GEOMETRIA 2 Compito del 13 Aprile 2015

Esercizio 1.

Sia X uno spazio topologico, $Y \subset X$ un sottospazio e sia p_0 un punto di Y. Si supponga che esista una retrazione r omotopa a id_X di X su Y in modo che Y sia un retratto per deformazione di X.

Si domanda se $Y \setminus \{p_0\}$ sia ancora un retratto per deformazione di $X \setminus \{p_0\}$. In caso affermativo dare una prova, in caso negativo fornire un controesempio.

Esercizio 2.

Sia $p: E \to X$ un rivestimento. Si supponga che E sia semplicemente connesso e compatto e che X sia connesso per archi.

Dimostrare che ogni applicazione continua $f:X\to S^1$ è omotopa ad una applicazione costante.

Esercizio 3.

- Siano T_1, T_2 due tori che si incontrano in un unico punto $p \in T_1 \cap T_2$ e sia $X = T_1 \cup T_2$. Calcolare $\pi_1(X, p)$.
- Sia ora $\{T_n\}_{n\in\mathbb{Z}}$ una collezione di tori, tali che per ogni i $T_{i-1}\cap T_i=p_{i-1}\neq p_i=T_i\cap T_{i+1}$ mentre $T_i\cap T_j=\emptyset$ se |i-j|>1.

Sia $X = \bigcup_{n} T_n$. Si chiede se il gruppo fondamentale di X possa essere finitamente generato.