
 

Deep learning theory lecture 13

Consider single layer neuralnetworks of the few
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Note the different scaling int the NTK regime

We assume the following statistical model
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We aim to minimise the MSE
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This can be written as
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Note we can describe the network as a linear

function of un the state ofthe network

f n x for w x µ do dw

furthermore µ is invariant
under permutation

of nemon indices and
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composition of convex functions

Furthermore note that at
initialisation the limit
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The price to pay is that the network lives in an

x dimensional space

Theatrics
The dynamics of each particle is
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Changing time we have
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This vector field can be evaluated at
any point18

The equation that evolves the measure µ is

the continuity equation
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variational derivative

Gradient flow in W space of
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For a solution µ of MFPDE we write theflowmap
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leptons r is founded lipschitz and has

lipschitt derivative r
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