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Chapter 1

Introduction

�Philosophers and social scientists have long realized that it is not necessary
that all citizens strive to enhance social welfare for the outcome of their joint
actions to be nevertheless good for society at large. Adam Smith's classical
metaphor of the "invisible hand" suggests precisely this: how markets under
ideal conditions lead to an e�cient allocation of resources even when all
agents are motivated by their self-interest.�

This is how Professor Weibull starts his speech to confer The Sveriges Riks-
bank Prize in Economic Sciences in Memory of Alfred Nobel, 2007, to Leonid
Hurwicz, Eric S. Maskin, Roger B. Myerson �for having laid the foundations
of mechanism design theory�.

�Mechanism design theory provides general methods for the analysis and de-
velopment of mechanisms for resource allocation. This analysis is carried
out in three steps. First, one makes a prediction of the behaviour that is
expected under given rules. Here, game theory comes to use. Thereafter,
one evaluates, according to the given goal, the resource allocations - such as
consumption, production and environmental stress - that result. Finally, one
looks for the mechanism, with due regard to its behavioural implications, that
best meets the goal. The last step is the hardest. Here, the so-called rev-
elation principle comes into use, a principle that was discovered by several
researchers in the 1970s; according to this principle it su�ces to look for the
best possible direct mechanism that is compatible with individual incentives,
a subclass of mechanisms that permits mathematical analysis. The user of
a mechanism also desires that this not only can lead to the desired outcome
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but in fact will lead to such an outcome. Expressed in more technical jargon,
the mechanism should not permit suboptimal equilibria along with the optimal
ones.�

The above description is so complete and exhaustive, that we have nothing to
add, but some examples. The theory of mechanism design applies to various
�elds of the real life, answering to question such as: how should shareholders'
vote in a corporate assembly be conducted? How should an advertising cam-
paign be organized? Which kind of auction is more useful for a given type
of sale? And even, what are the optimal agreements for an engaged couple
before the wedding? The theory of mechanism design studies the general
structure underlying all these situations, as well as other ones.
The main mathematical tool in this theory is certainly game theory: in fact
we can say that mechanism design consists in the study of formal rules for
predicting how a game will be played. Of course, behind game theory there
is a good amount of functional and convex analysis.
Let us describe now the content of this dissertation.
Chapter 1 deals with the preliminary de�nitions and results that are used
throughout: in particular we explain some fundamental notions of convex
analysis such as convexity, subgradient, Lipschtz regularity; some important
theorems are proved, such as the extreme point theorem, Helly's compact-
ness theorem and a regularity result linked to the Rademacher theorem.
Chapter 2 is devoted to a brief introduction to game theory, giving the no-
tions of strategic game of complete information, strategic game of incomplete
information and Nash equilibrium; moreover we prove the existence of a Nash
equilibrium, by means of Kakutani's theorem.
In Chapter 3 we introduce the theory of mechanism design. We de�ne the no-
tions of mechanism and direct mechanism, and show how they are linked; we
prove the so called revelation principle; we solve the problem of implementing
e�cient decision rules, by means of important theoretical results such as the
revenue equivalence theorem, the payo� equivalence theorem and Rochet's
theorem. In addition we introduce an important group of mechanisms, i.e.
the VCG mechanisms.
Chapters 4 and 5 deal with some applications in economy: we present the
problem of pricing goods, both linear and nonlinear, and we model it with
suitable mechanisms.
In Chapter 6 we present another interesting application in the �eld of elec-
tions: we prove Arrow's theorem, and as a consequence we show the paradox
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that under realistic hypotheses there are no really democratic political elec-
tions.



Chapter 2

Preliminaries

In this chapter we are going to give the preliminary results that will be used
in this thesis.

2.1 Convex Analysis

This section gives us the tools of convex analysis which are going to be useful
in the proofs of very important theorems regarding mechanism design.

2.1.1 Convexity, subgradient and directional derivatives

De�nition 2.1.1. Let X be a vector space. A subset C of X is convex if
for all x, y ∈ C, for all t ∈ [0, 1], we have

tx+ (1− t)y ∈ C.

De�nition 2.1.2. Let X be a vector space and C a convex subset of X. A
function F : C → R is convex if

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)

for all t ∈ [0, 1], for all x, y ∈ C.

We will deal with the special case in which X = Rn.

7
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De�nition 2.1.3. Let F : C → R be a convex function, with C ⊂ Rn. A
vector x̄ ∈ Rn is a subgradient of F at x ∈ C if for all y ∈ C we have

F (y) ≥ F (x) + x̄ · (y − x).

We denote with ∂F (x) the set of subgradients of F at x and we call subdif-
ferential the set valued function

∂F : x 7→ ∂F (x).

A function f : C → Rn is called a selection from ∂F if for all x ∈ C

f(x) ∈ ∂F (x).

De�nition 2.1.4. Let F : C → R be a convex function. We call one-sided
directional derivative of F at x with respect to a vector y ∈ Rn the limit

∂F

∂y

+

(x) = lim
λ→0+

F (x+ λy)− F (x)

λ
.

The next result links the concept of sub gradient with the one of directional
derivative.

Theorem 2.1.1. Let F : C → R be a convex function. Let x ∈ C; if
x̄ ∈ ∂F (x), then for all y ∈ C we have

− ∂F+

∂(−y)
(x) ≤ x̄ · y ≤ ∂F

∂y

+

(x).

Proof. By de�nition of subgradient, we have

F (z)− F (x) ≥ x̄ · (z − x).

Consider now

z = x+ λy,

with λ > 0. Then we have

F (x+ λy)− F (x) ≥ x̄ · (x+ λy − x)
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that is
F (x+ λy)− F (x)

λ
≥ x̄ · y.

Thus we have

lim
λ↓0

F (x+ λy)− F (x)

λ
≥ x̄ · y,

which means, by de�nition of directional derivative,

∂F

∂y

+

(x) ≥ x̄ · y.

We can also conclude that

∂F+

∂(−y)
(x) ≥ −x̄ · y,

that is

− ∂F+

∂(−y)
(x) ≤ x̄ · y.

The theorem is proved.

�

2.1.2 Lipschitzian and regular functions

We are going to deal with Lipschitzian functions, so we recall their de�nition.

De�nition 2.1.5. Let (X, ‖ · ‖) be a normed space. A function F : X → R
is Lipschitzian if there exists a constant L such that for all x, y ∈ X, we have

|F (x)− F (y)| ≤ L‖x− y‖.

De�nition 2.1.6. A function F : Rn → R is locally Lipschitzian if for all
x ∈ Rn there exists a neighbourhood Ux of x and a constant λ such that

|F (y)− F (z)| ≤ λ‖y − z‖

for all y, z ∈ Ux.
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De�nition 2.1.7. Let F : Rn → R be a Lipschitzian function. We call
generalized directional derivative of F at x with respect to a vector y ∈ Rn

the quantity

F 0(x, y) = lim sup
z→x,λ→0+

F (z + λy)− F (z)

λ
.

Now we generalize the concept of subgradient to Lipschitzian functions.

De�nition 2.1.8. Let F be a Lipschitzian function. A vector x̃ ∈ Rn is a
generalized subgradient of F at x if

x̃ · y ≤ F 0(x, y)

for all y ∈ Rn. We denote with ∂F 0(x) the set of generalized subgradients of
F at x. We call generalized subdifferential the set valued function

∂F 0 : x 7→ ∂F 0(x).

De�nition 2.1.9. A Lipschitzian function F : C → R is regular at x if for
all y ∈ C, there exists the one-sided directional derivative of F at x with
respect to y and it is equal to F 0(x, y). F is regular if it is regular at x for
all x ∈ C.

We shall use the following results.

Proposition 2.1.2. Let C an open convex subset of Rn and F : C → R. If
K be a compact subset of C, then

F : K → R

is Lipschitzian.

To show it, we need a preliminary result.

Proposition 2.1.3. Let F : C → R be a convex function, bounded over
B(x0, r) ⊆ C. Then F is locally Lipschitzian over B(x0, r).

Proof (of proposition 2.1.3). Let x ∈ B(x0, r) and let δ > 0 such that
B(x, 2δ) ⊂ B(x0, r). We are going to prove that F is Lipschitzian over
B(x, δ). Since f is bounded over B(x0, r), we have

Nx = sup
B(x,2δ)

|f | <∞.
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Thus, if y, z ∈ B(x, δ), putting

d = ‖y − z‖

and

u = z +
δ

d
(z − y),

we have that u ∈ B(x, 2δ) and

z =
δ

d+ δ
y +

d

d+ δ
u.

Since F is convex, we obtain

f(z) ≤ δ

d+ δ
f(y) +

d

d+ δ
f(u),

from which

f(z)− f(y) ≤ d

d+ δ
[f(u)− f(y)] ≤ d

δ
|f(u)− f(y)| ≤ 2Nx

δ
‖y − z‖.

Exchanging y and z, we obtain

|f(z)− f(x)| ≤ 2Nx

δ
‖y − z‖,

for all y, z ∈ B(x, δ).

�

Proof (of proposition 2.1.2) Thanks to proposition 2.1.3, we can conclude
that F is locally Lipschitzian. Thus, for all x ∈ K, there exists an open
neighbourhood Ux of x and a constant λx such that for all y, z ∈ Ux, we have

|F (z)− F (y)| ≤ λx‖z − y‖.

Since K is compact, there exist x1, · · · xn such that

K ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn ;

if we put
λ = max

i=1,··· ,n
λxi ,

we have
|F (z)− F (y)| ≤ λ‖z − y‖,

for all z, y ∈ K.
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�

Proposition 2.1.4. Let C be a compact and convex subset of Rn and
F : C → R a convex function. Then F is regular.

Proof. Fix ε > 0; by de�nition of F 0(x, y), there exists a number δ > 0 such
that for all x ∈ B(x, δ)− {x}, for all λ ∈ (0, δ), we have

F (z + λy)− F (z)

λ
≤ F 0(x, y) + ε.

The function F is continuous at x; thus considering the limit for z → x, we
have

F (x+ λy)− F (x)

λ
≤ F 0(x, y) + ε;

as λ→ 0+, we obtain
∂F+

∂y
(x) ≤ F 0(x, y) + ε,

which means
∂F+

∂y
(x) ≤ F 0(x, y).

By de�nition of F 0, we can also state that for all m ∈ N+, there exists
zm ∈ B(x, 1

m
) and λm ∈ (0, 1

m
), such that

F 0(x, y)− ε < F (zm + λmy)− F (zm)

λm
.

Thus, since λm is de�nitively less than λ, there exists mε such that

F 0(x, y)− ε < F (zm + λy)− F (zm)

λ

for all m ≥ mε. Since F is continuous, as m→∞ we obtain

F 0(x, y)− ε ≤ F (x+ λy)− F (x)

λ

for all λ > 0; thus as λ→ 0+ we have

F 0(x, y)− ε ≤ ∂F+

∂y
(x),
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which means

F 0(x, y) ≤ ∂F+

∂y
(x).

Thus F is regular.

�

Proposition 2.1.5. Let C be a compact subset of Rn and F : C → R a
continuously di�erentiable function. Then F is Lipschitzian and regular.

Proof. F is Lipschitzian since, being continuously di�erentiable, we have

F (x)−F (y) =

ˆ 1

0

d

dt
F ((1− t)x+ ty)dt =

ˆ 1

o

(∇F ((1− t)x+ ty), y−x)Rndt,

where ( , )Rn denotes the scalar product in Rn; thus we have

|F (x)− F (y)| ≤ ‖∇F‖∞|y − x|,

that is F is Lipschitzian.

Let's show regularity. If ε > 0, by de�nition of F 0(x, y), there exists a number
δ > 0 such that for all x ∈ B(x, δ)− {x}, for all λ ∈ (0, δ), we have

F (z + λy)− F (z)

λ
≤ F 0(x, y) + ε.

Since F is continuous in x, being continuously di�erentiable, if we consider
the limit for z → x, we obtain

F (x+ λy)− F (x)

λ
≤ F 0(x, y) + ε;

as λ→ 0+, we have
∂F+

∂y
(x) ≤ F 0(x, y) + ε,

that is
∂F+

∂y
(x) ≤ F 0(x, y).
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Let's show the other inequality. By de�nition of F 0, for all m ∈ N+, there
exists zm ∈ B(x, 1

m
) and λm ∈ (0, 1

m
), such that

F 0(x, y)− ε < F (zm + λmy)− F (zm)

λm
.

Notice that ∣∣∣∣F (zm + λmy)− F (zm)

λm
− (∇F (x), y)Rn

∣∣∣∣
=

∣∣∣∣ˆ 1

0

[(∇F (zm + tλmy), y)− (∇F (x), y)] dt

∣∣∣∣→ 0

as m→∞ thanks to the dominated convergence theorem. Thus we have

F 0(x, y)− ε ≤ ∂F+

∂y
(x),

that is

F 0(x, y) ≤ ∂F+

∂y
(x).

In other words, F is regular.

�

2.1.3 An application of Rademacher Theorem

De�nition 2.1.10. Let C ⊂ Rn, let a, b ∈ C. A smooth path joining a to b
is a function

α : [0, 1]→ C

which is continuously di�erentiable in (0, 1) and such that α(0) = a, α(1) = b.
Let f : C → Rn; we call line integral of f along α the quantity

ˆ
α

f · r ds =

ˆ 1

0

(f(α(s)), α′(s))Rnds.

We now give this fundamental result.
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Theorem 2.1.6. Let F : C → R be a convex function, with C an open and
convex subset of Rn. Let f be a measurable selection from ∂F . Then for every
smooth path α from a to b we have

ˆ
α

f · r ds = F (b)− F (a).

In order to demonstrate this result, we need the following important theorem.

Theorem 2.1.7. (Rademacher Theorem) If A ⊆ Rn is an open set and
f : A → R is locally Lipschitzian, thus f is di�erentiable at almost every
x ∈ Rn.

Now we have all the instruments to prove theorem 2.1.6.

Proof (of theorem 2.1.6). Let α be a smooth path between a and b. Let H
be the convex hull of the compact set α([0, 1]).
Since H ⊂ C is compact and F : H → R is convex by hypothesis, using
proposition 2.1.2 we can say that F is Lipschitzian. Let Φ : [0, 1] → R
de�ned as

Φ(r) = F (α(r)).

We now use this lemma.

Lemma 2.1.8. Let α ∈ C1[0, 1], let F be a convex function de�ned over an
open set containing H = α([0, 1]). Thus the function

φ = F ◦ α : [0, 1]→ R

is Lipschitzian and regular.

Proof. It is obvious that φ is Lipschitzian. Now we prove regularity. Both F
and α are Lipschitzian and regular thanks to what we have already shown.
We have to prove that there exists

φ′+(r) = lim
λ→0+

φ(r + λ)− φ(r)

λ

and

φ′+(r) = lim sup
s→r,λ→0+

φ(s+ λ)− φ(s)

λ
.
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We have

φ(r + h)− φ(r) = F (α(r + h))− F (α(r))

= F

(
α(r) + h

α(r + h)− α(r)

h

)
− F (α(r))

= F

(
α(r) + h

[
α(r + h)− α(r)

h
− α′(r)

]
+ hα′(r)

)
− F (α(r))

= F (α(r) + h [o(1) + α′(r)])− F (α(r))

= F (α(r) + hα′(r))− F (α(r)) + F (α(r) + h [o(1) + α′(r)])

− F (α(r) + hα′(r))

= h

[
∂F+

∂α′(r)
(α(r)) + o(1)

]
+ ho(1) =

= h

[
∂F+

∂α′(r)
(α(r)) + o(1)

]
;

thus we have proved that there exists φ′+(r) and

φ′+(r) =
∂F+

∂α′(r)
(α(r)).

In a similar way, we can prove that there exists

φ′−(r) = lim
λ→0−

φ(r + λ)− φ(r)

λ

and

φ′−(r) = − ∂F+

∂(−α′(r))
(α(r)).

Moreover in each point in which ∂F (x) = {f(x)}, that is almost everywhere,
there exists φ′(r) and

φ′(r) =
∂F

∂α′(r)
(α(r)) = (f(α(r)), α′(r)).

Now we prove regularity. We have
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lim sup
s→r,λ→0+

φ(s+ λ)− φ(s)

λ
= lim sup

s→r,λ→0+

F (α(s+ λ))− F (α(s))

λ

= lim sup
s→r,λ→0+

F (α(s) + λα′(s) + λωs(λ))− F (α(s))

λ

= lim sup
s→r,λ→0+

F (α(s) + λα′(r) + ληr,s(λ))− F (α(s))

λ

= lim sup
s→r,λ→0+

[
F (α(s) + λα′(r))− F (α(s))

λ

+
F (α(s) + λα′(r) + ληr,s(λ))− F (α(s) + λα′(r))

λ

]
,

where
ωs(λ) = α(s+ λ)− α(s)− λα′(s),
ηr,s(λ) = ωs(λ) + α′(s)− α′(r).

Since F is Lipschitzian, we have

F (α(s) + λα′(r) + ληr,s(λ))− F (α(s) + λα′(r))

λ
≤ K|ηr,s(λ)| → 0,

since

|ηr,s(λ)| ≤ |α′(r)− α′(s)|+ |ωs(λ)|
≤ |α′(r)− α′(s)|+ |α(s+ λ)− α(s)− λα′(s)|
≤ |α′(r)− α′(s)|+ |λ(α′(ξ)− α′(s))|
≤ |α′(r)− α′(s)|+ |λ| [|α′(ξ)− α′(r)| − |α′(s)− α′(r)|]→ 0,

as λ→ 0. Thus

lim sup
s→r,λ→0+

φ(s+ λ)− φ(s)

λ
= lim sup

s→r,λ→0+

F (α(s) + λα′(r))− F (α(s))

λ

= F 0(α(r), α′(r))

=
∂F+

∂α′(r)
(α(r)) = φ′+(r).

In other words, φ is regular.
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�

Now we conclude the proof of the theorem. We have shown that there exists
φ′(r) and it is a measurable and bounded function. Moreover, since

∂F (x) = {f(x)}

at almost each x, we have

F (b)− F (a) = φ(1)− φ(0) =

ˆ 1

0

φ′(r)dr

=

ˆ 1

0

∂F

∂α′(r)
(α(r))dr =

ˆ 1

0

(f(α(r)), α′(r))dr

=

ˆ
α

f · rds.

The theorem is thus proved.

�

2.1.4 Extreme points and the Extreme Point Theorem

We conclude this paragraph introducing the notion of extreme point.

De�nition 2.1.11. Let C be a convex subset of a vector space X. An
element c ∈ C is an extreme point of C if for every x ∈ X − {0}, either
c+ x 6∈ C or c− x 6∈ C or both.

Now we give a theorem regarding the existence of extreme points over a
compact subset.

Theorem 2.1.9. For any nonempty compact subset C of a normed linear
space X, there exists an extreme point in C.

We need this de�nition.

De�nition 2.1.12. A nonempty and closed subset S of C is an extremal
subset of C if for all x, y ∈ S such that

λx+ (1− λ)y ∈ C

for some λ ∈ (0, 1), thus x, y ∈ C.
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Proof (of 2.1.9). Let A be the class of extremal subset of C. Since S ∈ A,
we have A 6= ∅. Moreover (A,⊆) is obviously a poset. Let (B,⊆) be a loset
such that B ⊆ A. It is easy to see that

∩B ∈ A.

Then, by Zorn's Lemma, (A,⊆) must possess a maximal element: there
exists a set A ∈ A such that B ⊂ A does not hold for any B ∈ A.
Now we want to show that A is singleton. Suppose that there exists two
distinct points x, y ∈ A. By Hanh Banach Theorem, there exists a nonzero
L ∈ X∗ such that L(x) 6= L(y). Now we de�ne the set

B = {z ∈ A : L(z) = maxL}.

Since A is compact (being a closed set in a compact one) and L is continuous,
we have B 6= ∅; moreover, since L is linear, B is also convex; B is also closed,
by continuity of L. Thus B ∈ A and B ⊆ A; thus, by de�nition of A, we
have A = B. This means thet L is constant on A, which is impossible since
L(x) 6= L(y).
Thus A is singleton and the unique element of A must be an extreme point
of S.

�

It will be useful the following theorem.

Theorem 2.1.10. (Extreme Point Theorem) Let C be a convex and compact
subset of a normed vector space and let F : C → R be a continuous linear
function. Then there exists an extreme point c such that

F (c) ≥ F (x)

for all x ∈ C.

Proof.

Consider the set
A = {y ∈ C : F (y) = maxF};

by Weierstrass' theorem, the set A is not empty; moreover, by continuity of
F , A is a closed set. Since C is compact, A is compact too. By theorem 2.1.9,
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there exists an extreme point x of A. We want to show that x is an extreme
point os C too. Indeed, if this was not the case, we could �nd λ ∈ (0, 1) and
two distinct points y and z such that

x = λy + (1− λ)z.

By linearity of L, we have

λL(y) + (1− λ)L(z) = maxL,

so that

L(y) = L(z) = maxL.

Thus y, z ∈ A, contradicting that x is an extreme point of A.

�

2.2 Helly's Compactness Theorem

Studying the applications of mechanism design, we will need to know the
topological properties of the set:

{F : R→ R : F is increasing and |F (x)| ≤ c for all x ∈ R} .

Thus, we give the following theorem.

Theorem 2.2.1. (Helly's Compactness Theorem) If {fn} is a uniformly
bounded sequence of increasing functions fn : R → R, there exists a sub-
sequence which converges pointwise over R.

Proof. If we �x a real number x ∈ R, thanks to Bolzano Weierstrass Theorem,
we can conclude that there exists a subsequence of {fn} converging in x.
Repeating this remark and using a diagonal procedure, we can prove that
there exists a subsequence (fnk

) of (fn) such that there exists the limit

lim
k→∞

fnk
(q) = F (q)
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for all q ∈ Q. The function F de�ned over Q is obviously increasing. For all
s ∈ R, we de�ne the functions

F+(s) = lim
q→s+,q∈Q

F (q)

and
F−(s) = lim

q→s−,q∈Q
F (q).

Notice that, thanks to monotonicity, we have

F+(s) ≥ F−(s);

moreover F+ is right continuous, F− is left continuous: let's show these facts.
Firstly, we want to prove that

F+(s) = lim
r→s+

F+(r)

for all s ∈ R. By de�nition we have

F+(s) ≤ F (q)

for all q ≥ r > s, q ∈ Q; thus

F+(s) ≤ F+(r) = lim
q→r+,q∈Q

F (q),

which means
F+(s) ≤ lim

r→s+
F+(r)

By de�nition of F+, for all ε > 0 there exists a number δ > 0 such that

s < q < s+ δ =⇒ F+(s) ≤ F (q) < F+(s) + ε.

If s < r < q < s+ δ, we have

F (q) < F+(s) + ε,

thus
F+(r) < F+(s) + ε.

We can conclude that

lim
r→s+

F+(r) ≤ F+(s) + ε,
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which means
lim
r→s+

F+(r) ≤ F+(s).

We have proved the right continuity of F+.

Left continuity of F− can be shown in the same way. It is su�cient to show
that

F−(s) = lim
r→s−

F+(r).

We have
F−(s) ≥ F (q)

for all q ≤ r < s, q ∈ Q; thus

F−(s) ≥ F−(r),

for all r < s, that is
F−(s) ≥ lim

r→s−
F−(r).

As before, for all ε > 0, there exists a number δ > 0 such that

s− δ < q < s =⇒ F−(s) ≥ F (q) > F−(s)− ε.

If s− δ < q < r < s, we have

F (q) > F−(s)− ε,

that is
F−(r) > F−(s)− ε.

We can conclude that

lim
r→s−

F−(r) ≥ F−(s)− ε,

that is
lim
r→s−

F−(r) ≥ F−(s).

Left continuity is also proved.

Notice that for all s ∈ R, for all q ∈ Q, we have

lim sup
k→∞

fnk
(s) ≤ lim

k→∞
fnk

(q) = F (q) if s < q,
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and
lim inf
k→∞

fnk
(s) ≥ lim

k→∞
fnk

(q) = F (q) if s > q.

Thus, as q → s− and q → s+

F−(s) ≤ lim inf
k→∞

fnk
(s) ≤ lim sup

k→∞
fnk

(s) ≤ F+(s).

The subsequence {fnk
} is thus convergent everywhere except at the points in

which F+(s) 6= F−(s), which are at most countably many. It is now su�cient
to �nd a suitable further subsequence to obtain the convergence everywhere
on R.

�

Notice that the theorem is still true if we consider monotone functions on
arbitrary intervals, either closed or open: to show it, we can repeat the same
proof with trivial modi�cations.



Chapter 3

Introduction to game theory

Game theory is the mathematical instrument on which the mechanism design
is based. Thus, we are going to get a glimpse of this fascinating theory.

3.1 Strategic Games of Complete Information

Let's start speaking about strategic games, modelling interactions between
di�erent players who make their choice once for all and simultaneously.

De�nition 3.1.1. A strategic game of complete information is de�ned by:

• a �nite set I = {1, . . . , N};

• for all i ∈ I, a non empty set Ai;

• for all i ∈ I, a function ui : A1 × · · · × AN → R.

Let's explain this de�nition: I is the set of players; Ai is the set of possible
actions for the player i and it is called the set of pure strategies ; ui is the
payo� function and represents the amount the player i receives when each
player's strategy is established. Each player's objective is to maximize his
own payo� function, and in doing that he could help or hurt the other play-
ers. The idea behind strategic games is modelling situations in which the
players are asked to make their choice at the same time, without the possi-
bility of changing it during the game; moreover they know the structure of

24
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the strategic form and the other players' payo�s.
We denote with A the product A1× · · ·×AN , with A−i the product without
the i-th setAi; if s = (s1, · · · , sN) ∈ A, we write s−i for (s1, · · · , si−1, si+1, · · · sN).
If ai ∈ Ai and s−i ∈ A−i, we set (ai, s−i) = (s1, · · · , si−1, ai, si+1, · · · , sN).

We are going to focus on the case in which the sets of pure strategies are
�nite: we call such a game �nite.

The concept of utility function induces over the set A = A1 × · · · × AN
a preference relation, that is for all i a binary relation ≥i on A which is
complete (for all a, b ∈ A, a ≥i b or b ≥i a), re�exive (for all a ∈ A, a ≥i a)
and transitive (if a ≥i b and b ≥i c, then a ≥i c). Indeed it is su�cient to
write, for all a, b ∈ A,

a ≥i b if and only if ui(a) ≥ ui(b).

The key concept in game theory is that of Nash equilibrium, representing a
steady state of the game in which no player has anything to gain by changing
only his own strategy unilaterally. More formally, we give the following:

De�nition 3.1.2. A Nash equilibrium of a strategic game is an element
â ∈ A such that for all i ∈ I

(â−i, âi) ≥i (â−i, ai)

for all ai ∈ Ai.

In other words, no player can pro�tably deviate if other players' actions are
established.

Let's give an example of a strategic game and its Nash equilibrium.

Example 3.1.1. (The Prisoner's Dilemma) Two suspects in a crime are
put into separate cells. If neither confesses, they both will spend one year in
prison. If they both confess, they both will spend three years in prison. If
only one of them confesses, he will be free while the other suspect will spend
four years in prison. Notice that whatever a suspect does, the other prefers
confessing to not confessing. So the game has a unique Nash equilibrium,
that's to say (Confess, Confess).
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Not every strategic game has a Nash equilibrium and the conditions of exis-
tence have been investigated extensively. We now recall the most important
result. To do it, we need a preliminary result:

Lemma 3.1.2. (Kakutani's �xed point theorem) Let K be a compact, convex
and non empty subset of Rn and let f : K → P(K) such that

• for all x ∈ K, f(x) is non empty and convex;

• for all sequences {xn}, {yn} ⊂ K such that yn ∈ f(xn) for all n, xn → x
and yn → y, we have y ∈ f(x) (we say that the graph of f is closed).

Then there exists a �xed point x∗ for f, that is a point x∗ ∈ K such that
x∗ ∈ f(x∗).

We also need two de�nitions:

De�nition 3.1.3. A binary relation ≥ on a set A ⊂ Rn is continuous if for
all sequences (ak) and (bk) converging respectively to a and b and satisfying
ak ≥ bk for all k, we have a ≥ b.

De�nition 3.1.4. A binary relation ≥i is quasi-concave on Ai if for all
a∗ ∈ A, the set

{ai ∈ Ai : (a∗−i, ai) ≥i a∗}

is convex.

We now have the tools to prove the existence of a Nash equilibrium.

Theorem 3.1.3. Suppose that a strategic game (I, (Ai), (ui)) satis�es the
following conditions:

• for all i ∈ I, the set Ai is a compact, convex and nonempty subset of
Rn;

• for all i ∈ I, the preference relation ≥i induced by ui is continuous;

• for all i ∈ I, ≥i is quasi-concave on Ai.

Then there exists a Nash equilibrium for the game.
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Proof. De�ne
f : A→ P(A)

by
f(a) = B1(a−1)× · · · ×BN(a−N)

where

Bi(a−i) = {ai ∈ Ai : (a−i, ai) ≥i (a−i, a
′
i) for all a

′
i ∈ Ai}

Notice that a Nash equilibrium is a pro�le a∗ such that

a∗i ∈ Bi(a
∗
−i) for all i ∈ I;

so, it is su�cient to �nd a �xed point for f .

For all i ∈ I, the set Bi(a−i) is non empty since ≥i is continuous and Ai is
compact; it is also convex since ≥i is quasi-concave on Ai. Moreover, f has
a closed graph since each ≥i is continuous. So the hypothesis of Kakutani's
theorem are satis�ed and we can conclude that a Nash equilibrium exists.

�

3.2 Strategic Games of Incomplete Information

One frequently deals with situations in which some players do not have per-
fect information about other players. We call "strategic game of incomplete
information" a strategic game in which some players do not know the other
players' payo�s. More formally we give the following de�nition:

De�nition 3.2.1. A strategic game of incomplete information or Bayesian
game is de�ned by:

• a �nite set I = {1, . . . , N};

• for all i ∈ I, a non empty set Ai;
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• for all i ∈ I, a nonempty set Θi;

• a probability measure p over Θ = Θ1 × · · · ×ΘN ;

• for all i ∈ I, a function ui : A1 × · · · × AN ×Θ1 × · · · ×ΘN → R.

Let's explain this de�nition. As before, I represents the set of players and
Ai the set of possible actions for the player i. The fact that players do
not know the others players' payo�s is modelled by introducing for all i the
type space Θi which represents player i's private information; the probability
distribution p represents the prior belief regarding each player's type.

We can de�ne the concept of Nash equilibrium for a Bayesian game.

De�nition 3.2.2. Let (I, (Ai), (Θi), (ui), p) a Bayesian game. Consider the
strategic game of complete information de�ned as follows:

• I = {1, · · · , N};

• AΘ
i = {f : Θi → Ai};

• uΘ
i : AΘ

1 × · · · × AΘ
N → R de�ned as

uΘ
i (f1, · · · , fN) = sup

θ∈Θ
ui(f1(θ1) · · · fN(θN), θ1, · · · θN).

We say that (f1, · · · , fN) ∈ AΘ
1 × · · · × AΘ

N is a Nash equilibrium for the
Bayesian game if it is a Nash equilibrium for the strategic game of complete
information (I, (Aθi ), (u

θ
i )).

Example 3.2.1. (First price auctions as a Bayesian Game) Consider a �rst
price auction with N bidders. We can model this situation with a Bayesian
game de�ned in the following way:

• I = {1, 2, . . . , N} is the set of players, that's to say the bidders;

• for all i ∈ I, Ai = R+ is the set of possible actions for the bidder i,
that's to say the set of possible biddings;

• for all i ∈ I, the type set Θi is the interval [vmin, vmax], that is the set
of possible values for each bidder. We suppose that vmin > 0;
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• P is the uniform probability over Θ;

• for all i ∈ I, a payo� function de�ned as follows:

ui(a, v) =

{
vi−P (a)

m
if aj ≤ ai for all j 6= i and |{j : aj = ai}| = m

0 otherwise ,

where P (a) is the transfer price paid by the winner if the bid pro�le is
a.

Let's analyse the Bayesian equilibrium of a �rst price auction. Let v1 be
the �rst player type and suppose the other bidders' values are independent;
moreover suppose that the �rst player believes that the other bidders use
strategies such as

β(vi) = avi,

for a �xed value a. If b is the price paid by �rst player if he wins, his expected
payo� is

(v1 − b)P{ he wins } = (v1 − b)P{b > av2, . . . , b > avN}
= (v1 − b)P{b > av2}P{b > av3} . . .P{b > avN}

= (v1 − b)

(
b
a
− vmin

vmax−vmin

)n−1

.

Maximizing implies �rst derivative equal to zero, so we obtain the relation

−

(
b
a
− vmin

vmax−vmin

)n−1

+ (n− 1)
v1 − b
a

(
b
a
− vmin

vmax−vmin

)n−2

= 0

from which we obtain

b =
(n− 1)v1

1 + (n− 1)(vmax − vmin)
,

which represents the Bayesian equilibrium of the game.



Chapter 4

Bayesian Mechanism Design:

general theory

We may de�ne mechanism design as the art of designing the rules of a game
to achieve a speci�c outcome. As a matter of fact, mechanism design deals
with a class of Bayesian games in which there is a player, called the principle,
who chooses the payo� structure pursuing his own aim. The other players
are called the agents.

4.1 Mechanisms and Direct Mechanisms

De�nition 4.1.1. A mechanism is de�ned by:

• a �nite set I = {1, · · · , N};

• for all i ∈ I, a set Θi;

• for all i ∈ I, a utility function

Ui : A×Θ→ R,

where Θ = Θ1×· · ·×ΘN , A = A1×· · ·×AN and Ai = {σi : Θi → Θi}.

Let's explain this de�nition. We can think of I as the set of agents and of Θi

as the set of agent i's private information, called the type. We denote by θ the

30
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type vector (θ1, · · · , θN). The agents are asked to report their types and they
can tell the truth or a lie: the set Ai represents the agent i

′s strategies, that's
to say σi(θi) is the type that agent i declares if his real type is θi. Finally, the
function Ui(σ, θ) represents the player i's outcome if θ is the real type vector
and the agents choose respectively the strategies (σ1, · · · , σN) = σ. We can
think of Ui as a function with this structure:

Ui(σ, θ) = ui(σ, θ)− ti

where ui is agent i's pro�t and ti is the transfer that he has to pay to attend
the game.
We denote by θ−i the vector type θ without the i-th element and Θ−i the
Cartesian product of the sets Θj leaving out Θi.

It is immediate by de�nition the following property.

Proposition 4.1.1. If we put a probability measure over the set Θ1×· · ·×ΘN ,
a mechanism de�nes a Bayesian Game.

An important class of mechanisms are the direct mechanisms.

De�nition 4.1.2. A direct mechanism is de�ned by

• a �nite set I = {1, · · · , N};

• for all i ∈ I, a set Θi;

• a set X;

• a function q : Θ→ X, called the decision rule;

• for all i, a function ti : Θ→ R, called the payment rule;

• for all i, a function ui : X ×Θi → R.

Let's explain this de�nition: X is the set of possible outcomes; if the agents
declare the type vector θ, q(θ) is the collectively chosen outcome and ti(θ) is
the transfer that agent i has to pay.

Now we are going to show the connection between mechanism and direct
mechanism.
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Proposition 4.1.2. A direct mechanism de�nes a mechanism.

Proof. The set of agents, the sets of types and the sets of strategies are the
same. Then it is su�cient to de�ne for all i ∈ I the utility function Ui : we
write

Ui(σ, θ) = ui(q(σ(θ)), θi)− ti(σ(θ)),

where σ(θ) = (σ1(θ1), · · · , σN(θN)).

�

Given a mechanism, we can always �nd a direct mechanism with equivalent
payo� in which telling the truth represents an equilibrium of the game. More
formally:

Theorem 4.1.3. (Revelation Principle) For any mechanism Γ and any Nash
equilibrium σ of it, there exists a direct mechanism Γ′ and a Nash equilibrium
σ′ of it such that:

1. for all i, σ′i(θi) = θi for all θi ∈ Θi;

2. for all i and for all θ ∈ Θ

Ui(σ, θ) = U ′i(σ
′, θ)

where Ui, U
′
i are the utility functions of Γ and Γ′.

Proof. Build Γ′ as required by part (ii) of the proposition. We have to show
that truth telling will be a Nash equilibriun in this direct mechanism. To
see this, suppose it were not. Suppose that type θi prefers to report that her
type is θ′i for some type vector of the other agents θ−i; then the same type
θi would have preferred to deviate from σi, and to play the strategy that σi
prescribes for θ′i in Γ, for the strategy combination that the types θ−i play in
Γ′. Hence σ would not be a Nash equilibrium of Γ, which is impossible.

�
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The revelation principle is very important since it establishes that we can
always restrict our attention to direct mechanisms in which the agents report
their types truthfully. We use a speci�c name for such a mechanism:

De�nition 4.1.3. A direct mechanism is dominant incentive compatible if
for all θ ∈ Θ, for all i ∈ I and for all θ′i ∈ Θi, we have

ui(q(θ), θi)− ti(θ) ≥ ui(q(θ
′
i, θ−i), θi)− ti(θ′i, θ−i).

4.2 Implementing e�cient decision rules

In this section we suppose to have a direct mechanism such that for all i
there is a payo� function ui de�ned on the Cartesian product X ×Θi. Once
we have �xed a decision rule q, our �rst aim is to �nd the set of transfer rules
implementing q. More formally, we say:

De�nition 4.2.1. Suppose we have set a decision rule q. We say that
the payment rules (t1, · · · , tN) implements q if (q, t1, · · · , tN , u1, · · · , uN) is
a dominant incentive compatible mechanism. If there exist payment rules
implementing q, we say that q is implementable.

Now we are going to deal with the problem of uniqueness of payment rules
implementing a �xed decision rule. This result is due to Krishna and Maenner
(2001).

Theorem 4.2.1. (Revenue Equivalence Theorem) Suppose that for all i the
set Θi is a convex subset of a �nite dimensional Euclidean space, and that
for all θ−i ∈ Θ−i, the function

θi 7→ ui(q(θi, θ−i), θi)

is convex. Let q be a decision rule. Assume that (t1, · · · , tN) implements q.
Then any other payment rule (t′1, · · · , t′N) implements q if and only if for all
i there exists a function

τi : Θ−i → R

such that
t′i(θ) = ti(θ) + τi(θ−i)

for all θ ∈ Θ.
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The proof of this theorem is based on another important result.

Theorem 4.2.2. (Payo� Equivalence Theorem) Suppose that for all i, Θi is
convex subset of Rn and for all θ−i ∈ Θ−i the function

θi 7→ ui(q(θi, θ−i), θi)

is convex. Assume that the direct mechanism (q, t1, · · · , tN) is dominant
incentive compatible. Then for all θ1

i , θ
2
i ∈ Θi, for all smooth path α from θ1

i

to θ2
i , we have

ui(q(θ
1
i , θ−i), θ

1
i )− ti(θ1

i , θ−i) = ui(q(θ
2
i , θ−i), θ

2
i )− ti(θ2

i , θ−i) +

ˆ
α

Qi · rds,

where Qi is any selection from ∂ui(q(·, θ−i), ·).

Proof (of Theorem 4.2.2). Let θ−i ∈ Θ−i and let Pθ−i
be a measurable

selection from ∂ui(q(·, θ−i), ·). By de�nition, we have

ui(q(θi, θ−i), θi) ≥ ui(q(θ
′
i, θ−i), θ

′
i) + Pθ−i

(θ′i)(θi − θ′i)

for all θi, θ
′
i ∈ Θi. Since (q, t1, · · · , tN) is dominant incentive compatible, we

can write

ui(q(θ), θi)− ti(θ) = sup
θ′i∈Θi

(ui(q(θ
′
i, θ−i), θi)− ti(θ′i, θ−i))) .

For all θ′i and θ−i, the function

θi 7→ ui(q(θ
′
i, θ−i), θi)− ti(θ′i, θ−i)

is convex since it is the di�erence between ui(q(·, θ−i), ·), convex by hypoth-
esis, and a constant. Since the upper bound of a set of convex function is
convex, we can conclude that

Uθ−i
: θi 7→ ui(q(θ), θi)− ti(θ)

is convex for all θ−i. In addition, for all θi, θ
′
i ∈ Θi,

Uθ−i
(θi) ≥ ui(q(θ

′
i, θ−i), θi)− ti(θ′i, θ−i)

≥ ui(q(θ
′
i, θ−i), θ

′
i) + Pθ−i

(θ′i)(θi − θ′i)− ti(θ′i, θ−i)
= Uθ−i

(θ′i) + Pθ−i
(θ′i)(θi − θ′i),
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for incentive compatibility and the de�nition of Pθ−i
; in other words, Pθ−i

is
a selection from ∂Uθ−i

.

Now it is su�cient to apply theorem 2.1.6 to obtain the thesis.

�

Proof. (of Theorem 4.2.1) Let's observe that the implication (⇐) is quite
immediate. Since (q, t1, · · · tn) is dominant incentive compatible, we have

ui(q(θ), θi)− ti(θ) ≥ ui(q(θ
′
i, θ−i), θi)− ti(θ′i, θ−i),

for all θ ∈ Θ, i ∈ I and θ′i. Suppose now that for all i we have

t′i(θ) = ti(θ) + τi(θ−i);

then

ui(q(θ), θi)− t′i(θ) =ui(q(θ), θi)− ti(θ)− τi(θ−i)
≥ ui(q(θ

′
i, θ−i), θi)− ti(θ′i, θ−i)− τi(θ−i)

= ui(q(θ
′
i, θ−i), θi)− t′i(θ′i, θ−i),

for all θ ∈ Θ, i ∈ I and θ′i, i.e. (q, t′1, · · · , t′n) is dominant incentive compati-
ble.

Let's prove (⇒). Let θi be a �xed element of Θi and let θ−i be an element of
Θ−i. Choose an element θ′i ∈ Θi: we can join θi and θ

′
i with a smooth path

α, since Θi is convex. Both (q, t1, · · · , tn) and (q, t′1, · · · , t′n) are dominant
incentive compatible direct mechanism, so, using 4.2.2, we can write

ui(q(θi, θ−i), θ−i)− ti(θi, θ−i) = ui(q(θ
′
i, θ−i), θ

′
−i)− ti(θ′i, θ−i) +

ˆ
α

Pθ−i
· rds,

ui(q(θi, θ−i), θ−i)− t′i(θi, θ−i) = ui(q(θ
′
i, θ−i), θ

′
−i)− t′i(θ′i, θ−i) +

ˆ
α

Pθ−i
· rds.

Subtracting the second equation from the �rst one, we obtain

t′i(θi, θ−i)− ti(θi, θ−i) = t′i(θ
′
i, θ−i)− ti(θ′i, θ−i).

If we de�ne
τi(θ−i) = t′i(θ

′
i, θ−i)− ti(θ′i, θ−i),

we have
t′i(θi, θ−i) = ti(θi, θ−i) + τi(θ−i),

which is the thesis.
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�

Our investigation of the possibility of implementing a decision rule is focussed
on e�cient decision rules.

De�nition 4.2.2. A decision rule q∗ is called e�cient if for all θ ∈ Θ we
have

N∑
i=1

ui(q
∗(θ), θi) ≥

N∑
i=1

ui(a, θi),

for all a ∈ X.

We shall now introduce an important class of incentive compatible mechanism
in which the decision rule is e�cient.

De�nition 4.2.3. A direct mechanism (q, t1, · · · , tN) is a Vickrey-Clark-
Groves mechanism (VCG) if q is e�cient and for all i there exists a function

τi : Θ−i → R

such that
ti(θ) = −

∑
j 6=i

uj(q(θ), θj) + τi(θ−i)

for all θ ∈ Θ.

Proposition 4.2.3. VCG mechanism are dominant incentive compatible.

Proof. Suppose that agent i's type is θi and the reported type is θ′i. Agent
i's utility is given by

ui(q(θ
′
i, θ−i), θi)− ti(θ′i, θ−i) =ui(q(θ

′
i, θ−i), θi) +

∑
j 6=i

uj(q(θ
′
i, θ−i), θj)− τi(θ−i)

=
N∑
j=1

uj(q(θ
′
i, θ−i), θj)− τi(θ−i)

≤
N∑
j=1

uj(q(θ), θj)− τi(θ−i)

= ui(q(θ), θi) +
∑
j 6=i

uj(q(θ), θj)− τi(θ−i)

= ui(q(θ), θi)− ti(θ),
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which is agent i's utility if he declares his real type θi.

�

Under the hypotheses of the Revenue Equivalence Theorem, VCG mecha-
nisms are the only dominant incentive compatible ones with q being e�cient.

Corollary 4.2.4. Suppose that for all i the set Θi is a convex subset of a
�nite dimensional Euclidean space. Suppose that for all a ∈ X, the function

θi 7→ ui(a, θi)

is convex. Let (q, t1, · · · , tN) be a dominant incentive compatible mechanism
and assume that q is e�cient. Then (q, t1, · · · , tN) is a VCG mechanism.

Proof. Once we have �xed q, we can build a VCG mechanism with decision
rule q : it is su�cient to write for all i

t̃i(θ) = −
∑
j 6=i

uj(q(θ), θj).

Then (q, t̃1, · · · , t̃N) is a VCG mechanism and for the previous proposition
it is dominant incentive compatible. Since the hypotheses of the Revenue
Equivalence Theorem are satis�ed, if (q, t1, · · · , tN) is a dominant incentive
compatible mechanism, for all i there exist a function

τi : Θ−i → R

such that

ti(θ) = t̃i(θ) + τi(θ−i) = −
∑
j 6=i

uj(q(θ), θj) + τi(θ−i);

in other words (q, t1, · · · , tN) is VCG.

�
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4.3 Implementable decision rules

We are going to discuss the conditions under which a decision rule is imple-
mentable. We have seen that e�ciency is a su�cient condition, but some-
times the designer could �nd some constraints for which the decision rule
may not be e�cient: we are looking for more general conditions.

De�nition 4.3.1. A decision rule q is weakly monotone if for all i, for all
θ−i ∈ Θ−i, for all θ

1
i and θ

2
i ∈ Θi, if

a1 = q(θ1
i , θ−i) and a

2 = q(θ2
i , θ−i),

then
ui(a

1, θ1
i )− ui(a2, θ1

i ) ≥ ui(a
1, θ2

i )− ui(a2, θ2
i ).

Let's explain this de�nition. The value ui(a
1, θ1

i ) is the payo� that player i
receives for the alternative a1 if he declares his real type θ1

i , while ui(a
1, θ2

i )
is his payo� if he falsely reports the type θ2

i . Then we can interpret the
di�erence on the left-hand side as his willingness to pay for alternative a1

as opposed to alternative a2 if his real type is θ1
i . We can write the same

considerations for the di�erence between ui(a
1, θ2

i ) and ui(a
2, θ2

i ), which hence
is agent i's willingness to pay for alternative a1 as opposed to alternative a2

if his real type is θ2
i . As a result, the weakly monotonicity can be thought of

as a property for which agent i prefers to pay for a1 instead of a2 if his real
type is θ1

i .

The weak monotonicity is a necessary condition for a decision rule to be
implementable.

Proposition 4.3.1. Suppose that (q, t1, · · · , tN) is dominant incentive com-
patible. Then q is weakly monotone.

Proof. Let i ∈ I, θ−i ∈ Θ−i and θ
1
i , θ

2
i ∈ Θ. Let

a1 = q(θ1
i , θ−i) and a

2 = q(θ2
i , θ−i).

Since (q, t1, · · · tN) is dominant incentive compatible, we can write

ui(a
1, θ1

i )− ti(θ1
i , θ−i) ≥ ui(a

2, θ1
i )− ti(θ2

i , θ−i)
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ui(a
2, θ2

i )− ti(θ2
i , θ−i) ≥ ui(a

1, θ2
i )− ti(θ1

i , θ−i),

from which

ui(a
1, θ1

i )− ui(a2, θ1
i ) ≥ ti(θ

1
i , θ−i)− ti(θ2

i , θ−i)

ui(a
1, θ2

i )− ui(a2, θ2
i ) ≤ ti(θ

1
i , θ−i)− ti(θ2

i , θ−i);

hence
ui(a

1, θ1
i )− ui(a2, θ1

i ) ≥ ui(a
1, θ2

i )− ui(a2, θ2
i ),

i.e. q is weakly monotone.

�

We shall now show that a stronger condition than weak monotonicity, called
cyclic monotonicity, is necessary and su�cient for implementability.

De�nition 4.3.2. A decision rule q is cyclically monotone if for all i ∈ I,
for all θ−i ∈ Θ−i, for all k ∈ N, k ≥ 2, and for any sequence of types
θ1
i , · · · , θki ∈ Θi such that

θ1
i = θki ,

we have
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
≤ 0,

where aj = q(θji , θ−i) for all j = 1, · · · , k.

Remark 4.3.3. If q is cyclically monotone then it is weakly monotone: it is
su�cient to apply the de�nition of cyclic monotonicity with k = 2.

We have now the instruments to give the characterization of implementabil-
ity. This theorem is due to Rochet (1987).

Theorem 4.3.2. (Rochet Theorem) A decision rule is implementable if and
only if it is cyclically monotone.

Proof. Firstly suppose that q is implementable: there exist N payment rules
(t1, · · · , tN) such that (q, t1, · · · , tN) is a dominant incentive compatible me-
chanism. Let θ1

i , · · · , θki ∈ Θi with θ
1
i = θki . By hypothesis, we have for all

j = 1, · · · , k − 1,
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ui(a
j, θj+1

i )− ti(θji , θ−i) ≤ ui(a
j+1, θj+1

i )− ti(θj+1
i , θ−i)

where
aj = q(θji , θ−i).

We can rewrite the previous inequality as

ui(a
j, θj+1

i )− ui(aj+1, θj+1
i ) ≤ ti(θ

j
i , θ−i)− ti(θ

j+1
i , θ−i),

and, by summing on j, we obtain

k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj+1, θj+1

i )
)
≤

k−1∑
j=1

(
ti(θ

j
i , θ−i)− ti(θ

j+1
i , θ−i)

)
= ti(θ

1
i , θ−i)− ti(θki , θ−i) = 0,

since θ1
i = θki ; by splitting the left hand side and observing that

k−1∑
j=1

ui(a
j+1, θj+1

i ) =
k∑
j=2

ui(a
j, θji ) =

k−1∑
j=1

ui(a
j, θji )

since ak = a1, we obtain

k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
=

k−1∑
j=1

ui(a
j, θj+1

i )−
k−1∑
j=1

ui(a
j, θji ) ≤ 0,

i.e. q is cyclically monotone.

Suppose now that q is cyclically monotone: we want to de�ne N payment
rules implementing q. Suppose θ̃i is a �xed element of Θi. For all θi ∈ Θi.
consider the set

S(θi) =
{

(θ1
i , · · · , θki ) : k ∈ N, k ≥ 2, θji ∈ Θi, j = 1, · · · k, θ1

i = θ̃i, θ
k
i = θi

}
.

For all i, let's de�ne the function
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Vi : Θ→ R

as follows:

Vi(θi, θ−i) = sup
S(θi)

{
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)}
.

The next step is to show that Vi is well de�ned, that is the set{
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
: (θ1

i , · · · , θki ) ∈ S(θi)

}

is bounded above.

If θi = θ̃i, then the cyclic monotonicity implies that for all (θ1
i , · · · , θki ) ∈

S(θi),
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
≤ 0.

Hence
Vi(θ̃i, θ−i) ≤ 0.

In addition (θ̃i, θ̃i) is an element of S(θ): hence we can deduce that

Vi(θ̃i, θ−i) = 0

for all θ−i ∈ Θ−i.

Consider now the case θi 6= θ̃i. Let (θ1
i , · · · , θki ) ∈ S(θi); then (θ1

i , · · · , θk−1
i , θ̃i) ∈

S(θ̃i). We have

0 = Vi(θ̃i, θ−i) ≥
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
+ ui(a

k, θ̃i)− ui(ak, θi);

thus

k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
≤ ui(a

k, θi)− ui(ak, θ̃i),
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and the set Γ is bounded above: we can conclude that Vi is well de�ned.

Now de�ne for all i the payment rule

ti(θ) = ui(q(θ), θi)− Vi(θ);

we have to verify that (q, t1, · · · , tN) is a dominant incentive compatible me-
chanism, that is for all θ′i ∈ Θi,

ui(q(θi, θ−i), θi)− ti(θi, θ−i) ≥ ui(q(θ
′
i, θ−i); θi)− ti(θ′i, θ−i)

this is equivalent to

Vi(θi, θ−i) ≥ Vi(θ
′
i, θ−i) + ui(q(θ

′
i, θ−i), θi)− ui(q(θ′i, θ−i), θ′i),

by de�nition of ti. Consider the set

Γ(θi)
{

(θ1
i , · · · , θki ) : k ∈ N, k ≥ 3, θ1

i = θ̃i, θ
k
i = θi, θ

k−1
i = θ′i

}
⊆ S(θi).

We have

Vi(θi, θ−i) ≥ sup
Γ(θi)

{
k−1∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)}

= sup
Γ(θi)

{
k−2∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)
+ ui(a

k−1, θki )− ui(ak−1, θk−1
i )

}

= sup
Γ(θi)

{
k−2∑
j=1

(
ui(a

j, θj+1
i )− ui(aj, θji )

)}
+ ui(q(θ

′
i, θ−i), θi)− ui(q(θ′i, θ−i), θ′i)

= Vi(θ
′
i, θ−i) + ui(q(θ

′
i, θ−i), θi)− ui(q(θ′i, θ−i), θ′i).

�



Chapter 5

Screening: pricing a single

indivisible good

The theory of screening is a �rst example of application of mechanism design
to real problems. Moreover it o�ers an enlightening vision of the techniques
used in the mechanism design, being a natural extension of it.
We start this chapter analysing the problem of pricing a good and modelling
this situation with the instruments of mechanism design.

5.1 The problem

A seller wants to trade a good with the aim of maximizing his own pro�t.
Suppose that there is just a potential buyer, whose utility function is given
by

θ − t;

the number θ > 0 represents buyer's evaluation of the good and t is the
transfer payment he will pay in case of trade.
We suppose that the value of θ is known by the buyer but not by the seller,
who knows only a probability distribution over the possible values of θ : we
denote the distribution function by F and we suppose that F has density
f ; we also suppose that the support of F is an interval such as [θ1, θ2], on
which f is strictly positive. We can think of θ as a random variable with

43
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distribution F , whose realization can be seen by the buyer but not by the
seller.
We want to �nd the procedure by means of which the seller can maximize
his pro�t.

5.2 The model

We are going to model this problem with a mechanism in which there is only
a player, the buyer, and the principle is the seller. To do it, we are going
to use a suitable direct mechanism. According to the de�nition given in the
previous chapter, we introduce the functions

q : [θ1, θ2]→ [0, 1],

and
t : [θ1, θ2]→ R.

In this situation the set of possible outcomes is [0, 1], which represents the
probability under which the trade will occur. As already explained, the buyer
is asked to report his type: if he reports θ, the seller commits to transferring
the good with probability q(θ) and the buyer has to pay t(θ); we suppose
that the payment is not conditional on the event that the buyer obtains the
good, but the buyer has to pay it in every cases.
As previous stated, the buyer's strategies are the functions

σ : [θ1, θ2]→ [θ1, θ2];

the number σ(θ) is the type that the buyer declares if his real type is θ.

In this case the payo� function is

u(σ, θ) = θ − t(σ(θ)).

For a �xed strategy σ, we consider the stochastic process de�ned as follows:

Xσ : Ω× [θ1, θ2]→ R

such that
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Xσ(ω, θ) =

{
θ − t(σ(θ)) with probability q(σ(θ))
−t(σ(θ)) with probability 1− q(σ(θ)).

This stochastic process represents the possible payo�s for the buyer when he
chooses the strategy σ : if the trade occurs (and it occurs with probability
q(σ(θ))), then his utility is θ − t(σ(θ)); if the trade does not occur (and it
happens with probability 1− q(σ(θ))), then he has to pay t(σ(θ)).

The expected revenue for the buyer for �xed θ and σ is thus

E [Xσ(·, θ)] = (θ − t(σ(θ)))q(σ(θ)) + (−t(σ(θ)))(1− q(σ(θ)))

= θq(σ(θ))− t(σ(θ)).

The buyer's expected utility is thus

u(σ, θ) = θq(σ(θ))− t(σ(θ)).

Thanks to revelation principle, we can restrict our attention to direct me-
chanisms in which the buyer reports his type truthfully: if we consider the
case in which the buyer tell the truth, his expected utility is

u(θ) = u(id, θ) = θq(θ)− t(θ),

where id is the identity function.
As we know, a direct mechanism is incentive compatible if telling the truth
is the optimal strategy, that's to say

u(θ) ≥ θq(θ′)− t(θ′),

for all θ, θ′ ∈ [θ1, θ2].

Now we need a new de�nition.

De�nition 5.2.1. A direct mechanism (q, t1, · · · tN , u1, · · · , uN) is indivi-
dually rational if

ui(θ) ≥ 0,

for all θ ∈ [θ1, θ2], for all i = 1, · · · , N.
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In other words, in an individually rational direct mechanism the players par-
ticipate in the game if they have a nonnegative utility.

Our aim is studying the incentive compatible mechanism maximizing seller's
expected revenue: in fact, if the buyer reports his real type, it will be easier to
�nd the optimal mechanism for the seller. In this way, our �rst step is study-
ing the conditions under which a direct mechanism is incentive compatible.
In the previous chapter we have introduced the concept of weak monotonicity
as a necessary condition for implementability. In this particular case, weak
monotonicity reduces to the concept of increasing function.

Proposition 5.2.1. If the direct mechanism previously de�ned is incentive
compatible, then q is increasing.

Proof. Let θ, θ′ ∈ θ ∈ [θ1, θ2], with θ > θ′. Since the mechanism is incentive
compatible, we have

θq(θ)− t(θ) ≥ θq(θ′)− t(θ′),

θ′q(θ′)− t(θ′) ≥ θ′q(θ)− t(θ).

Subtracting these inequalities, we obtain

(θ − θ′)q(θ) ≥ (θ − θ′)q(θ′),

that is
q(θ) ≥ q(θ′).

�

Proposition 5.2.2. If the direct mechanism previously de�ned is incentive
compatible, then the payo� function is increasing and convex, thus it is dif-
ferentiable except in at most countably many points. For all θ ∈ [θ1, θ2] in
which u is di�erentiable, we have

u′(θ) = q(θ).

Proof. By de�nition of incentive compatibility, we have

u(θ) = max
θ′∈[θ1,θ2]

(θq(θ′)− t(θ′)),



5.2. THE MODEL 47

for all θ ∈ [θ1, θ2].

For a �xed value θ′, the function

θ 7→ θq(θ′)− t(θ′)

is increasing and convex, since it is a straight line with positive slope. Thus u
is increasing and convex, being the maximum of such functions; in particular
u is di�erentiable except in at most countably many points. Let θ be a point
of di�erentiability. Using incentive compatibility, we have

lim
h→0+

u(θ + h)− u(θ)

h
≥ lim

h→0+

(θ + h)q(θ)− t(θ)− (θq(θ)− t(θ))
h

= q(θ);

in the same way, we obtain

lim
h→0−

u(θ + h)− u(θ)

h
≤ lim

h→0−

(θ + h)q(θ)− t(θ)− (θq(θ)− t(θ))
h

= q(θ).

In other words, we have

u′(θ) = q(θ)

in each point of di�erentiability.

�

It is immediate the following result:

Proposition 5.2.3. If the mechanism is direct and incentive compatible,
then we have

u(θ) = u(θ1) +

ˆ θ

θ1

q(x)dx.

Now we have the tools to characterize an incentive compatible mechanism.

Theorem 5.2.4. A direct mechanism (q, t) is incentive compatible if and
only if

• q is increasing;
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• for all θ ∈ [θ1, θ2],

t(θ) = t(θ1) + θq(θ)− θ1q(θ1)−
ˆ θ

θ1

q(x)dx.

Proof. We have already proved the necessity of these last conditions. Suppose
now that they are satis�ed: let us show that the mechanism is incentive
compatible.
Notice that by hypothesis we have

ˆ θ

θ′
q(x)dx ≥

ˆ θ

θ′
q(θ′)dx.

As a matter of fact, if θ > θ′, then

q(x) ≥ q(θ′)

for all x ∈ [θ′, θ] and integrating we have the inequality; similarly, if θ < θ′,
then

q(x) ≤ q(θ′)

for all x ∈ [θ, θ′]; thus

ˆ θ

θ′
q(x)dx = −

ˆ θ′

θ

q(x)dx ≥ −
ˆ θ′

θ

q(θ′)dx =

ˆ θ

θ′
q(θ′)dx.

Thanks to the second hypothesis, we can conclude that

u(θ)− u(θ′) ≥ (θ − θ′)q(θ′),

that is
u(θ) ≥ (θ − θ′)q(θ′) + θ′q(θ′)− t(θ′) = θq(θ′)− t(θ′).

In other words, the mechanism is incentive compatible.

�

We now need the following lemma.

Lemma 5.2.5. Given an incentive compatible and rational direct mechanism
(q, t) in which the function q maximizes the seller's expected revenue, we have

u(θ1) = 0.
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Proof. By de�nition of rationality, we have

θ1q(θ1)− t(θ1) = u(θ1) ≥ 0,

that is
θ1q(θ1) ≥ t(θ1).

If
t(θ1) < θ1q(θ1),

then the seller could choose a mechanism with the same q but with higher
t(θ1), that is an initial price t′(θ1) such that

t(θ1) < t′(θ1) ≤ θ1q(θ1).

The new transfer payments are determined by the previous proposition, that
is

t′(θ) = t′(θ1) + θq(θ)− θ1q(θ1)−
ˆ θ

θ1

q(x)dx > t(θ);

thus the mechanism (q, t) does not maximize the seller's expected revenue,
which is impossible.

�

At this point, we can say that in order to maximize the seller's expected
revenue we have to �nd an increasing function q : [θ1, θ2]→ [0, 1] maximizing
the expected value of the function

t(θ) = θq(θ)−
ˆ θ

θ1

q(x)dx.

More formally, if we �x a probability measure µ over [θ1, θ2], we want to
maximize the function

q 7→ E
[
θq(θ)−

ˆ θ

θ1

q(x)dx

]
,

where the integral is calculated respect to µ. We can think of µ as the seller
beliefs about the buyer's type.
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5.3 Resolution

In order to �nd q, we are going to use an elegant argument of convex analysis.
We denote with F the set of bounded and measurable functions f : [θ1, θ2]→
R. Notice that F is a vector space with the usual operations. We give to
this vector space the L1 norm, that is

‖f‖ =

ˆ θ2

θ1

|f(x)|dx.

We de�ne

M = {f ∈ F : f is increasing, f(x) ∈ [0, 1] for all x}.

We will look for a function q ∈ M: it has to be increasing, as shown, and
with values in [0, 1], since q(θ) represents a probability for all θ. For this
reason, we study the properties of the setM.

Lemma 5.3.1. M is compact and convex.

Proof. Convex combinations of increasing functions are increasing: thus con-
vexity is immediate. Regarding to compactness, it is an implication of Helly's
compactness theorem. Indeed, thanks to it, for all sequence {fn} ∈ M, there
exists a subsequence {fnk

} converging pointwise to a function f . Surely, f
is increasing and with values in [0, 1]. Now we can apply the dominated con-
vergence theorem to say that

lim
k→∞

ˆ θ2

θ1

|fnk
(x)− f(x)|dx = 0,

that is the sequence {fnk
} converges to f in the norm L1.

�

Notice that t(θ) is linear in q: we have to maximize a continuous linear
function de�ned over a convex and compact set.

Using the Extreme Point Theorem, we look for the optimal q among the
extreme points of M : instead of maximizing t, we de�ne another function
F :M→ R as

F (q) = E
[
θq(θ)−

ˆ θ

θ1

q(x)dx

]
,
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where the expected value is calculated under the probability measure µ, and
try to maximize F .

In order to �nd the extreme points ofM is mainly important, the following
lemma is useful.

Lemma 5.3.2. A function q ∈ M is an extreme point of M if and only if
q(θ) ∈ {0, 1} for almost all θ ∈ [θ1, θ2].

Proof. Suppose that q has values in {0, 1}: we have to show that it is an
extreme point. For doing so, we choose a function q′ ∈M not identically zero:
then there exists an element θ such that q′(θ) 6= 0. Suppose that q′(θ) > 0:
if q(θ) = 0, then

q(θ)− q′(θ) < 0,

so that q − q′ 6∈ M; if q(θ) = 1, then

q(θ) + q′(θ) > 1,

and hence q + q′ 6∈ M. Hence both q − q′ and q + q′ cannot belong toM.
If q′(θ) < 0, we can repeat a similar reasoning to arrive to the same conclu-
sion. Hence, by de�nition, q is an extreme point ofM.

Conversely, consider a function q ∈M such that there exists θ∗ such that

q(θ∗) ∈ (0, 1).

We de�ne a new function q′ ∈M in this way:

q′(θ) =

{
q(θ) if q(θ) ≤ 1/2
1− q(θ) if q(θ) > 1/2.

Thus q′ is a non zero element of F such that both q+ q′ and q− q′ belong to
M. As a matter of fact,

q(θ) + q′(θ) =

{
2q(θ) if q(θ) ≤ 1/2
1 if q(θ) > 1/2;
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thus it is evidently increasing and with values in [0, 1];

q(θ)− q′(θ) =

{
0 if q(θ) ≤ 1/2
2q(θ)− 1 if q(θ) > 1/2;

thus it is evidently increasing and with values in [0, 1].
Hence q cannot be an extreme point ofM. The lemma is proved.

�

We have proved that the seller can choose a non stochastic and monotone
mechanism: there must exist a number θ∗ ∈ [θ1, θ2] such that

qθ∗(θ) =

{
0 if θ < θ∗

1 if θ > θ∗.

In this situation, the payment rule tθ∗ is of the form

tθ∗(θ) =

{
0 if θ < θ∗

1− θ + θ∗ if θ > θ∗,

thanks to the relation

t(θ) = q(θ)−
ˆ θ

θ1

q(x)dx.

For this �xed value θ∗, the expected revenue is

F (qθ∗) = E
[
θqθ∗(θ)−

ˆ θ

θ1

qθ∗(x)dx

]
=

ˆ θ2

θ∗
θdµ−

ˆ θ2

θ∗

ˆ θ

θ∗
1 dxdµ

=

ˆ θ2

θ∗
θ∗dµ = θ∗µ([θ∗, θ2]).

Thus, in order to maximize it, the seller has to choose a value θ∗ such that

θ∗ ∈ argmax [θ1,θ2](θ
∗µ([θ∗, θ2])).

We summarize what we have found:
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Theorem 5.3.3. An incentive compatible and individually rational direct
mechanism maximizes the seller's expected revenue if there exists a number

θ∗ ∈ argmax[θ1,θ2](θ
∗µ([θ∗, θ2]))

such that

q(θ) =

{
0 if θ < θ∗

1 if θ > θ∗,

and

t(θ) =

{
0 if θ < θ∗

1− θ + θ∗ if θ > θ∗.

Such a direct mechanism can be implemented by the seller simply quoting
the price θ∗ and the buyer either accepting or rejecting it. This is a very usual
selling mechanism, but we have mathematically demonstrated that there is
not a more e�cient mechanism. Moreover we have an explicit formula for
the calculus of the best price θ∗.



Chapter 6

Screening: non linear pricing

We now deal with a little bit more complicate situation: we are going to see
that the resolution is interesting and not trivial.

6.1 The problem

We consider the situation in which a monopolist wants to sell an in�nitely
divisible good to one potential buyer. We can think of the trade of sugar, for
example: it is a more common situation than the one studied in the previous
chapter and we will see that additional elements will be used to achieve the
solution.
We assume that production costs are linear, and that there exists a constant
c > 0 such that if the monopolist produces a quantity q of the good, he will
have to invest cq.
We assume that the buyer's utility when trading a quantity q and paying t
to the seller is given by

θν(q)− t,

where θ re�ects how much the buyer values the good and ν(q) depends on
how much quantity of good is sold. The product θν(q) can be interpreted as
the buyer's willingness to pay for the quantity q.
The seller's utility is thus given by

t− cq.

54
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The parameter θ can take any value in the set [θ1, θ2]. It is known by the buyer
but not by the seller, whose beliefs regarding θ are described by a distribution
function F with density f on the interval [θ1, θ2]; we assume that f is strictly
positive over [θ1, θ2]. We suppose that the following properties are satis�ed:

1. ν : R+ → R+ with ν(0) = 0; ν is twice di�erentiable, strictly increasing
and strictly concave;

2. θ2ν
′(0) > c;

3. limq→+∞ θ2ν
′(q) < c.

Let's explain the reasons for these assumptions. Because ν(0) = 0, buyer's
utility when buying nothing and paying nothing is zero, as one can expected.
The second assumption, that is θ2ν

′(0) > c, ensures that the seller and the
buyer have an incentive to trade: indeed, since

θ2ν(0) = 0 = c · 0,

if
θ2ν
′(0) > c,

then
θ2ν(q) > cq

in a neighbourhood of 0. Thus, choosing a payment t such that

θ2ν(q) ≥ t ≥ cq,

we obtain
t− cq ≥ 0

and
θ2ν(q)− t ≥ 0,

i.e. both the seller's and buyer's utility are positive.

Regarding the third assumption, it implies that the quantity the seller sup-
plies to the buyer must be bounded for all possible types of the buyer, which
is a natural condition. Indeed, by this assumption we have

θ2ν
′(q) < c
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de�nitively, hence the following relation

θ2ν(q) < cq

is de�nitively satis�ed. On the other hand, we know that

θ2ν(q) > cq

in a neighbourhood of 0: thus it is well de�ned

q̄ = sup{q ∈ R+ : θ2ν(q) ≥ cq}.

The buyer and the seller have a stake in trading for all q < q̄; indeed their
utilities have to be positive, that is

t− cq ≥ 0

and
θ2ν(q)− t ≥ 0;

thus we have
θ2ν(q) ≥ t ≥ cq,

which holds true for every q < q̄, by de�nition of q̄.

Thus the quantity to be sold has to be less than q̄.

Our aim is maximizing seller's revenue: we seek to determine optimal selling
procedures for him. The revelation principle holds and we can restrict our
attention to direct mechanisms. In the following section we are going to
model this situation.

6.2 The model

We consider a direct mechanism in which there is only an agent, the buyer,
and the seller plays the role of the principal. Thus we de�ne the following
functions:

q : [θ1, θ2]→ R+,
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and
t : [θ1, θ2]→ R+.

The interpretation is the following: the buyer reports the type θ and the
seller commits to selling the quantity q(θ) with the payment t(θ). Notice
that in this case q(θ) is a quantity, whereas previously it was a probability.

As already stated, we can suppose that the buyer reports his type truthfully.
We want to study incentive compatibility and individual rationality, making
our mechanism realistic. In this way, we give the following results. Their
proofs are similar to those showed in the previous chapter and we omit the
details.

Proposition 6.2.1. A direct mechanism (q, t) is incentive compatible if and
only if the following facts are veri�ed:

• q is increasing;

• for every θ ∈ [θ1, θ2] we have

t(θ) = t(θ1)− θ1ν(q(θ1)) + θν(q(θ))−
ˆ θ

θ1

ν(q(x))dx.

Proposition 6.2.2. An incentive compatible mechanism is individually ra-
tional if and only if

t(θ1) ≤ θ1ν(q(θ1)).

The seller has to choose a direct mechanism satisfying the hypotheses of these
two propositions. Moreover, we have this lemma.

Lemma 6.2.3. Given an incentive compatible and rational direct mechanism
(q, t) in which the function q maximizes the seller's expected revenue, we have

t(θ1) = ν(q(θ1)).

Under these hypotheses, the payment rule and decision rule are thus linked
by this relation:

t(θ) = θν(q(θ))−
ˆ θ

θ1

ν(q(x))dx.
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We have to �nd the proper q maximizing the expected value of t(θ); more
formally we want to maximize the function

q →E
[
θν(q(θ))−

ˆ θ

θ1

ν(q(x))dx− cq(θ)
]

=

ˆ θ2

θ1

[
θν(q(θ))−

ˆ θ

θ1

ν(q(x))dx− cq(θ)
]
f(θ)dθ,

over the set
N =

{
q : [θ1, θ2]→ R+ : q is increasing

}
.

6.3 Resolution

We now depart from the line of argument we followed in the previous chapter:
we now want to maximize a function which is not linear in q, since q enters
the non linear function ν. As already stated, if the seller chooses the function
q, his expected payo� is given by

ˆ θ2

θ1

[
θν(q(θ))−

ˆ θ

θ1

ν(q(x))dx− cq(θ)
]
f(θ)dθ

=

ˆ θ2

θ1

θν(q(θ))f(θ)dθ −
ˆ θ2

θ1

ˆ θ

θ1

ν(q(x))dxf(θ)dθ

−
ˆ θ2

θ1

cq(θ)f(θ)dθ.

Focussing on the double integral of the previous expression, we have

ˆ θ2

θ1

ˆ θ

θ1

ν(q(x))dxf(θ)dθ =

ˆ θ2

θ1

ˆ θ

θ1

ν(q(x))f(θ)dxdθ

=

ˆ θ2

θ1

ˆ θ2

x

ν(q(x))f(θ)dθdx,

where we have changed the order of integration using Fubini's theorem; thus
this integral is equal to
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ˆ θ2

θ1

ν(q(x))

ˆ θ2

x

f(θ)dθdx =

ˆ θ2

θ1

ν(q(x))(1− F (x))dx

=

ˆ θ2

θ1

ν(q(θ))(1− F (θ))dθ,

where, as already de�ned,

F (x) =

ˆ x

θ1

f(θ)dθ.

Thus, the seller's expected payo� is given by
ˆ θ2

θ1

[θν(q(θ))− cq(θ)] f(θ)dθ −
ˆ θ2

θ1

ν(q(θ))(1− F (θ))dθ

=

ˆ θ2

θ1

[θν(q(θ))− cq(θ)] f(θ)dθ −
ˆ θ2

θ1

ν(q(θ))
1− F (θ)

f(θ)
f(θ)dθ

=

ˆ θ2

θ1

[
ν(q(θ))

(
θ − 1− F (θ)

f(θ)

)
− cq(θ)

]
f(θ)dθ.

We ignore momentarily that q has to be increasing. Without this property,
the problem has an easy solution: we can choose q(θ) for each θ separately
to maximize the expression

ν(q(θ))

(
θ − 1− F (θ)

f(θ)

)
− cq(θ).

For doing so, for each �xed θ we consider the derivative in q and we study

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
− c = 0,

that is

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
= c.

If (
θ − 1− F (θ)

f(θ)

)
≤ 0,
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there is obviously no solution, since ν ′ > 0 and c > 0. In this case the optimal
choice is

q(θ) = 0;

indeed the function

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
− c

is strictly negative, thus its maximum is in 0.

Consider now the case in which(
θ − 1− F (θ)

f(θ)

)
> 0.

If

ν ′(0)

(
θ − 1− F (θ)

f(θ)

)
≤ c,

the optimal choice is again
q(θ) = 0;

indeed ν ′ is decreasing by hypothesis, thus ν ′(q(θ))
(
θ − 1−F (θ)

f(θ)

)
is decreasing

too: if in 0 it is less than c, it will not ever reach c.

If

ν ′(0)

(
θ − 1− F (θ)

f(θ)

)
> c,

then there is a unique solution to

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
= c,

and this stationary point is the optimal choice of q(θ).

We have now found the optimal q that the seller has to choose without ask-
ing that it is increasing: we now introduce an additional hypothesis implying
this property of q.

We assume that

θ − 1− F (θ)

f(θ)

is increasing in θ.
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Proposition 6.3.1. Assuming that

θ − 1− F (θ)

f(θ)

is increasing in θ, the function q previously de�ned is increasing.

Proof. By hypothesis,

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
is increasing in θ for every q. The optimal q is the intersection point of that
expression with c or zero. It is easy then to see that the optimal q is increasing
in θ.

�

We now investigate the conditions under which θ − 1−F (θ)
f(θ)

is increasing. A
su�cient condition is that

f(θ)

1− F (θ)

is increasing. This condition is often called "increasing hazard rate" condi-
tion. To explain this name, we can think of F (θ) as the probability that an
individual dies before time θ; thus 1−F (θ) is the probability that he survives

until θ: f(θ)
1−F (θ)

is the density of the conditional probability of dying at θ if
the individual has survived until θ. The increasing hazard rate condition can
be thought as the assumption that this conditional probability of dying is
increasing in θ.

De�nition 6.3.1. We call regular the distributions F such that

θ − 1− F (θ)

f(θ)

is increasing in θ.

We now summarize the analysis of this section in the following result.
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Theorem 6.3.2. If F is regular, then the expected pro�t maximizing choice
q is described as follows:

• if

ν ′(0)

(
θ − 1− F (θ)

f(θ)

)
≤ c

then

q(θ) = 0;

• if

ν ′(0)

(
θ − 1− F (θ)

f(θ)

)
> c

then

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
= c.

The pro�t maximizing payment rule is given by:

t(θ) = θν(q(θ))−
ˆ θ

θ1

ν(q(x))dx.

6.4 A numerical example

We conclude this chapter with a numerical example. Suppose [θ1, θ2] = [0, 1];
put c = 1, ν(q) =

√
q, and suppose that θ is a uniformly distributed random

variable over [0, 1], that is

F (θ) = θ,

and

f(θ) = 1.

Checking the regularity of F , we obtain

θ − 1− F (θ)

f(θ)
= θ − 1− θ

1
= 2θ − 1,
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which is increasing in θ. Thus theorem 6.3.2 applies, and we can compute
the optimal q. We have

lim
q→0

ν ′(q)

(
θ − 1− F (θ)

f(θ)

)
≤ c

if and only if

θ − 1− F (θ)

f(θ)
≤ 0,

that is

θ ≤ 1

2
;

in this case

q(θ) = 0.

On the other hand if θ > 1/2, the optimal q is given by the equation

ν ′(q(θ))

(
θ − 1− F (θ)

f(θ)

)
= c,

that is
1

2
√
q

(2θ − 1) = 1,

from which we get

q =

(
θ − 1

2

)2

.

Consider now the payment rule. If θ ≤ 1/2, then q(x) = 0 for all 0 ≤ x ≤ θ;
since ν(0) = 0, we have

t(θ) = θν(0)−
ˆ θ

0

ν(0)dx = 0.
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If θ > 1/2, the payment rule is

t(θ) = θν(q(θ))−
ˆ θ

θ1

ν(q(x))dx

= θ

(
θ − 1

2

)
−
ˆ θ

1/2

(
x− 1

2

)
dx

= θ

(
θ − 1

2

)
−
[

1

2
x2 − 1

2
x

]θ
1/2

= θ

(
θ − 1

2

)
−
(

1

2
θ2 − 1

2
θ − 1

8
+

1

4

)
=

1

2
θ2 − 1

8
.

Since

q =

(
θ − 1

2

)2

,

we have

θ =
√
q +

1

2
;

thus the payment rule is given by

t(θ) =
1

2
θ2 − 1

8
=

1

2

(
√
q +

1

2

)2

− 1

8
=

1

2
q +

1

2

√
q.

Now we summarize what we have obtained, focussing on the optimal strategy
for the buyer. The seller o�ers to the buyer the possibility of trading a
quantity q ∈ [0, 1

4
]; thus buyer's type, given by the relation

θ =
√
q +

1

2
,

is a number in [1
2
, 1]. Hence the payment rule is

t(q) =
1

2
q +

1

2

√
q.

The price per unit is

t

q
=

1
2
q + 1

2

√
q

q
=

1

2
+

1

2
√
q
,

which is decreasing in q, as we could expect.



Chapter 7

Social Choice Function: the case

of elections

In this chapter we analyze the role of the function q, the decision rule of a
mechanism design. There is a very interesting mathematical theory studying
the role of this important function in many contexts: we are going to analyze
its application in the political elections. It is a very amazing and unexpected
application of mechanism design, showing how this theory is relevant in real
life.

7.1 The problem

Suppose we have a �nite set of alternatives K and a set I of individuals who
have to make a collective decision. To be clearer, we need these de�nitions.

De�nition 7.1.1. A binary relation ≥ over a set K is a partial order if it is:

• re�exive, that is a ≥ a;

• antisymmetric, that is if a ≥ b and b ≥ a then a = b;

• transitive, that is if a ≥ b and b ≥ c then a ≥ c.

De�nition 7.1.2. A partial order ≥ is total if for all a, b ∈ K we have

a ≥ b or b ≥ a.

65
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More speci�cally each individual has a personal total order on the set K:
we want to de�ne a function q called social choice function which gives a
collective total order on K once the single orders are established.

We can model this situation with a direct mechanism: for each i ∈ I, the
type set Θi is a set of total orders over the set K; the set X of possible
outcomes is a set of total orders over K too. The decision rule

q : Θ→ X

is the social choice function we have to �nd. The functions ti and ui will
depend on the particular situation we will deal with.

We proceed with a practical example. Consider the case of elections: we are
interested in �nding an electoral law.
We have three candidates, x, y and z, and a set of n voters. We put

K = {x, y, z};

the voters can express their favourite candidate and a second preference:
this automatically induces a total order over the set K for each elector. If
we denote by X and Θi for all i the sets of possible total orders over K, our
aim is �nding the function

q : Θ1 × · · · ×Θn → X,

describing the voting law.
For a �xed θi ∈ Θi, we write

xPθiy

to indicate that x is strictly preferred to y in the total order θi.
We denote by

Pθ

the preference relation determined by the total order q(θ).

7.2 Properties of the Social Choice Function

In this section we indicate the properties that an electoral law is expected to
have in order to be democratic.
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• Property 1: completeness.

For each θ ∈ Θ = Θ1 × · · · ×Θn there is one and just one P ∈ X such
that

q(θ) = P.

In other words, q has to be a well de�ned function.

• Property 2: citizens' sovereignty.

For all x, y ∈ K there exists a θ ∈ Θ such that

xPθy.

This means that for each pair of candidates x, y there is at least one
citizen for which the candidate x is preferred to y.

• Property 3: positive correlation.

For �xed x, y ∈ K, suppose that, for a given θ,

xPθy;

then the same holds for every θ′ such that

xPθ′iy

if
xPθiy

for all i. In other words, if for θ the candidate x is preferred to y,
then for all θ′ deferring from the previous just because in some θ′i the
candidate x has improved his position, in the resulting new total order
the candidate x is already preferred to y.

• Property 4: independence of irrelevant alternatives.

Suppose that for �xed x, y ∈ K and θ ∈ Θ we have

xPθy.

Consider now a θ′ ∈ Θ such that for all i ∈ I, if

xPθiy,

then
xPθ′iy,
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and if
yPθix,

then
yPθ′ix.

Then we have
xPθ′y.

This property implies that if, for a �xed θ, x is preferred to y, then the
same holds for every θ′ such that for each total order θ′i the preference
between x and y is equal to the preference expressed by θi.

• Property 5: non-dictatorship.

There does not exist an elector i such that, for all θ, if

xPθiy,

then
xPθy.

In other words, an elector cannot determine on his own the collective
total order.

Notice that these �ve properties are very realistic: we expect that all these
axioms are satis�ed when an election takes place.

7.3 Arrow's Impossibility Theorem

In this section we study this important theorem, which expresses the paradox
that democratic elections are impossible.

Theorem 7.3.1. If K has more than three elements, it is impossible that a
function

q : Θ→ X

satis�es the �ve properties stated before.

Before proving this theorem, we proceed with a preliminary result.
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Proposition 7.3.2. (Pareto property) If the properties 2,3,4 are satis�ed,
for all θ such that

xPθiy

for all i = 1, · · · , n, we have
xPθy.

Proof. Let θ ∈ Θ such that
xPθiy

for all i = 1, · · · , n. Thanks to the second property, there exists θ′ such that

xPθ′y.

Suppose that there exists i such that

yPθ′ix.

Then we change this total order by putting x as the most favourite element
of K; we obtain a new total order in which

xPθ∗i y

and thanks to the third property

xPθ′y.

In this way, we build a θ∗ ∈ Θ such that

xPθ∗i y

for all i, and thanks to the third property,

xPθ∗y.

Since
xPθiy

for all i too, applying the property 4, we obtain

xPθy.

�
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We now need some preliminary de�nitions and considerations.

De�nition 7.3.1. A set D ⊆ I is decisive for the alternative x with respect
to the alternative y if and only if for all θ if

xPθiy

for all i ∈ D, then
xPθy.

De�nition 7.3.2. We say that i ∈ I is a dictator for the alternative x
with respect to the alternative y if and only if the set {i} is decisive for the
alternative x with respect to the alternative y.
We say that i ∈ I is a dictator if for all x, y ∈ K he is a dictator for the
alternative x respect to alternative y.

Notice that the property of non-dictatorship states that there no exist dic-
tators.

We now suppose that the �ve properties are satis�ed. It is quite obvious the
following fact.

Proposition 7.3.3. For all x, y there exists a decisive set for the alternative
x with respect to the alternative y.

Proof. Thanks to Pareto property, the set I of all individuals is a decisive
set for the alternative x with respect to the alternative y.

�

Proposition 7.3.4. A set D is decisive for the alternative x with respect to
the alternative y if and only if the following property is satis�ed: for all θ
such that for all i ∈ D we have

xPθiy,

and for all i 6∈ D, we have
yPθix,

then
xPθy.
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Proof. Suppose that D is decisive for the alternative x with respect to the
alternative y: thus if

xPθiy,

for all i ∈ D, by de�nition we have

xPθy.

Suppose now that the property in the lemma is satis�ed: thus we have

xPθy,

for all θ such that
xPθiy

if i ∈ D, and
yPθix

if i 6∈ D. Notice that θ of this kind exists thanks to property 2.
Consider θ′ such that

xPθ′iy

for all i ∈ D. We want to show that

xPθ′y.

If for all i 6∈ D we have
yPθ′ix,

thus we have the thesis by hypothesis. If there exists i 6∈ D such that

xPθ′iy,

we can consider the corresponding θi: we have

yPθix.

We can improve the position of x in this total order so that we obtain a new
θ∗ for which

xPθ∗i y.

Notice that thanks to property 3, we still have

xPθ∗y.
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In this way, we can build a θ∗ such that

xPθ∗y,

and for all i the related positions of x and y in the total orders θ′i and θ
∗
i are

the same. Then, by property 4, we have

xPθ′y.

�

We introduce the following notation.

De�nition 7.3.3. A set D is decisive for (x, y) if it is decisive for the alter-
native x with respect to the alternative y.

We now prove an important result from which the Arrow theorem easily
follows.

Proposition 7.3.5. If a set D is decisive for the alternative x with respect
to the alternative y , then it is decisive for any other couple of alternatives.

Proof. We analyze the di�erent cases separately.

Let's prove that D is decisive for (x, z) with z 6= x, y. Let θ such that

• for all i ∈ D, xPθiz;

• for all i 6∈ D, zPθix.

We have to show that
xPθy.

Using property 4, we can modify the position of y without changing the
related positions of x and z. We obtain a new θ such that:

• for all i ∈ D, xPθiy and yPθiz;

• for all i 6∈ D, yPθiz and zPθix.
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Since D is decisive for (x, y) then

xPθy.

Since for all i we have
yPθiz,

by Pareto property we have
yPθz.

Thus by the transitive property of a total order, we obtain

xPθz.

Applying the previous proposition, we can conclude that D is decisive for
(x, z).

Consider now z, z′ 6= x. We want to show that D is decisive for (z, z′).
Reasoning as before, we can suppose that θ satis�es the following properties:

• for all i ∈ D, zPθix and xPθiz
′ (so that zPθiz

′);

• for all i 6∈ D, z′Pθiz and zPθix (so that z′Pθix).

For what we have already shown, D is decisive for (x, z′), thus

xPθz
′.

By Pareto property, we have
zPθx,

thus, by transitivity,
zPθz

′.

Thus D is decisive for (z, z′).

Finally, consider z 6= x. We want to show that D is decisive for (z, x). Let z′

another alternative; reasoning as before, we can consider a θ such that

• for all i ∈ D, zPθiz
′ and z′Pθix (so that zPθix);

• for all i 6∈ D, z′Pθix and xPθiz (so that z′Pθiz).
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For what we have already shown, D is decisive for (z, z′), thus

zPθz
′;

by Pareto property, we also have

z′Pθx,

thus, by transitivity, we have
zPθx.

D is decisive for (z, x).
Summarizing, D is decisive for the couples (x, z), (z, z′), (z, x) for all z, z′ 6= x.
Thus D is decisive for all couples.

�

Corollary 7.3.6. If an individual is a dictator for a couple of alternatives
(x, y), then he is a dictator.

We now have the tools to prove Arrow's theorem.

Proof (of Arrow's Impossibility Theorem). We suppose that there exists a
function

q : Θ→ X

with the �ve properties stated in the previous section. Consider a couple
of alternatives (x, y). As already observed, the set I is decisive for (x, y).
Thus there exists a minimal decisive set, that is a set D which is decisive for
(x, y) and such that its proper sets are not decisive for (x, y). Notice that
a decisive set of one element is a dictator, for the previous corollary. Thus,
since property 5 states that there does not exist a dictator, the set D has
more than two elements. Moreover, D is decisive for all couples. We can
divide D in two disjoint subsets D′ and D′′. Fix three elements x, y, z of K.
Consider a θ such that

• for all i ∈ D′, xPθiy and yPθiz;

• for all i ∈ D′′, zPθix and xPθiy;

• for all i 6∈ D, yPθiz and zPθix;
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Notice that
xPθy,

since D is decisive for (x, y).
Moreover it cannot be

zPθy,

since D′′ can not be decisive for (z, y) and there exists a θ′ such that

zPθ′iy

for all i ∈ D′′,
yPθ′iz

for all i 6∈ D′′ and
yPθ′z.

Thus by transitivity we have

zPθiy for all i ∈ D′′,

and
yPθiz for all i ∈ D′ ∪Dc = (D′′)c.

We conclude that the related positions of z and y are the same in θi and θ
′
i

for all i, and by property 4 we have

yPθz.

If
yPθz,

then
xPθz.

Repeating the previous argument, we obtain

zPθx,

which is impossible.
Thus

y = z,

so that
xPθz,

which is impossible as already stated. In particular the couple (y, z) cannot
be ordered by q(θ), which is impossible since q(θ) is a total order.
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�

It seems that democratic elections are not possible: in fact we have shown
that it is impossible to �nd a social choice function satisfying the previous
properties.
A question immediately arises: is the majority rule, on which many electoral
systems are based, democratic?
To answer we need to formally express the concept of majority rule. Before
doing so, we have to sobstitute the set X of total orders over K with a larger
set.

Let Y be the set of binary relations P over K such that:

• if xPy then not yPx;

• if xPy then not yIx;

• if xIy then not xPy and also not yPx;

• for all x and y, xPy or yPx or xIy.

The relation xIy indicates that x and y are indi�erent.

We now consider social choice functions de�ned as follows:

q : Θ→ Y

where Θ is the same set previously de�ned. We can now de�ne the concept
of majority rule.

De�nition 7.3.4. A social choice function

q : Θ→ Y

is a majority rule if and only if for all x, y ∈ K we have

xPθy

if and only if the set
{i ∈ I : xPθiy}

has more elements than the set

{i ∈ I : yPθix}.
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Why have we changed the set X with Y ? To answer, consider the following
example.
We have three candidates, a, b, c, and three electors, X, Y, Z. Consider the
following orders:

X : a > b > c;

Y : b > c > a;

Z : c > a > b.

It is clear that if we use the majority rule, it is impossible for us to give a
global total order over {a, b, c}, since two electors prefer a to b, two electors
prefer b to c and two electors prefer c to a: the majority preference does not
respect the transitivity property.
This situation is known as the "voting paradox" and shows how the majority
rule cannot de�ne a transitive relation over K: in other words, a majority
rule does not always give a total order over the set of alternatives, thus we
cannot de�ne it with values in X, but we need a larger set, the set Y. We
can see that the condition which is not satis�ed by a majority rule is thus
the property of completeness: however dropping this condition and enforcing
the others, it is possible to arrive to a set of conditions satis�ed by majority
rule alone.



Chapter 8

Conclusions

"The theory of mechanism design currently plays a major role in many areas
of economics and in parts of political science, and has led to many fruitful
applications. Its domain of application has expanded in recent years, due
to globalization and growing internet trade, phenomena that impose new de-
mands on old institutions."

This thesis shows how Mechanism Design, this new �eld of applications of
Game Theory, is very interesting from a theoretical point of view and has
many applications in Economics and Political Science. Moreover, it plays
an important role in many parts of Computer Science, Cryptography and
Auction Theory.
We have seen the basic elements of Mechanism Design, but there is an ama-
zing world of theory and applications starting from here.
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