GEOMETRIA 2 Compito del 16 Giugno 2015

Esercizio 1.

Sia $f: X \to Y$ una applicazione continua tra uno spazio compatto X e uno spazio di Hausdorff Y e sia y un punto di Y. Se U è un intorno aperto di $f^{-1}(y)$ dimostrare che esiste un intorno aperto V di y tale che $f^{-1}(V) \subset U$.

Esercizio 2.

Si consideri la quadrica proiettiva $Q \subset \mathbb{P}^3(\mathbb{R})$ di equazione:

$$x_0^2 + x_1^2 - 2x_1x_3 + 2x_2x_3 = 0.$$

- (1) Verificare che Q è non degenere.
- (2) Determinare se il tipo topologico di Q sia quello di una sfera o quello di un toro.

Esercizio 3.

Sia $S^3 \subset \mathbb{C}^2$ la sfera unitaria e siano $X_1 = S^3 \cap \{z_1 = 0\}, X_2 = S^3 \cap \{z_2 = 0\}.$

- (1) Scrivere la proiezione stereografica $p: S^3 \setminus \{(1,0)\} \to \{Re(z_1) = 0\}.$
- (2) Dimostrare che in $S^3 \setminus X_2$ la circonferenza X_1 non è omotopa ad un punto.

Esercizio 4.

Sia f una funzione meromorfa sul semipiano superiore aperto e continua su un intorno della retta reale nel semipiano superiore chiuso. Si supponga che per ogni $t \in \mathbb{R}$ si abbia $f(t) \in \mathbb{R}$.

Dimostrare che f si estende ad una funzione meromorfa g su tutto il piano complesso e che per ogni z_0 che sia zero o polo di f, $\overline{z_0}$ è zero o polo di g con la stessa molteplicità.