$$\Delta(\mathcal{D}_n) = R(\mathcal{A}(\mathcal{D}_n)) - \inf_{f: \mathcal{X} \rightarrow \mathcal{Y}} R(f)$$

Population Risk decomposition:

$$\underbrace{R(\hat{f}_\theta) - \inf_{f: \mathcal{X} \rightarrow \mathcal{Y}} R(f)}_{\text{population risk.}} = \underbrace{R(\hat{f}_\theta) - \inf_{\hat{\theta} \in \Theta} R(\hat{f}_{\hat{\theta}})}_{\text{estimation err.}} + \underbrace{\inf_{\theta \in \Theta} R(\hat{f}_{\theta}) - \inf_{f: \mathcal{X} \rightarrow \mathcal{Y}} R(f)}_{\text{approximation err.}}$$

ANALYSIS (\mathcal{F})

Question: What is an (artificial) neural network?

What is the corresponding \mathcal{F}_0 ? How big is it?

"Definition" of neural network:

Neural networks are a class of functions combining (usually pointwise) nonlinear operations - the neurons - through linear maps / transformations / connections - the network

Different connection structures / nonlinearities give different NN.

1) Single (hidden) layer neural networks (shallow)

Def: Let $X = \mathbb{R}^d$. A single layer neural network of width $n \in \mathbb{N}$ is a function of the form:

$$\hat{f}_\theta(x) = \alpha \cdot \sum_{j=1}^n a_j \sigma(w_j \cdot x + b_j)$$

where • $\alpha \in \mathbb{R}$ is the scaling of the network

• $a_j \in \mathbb{R}^{d'}$ are the output weights

• $w_j \in \mathbb{R}^d$ are the input weights

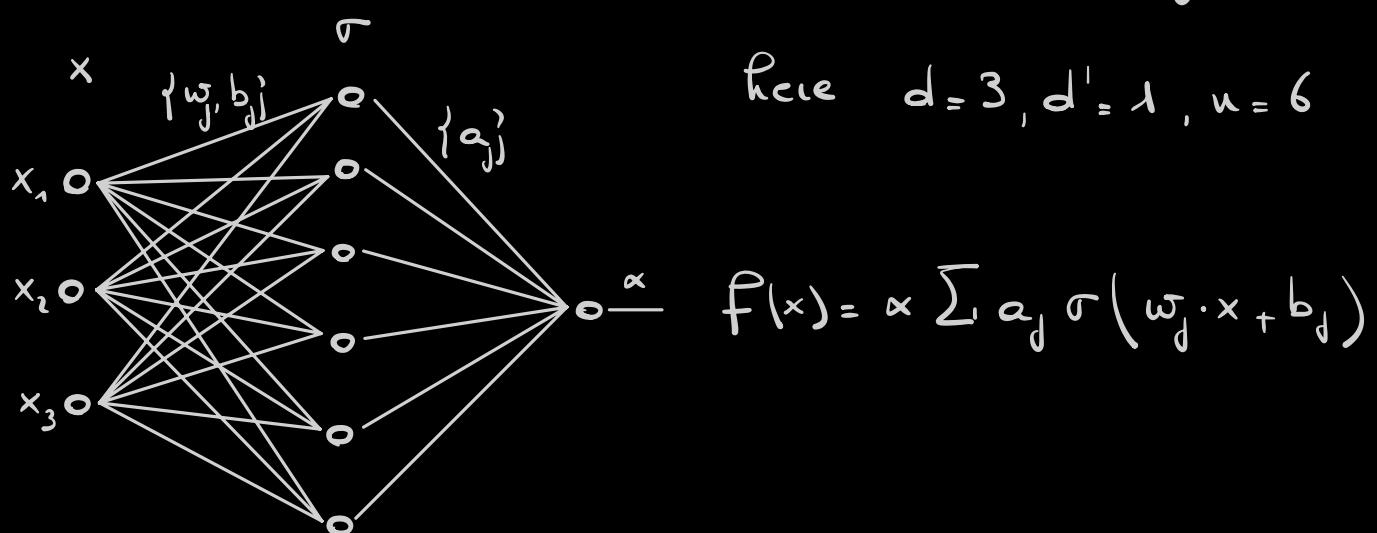
• $b_j \in \mathbb{R}$ are the biases

• $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function.

we will define $\theta = (a_j, w_j, b_j)_j \in \mathbb{R}^{(1+d+1)n} =: \Theta$

Note • Most of the time we will set $d' = 1$.

• The above network can be represented as a graph:



- Often (e.g. today) $\alpha = 1$, but we will use it when $n \rightarrow \infty$.
- The network can also be written using matrix notation, defining the action of σ on \mathbb{R}^n to be componentwise:

$$\hat{f}_\sigma(x) = \alpha \vec{a} \cdot \sigma(W \vec{x} + \vec{b})$$

where $\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$, $\vec{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathbb{R}^n$, $W = \begin{pmatrix} w_{1,1} & \dots & w_{1,d} \\ \vdots & & \vdots \\ w_{n,1} & \dots & w_{n,d} \end{pmatrix} \in \mathbb{R}^{n \times d}$

- There are many possible choices for activation σ :

a) Rectified Linear Unit (ReLU):

$$\sigma(z) = z_+ := \max(0, z) = z \cdot \mathbb{1}(z \geq 0)$$

b) Sigmoid

$$\sigma(z) = \frac{e^z}{1 + e^z} = (1 + e^{-z})^{-1}$$

c) Hyperbolic tangent

$$\sigma(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Less common activations include:

d) step function: $\sigma(z) = \mathbb{1}(z \geq 0) = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{else} \end{cases}$

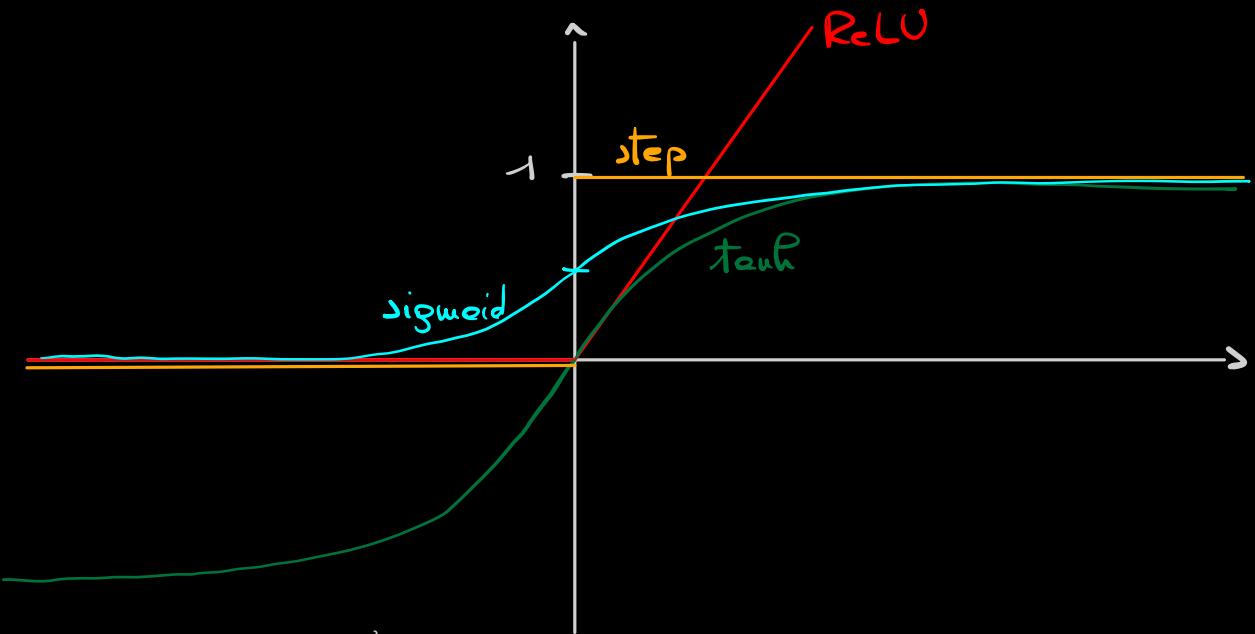
e) identity: $\sigma(z) = z$

f) smooth ReLUs: $\sigma(z) = x \cdot \Phi(x)$, $\sigma(z) = x \cdot (1 + e^{-z})^{-1}$

g) gaussian density: $\sigma(z) = e^{-z^2}$

h) squared: $\sigma(z) = z^2$

d) (... anything ...)



For each nonlinearity σ , we denote by

$$\mathcal{F}_{\sigma, n} := \left\{ \alpha \sum_{j=1}^n a_j \cdot \sigma(w_j \cdot x + b_j) : (a_j, w_j, b_j) \in \mathbb{R}^{1+d+1} \quad \forall j \right\}$$

the space of single layer NN of width n with activation σ ,

$$\mathcal{F}_\sigma = \bigcup_{n=1}^{\infty} \mathcal{F}_{\sigma, n}$$

open/closed

Example: Let $X \subseteq \mathbb{R}$

Let $PL_n(X) = \left\{ f \in C(X) : f(x) = (\tilde{a}_e \cdot x + \tilde{c}_e) \text{ if } (x \in [\tilde{b}_e, \tilde{b}_{e+1}]), \quad \begin{array}{l} \tilde{b}_e \in X \\ \tilde{a}_e, \tilde{c}_e \in \mathbb{R} \end{array} \right. \right\}_{e \in \{1, \dots, n\}}$

Lemma 2.2: For every $h \in PL_n(X)$ there exists a single layer NN f of width n with ReLU nonlinearity such that $f(x) = h(x)$

In other words, $PL_n(X) \subseteq \mathcal{F}_{ReLU, n}$

Proof: Set $\omega_j = 1 \quad \forall j \in \{1, \dots, n\}$.

Then we can write

$$f_\theta(x) = \sum_{j=1}^n a_j (x + b_j) \mathbb{1}_{(x + b_j \geq 0)} = \sum_{j=1}^n (a_j x + a_j b_j) \mathbb{1}_{(x \geq -b_j)}$$

So, for $k=1$: $-b_1 = \tilde{b}_1$, $a_1 = \tilde{a}_1$

$$k \rightarrow k+1: \text{ solve } \sum_{j=1}^{k+1} (a_j x + a_j b_j) = \tilde{a}_{k+1} x + \tilde{b}_{k+1} \implies \begin{cases} a_{k+1} = \tilde{a}_{k+1} - \sum_{j=1}^k a_j \\ b_{k+1} = \frac{1}{a_{k+1}} (\tilde{b}_{k+1} - \sum_{j=1}^k a_j b_j) \end{cases}$$

□

- Sometimes a function is applied to the output of a network:

$$\hat{f}_\theta(x) = \left(1 + \exp \left(-\alpha \sum_{j=1}^n a_j \sigma(\omega_j x + b_j) \right) \right)^{-1}$$

Approximation error for single layer NNs

Which functions can we approximate arbitrarily well?

Def.: a class of functions \bar{F} is an universal approximator over a compact set X if for every $g \in C(X)$ there exists $f \in \bar{F}$ with $\|f - g\|_\infty \leq \epsilon$.

Consider first the univariate case. Throughout, we set wlog. $X = [0, 1]$. We start with intuitive, constructive pf.

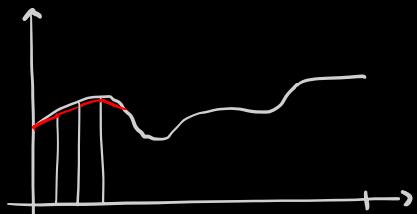
Prop 2.1: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be p -Lipschitz. Then for every $\epsilon > 0$ there is a single-layer NN f_δ with $\sigma(z) = z_+$ of width $n = \lceil \frac{1}{\epsilon} \rceil$ such that $\|g - f_\delta\|_\infty \leq \epsilon$

Proof: By the above lemma we only need to show that $\exists h \in \text{PL}_n(X)$ such that $\|g - h\|_\infty \leq \epsilon$

We choose h as the linear interpolator of $\{g(w\epsilon n)\}_{w=0}^{\lceil \frac{1}{\epsilon} \rceil}$

$$\text{let } w_0 = 0, \tilde{b}_0 = 0, \frac{\epsilon}{p} -$$

$$a_0 = g(0) \quad \tilde{a}_0 = \frac{g(b_0) - g(b_{-1})}{\epsilon}$$



$$\text{so that } f_\delta(x) = \sum_{j=0}^{n-1} a_j \mathbb{1}(x \in [b_j, b_{j+1}]) = \sum_{j=0}^{n-1} g(b_j) \mathbb{1}(x \in [b_j, b_{j+1}])$$

$$\Rightarrow |g(x) - f_\delta(x)| \leq |g(x) - g(b_j)| + |g(b_j) - f_\delta(b_j)| + |f_\delta(b_j) - f_\delta(x)|$$

$$x \in (b_j, b_{j+1}) \leq p(x - b_j) + \circ + \circ \leq p \frac{\epsilon}{p} = \epsilon.$$

Alternatively we could have used the result

Lemma 2.2 Let X be a compact subset of \mathbb{R} . Then PL is dense in $C(X)$ in the $\|\cdot\|_\infty$ topology.

Proof. see course of real analysis. (e.g. Rudin)

Cor. 2.3: For every compact set $X \subseteq \mathbb{R}$, single layer neural networks with ReLU nonlinearity are universal approximators

Remark: While the above result is more general (approximation of $C(X)$ instead of Lipschitz) Prop 2.1 gives bounds on the size of the network. Low complexity \rightarrow low width

Exercise: Let X be compact, then \bar{F}_{sigmoid} is univ. approx in X .

Idea: By Cor 2.3 $\exists h_u \in \bar{F}_{\text{ReLU},u}$ with $\|h_u - g\|_\infty \leq \frac{\epsilon}{2}$

Then, approximate each neuron of h_u (with error $\frac{\epsilon}{2u}$) with $\sum a_j \tau(w_j x + b_j)$ for $w_j \gg 1, a_j \ll 1$

Lemma 2.4 Let $X \subseteq \mathbb{R}$ be compact. $\bar{F}_{\mathbb{1}_{\geq 0}}$ is a universal approximator over X

PF: This follows from the fact that

$$\mathbb{1}(x \in [b_1, b_2]) = \mathbb{1}(x \geq b_1) \cdot \mathbb{1}(x \leq b_2) = \mathbb{1}(x - b_1 \geq 0) \mathbb{1}(-x + b_2 \geq 0)$$

together with the density of simple functions in $C(X)$

Remark: Polynomials of bounded degree are closed under linear transf.

$$p \in \mathcal{P}(u) \Rightarrow a p(a'x + b) + b \in \mathcal{P}(u)$$

and are not dense in $C(X)$ for fixed $u \Rightarrow$ no univ. approx

Remark: The compactness of X is necessary: for any finite relu network f , if $X = \mathbb{R}$ $\|\cos(x) - f(x)\|_\infty \geq 1$.

Remark: Why the $\|\cdot\|_\infty$ topology? Because we want to bound $R(\delta)$ without knowing P .

Q: how about higher dimensions? $d > 1$

Idee: We would like to approximate with sums.

$$\prod_e \mathbb{1} (x \in A_e) \quad A_e = \bigcup_{j=1}^d [b_{e,j}, b'_{e,j})$$

However, this cannot be done (at least directly) with shallow nets.

Consider $\sigma(z) = \cos(z)$. Then Q: can it?

$$\begin{aligned} \sigma(z) \cdot \sigma(y) &= \cos(z) \cos(y) \\ &= \cos(z+y) + \cos(z-y) \\ &= \sigma(z+y) + \sigma(z-y) \end{aligned}$$

So, at least in principle, using the above property of cosines and the Fourier approximation of step functions:

$$g(x) \approx \sum_j \alpha_j \prod_e \mathbb{1} (x \in [b_{j,e}, b'_{j,e})) \approx \sum_j \alpha_j \prod_e \sum_k \beta_{e,k} \cos(\delta_{e,k} x_e)$$

algebra $\approx \sum_j \alpha_j \sum_e \beta_{e,e} \prod_e \cos(\delta_{e,e} x_e) \approx \sum_j \alpha_j \sum_e \beta_e \sum_m \delta_{e,m} \cos(\sum_j \delta_{e,j} x_e)$

$$\text{explosivity} \approx \sum_j \alpha_j \sum_a \beta_a \sum \delta_m \sum n_m \mathbb{1} [y_m^j \cdot x \leq b_m]$$

In practice, this is painful, but the heavy lifting was done for us.

Theorem 2.5 (Stone-Weierstrass): Let $\bar{F} \subseteq C(X)$ for compact $X \subseteq \mathbb{R}^d$ satisfy.

a) for every $x \in X$, there exists $f \in \bar{F}$ such that $f(x) \neq 0$

b) for every pair $x, x' \in X$ with $x \neq x'$ there exists $f \in \bar{F}$ with

$f(x) \neq f(x')$ (\bar{F} separates points)

c) \bar{F} is closed under pointwise multiplication (\bar{F} is an algebra)

then \bar{F} is an universal approximator.

Lemma 2.6 \bar{F}_{\cos} is universal

Pf: a) each $f \in \bar{F}_{\cos}$ is continuous (finite sum of cont. functions)

b) $\cos(0 \cdot x) = 1 \quad \forall x \in X$

c) $x \neq x' \Rightarrow f(x) = \cos\left(\frac{(x-x') \cdot (x-x')}{\|x-x'\|^2}\right)$ satisfies $\begin{cases} f(x') = 1 \\ f(x) = 0 \end{cases}$

d) already checked. \square

Theorem 2.7 Suppose $\sigma \in C(\mathbb{R})$ is sigmoidal: $\begin{cases} \lim_{z \rightarrow -\infty} \sigma(z) = 0 \\ \lim_{z \rightarrow \infty} \sigma(z) = 1 \end{cases}$

then \bar{F}_σ is universal

Also, \bar{F}_{ReLU} is universal

PF (sketch): By Lemma 2.7 we have there exists $n \in \mathbb{N}$,

$$h_n(x) = \sum_{j=1}^n \tilde{a}_j \cos(\tilde{\omega}_j \cdot x + \tilde{b}_j) \in \mathcal{F}_{\cos}$$

$$\text{with } \|h_n - g\|_\infty \leq \frac{\varepsilon}{2}$$

Then, since $h_{n,\delta}(x) = \tilde{a}_\delta \cos(\tilde{\omega}_\delta \cdot x + \tilde{b}_\delta) \in C(X)$, by

exercise we have $\exists f_{n,\delta} \in \mathcal{F}_{\text{sigmoid}} : \|f_\delta - h_{n,\delta}\| \leq \frac{\varepsilon}{2^n}$

$$\Rightarrow \text{for } f(x) = \sum_{\delta} f_{n,\delta}(x) \in \mathcal{F}_{\text{sigmoid}}$$

$$\|f_n - g\|_\infty \leq \|f_n - h_n\| + \|h_n - g\| \leq \sum_{j=1}^n \frac{\varepsilon}{2^n} + \frac{\varepsilon}{2} \leq \varepsilon.$$

□

Note: the algebra condition does not hold for polynomials of bounded degree. In fact.

Theorem (Deshnoe, 1993): \mathcal{F}_σ is universal iff $\sigma \in C(X)$ is not a polynomial