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Abstract. An abstract linear-quadratic regulator problem over finite time horizon

is considered; it covers a large class of linear nonautonomous parabolic systems in
bounded domains, with boundary control of Dirichlet or Neumann type. The asso-
ciated differential Riccati equation is studied from the point of view of semigroup
theory; itis shown to have a classical, explicitly represented solution for very general
final data; weighted Blder regularity results for the optimal pair are deduced.
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Introduction

Let H, U be complex Hilbert spaces; for fixdd > 0 we consider the following linear-
guadratic regulator problem:

minimize .
J(w) ::/o {(M®OY®) | yO)u + (N®OU®) [ ut))y} dt
+ (Pry(T) | y(T)n 0.1
over all controlsu € L?(0, T; U) subject to the state equation
y(t) = U(t,O)x—/OtU(t,r)A(r)G(r)u(r) dr, tel0, Tl (0.2

here{M(t)} and Pr are positive, bounded, self-adjoint operator&in{N(t)} are pos-
itive, bounded, self-adjoint operatorslih x is an element oH, eachA(t) generates
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an analytic semigrouget®®} in H, {U (t, s)} is the evolution operator associated to
{A@M)}, and G(t) is the “Green map” relative té\(t). More precise assumptions on
{AMD}, {GM)}, (M)}, {N()}, andPr are listed in Section 1.

The state equation (0.2) represents a large class of linear parabolic nonautonomous
initial-boundary value problems, with boundary controls of Dirichlet or Neumann type:
see Section 9 below for some typical examples. Looking for a pointwise feedback optimal
control for problem (0.1)—(0.2), the main step is the study of the associated Riccati
equation, whose integral version is

T
Pt) =U(T,t)*PrU(T,t) +/ uwr,t*
t
x [M(r) — P(r)A(r)G(r)N(r)‘lG(r)*A(r)*P(r)]U(r, t) dr, (0.3)

and whose differential version is

P’(t) + A)*P(t) + P(t) A(t)
= —M() + POADGH)NO)IGH)*A)*P(1), (0.4)
P(T) = Pr.

The Ricatti equation and its corresponding control problem in the autonomous case
have been widely studied by several people and the whole theory is, more or less,
complete: we quote, among others, [B], [LT1], [F1], [DI1], [F2], [F4], [LT3], and [LT4].
Two different approaches are available: (i) the variational method, which starts from
the Euler equation for the cost functional and yields explicit formulas which express in
terms of the data both the optimal pair and the Riccati operator, and (ii) the dynamic
programming method, which solves directly the Riccati equation and obtains, through
the Riccati operator, a feedback formula for the optimal control in terms of the optimal
state. Both methods are carefully described in the survey papers [LT2] and [BDDM].

Only a few papers deal with the nonautonomous control problem (0.1)—(0.2); [Li]
and [DS] are based on variational techniques, whereas in [DI12] and [AFT] the dynamic
programming approach is used.

In [AFT] it was shown that under certain abstract assumptions, which are naturally
fulfilled in the concrete parabolic problems of Section 9, (0.3) has a unique global solution
P(.), where P(t) is a positive, bounded, self-adjoint operator for eack [0, T|[,
provided the final datuniPr is suitably regular; consequently one is able to find an
optimal pair(Q, ) for problem (0.1)—(0.2) in the spat&(0, T; U) x L2(0, T; H). On
the other hand, in the autonomous case the minimal assumpti® @more general
and in addition the optimal pair turns out to enjoy some regularity properties, as shown
in [LT1], [LT3], and [LT4].

Thus our main goal here is to extend as far as possible the results of [LT1], [LT3],
and [LT4] to the nonautonomous situation. To this purpose we were not able to repeat, for
a general choice dPr, the direct proof of existence and uniqueness of mild solutions of
(0.3), given in [AFT] by means of the dynamic programming technique; here we follow
instead the variational approach of [LT1] and [LT3], adapting and refining it according to
the nonautonomous situation, through the extensive use of the nonautonomous theory of
abstract parabolic equations developed in [AT1], [AT2], [A1], [AT3], [A2], and [AFT].

In fact not only do we generalize to this situation almost all statements of [LT1], [LT3],
and [LT4], but we even improve some of them.
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Here is a list of our main results:

(i) We show that the solution of the Riccati equation (0.3) is in fact classical, i.e.,
P(.) is continuously differentiable as afi(H)-valued function and satisfies
(0.4) in the sense of(H), provided the operatoA(t)*P(t) + P(t)A() is
replaced by its bounded extensiarit) P(t) (see Section 7 for details). When
A(t) = A this result was known in the case of distributed control, see [D],
and in the case of boundary control, under additional regularity assumptions on
Pr (see [LT4]). We also derive some weightedlHer regularity results for the
optimal pair.

(i) We take the final datunP; essentially in the largest possible class, as the
counterexample in [F3] and the remarks in Section 7 of [LT3] show; in addition
we prove that the Riccati operatBi(t) is always strongly continuoustait= T,
and give necessary and sufficient conditions in orderfiat — Pr in L(H)
ast - T-.

We believe that the results of this paper can be generalized to cover nonautonomous
control problems over infinite time horizon, thus improving those of [AT4] and [A3].

We now describe the contents of the following sections. Section 1 contains the list
of our assumptions; in Section 2 the control problem is properly posed and some basic
operators are introduced. Section 3 is devoted to the preliminary study of the optimal
pair; in Section 4 some pointwise estimates for the optimal pair are proved. In Section 5
we introduce the state operatprt, s) and the Riccati operatdP(t), recalling their
elementary properties; Section 6 concerns the differentiability(bfs). In Section 7
we define the unbounded operatrt), acting in the space of bounded self-adjoint
operators irH, and describe its properties, whereas in Section 8 we showkithalP (t)
is well defined as a bounded operatoHnand thatP (t) solves the differential Riccati
equation in the sense df(H). Finally in Section 9 we describe some concrete examples
and show that our abstract assumptions are fulfilled there, thus giving a motivation for
them. There are also two appendices: in Appendix A some useful function spaces, often
involved in this paper, are described, and Appendix B contains a short survey on strict
and classical solutions of abstract nonautonomous parabolic equations.

We are forced to omit the proofs of the statements of Section 6, because of their
length and technical complexity, which would have enlarged the size of this paper too
much. A detailed proof of such statements, as well as further remarks and related results,
can be found in [AT5].

We conclude this section by listing some notationsXlis a Banach space and
I € Ris an interval, we use the usual Lebesgue spa®gs, X), 1 < p < oo, and the
usual Hilder space€” (1, X), C*¥t7 (1, X) (y €10, 1[, k € N); wheny = 0 we write
C(l, X) instead ofco(I, X).

If X,Y are Banach space5(X, Y) isthe space of bounded linear operaibrsX —

Y (and we write£(X) instead of£(X, X)). If H is a Hilbert spacex (H) is the space
of self-adjoint operator§ € L£(H) and X" (H) is the space of self-adjoint operators
T € L(H) which are positive, i.e(Tx | X)y > 0 for eachx € H. If H is a Hilbert
space and is a linear operator itd, we denote byD+, o (T), andp(T) the domain of
T, the spectrum of, and the resolvent set @f; we denote byl * the adjoint operator
of T (whenever it exists).
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Finallyif m € N* andQ is abounded open set®f, we use the Lebesgue andldér
spaces ofC™-valued functions [P(2)]™ and C*"(Q)]™ (k € N,y € ]0,1[, p €
[1, oc]), and the usual Sobolev spac®g P ()™, [WY-P(OQ)]™ p € [1, o[, y € R),
and Wg"P()]™ (p € [1, o[, ¥ € ]1/p, oo]).

1. Assumptions
We list here our abstract assumptions.

Hypothesis 1.1. For eachte [0, T], A(t) : Dagy € H — H is a closed linear
operator generating an analytic semigrogg”®, ¢ > 0}; in particular there exist
M > 0andf € ]z /2, n[ such that

I = AD] My <MA+AD7 VAeS6), Vtelo,T], (1.2)

where $9) = {ze C : |argz| < 6}.

Hypothesis 1.2. There exist N> Oandp, u € 10, 1] withé := p + u — 1 €10, 1],
such that
IAD[A — AO]TTTAD ™ = AS) lcm)
+ A A — AO T [[AO T = [AS T ] iz
< NJt —s|*@A+ [AD?, VA e S(0), vt,s e [0, T]. (1.2)

Hypothesis 1.3. {U(t,s),0 < s < t < T} is the evolution operator relative to
{A(t),t € [0, T]}; in particular,
I[=AMOIUE, S[-AS] 7 ey + I[-AGTUE, S [-AD T 7 [ ch)
<M1+t —-9""] for 0<s<t<T, n,yel0,1] (1.3)

Hypothesis 1.4. The numbes = p + u — 1is such that

I[=AD]"UE, 9[-AG)] T — [-AD]"U(z, 9)[-AG)] "l
<N,,t—0)°[L+(r =) "]
for 0<s<t=<t<T, n,ye[01], (1.4)
I[=A@) U, o) [-AD)T" = [-AES)TUR, ) [-AD Tl 2ehy
<N,,(c —9°[1+(t—0)""]
for 0<s<o<t<T, n,y€l0,1], (1.5)

all operators being strongly continuous with respect,to,to, and s

Hypothesis 1.5. Foreachte [0, T], G(t) € £(U, H) and there exists < 3, %[ such
that

[—AM]*G(-) € C([0, T], L(U, H)). (1.6)
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Hypothesis 1.6. We have M-) € C%([0, T], T+t (H)), N(-) € C(0, T], =T (U)),
and there exist® > 0 such that Nt) > v, i.e, (N(t)uju)y > v||u||EJ foreachue U
andte [0, T].

Hypothesis 1.7. Pr € £ (H) and in addition the linear operator#zLOT: D(Lor)
C L?(0, T;U) — H is closedthe operators Lt are defined inf2.7) below).

Remark 1.8. (i) Hypotheses 1.1 and 1.2 arise naturally in the study of the Cauchy
problem for abstract linear nonautonomous parabolic equations in Hilbert spaces; they
are fulfilled in several concrete nonautonomous parabolic problems with homogeneous
data at the boundary (see Section 2 of [AFT]). They allow us to construct the evolution
operator relative to the familiyA(t)}, and to prove its properties: in fact, Hypotheses 1.3
and 1.4 are consequences of the previous ones. This was shown in Proposition 2.8(iv)
and Corollary 2.10 of [AFT].

(i) Hypothesis 1.5 concerns the smoothness of the abstract “Green Giap”
whose realization in concrete problems yields the lifting of the nonzero datum at the
boundary, i.e., transforms the nonhomogeneous initial-boundary value problem into a
homogeneous one by a modification of the right member of the equation. These assump-
tions hold true in the examples of [AFT] and [A3] (compare with Theorem 9.3 below),
possibly with some: > % However, we note that the smalters, the harder is the situa-
tion: in particular, whem < % (the “nonsmoothing case” of [LT3]) the optimal pair will
have a singularity &t= T. Hence we assume this to be the case; of course wh:_er%
better results could be proved. We also remark that the restrigtiorx can always be
fulfilled just by choosing a smalleY, which is possible in view of Proposition A.4(iii)
in Appendix A below.

(iii) Hypotheses 1.6 and 1.7 are regularity conditions on the data of the control
problem: the former is a standard one and might be weakened by allowing a moderate
degree of unboundedness Bf(-) (compare with Section 2.3 of [F4]); the latter is
sufficient, as in [LT3], to prove existence of the optimal control, and to define the Riccati
operatorP (t), and in addition it allows us to prove thR(t) solves the differential Riccati
equation (0.4). We note that, due to the closednekgp(see Section 2), Hypothesis 1.7
is automatically satisfied iPr has a bounded inverse; we also remark that it might be
weakened by assuming that the operﬁ#?LOT is just closable (see Remark 3.2 below).

2. The State Equation
We follow closely [LT1] and [LT3], adapting their method to the nonautonomous case.
We consider the control problem (0.1)—(0.2) with initial pant [0, T[:
minimize
T
Js(u) :=f {(M®OY®) | yt))n + (N®OU) [ ut)y} dt

S
+ (Pry(M) | Y(T)H (2.0
over all controlau € L?(s, T; U) subject to the state equation

t
y(t) = U(t, s)x —/ U, r)Ar)G(ru(r) dr, te[s T]. (2.2
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We introduce the linear operatdrs which represents the integral term in the state
equation (2.2):

(Lsu)(t) := —/t U, r)Ar)G(r)u(r) dr, te[s TI, (2.3)
s

or, more exactly,

(Lsu)(t) = /St [[-AC) U, 0] [[-AO]“GM)] ur) dr, tels T[.
By Hypotheses 1.3 and 1.5 it is easy to see that

ILsll 22,70y 2T, 1y < C(T —9)%; (2.4)
in addition the adjoint operatdr;, is defined for each € L2(s, T, H) by

(Liv)(t) = —G®*AM)* /tT U(r, t)*v(r) dr, te[s TI, (2.5)
or, more exactly,

(L) = [[FADI*GO)] /tT[—A(t)*]l—“U(r, t)*v(r) dr, tels TI,
and, of course,

ILsl 22T H L2 T Uy < C(T —9)*. (2.6)

As Lg acts onL? functions, wheny < % it is not true in general thatLsu)(T) is

meaningful as an element &f. Thus we set

1 T
Lst(u) ;= lim —/ (Lsu)(t) dt.
r—-otr Jr

—r

[D(LsT) :={u € L%, T,U) : T is a Lebesgue point fdrsu},

We remarkthabD (Lst) isdenseinL?(s, T, U), sincein particularwhem € C([s, T], U)
we havelsu € C([s, T], H) and

T
Lst(u) = —/ U(T,r)Ar)G(r)u(r) dr.

Moreover, using Hypotheses 1.3 and 1.4 it is not difficult to seelthatis a closable
operator, and its closure is the operator, still denotet 1y defined by

D(Lst) = {u e L%, T,U):
T
/ [—AM] U, nAr)G(ru(r) dr e D([—A(T)]”)}, (2.7)
s T
Lst(u) := —[—A(T)]”/ [—AM] U, r)Ar)G(ru(r) dr,

wherey > 1 — a is a fixed number.
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The adjoint ofL sy is the operatot_}; given by

{D(L:T) ={y e H:GO"AM'U(L, )’y € LA, T; U)), 2.8)

Liry = —GO*AC)*U(T, )*y;
clearly it holds that

=H if a>
DD (-AM 1), Vn>3-a if o<

NI NI

D(L:T){

Proposition 2.1. Under Hypothese$.1-1.5and 1.7, let the operator Lt be defined
by (2.7). Then

(l) D(L:T) = D(LET) and Lty = LéTyl]s,T[s vy € D(LST)a V¥se [0, T[;
(i)) lims7- [LsrYllLasTu) = 0,Vy € D(LGp).

Proof. Itis a standard consequence of (2.7) and (2.8). O

Next, due to the presence of the possibly undefined vg¢iorin the cost functional,
we rewrite Js in the following way:

T

{(MOY®) [ y®)n + (NOU®) | u®)u} dt

=T Py I yTMyw i ue DL, 29)
+o00 if uel?s,T,U)—D(Lst).
By (2.3) the state equation (2.2) can be rewritten as
y() =U(t, s)x + (Lsu) (), (2.10)

and using Hypothesis 1.7 it is an easy task to verify that the functidni strictly
convex and continuous ih?(s, T, U). Thus for the control problem (2.9)-(2.10) a
unique optimal paity, 0) € L2(s, T, H) x D(LsT) exists for each fixed € [0, T[ and

x € H; we denote it by(y(, s; x), 4(-, S; X)). By (2.10) and (2.7) we have

N oy JU, 9)x + Lg[a(, s; x)] (1) if 0<s<t<T,

yt. s x) = {U(T, S)X + Le7[0C, S X)] if 0<s<t=T. (2.11)
In addition, uniqueness implies that

g, s;x) =9, r; yr,s;x))  for 0<s<r<t<T, (2.12)

act, s; x) = A, r; y(r, s; X)) for O0<s<r=<t<T (2.13)

3. The Optimal Pair

Following again [LT1] and [LT3] we want to get some representation formulas for the
optimal controli(-, s; x). By Hypothesis 1.7P+'*Lr is a closed operator with domain

D(Lo7); hence it is clear that for eache [0, T[ the operatorPTl/ZLsT is closed too.
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Then setting, for eack e [0, T|,

{Xs = D(Ls7),
(U v)x, == (NOU [ v)2sTU) + (PrLstU | LsTV)H,

Xs is a Hilbert space; by Hypothesis 1.6 we have the continuous inclusigns
L2(s, T,U) C X} and, for eacts € [0, T,

IullLzsT.u) < v Y2|Ullx,, Yu e X,
-1/2 2 (3.1)
lullx: < v=74llullL2s 1,0y Yue L(s, T,U).
By definition of X5 we also have
1P 2Lstlleoary <1 ILEPHlcmxn <1 Vse[0, TL (3.2)

Plugging the state equation (2.10) into the cost functional (2.9) we obtain the following
expression fords:
T
kw)=/‘KMGMUmsw+(umaﬂ|Umsw+(uwa»H
S

+ (N@®u®) | ut)y} dt
+ (Pr[U(T,s)X + Lstu] | U(T, S)X + LsTU)H, Yu € Xs. (3.3)

The optimal controli(-, s; x) solves the Euler equation

A, s;x) € Xs,
d 2 . —
[% Js(Q(-, s; X) + hv)}h_0 =0, Yv € X,
i.e.,
G(-, s; X) € Xs,
T
f {(M®[U (t, s)x + (LsO(-, s; x) (D] | (Lsv)(®)H (3.4)

+ (N®UE, s; %) [ v(t)u} dt
+ (Pr[U(T, 9)X + (Lst0(-, S; X))] | LsTv)H =0, Vv € Xs.

Hence we get, using (2.5), (2.11),
(Pry(T,s;X) | LsTV)H

T
= —/ {LIMO)YC, s 011 + NOGE, s %) | v(t)y dt, Vv € Xs;

this impliesPr §(T, s; x) € D(L%;) and

(LerPry(T, ;%) + LIMO)YC, s3] + NOUC, $5%) | v)iesTu) =0,
Vv € Xs. (3.5)

As X, is dense inL2(s, T, U), we conclude that

(¢, X) = =N LEPr9(T, s %) + LEMOYC, s;%)]] (3.6)
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as an element df?(s, T, U); in addition, by (3.5) and (2.11) we get that

(N() + LgrPrLst + LEM()L9AC, S; X)
= LI PrU(T, 9)x — LEM()U (-, S)x (3.7)

as an element oX?.
We again imitate [LT1] and [LT3] by introducing the operator

Astw i= NOw() + LiPrlerw + LEM()Lsw,  w € Xg; (3.8)

clearly,Ast € L(Xs, X{). Moreover,Agt is an unbounded operatorlirf(s, T, U) with
domain

D(Ast) = {w € Xs: PrLstw € D(L{D}. (3.9)
Proposition 3.1. Under Hypothesed.1-1.7 the operator Agt is one-to-one from
D(As7) Onto L2(s, T, U) and from X onto X, with bounded inverse in both casés
particular, Ast: D(Ast) € L%(s, T;U) — L?(s, T;U) is closed
Proof. Define, forw, X € X,

a(w, 2) =W | 2x, + (M) Lsw | Ls2)2¢s,1.1)
= (NOw | 212 1,0) + (PrLstw | LsT2)H

+ (M) Lsw | LsZ)L2s,T,h)- (3.10)

Obviously,
a(w, 2) = [AsTw](@,  Yw,ze X, (3.11)
a(w, 2) = (Astw | 2)L2sT.U)s Yw € D(AsT), VzZe X. (3.12)

The bilinear forma(-, -) is clearly continuous and coercive ofa: hence by the Lax—
Milgram theorem for eachi e X} there exists a uniquee Xs such that(n, z) = f(2)
for eachz € Xg; by (3.11) this meand sty = f as an element oX{, i.e., Agt is one-
to-one fromXs onto XZ. Moreover we get

1AGT 2o xo < L. (3.13)

In particular, for eacly € L%(s, T, U) C X there exists a uniqug € Xs such that, by
(3.12),

(Astn | DLz T.0) = (Y | DLz T.L)S VzZ e Xs;
consequently it is easy to see that
[(PrLstn | Lst2DH| < (Y, mZllLzs 1,09,

so thatPrLstn € D(L%), i.e.,n € D(AsT) and

(Astn | DLz T0) =21, 2) = (Y | DLesT,0) vz e Xs. (3.14)
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By density, we conclude thatsty = y as an element df%(s, T, U), i.e., Ast iS one-
to-one fromD(Ast) onto L2(s, T, U); moreover, choosing = 7 in (3.14) we readily
get

IAGHllzzsToy < L (3.15)
The proof is complete. O

Using the operaton st we can rewrite (3.7) as

(¢, 51 %) = —AGF[LEPrUT. 9% + LIMOU (-, )], (3.16)
which expresses the optimal control in terms of the initial state

Remark 3.2. Assuming in Hypothesis 1.7 thmTl/zLOT is only closable, the above
arguments apply just by replacing the operatEﬂéZLsT by their closed extensions

PTl/stT. The functionalds can be extended finitely to anye D(PTl/stT), since (3.3)
can be rewritten as

.
Js(u) = / [{(MOIU 9% + (Ls)(D] | UL, 9% + (Lsw)(D))
+ (N@uU®) | ut)u) dt
+IPYUT, 9)x + (PY°Lspull?,  Vue D(P%Lsr).

Then we have to tak¥s = D(PTl/ZLsT); the operator\ st becomes

Astw = NOw() + (PF?Lsn)* (PH?Lsm)w + LEM () Lsw, w e X,

and the formula for the optimal state is
G-, s;X) = —A;'I]'- [(PTl/ZLST)* PTl/ZU (T, 9x+ LIM(HU (., s)x] .

Similar changes are needed in the next sections: we omit the details.

4. Pointwise Estimates for the Optimal Pair
We collect here some pointwise estimates concerning the optimal pair.

Proposition 4.1. Under Hypothese%.1-1.7,let (§(-, s; X), G(-, S; X)) be the optimal
pair relative to the control probler(2.9)(2.10). Then we have

@) 1a¢, s; Xz .oy < cllac, s; X)ix, < Clixlin, Vs € [0, T[;

(i) 119C, s X)Lz T.H) < ClIXlIH, Ys € [0, T[;
(i) 1P;/?9(T. s: ¥)lln < clxllu, Vs € [0, T[.
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Proof (compare with Proposition 2.1 of [LT3]). (i) Easy consequence of (3.1)and (3.16),
using (3.13), (3.2), Hypotheses 1.3 and 1.7, and (2.6).

(i) It follows by (2.11) using Hypothesis 1.3 and (2.4).

(iii) It follows by (2.11), using Hypotheses 1.3 and 1.7, (3.2), and (i). O

Our next result is a refinement of the preceding estimates; it seems to be new even
in the autonomous case.

Proposition 4.2. Under Hypothese%.1-1.7,let (J(-, s; X), U(-, S; X)) be the optimal
pair relative to the control problent?.9){2.10). Then we have

@) limst- 0(, s; X)|Ix, = 0,Yx € H;
(i) lime1 [|PHF?9(T,s:x) — PH/?X||y = 0,¥x € H.

Proof. (i) We write
8¢, $: %) 1%, < 10C, ;%) + AGFLErPrxlix, + [Agf L Prxix,.

The first term on the right-hand side tends to @as T~ since by (3.16), (3.13), (3.2),
(2.6), and Hypotheses 1.3, 1.6, and 1.7 we have

1G(, s; X) + AgTLErPrxllx,
= || — AGFILEPr[U(T,s) — 141X + LEMOU G, 9)X] lIx.
< [IPF?|l e IV (T, 8) — 1u]xXll + (T — 9)%[IX]In.

Concerning the second term, following the proof of (5.8) of [LT3] we remark that the
vector space

D = D(L} PH%) = {z e H: P’z D(LE)}
is dense irH, since, by Hypothesis 1.7, PTl/2 is the adjoint of the closed and densely
defined operatoPTl/zLOT. For a fixeds > 0, selectz € D such tha] PTl/ZX —Z|ly < &

then, by (3.13), (3.2), Proposition 2.1(i), and (3.1),

-1
||AsTL§TPTX||Xs
1 12 5172 _1 172
< IAg7Lgr PT/ [PT/ X =27, + | AgTLst PT/ Z| x,

<ce+ |LEPY?ZlIx: < e + L5 P2l gm0y, VS €O, T
thus by Proposition 2.1(ii) we get that
Jim JAGT LS PrXlix, =0,

which proves (i).
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(i) We have, by (3.2),

IPY29(T, s: %) — Py/Xlw < IP2[U(T, 8) — 1nlxlln + IPy/Lst0C, S X) |1
< clU(T,9)x — X[lu +clla(, s; X) I x,s

and the result follows by (i). O

The main statement of this section is the following theorem, which is a maximal
regularity result for the optimal pair; the use of the spaggsg (see Definition A.1 of
Appendix A) allows us to refine the corresponding results of Theorem 3.6(i) of [LT3].

Theorem 4.3. Under Hypothesek.1-1.7,let (Y(-, s; X), G(-, S; X)) be the optimal pair
relative to the control problerf2.9)+(2.10).Thend(-, s; X) andy(-, s; X) are continuous
in [s, T[; more precisely we have

() 0(, s %) € Z1—45(s, T[,U) and
NaC, s; ¥z wsaqsTLU) < ClIXlH, vse [0, T[;

(i) ¥¢,s;x) € C([s, (s+ T)/2l: H) N Zgu(s, (s+T)/2], H) N Z1_244([(S+
T)/2, T[,H) and

19C, S; X lLeoes, s+T)/2:H) + 1Y S X) 1 20, (s, (5+T)/21H)
HIYC, S X2y (s+Ty/2TLH) < ClIXIIH, Vse [0, T[.

Proof. We need some lemmas.

Lemma 4.4. Under Hypothesek.1-1.5and1.7let the operator s be defined b{2.3),
and for pe [1, oo[ set

p/(1—ap) if p<1/a,
r := { arbitrary < oo if p=1/a,
400 if p>1/a.

Then for each < [0, T[ we have

(i) ILsullLrsT,Hy < CllullLesT,0);
(") ILsUllceqs,11.H) < CllUllLe(s,T,U);
(i) lILsullz, ,.qsTr.H) < Cllullc,qs L), V¥ € [0, 1] — {a};
(iv) IL3vlrsT,u) < CllvllLesT H:
(V) IL3vlcsqs .0y < CllvllLes T, H)S
(Vi) ILsvllz, _sqsTLL) < Cllvlic,qsTLH), VY € [0, 1] — {a}.

Proof. (i) It follows by (2.3) and Hypotheses 1.3 and 1.5, by using Theorem 383 of
[HLP].
(ii) Writing, fors <7 <t < T,

Lsu(t) — Lsu(r)
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t
= —/ U, r)Ar)G(ru(r) dr
T t
- [ [ A@u@nansnue dadr
S T

t
f[[ AU 1] [-AM]*Gru(r) dr

[ oo fmr o (5]

x [=AM]*Gru(r) dq dr, 4.1
by Hypotheses 1.3-1.5 we easily obtain
ILsu(t) — Lsu(z)lIn

t T t
sc{/ (t—r)“‘ldr+/ /(q—r)“-qu dr} UllL=(sT.0)
T S T

< c(t — )" lullLes,T,0)-

(i Fors<t <t < T andy € [0, 1] we get, by (4.1) in the same way as before,

t
[Lsu(t) — Lsu(t)lln <cC {/ t—r)*XT —r)y7dr

T t
+ / / @ =02 dgT —r)7 dr} lulle, qsru)
S T
<ct—o)T —=07ullc,qsTL.U);

for y # o the result then follows by Proposition A.2 in Appendix A below.
(iv) It follows by (2.5) and Hypotheses 1.3 and 1.5, by using Theorem 383 of [HLP].
(v) Writing, fors <t <t < T,

Liv(t) — Liv(v)
.
— [[=ADJG®) — [~ ADFG®)]' / [~ AU r, Y u(r) dr
t

.

+[[-A@IGD] / [[-ADT U b
t
—[-A@ T U, ] o) dr

t

_ [[—A(r)]“G(r)]*f [—A@ U (r, )*(r) dr, 4.2)

by Hypotheses 1.3-1.5 we easily obtain
[Lsv(t) — Lsv(D)llu

T T
SC{(t—t)‘S/ (r—t)“‘ldr+/ t—o)’r -t dr
t t

t
+ f (r—r1)*1 dr} vllLees T, H)
T

5
<ct —)°|IvllLesT H)-
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(viyFors <t <t < T andy € [0, 1] we get, by (4.2) in the same way as before,
ILsv(®) — Lsv()llu

.
< c{(t — r)“/ r—0* YT -r)7dr
t
.
+/ t—0)°r —t)* YT —r)y7dr
t

t
+ / r—o* YT -7 dr} lvlle, @s.Ti.H)
T

<ct — (T =" |vlle, qsTLH):

for y # « the result then follows by Proposition A.2 in Appendix A below. O

Remark 4.5. For further use we notice thatife C, ([s, T[, U), y € [0, 1], we have
ILsu®ln <ct —9)*(T =) "|lullc, qstpuy  for s<t<T; (4.3)

this follows by Lemma 4.4(iii) sinc&su(s) = 0.

Lemma 4.6. Under Hypothese$.1-1.7,let y(-, s; X) be the optimal state relative to
the control problen(2.9)}+(2.10),and let the operators {.and Lst be defined by2.3)
and(2.7). Then we have

(i) LEIM()HU(, s)x € C([s, T],U) and
ILsMOU . 9)X) llcs s 1.0y < ClIXIH;
(i) L Pry(M,sx) € Z1o5(s, T[,U) and

ILsrPry(T, s X))z, sqsTLU) < ClIXI[H-

Proof. (i) Itis a consequence of Hypotheses 1.3, 1.6, and Lemma 4.4.
(ii) By Hypothesis 1.7Pr y(T, s; x) is a well-defined element df . Next, by (2.8),
Hypotheses 1.3-1.5, and Proposition 4.1(iii) we havesferr <t < T,
I[Lsr Pry(T, s;)](t) — [Ler Pry(T, s; X)](0)llu
< I {[-AD]*G®) — [—A(f)]“G(T)]* [[—A®D T U, )] Pry(T. s: Vllu
+IH[-A@I GO [[-AD* T U (T, )* = [~ A@) T *U(T, 1)*]
x Pry(T,s; X)llu
<ot = )’ (T = O)* Xl + ot = )°(T = O)**Hx]lu,

and the result follows by Proposition A.2 in Appendix A below. O

Lemma 4.7. Under Hypothese$.1-1.7,let ((., s; X) be the optimal control relative
to the control problen(2.9)(2.10),and let the operator L be defined by2.3).Then we
have LM (-)Ls0(-, s; X) € Z1_45([s, T[, U) and

ILsM()LsA(-, S: X))z, 505, TL.U) < ClIXI[H-
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Proof. We rewrite (3.7) as
NOU(, s;x) = —LgrPry(, s:%) — LEM(OU G, 9)X — LiM () LsU(, s; X)
= F - L;M()Ls0(, s; X). (4.4)
By Lemma 4.6 we have
IFllzysdsTLU) < CIXIIH; (4.5)
on the other hand, sind#(-, s; Xx) € L%(s, T; U) we have, by Lemma 4.4(i)—(iv) and
Proposition 4.1(i),

ILsM()LsO(, 8; X)ILa 1,0y < ClIXIH,

where
2/(1— 4a) if o< %
g := 4 arbitrary < oo if o= e
+00 if o> 7.

By (4.4) we getl — N(-)"*F e L9(s, T; U), and sinceN(-)~* € C([0, T], £L(U)) by
Hypothesis 1.6, (4.5) implieN (-)"*F € Z;_,s([s, T[, U); thus, by Lemma 4.4,
LIMOLs(NOTF) € Zy_g5([s. T[. U),
LEM()Ls(G— N()'F) € L'(s, T; U),

where
2/(1— 8a) if o< %
r := { arbitrary < oo if o= 5

Hence (4.4) now yieldd — N(-)~1F e L"(s, T; U). After a finite number of steps, we
find

LIM()Ls(N()TIF) € Z1o5([s, T[, U),
LIM()Ls(@— N()72F) € L®(s, T; U),

which finally givesd — N(-)"1F € L*(s, T; U). Applying once more Lemma 4.4 we
obtain

LEM(Ls(N(OIF) € Zyg5([s, T[, U),
LM(-)Ls(@ — N(-)"*F) € C*([s, T], U),

and the result follows. O

Let us prove Theorem 4.3. The proof of part (i) is easy: indeed, by (4.4),
(8 %) = =N()'LEPrYC, 8 %) = N()TTLEM(OU(, )X
— NOTLIMOLSAC, s %);
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the right member of this identity belongs¥g_, 5([s, T[, U) in view of Hypothesis 1.6
and Lemmas 4.6 and 4.7, and the estimate also follows.
Let us prove part (i): agU (t, S)||zn) <cforO<s <t <T and

t
[U(t,s) —U(z,9)lleH) = fA(q)U(q,s)dq

L(H)
t —
<c ‘ for s<t<t<T, (4.6)
T—8
Propositions A.2 and A.4 in Appendix A yield
U, 9)Xzooqs 11 H) < CIUC, 9)XZ41qs,T1,H) < ClIXIIH; 4.7)
on the other hand, by (i) and Lemma 4.4,
ILsOC, S5 X) 12 (s TLH) < CIIX[IH. (4.8)

Hence by (2.11), (4.7),and (4.8) we get, ok 7 <t < T,

19t. 5% — 9(r.8: %) [n < e[t — D) (x =9 + (t — D)*(T = O |Ix||n
<ot —0)*(x =9 (T = )" YIxlw,
and (ii) is proved by using again Proposition A.2 (continuity and lthe estimate in
[s, (T + s)/2] are obvious). The proof of Theorem 4.3 is complete. O

Remark 4.8. The results of Theorem 4.3 improve the corresponding ones, relative
to the autonomous case, see Theorem 3.6 of [LT3]; however, we cannot have here the
analyticity of the optimal state, which is a special feature of the autonomous situation.

5. The Operatorse(t, s), P(t)

We define the state operatoft, s) relative to the control problem (2.9)—(2.10): we set,
forO<s<t<T,

e, )X = y(t, s; X), Vx € H. (5.1)

Let us collect the main properties of this operator. By Theorem 4.3(ii), wedwdys) €
L(H)for0<s<t < Tand, by (2.13),

e, t) =1y, o(t,s) = o, rNe(r,s) for O0<s<r<t<T. (5.2)
Next, by Proposition 4.1(ii)

loC, Sl ceH,L2sT,HY) < C, Vse [0, T[. (5.3)

Proposition 5.1. Under Hypothese$.1-1.7,let ¢(t, s) be defined by5.1). Then

t = @, s)x € C1_2([s, T[, H), vxeH, Vsel0,T[;
s — ¢(t,s)x € C([0, t], H), vVx e H, Vvtel0, T[.
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Proof. The first assertion follows by Theorem 4.3(i). Concerning the second one, fix
t €10, T[and lets € [0, t]: then we have, as — s*,

lot, DX — o, )XIIn < o, Dllzm) X — o(z, S)XIn — 0,
whereas as — s, by the strong continuity o§ — U (t, s) in [0, T], by (4.3) and by
Theorem 4.3(i),

lo(t, )X — @(t, S)X|IH
< lle®, 9l llels )X = Xln
< llo, )z [IU(S X = Xl + I[LAC, 750111 ]
< e, S)llcw) [||U(S, )X — X|ln 4+ ¢(s — )T — S)a_l”X”H] 0. 0

In particular, by Proposition 5.1 and the Uniform Boundedness Principle we obtain

let,Sllcrm) <, T,e),
Vse[0,T[, Veelo,T—s[, Vtels T —el; (5.4)

by Theorem 4.3(ii) we also get

lot, $)ll e < (T —0>7,  vse[0,T[, Vte[sT[ (5.5)
In addition, by Proposition 4.1(iii),

IPY20(T,9) ey <¢ Vsel0, T[. (5.6)

We now define the Riccati operatBrt): fort € [0, T[ we set

.
P(t) :=/ U(r, )*M()e(r, t) dr + U (T, t)*Pro(T, t). (5.7)
t

By (5.5) and (5.6) we geP(t) € L(H) for eacht € [0, T[and P € L*(0, T, L(H));
moreover, it is clear that{ A(t)*]"P(t) € L(H) for eacht € [0, T[ andn € [0, 1[, and
by (5.5) and Hypotheses 1.3 and 1.5 the following estimates hold:

=AD" POlc <c)(T -0, vtel0,T[, Vnel0,1], (5.8)
IGA)*AM*P®)l ey < (T -0, Vvtelo, T[. (5.9)

The operatorP(t) allows us to express the optimal cdst, s; x) as a function of the
optimal statey(t, s; X).

Proposition 5.2. Under Hypothese4.1-1.7, let P(t) be defined by5.7). Then for
se [0, T[andte [s, T[ we have

at, s x) = N IGO) AL PO)Y(t, s: X),  Vx e H. (5.10)

We remark thatas usualthe above formula in fact means
at, s;x) = —NO [[-ADI*GD] [-AD T P1)Y(t, s %), VX € H,

which is meaningful by Hypothesiss and(5.8).
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Proof. LetO<s<t < T.By(3.6),(2.8),(5.1),and (2.5) we have, ok z <t and
y e H,

at, 73 y) = N TGO At)*
;
X |:U(T,t)*PT(,0(T, r)y+f U, H)*M@)e(r, 1)y dr];
t

hence choosing =t andy = ¢(t, s)x we get, by (5.2), (5.7), and (5.1),
at, t; (t, s)x)
T
= N®OIGH)*Ab)* |:U (T, t)*Pro(T, S)X +f U, )y*MT)e(r, s)x dr}
t

= N1 IGH)*AM)*Pt)p(t, S)X
= NGO AD*PDY(, S; X),

and the result follows by (2.13). O

Remark 5.3. (i) As, by Theorem 4.3)(-, s; X) € L%(s, T,U)NZ1_45([s, T[,U), we
immediately deduce thal —1G* A*Pg(-, s)x belongs to the same space and

INT'G*A*Po(-, 9)XllL2s 70y + INTIG*A*Po(, $)XlIz, . ,qsTLU) < CIXIH,
Vse [0, TI[.

(i) By (5.1), (2.11), and (5.10) we may rewrite the optimal dynamics as follows:

o, t)y =U(r,t) — f U(z,nNATNGEO)NT)IGr)* A P(r)e(r, t) dr,
t
O<t<t<T. (5.11)

Proposition 5.4. Under Hypothese4.1-1.7, let P(t) be defined by5.7). Then for
eachxy e Handte [0, T[ we have

(POX | Y
T
= /t (M®e(r, )X | oz, HY)n dT + (Pro(T, )X | o(T, )X)H

.
+/ (GO)*A@)*P(@)p(r, )X | N(T) 'G()*A)*P(0)e(r, Hy)y dr,
t

and, in particular, P(t) is self-adjoint and positiveMoreover

J(O(, t,x) = (POX | X)n, vt e [0, T[, VxeH. (5.12)

Proof. We have, by (5.7),

T
(POX | Y =/ (M@e(r, )X [U (T, )Y)n d + (Pro(T, )X [ U(T, Hy)n.
t
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Now we replacel (z, t) by its expression deduced from (5.11); the resulting double
integral is convergent since the integrand is square integrable/over {(z,r) : t <

r < t < T}: this follows easily by (5.3), Hypothesis 1.3, and Remark 5.3(i). Hence by
the Fubini—Tonelli theorem we get

(PMOX | Y)H
T
th (M(Do(z, HX | ¢z, Hy)n dt

T ,T
+f / (M()g(t, )X | U(z,r)AM)G(r)N(r)~?
t Jr

x GIO*ATM)* Pr)e(r,t)y)y dr dr
+ (Pro(T, )X | o(T,)Y)n + (Pro(T, )X | LerOC, t; Y)H
(recalling thatPr ¢ (T, t)x € D(L{7))

T
=/t (M@, )X | p(r, )Y)n dr + (Pro(T, HX | o(T, HY)H

T T
+f f (G)*AT)*U (z, 1)*M(D)e(r, )x | N)TIG(r)*Ar)*
t r
x P(r)e(r,t)y)y dr dr
.
+/ (GO)* A U(T, 1) Pro(T, )X | NG A(r)*
t

x P(Ne(r, t)y)y dr.
Finally, by (5.7) and (5.2) we conclude that

(PMOX | Y)H
T
= /t (M@, X | @(r, )Y)n dr + (Pre(T, DX | o(T, HY)H

T
+/ (GE)*AM) P, )X | NOTIG)*Ar)*P(Ne(r, ty)y dr;
t
thusP(t) € X(H). Choosing in particulay = x, we obtainP(t) > 0 and
(PM®OX | X)H

X
=/ (M@)F(T ) | 92 t:X0)n At + (PrCT, 10 | 9(T, 6 X0)m
t
)
—i—/ (N(A(r, t; x) | O(r, t; X))y dr
t
= J(O(, t: x)). 0

The next result seems to be new even in the autonomous case (compare with Section 5
of [LT3].

Theorem 5.5. Under Hypothese$.1-1.7,let P(t) be defined by5.7). Then we have

tlir?i IP(t)x — Prx|ly =0, Vx € H.
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Proof. We have, by (5.7) and (2.11),
IPM)X — Prx|in
T
/ U, )*M@)e(r, t)x dr
t

=

H
+ U T, O P2PY29(T, %) — PE2X]1ln + U (T, ) — 14]Prx|y
(by (5.5), Hypotheses 1.3, 1.7, and Proposition 4.2(ii))

<c(T —t)* +0(1) as s— T . O

6. Differentiability Properties of ¢(t, s)

From now on our technique differs from that of [LT3]. We start from the integral equation
established in Remark 5.3:

pt,s) =U(,9)

t
— / U(t, 1) A@)G(T)N()IG(1)* A(T)* P(t)e(z, s) dr. (6.1)

We state some results concerning the differentiability properties of the opeiais)
with respect to botl ands. Since the proofs are very long and technical, we omit them
here: all details can be found in [AT5].

We start with the study df — ¢(t, s).

Proposition 6.1. Under Hypothesek.1-1.7let¢(t, s) be the operator defined 1§§.1).
ThenforO<s <t < T we have

. et +h,s)—e(,s)
r|1|£>no< h x| y)H
= ([1n = GONMD 'GHO*AD)*PD)]e(t, )X | AD)*Y)H,
VX € H, Vy € DA(t)*'

Proof. See [AT5]. O

Remark 6.2. In the autonomous case of [LT3], using the analyticity % ¢(t, S)X,
it is shown thaty(t, s; X) — GU(t, s; X) € Da, i.e., the range of the operator{1-
GN™IG*A*P(t)]e(t, s) is contained inD4 for eacht e [s, T[; this proves, in that
situation, the strong differentiability af— ¢(t, s) and the formula

%(p(t, )X = A(D)[1y — GON®) IG()* A1) *PD)]o(t, 9)X, tels, T[ (6.2)

(compare with Lemma 4.4 of [LT3]). On the contrary, in our situation we cannot use
analyticity and it is not clear whether or not

14 — GON®) GO AL P®)]p(t, S)X
= ¥(t, s; X) — G(1)A(t, s; X) € Dag)- (6.3)
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However, this property holds true provided we impose some restrictions on the expo-
nentss, « in Hypotheses 1.4 and 1.5, as shown in Proposition 6.12 below. In concrete
parabolic initial-boundary value problems, (6.3) and consequently (6.2) may be proved
directly: indeed, for fixed the vector in (6.3) solves an elliptic system with homogeneous

boundary datum, so that the elliptic regularity theorems apply (see Remark 9.5 below).

We now consider the properties ef > ¢(t, s). Fix a numbere €]0, T[. For
0 < g < T — ¢ we introduce the integral operator

t
[Kqgl(t) 1=/ U(t, D) A(D)G(T)N () 1G(1)* A(r)*P(1)g(r) dr,
q
telq, T —¢], (6.4)
whose kernel is

K(t,7):=Ut, 1)A@)GE)N(T)IG()*AR)*P(1),

O<t<t<T, (6.5)
and satisfies, by Hypotheses 1.4-1.6 and (5.9),
IKE Dlley <ct —)*HT -0t for 0<t<t<T; (6.6)
in particular,
IK® Dlley <ct—1)*t  for 0<t<t<T-—e¢ (6.7)

It is shown in [AT5] that we havel + Kq)~t € £(B, (9, T — €], £L(H))) for each
y €[0, 1] and

11+ K) 2B, qq. Tl ) < Ce, vqe[0, T —¢], Vyel01]

(the spaceB, is introduced in Definition A.1 of Appendix A). Moreover this operator
can be written as

t
[(1+ Kq) tgl) = g(t) + f R(t, )g(0) do,
q

VgeB,(a. T —¢el.H), Vtel[q T—e¢, (6.8)
where the kerneR(t, o) is given by
Rt 0) =) (~1)™Kn(t, 0), (6.9)
m=1
with

t
Ki(t, o) = K(t, 0), Kmii(t, o) :=/ Km(t, 9)K(q, o) dq, Vme N*.

(e
It also satisfies

IRt Dl <C(t—1)*t  for 0<t<t<T-—-s. (6.10)
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All these facts are proved in [AT5]. Hence we can rewrite (6.1),fer® <t < T — ¢,
as

t
o(t,s) = [(1+ Ko MU, It = U(t,s) +f R(t, 0)U (o, s) do,
tels T —el (6.11)

This formula is the starting point for the direct computation of the derivatiye, s).
The following preliminary lemmas are proved in [AT5].

Lemma 6.3. Under Hypothese$.1-1.7let ¢(t, s) be defined by5.1). Then

lpt. t) —pt. S)llce <t —9°(t—1)°  for 0<s<t<t=<T-e
Lemma 6.4. Under Hypothese$.1-1.7let P(t) be defined by5.7). Then

I[=A@ T “P) — [-AS) T *PS) ) < (T —9)°
for 0<s<t<T-—e¢.

Lemma 6.5. Under Hypothese$.1-1.7let K(t, t) be defined by6.5). Then

() 1K, 9)—K(T,9)llem) <Ct—1)P@—95*%for0O<s<t<t<T-g¢
(i) 1Kt ©)—K@E,9)lew <c(r—s)Pt—1)* P for0<s<t<t<T-—g
(i) 1K, 9)—K(z,q)—K(t,9)+K(z,S)llcH) < C:(t—1)°(q—5)°(r—q)* 12

forO<s<q<t=<t<T-c¢.

Remark 6.6. (i) As shown in [AT5], Lemma 6.5 tells us that the operatérg and
(14 Kq)~t belong toL(l, (]9, T — €], H)), y € [1,1+ §[, foreachq € [0, T — ¢,
with norms bounded independentlyap{the spacd, is introduced in Definition A.6 of
Appendix A).

(i) The kernelR(t, o) introduced in (6.9) satisfies the same estimatel @so)
does, i.e., (6.10) and

IR, S) — R(t, 9|l £(hy < Celt — 7)°(r —9)* 17

for O<s<t=<t<T-—g¢g, (6.12)
IRt T) — Rt )l cHy < Ce(r —9)°(t —)* 7

for 0<s<t<t=<T-—g¢ (6.13)
IRt @) — R(z.q) — R(t, ) + R(T. )l ey < Gt —)°(q —9)°(r —@)* 2

for 0<s<qgq<t=<t<T-—e¢ (6.14)

Indeed, it follows by induction (see [AT5]) that these estimates hold for each iterated
kernelKn(t, o) with constantg, such thac,, T™ — 0 asm — oo, so that they hold
for R(t, o) too.
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Lemma 6.7. Under Hypothese4.1-1.4 there exists an operator &,s) € L(H),
continuousfolD <s <t < T,suchthatfoO<s<o <t <T we have
(i) (d/d9)U(t,s) =V (t,s), V(t,s)x = —U(t, S)A(S)X, VX € Dag);
@iy IV, 9)llem) <ct—9h
(i) IV (t,s) + A(9)e" A9 L) < c(t —s)° Y,
(V) IV(t,0) = V(t,9)lcm) < Cyo —9)(t —o) 1", ¥y e]0,4;
(V) IV(t, o) + A(0)et=2A@ — v (t, s) — A(S)ET D4 || £y < ¢,)(0 —9)"(t —
o)1, v €10, 8];
Vi) IV, )=V (t, 9)]AS) Y cny < 6 [(0—8)"(t—0)"+(o =) (t—0)"Y,
Vn €10, 5[

Remark 6.8. Lemma 6.7 implies that for eache H the functionV (-, s)x belongs to
the spacdi(]s, T], H), since by (iii) we obtain, for eache s, T],

t

3 lim V(z,s)x dr
h—0% Jsth

t
= f [V(t,s) + A(s)e" 94O x dr — [e"9AFx —x]  in H;
S

hence by (ii) and (iv) we also get, for eaghe 10, §],

V(" S) € Zl,n(]sv T]? E(H))’
Ve, 9xe zg,(0s T, H),  ¥xeH. (6.15)

Similarly, by (i) and (v) we obtain, for each € 10, §],

V(.9 + A9 ¢ 7, 5. (s, T1, L(H)). (6.16)

Now we return to (6.11). For smailwe easily obtain

e, s+ h)—e(,s)

h
. —U( s+h
- [(1+ Koo (U( ARl L +%/ K(. D)p(z.9) df)} ®
for s<s+h<t<T-—g¢, (6.17)
—h
_ [(1+ Kot <U(., S — h)h— ug,s) i %/ K(, 1)p(z,s— h) dr)] )
- s—h
for 0<s—h<s<t<T-—g¢ (6.18)

by (6.8) we can rewrite them as

pt,s+h)y—e,s)
h
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B s+h
_ U(t,s+hr)1 U(.s) +%/ K(t. )¢(r.s) dr
S

t _ s+h
+ / R(t, o) <U(a, St hl’)1 U@, s) + % f K(o, 1)¢(t,S) dr) do,
s+h s

tels+h T —el (6.19)

—h

_ _ S
_Ukts h-UEs) + E/ K(t, t)¢(t,s—h) dr
—h h s—h

t L s

+/ R(, o) (U(U’ S h)h U@, s) +% K(o, 1)p(t,s— h)dr) do,
S - s—h

tels, T —el (6.20)

Proceeding formally, letting — 0" we find

t
ps(t,s) =V (t,s)+ K(,s) + / R(, 0)[V (o, s) + K(o, 5)] do,

ie.,

Notice that this formula is not meaningful &(H), since the operataf. + K¢)~* acts in
I1(Js, T —¢], £L(H)) but does not operate ity , (IS, T —¢], L(H)), whereas, by (6.21),
V (-, s) is in the latter space but is not in the former one. However, for gachX we
haveV (-, s)x € I1(]s, T — €], H), so that instead of (6.20) we may write

d
Jele®9xX] =11+ Ko) MV, 9% + K(, s)x]] (1),
Vtels, T —¢], VxeH. (6.22)

Nevertheless, it can be shown thagtt, s) exists in the sense d@f(H); in fact we have:

Theorem 6.9. Under Hypothese$.1-1.7,let ¢(t, S) be the operator defined t§g.1).
Then for0 < s <t < T it holds in the sense of (H), that

d%w(t, s) =V(,s)+ /St R(t, 0)[V (0, S) + A(S)e” 929 do
— /t[R(t, o) — R(t, 9)]A(S)e“ 94O dg — R(t, 5)et9AS)
s
where \t, s) = (d/d9)U (t, s) and Rt, s) is defined by(6.9).
We remark that this formula reduces to (6.22) when applied toaayH .

Proof. See [AT5]. O
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Corollary 6.10. Under Hypothesek.1-1.7 let(t, s) be the operator defined I§§.1).
Then for0 <s <t < T we havein the sense of (H),

t
I:dis(p(t, s)} A(s)t=-U(t,s) —/ R(t, o)U (o, s) do — R(t, s)A(s) L.

Proof. Itis an easy consequence of Theorem 6.9 and Lemma 6.7(i). O

Remark 6.11. The result of Theorem 6.9 guarantees thdt, s) exists for 0< s <
t < T;in addition, foreacly > 0andO0<s <t < T,

lost, Sl cny < er-s(T — )% Lt —9)7, (6.23)
lost, SIAS) o) < Cros(T — )2t —s)* L. (6.24)

Indeed, for fixeds € [0, T[, if t < (T + s)/2 we have, by (6.22), Lemma 6.7(ii), and
(6.7),

los(t, Sl ey < Crg)2(t —9) ™

on the other hand, T +s)/2 <t < T the identity (5.2) implies, using also (5.5), that

lost, S)ll zcy = llot, (T 4+ 9)/2)ps((T +5)/2, 9) || £h)
< o(T = 0)* eq_gp(T -9,

so that (6.23) follows. Similarly, if < (T +s)/2 we have, by Corollary 6.10 and (6.10),
lps(t, YAS) "l zHy < Crogyalt —9)* T,
whereas it < (T + s)/2 we have, by (5.5),

lps(t, YAS) e = lot, (T +9)/2¢s(T +9)/2,9AS) e
< o(T —0)* leq_g2t — 97,

and (6.24) also follows.
We also remark that by (5.6) we deduce tﬁ‘éfzq)s(t, S) exists even wheh =T,
and for eacts € [0, T[ we obtain

T+s T+s
P 0s(T. s) = P (T, ; )w( ; ,s), (6.25)

1P 20s(T, S)ll £y < Cr_s. (6.26)

We end this section with a result concerning the differentiability ¢tf, s) with
respect td, under some restrictions on the exponengsmda.
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Proposition 6.12. Under Hypotheses.1-1.7,let (Y(t, s; X), U(t, s; X)) be the optimal
pair for the control problen{2.9)«2.10).We have

y(t,s; x) — G(t)A(t, s; X) € Dagy, vt e[s, T[,
provided the numbesanda satisfya + & > 1.

Proof. Assumex +§ > 1. By (2.10) and (2.3) we have for@ s <t < T, using
Lemma 6.7(i),

t
y(t.s;x) = U(t, 9)x —/ U, @) AG(@)a(, s; x) dq

t
— Ut sx+ / [[-A@T Ut g
x [—A@]*G@[d(g, s; x) — a(t, s; x)] dg
+/ [-A@ T U, o]

t
x [[~A@]*G@) — [-AD]*G®)] at, s; x) dg
t
- / [[—A@ U, )]
x [[=A@]™ = [-AD] ] [-AD]*G®)a(t, s; x) dg
+ G)a(, s; x) — U (t, s)G(t)a(t, s; X);

hence, denoting by;, i = 1, 2, 3, the integral terms in the last member, we get
3
y(t,s;x) — G)A(t, s; x) = U(t, s)[x — G)A(t, s; x)] + Z'I’i, (6.27)
i=1

and the first term on the right-hand side belongBj@,. We now show tha#(t)T; € H
fori =1, 2, 3: by Hypotheses 1.3 and 1.5 and Theorem 4.3(ii) we have

IA®) T1lln
t
= ‘ / [[-A@T U, * At ]
9y

t
< C/ (t _ q)a72+5(-|- _ t)a71+8dq < C(t _ S)a+871(T _ t)otJrszl’ (628)
S

x [-A@]*G(y[a(g, s; x) — a(t, s; x)] dq

and similarly

t
IAO T = | [ =A@ T U A0

% [[-A@I"G(@ - [~ADI“GM] a(t, 5: ) dg|

t
< c/ (t—* 2T —t)*1dg < ct — 9)*HT —t)*~ L. (6.29)
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Now we remark that
I=A@]™ = [-ADO] “llzH <ctt—q*  for 0<gq=<t=<T; (6.30)

indeed, as« + p > o + 8 > 1, this estimate follows, proceeding as in Lemma 2.7(i) of
[AFT]. By (6.30) we deduce

t
IAM®) Talln = f [[— A@* U t, )* A ] [[-A@] ™ — [-AD] ]

x [-AM]*G®)(t, s; x) dg

. H
< C/ t—q*#T -t tdq
<c(t —9)* T HT — L, (6.31)

By (6.28), (6.29), and (6.31) we see that the right member of (6.27) belorDgtp
The proof is complete. O

7. The OperatorsA(t)

Under Hypotheses 1.1 and 1.2, a precise definition of the linear unbounded operator
P — A)*P + PA(t), appearing in (0.4), can be given in the following way (compare
with [D]). Fix P in the Banach spacg (H), || - |lz+)) and consider the sesquilinear
form defined orD a¢) x Dag) by

WP(ta X, y) = (A(t)X7 Py)H + (PX, A(t)y)H ) X, y € DA(U' (71)
We set

Daem :={P e Z(H):3c(t; P) > 0 :|gp(t; X, Y)|
< c(t; P)IXIInlYlH, VX, Y € Dag}- (7.2)

If P € DA, thengp(t; -, -) has a unique extensi@p(t; -, -) to H x H such that

{ivp(t; X, Y) =ept; X, y), VX, y € Dag. 73)
lop(t; X, V)| < ct; PYIXIHIYIH, VX,y e H; '

hence by Riesz’ Representation Theorem there exists an op&atoy € L£L(H) such
that

ep(t; X, Y) = (Qp®X | V), VX, y € H. (7.4)
Now we define

A(t)P = Qp(t), VP ¢ DA(t)’ (75)
i.e.,

(AOPX|y)y =9op(t; X, y), VX,y € H. (7.6)



388 P. Acquistapace and B. Terreni

We remark that ifP € D« andx € Dag), then in particular
((PX T AMY)H] = lept: X, y) — (AMDX | PY)n]
< [et; PYIXIIn + TAOXTH] IYIIH;
this mean$x € D)~ and
AN)Px = A(t)*PX+ P A()X, VX € DA(t)a VP e DA(t)’ (77)
i.e., (0.4) holds when evaluated at ang D 4. In particular, by (7.4), (7.3), (7.1), and
(7.7) it follows easily that

(QprOX | Yy =X QprM)Y)y VX, Y € Dag),

and thereforeA (t) P = Qp(t) € X (H) for eachP € D, ).

The properties of the familyA(t),t € [0, T]} are summarized in the following
statement.
Proposition 7.1. Under Hypotheses.1and1.2,the family{A (t)} satisfies

(i) For eachte [0, T], A(t) generates inZ(H) the analytic semigroupé®
given by

AP = A PgAl P e B(H), (7.8)

and in particular Hypothesid.1 holds for {A(t)} in X(H) for each6, <
17 /2, 6] with a suitable constant M:= M (6p) > M, i.e., we have

|0 = AT gy < MolL+ 1207,
VA e S(6y), VtelO0,T]. (7.9)

(i) Hypothesisl.2 holds for{A(t)} in X (H) with the same: and for eachog €
11 — w, p[, with a suitable constant ;\.= N(pg) > N, i.e., we have

JA®D = AOITAD®™ = A £ig i)
< Nolt —S|*[L+ |A[]™™,  VieS@y), Vt,se[0,T]. (7.10)
(iif) The evolution operator &, s) of the family{A(T — t)} is given by
Et,s9)P=UT —s, T —t)*PU(T —s, T — 1),
O<s<t<T, PeZXZ(H). (7.112)
Proof. See Section 2 of [A2]. O

Remark 7.2. (i) According to the remarks in Section 1, it can be shown th@t s)
satisfies Hypotheses 1.3 and 1.416H), with A(t) replaced byA (T —t) ands replaced
by 8o := po + 1 — 1. In particular we have

E(T—t,00P =U(T,t)"PU(T,1), Vte[0,T], ¥P e X(H). (7.12)
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(i) The domainsD,, are in general not dense fXH), as the following char-
acterization shows (compare with Remark 8.3 below). Thus the analytic semigroups
generated by eacl(t) in X (H) are not continuous at 0. A detailed study of such kinds
of semigroups can be found in [Si] or in the book [Lu].

Proposition 7.3. Under Hypothese$.1-1.4we have
Dam = {P e S(H) : lim [U(z.9"P = P|| ., =0}
={PexH):jim|udt. 0P -P[,,, =0}.
Proof. We just prove the result when= T, since the case € [0, T[ is quite similar.

If P € Dact), fix e > 0 and choos&) € D,y such that|P — Q|| zn) < &. Then,
recalling that

dESU (T, s)* = A(S)*U(T, s)*, Vs e [0, T[
(compare with Lemma 6.7(i)), we get
U, 9P =P ;4
= [V 9" = 1] (P = Q) gy + [UT. 9"Q = Q| 1,
=clP—Qllzm) +

T
/ A(D)*U(T,)*Q dr (7.13)

L(H)
Now by the representation formula in Proposition 3.1 of [A2] is is easy to see that
Dam S {Q e Z(H) : [-A(M)*]"Q € L(H)}, vn € [0, 1[;
thus by (7.13) and Hypothesis 1.3 it follows that
[U(T,s)*P — Pl
<cllP = Qllzm)

]
+ / (=A@ (T, O = AT ] [~ AT)T'Q dr

L(H)
)

<P — Qllci + c/ (T — o AT Qllc) dr

< ce + CI[= AT T"Qll £y (T — ),

sothatJ (T, s)*P — Pin L(H)ass — T~. Conversely, assume tHa{T, s)*P — P
in L(H) ass — T~; then we also have

IPU(T,s) = Pllzny = |[[U(T,9)*P — P]
Hence, by (7.12),

*HL(H)—>O as s— T°.

IE(T —s,00P — Plizh
= U(T,9)*PU(T,s) — Plizmy
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= [V 9" = 1] PUT, 9 £y, + IPIUT,S) = Lulll ey
<c|[UT 9P~ P”L(H) + IPUCT,s) = Pllzy >0 as s—>T7;

this shows thaP € Djr). O

The following proposition is a consequence of the results of Proposition B.1 in
Appendix B below.

Proposition 7.4. Under Hypothesek.1and1.2,consider the linear backward Cauchy
problem

{Q/(t) =—-AMDQM) — F(), tel0, T,
Q(T) = Qr.

(i) f Qr € Daeryand F e LY(0, T; =(H)) N Z1,([0, T[, =(H)), n € 10, 8],
then there exists a unique classical solution $pch that moreover Qand
A()Q() belong to Z, ([0, T[, X(H)).

(i) f Qr € Daryand Fe B(0, T; X(H))NZo,([0, T[, X(H)), then the classi-
cal solution Q satisfies QA(-)Q(:) € B(O, T; X(H)) N Zy,, ([0, T[, Z(H)).

(i) 1f Qr € Dacr), F € C([0, T], 2(H)) N Zo,,([0, T[, £(H)), and A(T)Qr +
F(T) € Da(r), then there exists a unique strict solution $pch that moreover
Q. A()Q() € Zo, ([0, T[, Z(H)).

(iv) Inall cases Q is given by

T
Q(t):E(T—t,O)QT+/ E(T-t, T —0)F(o) do, te[0, T],
t
where Hr, s) is the evolution operator associated{ta(T — -)}.
(The spaces £, and Z; , are defined in Definitions A and A6 of Appendix A below

Proof. The functionR(t) := Q(T —1t), i.e.,

t
Rt) = E(t,0Q7 +/ Et,s9)F(T —9s)ds t [0, T],
0

is, by Proposition B.1 of Appendix B, the classical or strict solution of the problem

{R/(t)zA(T—t)R(tH—F(T—t), te]0, T],
R() = Qr;

hence all statements follow by the corresponding ones in Proposition B.1. O

We now return to the Riccati operatBxt) introduced in (5.7). In order to prove that
it is a classical solution of Riccati equation (0.4), we show tRét) belongs toD, )
for eacht € [0, T[. More precisely:
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Theorem 7.5. Under Hypothese&.1-1.7, let P(t) be the operator defined i(5.7).
Then we have R) € Dy for each te [0, T[ and

(AOPMOX | V)4
T
=/ {(M@o(r, )X | V(r, )Yy + (V(z, DX | M(D)g(z, )y)y} dr
t
+ (Pro(T, Ox | V(T, DY)y + (V(T, )X | Pro(T,H)y)y . vt € [0, T[,
whereg(z, t) is defined by5.1)and V(z, t) = (d/dt)U (z, t).

Proof. Forx,y € D) we write, by (7.1) and (5.7),
eppy (X, y) = (POX| ADY)y + (ADX | POY)4
T
=/ (M@, 6% | U HADY),
t

+ (U (r, VAD)X | M(@)Y(z, t; y))H} dr
+ (Pry(T, ;%) | U(T, HAWDY),
+ (UM HAMDX | Pri(T.t;y),, - (7.14)
By (2.11) we obtain
vpm (X, Y)
T
=/ {(M@U (., )X | U(r, ) A)Y)y
t
+ (U, H)ADX | MU (z, ty)y} dr

]
—ft [ (M@OLIAC 0] [ U@ HADY),

+ Uz, AMX | M(D)L[AC, t; Y](D)),, | dT
+ {(PrUT, tH)x | UT, H Aty + (U (T, HADX | PrU(T, Hy)y}
—{(PrLer[0C, 0] [U(T. HAMD)Y),
— (UT. HAMDX | PrLer[0G. 9], )

4
= Z ;.
i=1
Let us estimate the termis. By Hypothesis 1.6, Theorem 4.3(i), (4.3), and Lemma
6.7(1)—(ii),
.
2] < c/ (T =0T = o)* drlxlnllyln
t
< (T = Xl llylln, (7.15)
whereas by (3.2), Proposition 4.1(i), and Lemma 6.7 (i)—(ii),
al = c|[P2], . T =07 {IAC 0 Iyl + 1C, 6 Y X

<c(T =) xlalyln. (7.16)
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Next, by (7.12) and Proposition 7.1,

3] = [(AM*U T, H*PrUT, OX | Y)u + U T, H*PrUT, HAMDX | VI
= [(AMET = t,0Prx | y)ul < (T =) IXInlYlk-. (7.17)

Finally, concerning the ternhy, we remark that by Proposition 7.4 the functibr->
ftT E(T —t, T — t)M(7) dt is the classical solution of

R(t)=—-AM®R®M —M@t), te[0, Tl
R(T) =0,

with M e C’([0, T], =(H)) by Hypothesis 1.6, and obviously ® D, t); hence it
follows that

T
t— A(t)/ E(T—-t, T —t)M(r)dr € B(O, T; Z(H)) N Zg, ([0, T[, Z(H)),
t
vn €]0,§[.

Hence we have, by (7.12),
T
[11] = (A(t)*/ U, t)yM@U(r,t)dr x|y
t

H
T
+ <f U, )*M(()U (7, t) dr A(t)X | y)
t

H

=clIxliulylln.  (7.18)

T
= (A(t)/ E(T—-t, T —1t)M(1) er|y>
t

H
By (7.15)—(7.18) we conclude that

lopey % VI < (T = O HXIalyln,

which shows, by definition (see (7.2)), thatt) € D, . In addition, by (7.14), (5.1),
and Lemma 6.7(i), we obtain the desired expression for the opex&tdP (t). O

8. The Riccati Equation
We are now ready to show that the operalqt) defined by (5.7) solves the Riccati
differential equation (0.4). We start with the following result, which is more general than

Theorem 1.1(viii) of [LT3] even in the autonomous case:

Theorem 8.1. Under Hypothese$.1-1.7,let P(t) be defined by5.7). Then for each
X,y € H we have(P(-)x | y)y € CY([0, T[) and

d
e (POX YY)y ==MOX|Y)y — (AOPOX | Y4
+ (POAOGONMD IGM)* AL P(1)X | Y)y - (8.1)
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Proof. Assume firsx, y € Dag), with fixedt € [0, T[. Then, starting from (5.7), for
0 <h < (T —t)/2 we can write

T * *
B </ U(o,t + h)h U(o.1) M(o)p(o,t + h)x do | y)
+h

T J—
+ (/ UG, t)y"M() POt EM —¢@ b | y)
t+h h H

H

1 t+h
- <—/ U(o,t)*M(o)p(o, )X do | y>
h J; H

U(T,t+h)* — U, t)*
+< ( + )h ( )PTcp(T,t+h)x|y>
H
o PT L) — (T, 1) Ny
+<U(T,t) Pr . x|y)H_.ZI..

Now by lemma 6.7 we have

T 1 t+h
Iy = / <M(a)<o(a, t+h)x | H/ [V(o,a) = V(. O]y dq) do
t H

t+h

T
+/ (M@@)p(o, t +h)x | V(o,t)y)y do
t+h

(by (5.5) and Lemma 6.7 (vi)—(i))
T
—/ (M(@)¢(a, )x | U (o, ) A)Y)y do + O(h*?) + O(h*),
t
as h— ot.

Next,

T 1 t+h
l2 = / <M(U)ﬁ/ [pq(0, Q) — ¢t (o, )]x dg | U (o, t)Y) do
t+h t

H
\
+ / (M@, )X UG DYy do
t+
(by (6.22))

T 1 t+h
:/ <M(a)—/ [V(o,09) — V(o,D)]x dg| U (o, t)y) do

t+h

T t+h
+/ (M(U) / [K(o,q) — K(o,)]x dq| U (o, t)Y) do
t+h

t+h :
+/ (M(o) / /R(o D)
+h

% [V (p, )% — V(p. )x] dp dq|u<a,t>y) do

H
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T 1 t+h o
+ [ (M(o)—f | Rep)
t+h h t q

x[K(p,q>x—K(p,nx]dpdqw(o,t)y) do

T 1 t+h pq "
—f (M(U)ﬁf / R(, p)
t+h t t

x [-U(p, HAMX+K(p,t)x] dp dq| U(a,t)y) do
H

T

+/ ) (M(o)gi(o, )X [ U (o, 1)y)y do
t+

(by Lemma 6.7(vi), Lemma 6.5(ii), (6.10), and Lemma 6.7(i))

»
_ / (M(0)1(0. )X | U(@.Hyy), do + O(h*/2) + O(h’) + O(he)
t
as h— 0".

We remark that in view of (6.24) the limit ¢ is meaningful, i.e., the integral converges.
Concerningls, l4, andls, by Proposition 5.1 we have

h
=—(M®)X|y)y +0o(D) as h— 0':

1 t+h
l3 = — (-/ U(o, t)*M(0)¢(o, t)x do | Y>
t H

by Proposition 5.1 and Lemma 6.7(i) we get

U, t+h)—U(,t
|4=<PT¢(T,t+h)X| SlASUAE )y)
H

= —(Pro(T,tH)x |U(T,H)AM)Y)y +0(D) as h— 0";

finally by (6.25) we obtain

@ I,t+h — @ T, t

= (Pre(T, X |U(T, )y)y +0(1)  as h— 0"

Summing up, we have
H

h— 0+ h

]
_ / (M(0)p(@. )X | U DAD)Y), do
t

T
+/ (M(@)@i(o, )X [U (0, 1)Y)y do — (MDX | Y4
t

— (Pro(T, )X JU(T, HAMDY) 4 + (Pred(T, OX [U(T, DY)y ,
VX, y e DA(t)-
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A quite similar calculation shows that the same limit is obtaineldl as 0~. This shows
that for eacht € [0, T[ andx, y € Daq) the derivative off P(z)X | y)n exists at the
pointt =t and

d
[E(P(r)x | Y)H}

T=t

)
_ —/t (M(0)p(0. ) | U(e, DA®)Y)y do

]
+/ (M(@)¢e(o. )X | U(o, ) do — (MOX | Y

t
— (Pro(T.Ox | UT.DADY L + (PraT.OX [UT. Oy, (682)

We show not that (8.1) holds. Denote Byi = 1, 2, 3, 4, 5, the terms on the right-hand
side of (8.2): then by (5.7) we see that

N1+ Ta=—(POX| ADOYIH,
Ts=—-(M®X | Y)H,

T
To+Ts = <|:/ U(o,)*M(o)gi(o,t) do + U (T, )" Proy(T, t):| X | y)
t

H

Now, choosing any € ]t, T[ and using (5.7) and (5.2), we can rewrfig+ Ts as

To4+Ts = UT D PO, HX | Y)n + </ U(o, )*M(0)¢r(o, 1) do X | Y> ;
t H

now the second term tends to Oras> t*, since, by (6.24),

‘(/ U, o)*M(o)gt(o,t) do X | y)
t H

< cr-p2l AOXI K ITYIIH(r — D,

whereas the first term transforms in the following manner: using (6.22),
VT O PO@ . x| y),
= UEr D" POV HX|yY), + U HD*PEOKE HX | yH
r
— <U (r,t)*P(r)/ K(r,o)pi(o, )X do | y>
t

(by Lemma 6.7(i) and (6.5))
=—U @ H*POUTHADX | YIH
+ U, H*POUEHADGHNDG GH)*AD*PMX | Y)n

ey <r,t>*P<r)/ K (r, )1(0, DX do | Y)n:
t

H

thus ag — t* we obtain that

—UEH POUTHADX | YIH = —(POADX | Y)n = —(ADX | POY)IH,
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U, H*PMOUT, HAOGHNG GO AL *POX | YK
= —([—ADOI*"GONMD 'GM*AD*P®X | [-AD T U, H)*P()y)H
(sinceP(t) € L(H, D(—A®)*]")) for eachn €]0, 1])
— —([“AD]I*GON® GMO* A PMOX | [-AD* T *P®)y)H
= (POADOGHONMD 'GO)* AL PMOX | Yk,

and the last term tends to Olas~ t™*, since, by (6.7) and (6.24),

‘(U (r,t)*P(r)/ K(r, o)¢t(o, t)x do | Y> < cron2l AOXIRIYlln (F — 1.
t H

Summing up, we have obtained

5
:ZTi
=t izl

= —(POX [ ADOY)H — (MOX | y)n — (ADX | POY)H
+(POADGHOND GO AD* POX | Y)n;

d
[E(P(t)x | Y)H}

T

hence by Theorem 7.5

d
[E(P(T)X | y)H] =—(AMOPOX[Y)H = (MOX | Y)n

=t
+ (POADGHND GH*AG)*PMX | Yk,
VX, y e DA(t)-

Finally we observe that the right member of the above equality is a bounded linear
operator inH for eacht e [0, T[; thus, sinceDag, is dense inH, we obtain in a
standard way that the equality holds for eagly € H. The proof of Theorem 8.1 is
complete. O

We remark that this result, even whéit) = A, improves Theorem 4.5 of [LT3].
However, in fact, we have more: the next result in the autonomous case was known only
under additional assumptions & (see Corollary 1.7 of [LT4]).

Theorem 8.2. Under Hypothese4.1-1.7, let P(t) be defined by5.7). Then P ¢

P'(t) + AW P(t) = —M () + PO ADGH)N®D G A1) P(t),
vt e [0, T[. (8.3)

Proof. Let P(t) be given by (5.7) and fix € JO, T[. ThenP(T — &) € D(A(T — ¢))
by Theorem 7.5, and in addition the function

t - —M() + PO)ADOGHNE) IGMH)*AM)*P(t)
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belongs taC%([0, T — ¢], ©(H)) by Hypotheses 1.5 and 1.6 and Lemma 6.4; hence if
we consider the linear problem

Q)+ AM)QM) = —M(t) + POADGH)N®) IG1H)* A1) *P(t),
tel0, T —¢],
Q(T —¢&) = P(T — o),

by Proposition 7.4 we obtain for this problem a unique classical sol@ienC ([0, T —
], T(H) NCL[0, T — ¢, =(H)) with A()Q(-) € C([0, T — ¢[, =(H)).
We want to show thaQ(t) = P(t) for eacht € [0, T — ¢]. In order to do this,
we repeat the usual argument (see also the proof of Proposition B.1 in Appendix B): set
R=Q—Pandfixt €]0, T —¢], x,y € H;thusR(c) € D, foreacho e [t, T —¢[
and, by Theorem 8.1,

d
E(R(a)x | Y)v = —(A(@)R(0)X | Y)H, VX,ye H, Voelt,T—¢gl.

Consider the function

z(o) = (E(T —t, T —o)R(@)X | Y)H, oelt, T —¢];
we have, by (7.11),

z(o) = (R(@)U (0, )X | U (o, hHY)H,

so that we find thaz is differentiable in{, T — ¢[ and, by (7.7),

d
Z(0) = [— (R(0)E | ;)H}
do £=U(o.H)x.2=U(a.t)y

+ (R(e)A(@)U (0, )X | U (0, )Y)y + (R(0)U (0, )X | A(o)U (o, 1)y)y
= —(A(0)R@)U (o, )X | U (o, 1)Y)y
+ ([R(@)A(0) + A(0)*R(0)]U (o, )X | U (o, t)Y)H =0,
Vo elt, T —¢l.

Hencezis constantint, T — ¢], i.e.,

(ROX | Y)y = 2(t) = 2(T —¢)
=(ET-taRT —ox |y =0 VX, yeH;

this implies
R(t) =0, vte[0, T —¢],

so thatP = Q in [0, T — ¢]; in particular,P’, A()P(-) € C(0, T —¢], X(H)) and
(8.3) holds in [Q T — ¢]. By the arbitrariness of, we get the desired result. O
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Remark 8.3. We know by Theorem 5.5 th&(t)x — Prxforeachk e Hast — T—;
in general, howevelR(-) does not belong t€ ([0, T], X (H)). In fact we have

P() eC(0,T],X(H)) <« Py e Dam. (8.4)

This in turn is equivalent to saying thB{-) is a classical solution i (H) of the Riccati
equation (8.3) , in the sense of Appendix B below.

Let us prove property (8.4): iPr € D, (1), then we can refine the proof of Theo-
rem 5.5 using Proposition 7.3, obtaining tlj&(t) — Pr||zn) — O ast — T~. Con-
versely, ifP(-) € C([0, T], £(H)), then obviousiyP(t) — Prin L(H)ast —> T, so
that by (5.7) and Proposition 7.3 we readily g&t< D).

Notice that the identity operatoryldoes not belong td, 1) unlessA(T) is
bounded, and hence in that caBé&) — 1 just strongly, ag — T, although the
optimal control of the associated problem (0.1)—(0.2) exists. On the other hand, any com-
pact operatoQ € X(H), and in particular every) € X (H) with finite dimensional
range, belongs t®, 1. Hence such operators originate classical solut®(ts of the
differential Riccati equations such thatt) — Pr in £L(H) ast — T, provided they
satisfy Hypothesis 1.7; this assumption is basic for the existence of an optimal control,
as the counterexample in [F3] and the argument in Section 7.1 of [LT2] show.

9. Examples

We consider in this section two control problems whose state equations are nonau-
tonomous parabolic systems with Dirichlet and Neumann boundary conditions, respec-
tively. We think of them as prototypes of the class of problems which are covered by the
abstract assumptions of Section 1.

Following [AFT], letQ be a bounded open set®¥, with boundaryd 2 of classC?.

fulfilling the following hypotheses:
Ag € Cr72 ([0, T1, [C°@IV) n e ([0, T [CH@IY).
n n
Re Y (Ag(t, %) - & | &)en = vo ) l&slaw, (9.1)
s, j=1 s=1 B
VEr, ..., &0 e CN, V(t,x) €[0,T] x Q,
wherey € 10, 1[, vp > 0. We consider the following problems:

Dey(t, x) — Y Ds[Ai(t, X) - Djy(t, )]

s j=1
+y(t,x) =0 in [0, T] x Q, (9.2)
y(t, X) = u(t, x) in [0, T] x 9%,
y(0, X) = Yo(X) in <,
Dey(t,x) — Y Ds[Ai(t, X) - Djy(t, )]
s,j=1 _
n+y(t, x)=0 in [0, T] x , 93)
3 At %) - Dyt 0vs00 = ut.x)  in [0, T] x 92,

s,j=1 -
y(0, X) = Yo(X) in Q,
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whereyp, u are prescribed data on the parabolic boundary oT[0x Q. Herev(x) is
the unit outward normal vector ate 9<2.
The corresponding control problems are the following:

minimize
T
J(u) ::/ /(m(t, X)y(t, X) | y(, X))en dx dt
0 Q
T (9.4)
+ (n(t, x)u(t, X) | u(t, X))cn doy dt+/ ly(T, x)|éN dx
0 b19] Q
over all controlsu € L2(]0, T[x3$2, CN) subject to the state
equation (9.2) or (9.3);

here the matrice®, nsatisfym € C? ([0, T], [L=(22)]V*),n € C¥ ([0, T], [L® )]V,
with m(t, x) andn(t, x) — vly (v > 0) positive definite; hence Hypothesis 1.6 is satis-
fiedinH := [L2()]N andU := [L?(09Q)]N with § = y. Moreover, Hypothesis 1.7 is
certainly fulfilled sincePr is just the identity operator oH .

Introducing, for each € [0, T], the differential operators

n
A(t,x, D)v = ) Dg[Ag(t, x) - Djv] — v, X € Q, (9.5)
s, j=1
Bov = vhq, (9.6)
n
Bi(t, x, D)v := Z Ag(t, X) - Djuvs(x), X € 092, (9.7)
s, j=1

we can define fot € [0, T] the following abstract operators dth:

. 2,2 1.2 N
Dayo = [WO Q) N W (Q)] , ©8)
Ag(Hv = A(t, -, D)v,
Daw = {v € [W22(Q)]IN : Bu(t, -, D)v = 0}, 9.9)
Ai(t)v 1= A(t, -, D)v. '
The adjoint operatorsy (t)* of A; (t) (r = 0, 1) are defined by
N
Daor 1= [WH(@) nwg2@)]
_ n _ (9.10)
Aot)'y i= At D)y = Y D; [Aq(t. - Dsy| - .
s, j=1
Day 1= {y € [W22(@)N : Bi(t, -, D)y
no_ } (9.11)
= > At ) - Dsyv =0¢,
s, j=1
Al(t)*y = A(L ) D)y,

where!Aq is the matrix whose elements are the conjugates of the elements of the
transposedA; of A

The main properties of the operatofg(t), A (t)* in the Hilbert spaceH =
[L2()]N are listed in the following statement:
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Proposition 9.1. Under assumptio®.1)we haveforr =0, 1:

(i) for each t € [0, T], the operator A(t) is the infinitesimal generator of an
analytic semigroup in Kwith dense domain R);

(i) the family{A (1)} satisfies Hypothesis.2in H, with u = y + 3, p = 3, s0
that we have = y.

Proof. See Propositions 2.4 and 2.6 of [AFT]. O

By Proposition 9.1 we can associate to the fanjidy (t)}, r = 0, 1, an evolution
operatotU, (t, s) € L(H). Indeed, we have:

Proposition 9.2. Under assumptiof®.1),forr =0, 1and0 <s <t < T, the evolu-
tion operator U (t, s), associated tg A, (1)}, exists and satisfies all its usual properties
in particular it fulfills Hypothese4.3and1.4.

Proof. See Propositions 2.8 and 2.9 and Corollaries 2.10 and 2.11 of [AFT]; see also
Remark 1.8. O

We now define the operat@ (t) of Hypothesis 1.5. We introduce the Dirichlet and
Neumann map§o(t), Gi(t) fromU = [L2(0Q)]N to H = [L2(Q)]N, relative to the
operators (9.8) and (9.9), in the following way:

A(t,,Du=0 inQ,
u:=Got)g < {Bo(u _ g) on9Q (9.12)
. A,,Du=0 inQ,
u.=_G:1tg < {Bl(t, . Du=g oNn9%. (9.13)

Theorem 9.3. Under assumptiof9.1),we haveforr =0, 1:

(i) the operator G(t) is well defined froniL2(32)]N into the domain of— A, (t)]¢
for eacha € 10, o [, whereaq ;= %1 andaq = ‘—31;

(i) {G, (1)} satisfies Hypothesit.5in U = [L?0@Q)]N and H = [L2(Q)]N with
anya € ]0, o [, provided we have [l — 2(a; — )] < oy — «.

Proof. Part (i) is proved in (2.71) of [AFT].
In order to prove part (ii) we need the following:

Lemma 9.4. Under assumptiof9.1),we havefor z,t € [0, T]:

(') 1Go(t) — Go(T)ll cqLz@ay wize@n < Clt — TV TH4;
(i) 1G1(t) — G1(®) Lz werze@n < Clt — TV T4,

Proof. Fix g € [C®BQ)]N < U and setv := G, (t)g, w := G,(1)g, andu =
v—w =[G, (t) — G;(7)]g. Then the functiom solves

{A(t, X, D)u= —[A(t,x,D) — A(t,x, D)Jw =: f inQ

U=0 0noo if r=20, (9.14)
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A(t, x, D)u = —[A(t,x, D) — A(z, X, D)Jw =: f inQ it =1 (9.15)

Bi(t, x, D)u = —[Bi1(t, X, D) — B1(z, X, D)Jw =: ¢ 0nd2 T
We first consider the case= 0: then (9.14) means

> e =1 Ds[Asi(t,x) - Dju] —u = f inQ,

u=20 onoag. (9.16)

Multiplying by G and integrating by parts we easily get, by (9.2),
vO” Dull[ZLZ(Q)]Nn + ||u||[2|_2(Q)]N = ’(f | u)[LZ(SZ)]N| ;

recalling the definition off and integrating by parts again we obtain, by (9.1),

UO” Dull[zLZ(Q)]Nn + ||u||[2L2(Q)]N
n

< Zl([Asj(r, ) = Aqi(t, )] - Djw | Dsu) 5
&=
< cft — 7”2 DwllfLe@mn | DUIIF 2 gypun- (9.17)
which implies
lullwrz@n < Clt — T|Y+l/2||GO(T)QH[WLZ(Q)]N,
and hence, by (2.52) of [AFT],
lullwee@p < clt — 71”72 gllwr2zayn- (9.18)

On the other hand, lat € [W22(22) N W, ?(22)]N be the solution of the problem

At,-,D)p=u in Q,
Y =0 onog;

we remark that, by the classical estimates of [ADN],
lwllwzz@n < CllulljLz@ayn- (9.19)
Multiplying (9.14) byx/_/ and integrating twice by parts we get, after some manipulations,
(f 1 Yz = (AL, - DU | ) z@n = ||U||[2|_z(g)]m§

hence, using the definition df, two more integrations by parts yield

n
||u||[2L2(Q)]N - (g | Z [tASj(Tv ) - tASj(ta )] : DS¢”J)
[L2@)IN

s, j=1

- (w | > DA, ) — "Ag(t, )] - Dsw)
[L2E)N

s,j=1
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< llglljw-r22@aan

Y A, ) = "Ag(t, )] - Dsyry

s, j=1

[W1/2~2(BQ)] N

> Dj(["Ag(r. ) — "Ag(t. )] - D)

s, j=1

By (2.58) of [AFT], (9.1), and (9.19) we deduce that

+ llwllfLzeen

(L2

||u||[2|_2(Q)]N =< cllgllpw-v22@an
x {1t =7l 1DV o + It = 7721 D2 2ot |
< clt — " |[¥ llpwezm 191l w1220
< clt — " |ullizn 19llpw-r220)N s
thus we conclude that
lulliLeyn < clt — 1" 11gllw-v22@a)n - (9.20)

Now by interpolating between (9.18) and (9.20) we simply obtain
lullwz2@ < clt — 27+l gllwa-12zpan, VO €0, 31,

and, in particular, whef = ;11 we obtain (i).
We now consider the case= 1. Problem (9.15) becomes

n
> DAt x) - Dju] —u = f in Q,
si=t (9.21)
Z Agi(t, X) - Djuvs = ¢ ono.
s j=1

Multiplying by G and integrating by parts, as before we arrive at (9.17) and hence
Iullpwazen < clt — 2”21 Ga(D)Gllwr 2@

thus by (2.63) of [AFT]
Iullwez@y < Clt — 17 2| gllpw-v2z@an- (9.22)

On the other hand, by the classical estimates of [ADN], we have
lullpwz2@n < € [|| flllz@ + ||¢||[W1/2-2(3Q)]N] ,

so that by definition off, ¢ we easily get

1/2
P2 wllwez@n + It — T [wllpwez@m] -

Iullwez@n < c[It — 7l
and finally, by (2.62) of [AFT],

ullpwaz@n < it — 7 glliwrzzaan- (9.23)
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Now by interpolating between (9.22) and (9.23) we obtain

lullpwz.2@n < Clt — le_9+1||g||[W29*3/2~2(BQ)]N: Vo € [%, 1],
and in particular, choosing = %, we obtain (ii). The proof of Lemma 9.4
is complete. O

We return to the proof of Theorem 9.3(ii). We recall that
D([—Ao®]*) = W2 @]",  Va€]0, 4, (9.24)
DI-A®]) = [W*2@]", Ve €]0, [ - (3). (9.25)

Now fix @ € 10, o[, B € ], ¢ [, andz,t € [0, T]with 0 < 7 <t < T: then, writing
for the sake of simplicityG(t) in place ofG; (t) we have

[—AD]*G(1) — [-A@]*G(7)
=[-AD]“[G() — G()] + [-AD)]*[1 — e PAV]G(r)
+[[-A®]7e A0 — [-A@)“e M) G ()

4
+[-A@][eVAY —11G(r) =: ) I (9.26)
i=1
By (9.24), (9.25), and Lemma 9.4 we get

el cu,my < et — )74, (9.27)

whereas by representing the semigrefip® as a Dunford integral we easily deduce,
using the boundedness iff- A(t)]1# G(t) | .1y and Proposition 9.1(ii), that

I3l 2w,y
< & [[[~ADI7e M0 — [A@]e AV A 4,
=cs ‘(Zni)_l / (—r)xet=o*
r
x [[A = ADI Y =[x — A@] Y [-A@] 7 dA
L(H)
< cp(t —T)rthe (9.28)

Finally, using again the boundedness|ff- A(t)]?G(t)|zu.1) We obtain, for each
n €10, 28 — 2a],

12+ lall zu,Hy

t—t
<c /O [[I-A®I €AY — [A@O] &A= AT |4

:Ilin do

t—t
< Cﬁ/ [t - r)”‘*l/za’g’“’g/z]n [0’3""’1]1_" do < cg(t — )77, (9.29)
0

< I:”[_A(t)]l+rx—ﬂeaA(t) ”L(H) + =A@ TP A ”aH)
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By (9.26)—(9.29) we obtain that thedttler exponent of £ A(-)]*G(-) is any number
in the set 102y + (o — @)[N]0, ¥ + ;11], sincen and 8 are arbitrarily close to
2(ay — ) ando;, respectively. In order that the numbembelongs to this set, we must
havey < (2y + 1)(a; — «), which is equivalent to/[1 — 2(ey — @)] < @y — «. The
proof of Theorem 9.3 is complete. O

Remark 9.5. By Proposition 2.13 of [AFT] it follows that formula (2.2) in its correct
form, i.e.,

t
y(t) = U (t, 0)x +/O [[—A @ 17Ur (t, @] [— A (@]*Gr (@)u(a) da,
t e[, T[, (9.30)

wherea € 10, o [, is meaningful for eaclx € [L2(2)]N andu e [L?(]0, T[xa)IN

and defines a functioy e [L2(]0, T[xQ)]"; if in addition x andu are sufficiently
smooth (see [AFT] for details), then (9.30) is the solution of problem (9.2) or (9.3),
with y;, A(-, -, D)y € [L2(]0, T[x2)]N. Hence (9.30) is a reformulation of the state
equation for the control problem (9.4). Moreover, when oneypas[L2(]0, T[xQ)]N,

then it also holds that

y(t, ) — G (Hu(t, -) € Da o, vt € [0, T|.
Indeed, for fixed the functionz := y(t, -) — G, (t)u(t, -) solves the elliptic problem

A(t, x, D)z = y(t, x), XeQ
Zlaga =0 or Bit,x,D)z=0, X €082,

so that, by classical resultse D+, (compare with Remark 6.2).

By the results of this section we see that the control problem (9.2)—(9.4) (resp.
(9.3)—(9.4)) satisfies Hypotheses 1.1-1.7 of Section 1 &vithu + p — 1 = y and any
a € ]0, o], provided we verify the required relationship among the numbexady,
i.e.,, 0< y <« and, as required in Theorem 9331 — 2(ay — @)] < oy — .

Now in the Dirichlet caser(= 0) we havexg = ‘—11 and it follows thaty andae must
satisfy

O<a<?i

I > 1 8a A (9.31)

in the Neumann case & 1) we havex; = % and we find thayy anda must satisfy

O<y<ua if a€]O0,
3
I 3—4u
47
0
<Y <g T3

—_—

O<a<

(9.32)

FNTRE N
—

Aa if oeli,
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Appendix A. Some Spaces of Singular Functions

We collect here the definitions of some useful spaces of functions definadih¢ R
with values in a Banach spacgé and some related properties which are often used in
this paper.

Definition A.1.

(i) If y =0, B,([a, b[, X) (resp.B, (Ja, b], X)) is the Banach space of Bochner
measurable functions. [a, b[ — X (resp.u: Ja, b] — X) such thafju]|, <
0o, where

lully ==Y (b—9)7[[u)lx (resp- sup(s — aVIIU(S)HX) :
se[a,b[ sela,b]

(i) If y =0,C,([a, b[, X) (resp.C, (Ja, b], X)) is the space of continuous func-
tions belonging taB, ([a, b[, X) (resp.B, (Ja, b], X)), endowed by the same
norm.

(iii) If n €]0,1]andy >0, Z, ,([a, b[, X) (resp.Z, ,(a, b], X)) is the space of
functionsu € C, ([a, b[, X) (resp.C, (Ja, b], X)) such that{i], , < oo, where

[u],., :== sup {(b— s’ sup (- P "u@ — U(p)llx}

se[a,b[ s<p<q=(s+b)/2

(resp. SUD:(S —artn sup (- p)"lu@) - U(p)llxD .

se]a,b] (s+a)/2<p<q<s

space of functionsi € C”I([a, b], X) such that{], , < co, where [], , is
defined as before.

The space, , are Banach spaces with their obvious norms, i.e.,

lullz, = {”u”y + [u]y,n |f y >0,
v lullec + [u]\yl + [U]y,n if ye [_Va 0[;

they are useful in treating dider continuous functions which blow up at an endpoint
of their interval of definition. These spaces were introduced in [AT1] (with blow up at

a = 0) and used in various situations, but an earlier use of them can be found in [So].
The following characterization of the spacgs, is useful:

Proposition A.2. If 5 €10, 1Jandy > —n, y # 0,then we havev € Z, ,([a, b[, X)
if and only ifw: [a, b[— X fulfills

[w(p) —w@lx <c(p—"(b—p 7" for a<gq=<p<bh (A.1)

Proof. See [AT5]. O
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Remark A.3. Wheny = 0 the above proposition fails, since an element of the
spaceZo,,([a, b[, X) may be unbounded at the poibt however, one can show that
Zo,([a, b[, X) € BMO(a, b; X) (the space of functions of bounded mean oscillation).

Here are some properties of the spaZgs,, whose proof is very easy; we state
them in the case of singularities at the second endpoint, but the same statements hold of
course in the opposite situation.

Proposition A.4.

(i) Ifnel0,1]and—n <y <v,then 7, ,([a, b[, X) € Z, ,([a, b[, X).
(i) F0O<A<n<landy > —x,then Z, ,([a, b[, X) € Z, (&, b[, X).
(i) fO0<e<np<landy >e—n,thenZ ,(a b[,X) < Z,_,,—(a b[, X).

Proof. Easy consequences of Definition A.1. O

Remark A.5. Inview of Definition A.1, Hypotheses 1.3 and 1.4 just say that, for each
y,n =0,

{t = [-AD]'U L, 9[-AG)] ™ € Zg—yvos(s. T], L(H)),

s [~AS) U 9 [-AD"T € Zy-pwos (0. tl. LIH)). (A-2)

In case of nonintegrable singularities, it is useful to introduce another class of more
suitable function spaces.
Definition A.6.

@ If y = 1,1,(a, b[, X) (resp.1,(a, b], X)) is the space of functions e
C, ([a, b[, X) (resp.u € C,(]a, b], X)) such that the limit

b—h b
hILn3+/a u(t) dt (resp.hﬂrgl /a+h u(t) dt)

exists in the norm oK.
(iiy If y = 1andp €]0, 1], we set

Z; ([a,b[, X) := Z, ,([a, b[, X) N1, ([a, b[, X),
Z; (la, b, X) := Z, ,(a, b], X) N1, (a, b], X).

The spaces, ([a, b[, X) (resp.l, (Ja, b], X)) are Banach spaces with the norm

ull, = lully, + [lull,
where
d
lulls := sup{ f ut)dt] :a<c<dcx< b}
c X

d
/ u(t) dt

<resp.||u||* = sup{ ra<c=<d §b}>;

X
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for a proof see Lemma 1.7 of [AT2]. The spacgs, ([a, b[, X), Z; ,(]a, b], X) are
Banach spaces with the norm

Iullz,, = llully + [uly., + llull.

Appendix B. Linear Nonautonomous Parabolic Equations

We quote here some of the results contained in [AT2] about existence and regularity of
strict and classical solutions of the Cauchy problem

u'(t) = Au(t) + f(t), t [0, T],
{u(O) — Uy (B.1)
in a Banach spackg, under Hypotheses 1.1 and 1.2.

A strict solution is a functiom € C*([0, T], E) such thatA(-)u(-) € C([0, T], E)
and such that (B.1) holds in [T ]; a classical solution is a functiane C(]0, T], E)N
C([0, T1, E) such thatA(-)u(:) € C(]0, T], E) and (B.1) holds only in ]0T].

Proposition B.1. Under Hypothese$.1-1.2,we have

(i) If up € Dag and f € LYO,T; E) N Z1,(0,T], E), n € ]0,8], then
there exists a unique classical solutionauch that moreover’'uA(-)u(-) €
Z;,(00, T], E).

(if) Ifug € Dap and f e Zg,(]0, T], E), n € ]0, 8], then the classical solution
u satisfies moreover uA(-)u(-) € Zo, (0, T], E).

(iii) Ifug € Daw, f € C([0, T], E) N Zo,(0, T], E), n €]0, 8], and in addition
A(Q)ug + f(0) € Da(), then there exists a unique strict solutionsuch that
moreover U, A(-)u(-) € Zo, (0, T], E).

(The space&; , andZ; , are defined in Appendix A, Definitions A.1 and A.6.)

Proof. All statements are proved in Theorems 6.1 and 6.5 of [AT2], except for the
unigueness of the classical solution. This property follows by a standard argument: if
u, v are two classical solutions of problem (B.1) withe Da) and f € C(]0, T], E),

setw = u — v and fixt € ]0, T]: then the function

z(s) = U (t, s)w(s), se[0,t],
is differentiable in JQt[ and, by Lemma 6.7(i),

Z(s) =V (t,s)w(s) + U (t,s)A(s)w(s) =0, Vs €10, t[;
hencez(s) is constant in [0t], i.e.,

w(t) = z(t) = U(t, 0)w(0) = 0,

so thatw(t) = O for eacht € [0, T]. O
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