Operatori Differenziali

Primo Compito - 11 Giugno 2008

Esercizio 1. Siano $f \in g$ le funzioni caratteristiche degli intervalli $[a, b] \in [c, d]$. Calcolare la derivata distribuzionale seconda di f * g.

Esercizio 2. Dato $1 \leq p < \infty$, sia ℓ^p lo spazio di Banach delle successioni di numeri complessi $(u_n)_{n \in \mathbb{N}}$ tali che

$$||u||_p := \left(\sum_{n \in \mathbb{N}} |u_n|^p\right)^{1/p} < +\infty.$$

Caratterizzare le successioni di numeri complessi $(a_n)_{n\in\mathbb{N}}$ tali che l'operatore A che manda $(u_n)_{n\in\mathbb{N}}$ in $(a_nu_n)_{n\in\mathbb{N}}$ risulti compatto da ℓ^p in ℓ^p .

Esercizio 3. Determinare le distribuzioni temperate $u \in \mathscr{S}'(\mathbb{R})$ che risolvono l'equazione

$$\frac{d^2}{dx^2}u - u = \frac{d}{dx}\delta,$$

dove δ indica la distribuzione di Dirac.

Esercizio 4. Sia f(t, x, y) la funzione che vale $\sqrt{t^2 - x^2 - y^2}$ se $x^2 + y^2 \le t^2$, zero altrimenti. Dimostrare che se α è un numero complesso con parte reale maggiore di -2, la formula

$$\langle u_{\alpha}, \varphi \rangle = \iiint f(t, x, y)^{\alpha} \varphi(t, x, y) dt dx dy, \quad \varphi \in C_c^{\infty}(\mathbb{R}^3),$$

definisce una distribuzione su \mathbb{R}^3 . Dimostrare che per ogni numero complesso α con parte reale positiva risulta,

$$\Box u_{\alpha} = \alpha(\alpha + 1)u_{\alpha - 2},$$

dove \square indica l'operatore di d'Alembert $(\partial/\partial t)^2 - (\partial/\partial x)^2 - (\partial/\partial y)^2$.