cHAPTER III

Taylor and Laurent Expansions.
Singular Points and Residues

1. Cauchy’s Inequalities; Liouville’s Theorem

EGRAL FORMULA FOR THE TAYLOR COEFFICIENTS

e seen (chapter 1, § 2, no. 6. theorem 3) that, if f (¢) is holomorphic
sen disc D centred at the origin, then f(2) is the sum of a power

N . . . .
Y a.z* which converges in D. The coefficients a, of this power
>0

‘e given by the relation

I
a, o »(0).

* words, the a, are the coefficients of the Taylor expansion of f ()
rigin. This power series is called the Taylor series of f(z). We
jpose to express the coefficients a, in terms of integrals involving
stion f.

re® for o < r << p, where p denotes the radius of the disc D. We

Sfre®) = D arne,
nz=0
. r, allowing 6 to vary, f (re®) is a periodic function of 6, and the
lation gives the Fourier expansion of this function. We observe
y the ¢ occur in this expansion for the various integers z > o.
-, we know that the coefficients in the Fourier expansion of a
wus function of period 2= are expressible as integrals involving the
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TAYLOR AND LAURENT EXPANSIONS

functi i
ction. In the present context, the series (1. 1) converges normally when 6

varies, 7 remainin, ; i
X g fixed; we can then integrate term by term and obtain

1 2n . . 2
— [ e flretydg = Y - ,\, ayrPeP—mh dg;
0

27
0 p>02%T

on ﬂww right hand side, all the integrals are zero except that which corres-
ponds to p = n, and we obtain the fundamental formula

1.2 S By :
(1. 2) Gt = — . e~ f(re®) dg,
%M:uw we could also wm.ﬁ‘n deduced from relation (6. 1) of chapter 1, § 2
. Mmr M:MWWM& Mwﬁschm ﬂ,\\mw an upper bound for the coefficient a, : let VHSS
er bound o re®)| as @ varies, that is th s
values of f on the circumference i e e
: . 1 of radius 7. The absolute val f
H‘wmwz rm.:i side of (1. 2) is then bounded above by M(r), and w&M%Mbo?ﬁro
thus gives the fundamental inequalities v )
M(r)

I. :
(1.3) la.] < s n an integer > o.

These inequalities are known as the Cauchy inequalities.

2. LIOUVILLE’S THEOREM

THEOREM. 4 bounded, holomorphic function f (z) in the whole plane is constant.

MMMW\.V.. M&%ﬁ?% ms.o@cm:n% (1. 3) for any integer n> 1. The quantity
is, by hypothesis, l:ss than some number M independent of . Hence

M
Ma‘._ A h

r
no matter how big 7 is. Since the right hand side of this inequality tends

tc 0 as r ten to infinit i = Q0 ior m
y AS U@ub.m. W mv we see that a
ds ! bt >
thus .\,ANV = 4y 1S constant. ’ ' ' - b

Application : d’Alembert’s theorem. W

; : . . e shall show that any polynomial

HMWW oombw_ox coeflicients which is not constant has at least M%w MQMMWN
ot. Let P(z) be such a polynomial, we shall use reductio ad absurdum

by supposing that P(z) #
o w,; . mw Mm (z) ’ .o for any complex number z. Then, the func-
PR) is holomorphic in the whole plane. It is bounded; for,

MVANv“QEN:IT&:l N:l».\ﬁl... — on dn.. a
1 +ac|NAa=+ Nl_ ...+M~.~v. 4. # o,
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MEAN VALUE PROPERTY AND THE MAXIMUM MODULUS PRINCIPLE IIL.2.1

tends to infinity as |z| tends to infinity, so there is a compact disc outside

|
of which L is bounded; on the other hand, | L | is bounded in the
IP()| PRI
compact disc because it is continuous function. Hence, 0] is bounded

in the whole of the plane and so is constant by Liouville theorem. It
follows that P(z) is a constant, contrary to hypothesis.

9. Mean Value Property; Maximum Modulus Principle

1. MEAN VALUE PROPERTY

We apply relation (1.2) of § 1 in the particular case when z = o. Then,

2
ay = !H.m\“, S lre®) do,

2

or

(1. 2) Jo) == \c " F(ret db.

This equation says that the value of f at the point o is equal to the mean
value of f on the circle of centre 0 and radius 7. It follows, more generally,
that, if S is a closed disc contained in an open set D in which fis holomor-
phic, the value of fat the centre of S is equal to the mean of the values of f
on the frontier circle of S (this mean being calculated with respect to
the arc of the circle). We shall say that a real- or complex-valued, conti-
nuous function f defined in an open set D has the mean value property
if, for any compact disc S contained in D, the value of f at the centre
of S is equal to the mean value of f on the frontier circle of S. We
shall see later that the functions with the mean value property are precisely
the harmonic functions. From now on, we can say that any holomorphic
Sfunction has the mean value property. It is clear that, if a complex-valued
function has the mean value property, then so have its real and imaginary
parts. Thus, the real and imaginary parts of a holomorphic function have

the mean value property.

o. MaxmuM MODULUS PRINCIPLE

This principle will apply to any (real- or complex-valued) function which
has the mean value property (that is to say, as we shall see later, to any
harmonic function).
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TAYLOR AND LAURENT EXPANSIONS

THEOREM 1. (maximum modulus principle). Let f be a continuous
(complex-valued) function in an open set D of the plane C. If f has the mean value
property and if | f| has a relative maximum at a point ae D (i.e. if | f(2)| < | f(a)|
Jor any z sufficiently near to a), then f is constant in a neighbourhood of a.

Proof. If f(a) = o, the theorem is obvious; suppose then that f(a) s 0; by
multiplying f by a complex constant if necessary, we can reduce the theo-
rem to the case when f(a) is real and > o, which we shall assume from now
on. For sufficiently small r > o, let

M(r) = sup| f(a + 7e)}

For sufficiently small r >> 0, we have M(r) < f(a) by hypothesis. Moreo-
ver, the mean value property gives

(2. 1) Sfla) = .\? + re*) dg,

whence f(a) << M(r) and oosmn@:obmux Sf(a) =M(r). It follows that the
function

8(z) = Re (f(a) —f(2))

is > o for sufficiently small |z— a| =7, and that g(z) = oif and only if
f(z) =f(a). By (2. 1), the mean value of g(z) on the circle

lg—a|=7r

is zero; since g is continuous and > o, this requires that g is identically
zero on this circie, and, nosmom:nwm%v Sf(z) =f(a) when |[z—a|=7
is sufficiently small. This completes the proof.

CoroLLARY. Let D be a bounded, connected, open set of the plane C; let f be a
(complex-valued) continuous function defined in the closure D and having the mean
value property in D; and, let M be the upper bound of | f(2)| when z describes the
Jrontier of D. Then,

(i) |f(I<M for zeD;
(ii) if |f(a))=M atapoint aeD, fis constant.

3‘2%. Let M’ be the upper bound of | f(z)| for zeD, a bound which
is attained at at least one point a of the compact set D (since | f (2)] is
continuous). If 2eD, fis constant in some neighbourhood of a by theo-
rem 1; theorem1 also shows that the subset of D where f takes the value f(a)
is open, and, as it is obviously closed and non-empty, this subset must
be the whole of D (because D is connected) ; since £ is continuous in D, we
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also have f(z) =f (a) for zeD which shows that M =M’ and establishes
statements (i) and (ii). The other case to be proved is when | f (a)| = M’
for any point aeD; but, then M = M’ (which proves (i), and (ii) is
trivially true because we do not have | f(a)| = M for any point 2 of D.

Note. The maximum modulus principle is applied especially to the follow-
ing case : if a continuous function f in a closed disc is holomorphic in the
interior of the disc, the upper bound of | f| on the boundary of the disc
bounds | f| above in the interior of the disc. In particular, in the Cauchy
inequalities (1. 3), M(r) is not only the upper bound of | f(z)| for [z| = r
but also for |z| < 7.

3. Schwarz’ Lemma

TueoreM (Schwarz’ Lemma). Let f(z) be a holomorphic function in the
disc |z| << 1 and suppose that

flo)=0, |f@I<t forl<r
Then :
10 we have | f(2)| < 2] for |2| <13
20 if for a zy # 0, the equality | f (2)| = |2o| holds, then
f(2) =Xz identically and |\ = 1.

Proof. In the Taylor expansion f(z)= D a.z", the coefficient g, is

n=6
is zero because f (0) = o. It follows that f (z)/z is holomorphic for |z] < 1.
Since | f ()| << 1 by hypothesis, we have

T@_AIH. for |z =r.
2 r

This inequality holds also for |z} < r because of the maximum modulus
principle. If we fix z in the disc |2| <1, we have |f(2)] A_Nzx. for any
r>|z] and < 1. In the limit, we have then |f(z)| <|z|, which esta-
blishes assertion 1° of the theorem. If |f(2)| =z for some 2, +# o,
the holomorphic function f (2)/z attains the upper bound of its modulus
at a point interior to the disc |z < 1; thus, by the H.su.x:wEB modulus
principle, this function is contant and we have then the identity f (2)/z =},
[A] = 1. This completes the proof.
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4. Laurent’s Expansion

I. LAURENT’s SERIES

Here we i i
consider formal power series Y 4,X", where the (formal) sum

n

mation is tak i iti
en over all integers n, positive, negative, or 0. To such a

i . . . MJ
SEx €8, we associate two mOHBN— series A:w ﬁTO Cmﬂm.m m@ﬁmmv a Vﬁ: N.Mwhm
] n

.
Y a.X~" Let L ii et
& g1 and o be the radii of convergence of these two serics

Consider the convergent series

(1. 1) = " |
L) =Dz for jg<,
(1.2) £ = 2 azr
2 ,.We @2 for  |zI>p,.
We shall show that i 3 i
e shal at f5(z) is a holomorbhic function of z. Put = m,m the

b4
8w = X a_ur
>0

s h s _ .
is holomorphic for |u|<<1 /p2 and its derivative is given by the formula

g = X na_ur—,
>0

The formula for the &maownsmwno: of a com

(5 has & derivative oqunt 1 posite function shows that

I
f2?) = —=8'(1)2) = 3 na
k4 n<o " )

Hence, series (1. 2) is diff i
3 s (1. erentiable term by term for
from now on that p, < p1- Then, the sum £ (z)

(1.3) Y ar

—wnl+om

. [2] > ps.  Suppose
of the series

is holom ic i
N orphic 5.90 annulus p, <<|z|<Cp, and its derivative f(2) is
e sum of the series }na,z"~* obtained by differentiating term by

The series MS.N,. is called the Laurent series i

In the above, we do not exclude the case
where o, =

term.
n the annulus pe <<lz|<<py.

where p, == o

2 , nor the case

o0, 1

o ¢ \:J' .Hm:w, convergence of series (1.3) is normal in an
re << |2l < 1y, with y

pe <7y <7y <Topye
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2. LAURENT SERIES EXPANSION OF A FUNCTION HOLOMORPHIC IN AN ANNULUS

Definition. A function f (z) defined in an annulus
pe <<[2[ <

is said to have a Laurent expansion in this annulus if there is a Laurent series

Y a,z* which converges in this annulus and whose sum is equal to f (z) at

any point of the annulus.
By the results of no. 1, f(2) is then holomorphic in the annulus and the
convergence is normal in any. closed annulus 7, < |z| <{ r; such that

pa <1 <71 <1}

moreover, we shall show that the Laurent series, if it exists, is unique.
For, put z = ré® (pg <7 <p ); by integrating the normally convergent
expansion
fre®) = M aren
—wlnl 4o

term by term with respect to 0, we obtain, exactly as in § 1(no. 1), the
integral formula

1 2% . . .
(2.1) ar" =~ e= f(re™) ds, for n an integer > 0 or < 0.

]

We see that, if the function fis given, the coefficients a, of a Laurent expan-
sion of f when it exists, are determined uniquely by relation (2.1). Iiis
calied the Laurent expansion of f.

TuroreM. Any holomorphic function f(z) in an annulus py <I|zi << py has
a Laurent expansion in this annulus.

Proof. Choose two numbers r; and 7, such that
pe <1y <71 <f1-

We shall show that there exists a Laurent series which converges normally
in the annulus 7, < |z| < 7, and whose sum is equal to £ (z) in this annulus.
By the uniqueness of the Laurent expansion, which follows from the integral
formula (2. 1), the Laurent series thus obtained will not depend on the
choice of r, and 7,. Thus, this Laurent series will converge to f(z) in the
whole of the annulus p, < |z| << ps, which will prove the theorem.
Having chosen the numbers r; and r,, we choose two numbers 7; and
7 such that p, <7y <71y <71y <7y <<p1e Consider the compact annulus

<z <n
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S.rn.vmn oriented boundary is the difference of the circle v, of centr d
gmm:m 7y described in the positive sense, and the circle .ﬂ X of oobc.M o m:m
radius r; described in the positive sense. By Cauchy’s »58 ral wo”.u m:w

(chapter 1, § 2, theorem 5), we have, for 7, < 2l < 1y, ¢ e

(2. 2) flo="L (L®da 1 rfE)d

eniJy t— 2z 2ni Sy, t— 2 -

Consider the first inte .
" gral; we have |t| = r! and Lr s
then write the series expansion . ' IS TS we can

which converges normally when ¢ describes the circle of centre o and
radius 7. We replace —— i i i
H place P the first integral by this series; we can

; .
ntegrate it term by term because of the normal convergence, whence

(2. 3) LrfOd s, .

27y, t—z n>0

where

AM.A‘V &:"lul E :vo.

g y
27ntJy, {r+l

Consider now the second integral; we have

tj=r] |
o ltl=7 and  |2]>r,>7,
I 1 1 "
== e—— = e <
t—z 21—tz ,.M%.::.
Replace —— in th i ;
R . . .
P—p second integral by this series; since this series

e . .
onverges normally, we can integrate it term by term to obtain

(2. 5) 1 [f(t)de _ S an

2 i—z
1
where ! n<o

.6 I ¢
(2.6 w1 (L0

ami J,, trtl’

Finally, relation (2. 2) shows that

) = ) a.2" for

—onl+m L A _N_ A [4T)

the convergence being normal. The theorem is thus proved
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DECOMPOSITION OF A HOLOMORPHIC FUNCTION IN AN ANNULUS

3-

PROPOSITION §. 1. Given a holomorphic function f(2) in an annulus o3 << 1z} << p1s
there exists a holomorphic function f1(2) in the disc 1z < py and a holomorphic

function f5(2) for |2] > py such that
4-1) f(2) = fi(z) + fel2)-

This decomposition is unique if we stipulate that the function S tends to 0 as ||
tends to .

For, let f(z) = > 2.z* be the Laurent expansion of f. Put
—wo <+ w
(4-2) f@) = Dar,  file) = 2
n20 a0

Relation (4. 1) is obviously satisfied, and | fo(2)| tends to 0 as || tends to co.

S e that
Hppe? f(z) = g.(2) + £:(2)

is another such decomposition; let us show that f1=g,and f, = g5, Let
h be the holomorphic function which is equal to f; — g for 2| <@ and
equal to g, — f for |z > ps; this function # is holomorphic in the whole
plane and tends to o as |z] tends to . By the maximum modulus prin-
ciple (§ 2, no. 2), or by Liouville’s theorem (§ 1, no. 2), the function £ is
identically zero. This completes the proof.

4. CAUCHY'S INEQUALITIES; APPLICATION TO THE STUDY OF ISOLATED

SINGULARITIES

Consider the integral formula (2. 1). If M(r) denotes the upper bound
of | f(2)] for |z| =7, the right hand side of (2. 1) has its modulus bounded
above by M(r), whence the Cauchy inequality

(4. 1) la} < me@. with n an integer >0 or <{O.

We shall consider a holomorphic function f(z) in the punctured disc
o<<lz]<<p. We ask if this function can be extended to a holomorphic
function in the complete disc |z| <Tp, ceatre included. This extension
is obviously unique if it exists (by the principle of analytic continuation,
or, in this case, simply because of continuity).

PROPOSITION 4. 1. A necessary and sufficient condition for this extension to
be possible is that the function f(z) is bounded in some neighbourkood of o.

The condition is obviously necessary. We shall show that it is sufficient.
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In the c i |
punctured disc 0 <7 |2] < p, the function f has a Laurent expansion

S azn By hypothesis, there exists a number M > o which

—»oLn+o
bounds | £(z)| above for i
. z| = r with i
inequality (1 e «C with any sufficiently small 7. By Cauchy’s
o <M
‘:
for all small 7, and for » <C o this implies that ¢, = 0. Thus the Laurent

mun@WSVMO n Om v\. T Qn.m(:\ﬂm to a H m-Q MOA u.
. m:
. ,\o A v Series N.NFQ nm.:m Q.ﬂms S

Definition. .
; M o H.amﬁ M. HANV .vw a M.S_oa.:o«w?o function in the punctured disc
m:bomco : \mmms:o” MM_M_VM ) mm Mm&, to be an isolated singularity of f if the
. endae : .
disc 1) < p. to a holomorphic function on the entire
A necessa ; .
ry and sufficient condition for o to be an isolated singularity
(=]

. . . : - »
I8 HT.N.H H:@ OCﬂ:mAAmﬂﬂﬂm a, 1n ~M.w@ HLN.:HWN:”

ﬂxwmnwwos are not a ZEro ior
n A 0. M)\O see nrm.ﬂ nwwnuﬂ are two vOmmZU—Q cases

15t case : i
! .wme%% .H ?qu.d are only a finite number of integers n < o for which
s“o%rwo ww M meonwmouﬂwnaw 1s a positive integer » such that z°f () is a holo
n g{z) i some neighbourhood of th igi ;
— n . ° . 0 :
JS2) =g(2)/z~ is meromorphic in some neighbourhood of the AHWMW Thes

2nd. case i infini i
ase : there is an infinity of integers n <o such that a, £ 0. In this

case the function f(z) i
2) is not a merom i ion i :
of the origin, orphic function in a neighbourhood

Definition.
o kﬁm_un monozwy the first case, we say that the point o is a pole of the function 8
case, we say that o 1s an essential singularity of the function .\w

A
mmMV. N\‘ O s an isola & Nw
.\W mw ( v”m\EA VG V eierstiy ‘ N te Q«fw%ﬁ?&& %QN.WN«NR» oN\H 0,\. a :QNQmwNQu 2

O < “N‘ — $\N A
of th . N N Sor any € > o, the i
o the punctured disc 0 < <] <& under f is everywiiere dense in the plane osg,mm

Proof. W : .

oa:%a& wnn ncwm. ”M\MMNS a&/&aﬁﬂ:i?@% supposing that there exists a disc
- at us 7 > o which is outside the im ;

disc 0 < |2| < ¢ under S We have then 2¢¢ of the punctured

(4-2) f(2)—al>r for 0|z <Te.

The functi =1t i
ion g(2) Fo) —a will then be holomorphic and bounded

in nrﬂ mvﬂ:.:uﬂﬁ:@ﬁ. disc’ (o] Z ; Ww propo: on 4 h »:.Zﬁ on
can V@ ﬂunﬂnsmﬂa, g Aﬁ _Am. o e 12 mm i
to a TO_OSOH@TNO ?uﬂn”moz in the Qmmn hN_ ¢ again
i i 2 D
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denoted by g(z). Thus, Y will be meromorphic in the disc |z| <e

g(2)
and f(2) =a+ _1_ will also be meromorphic, which contradicts the

8(2)
hypothesis that o is an essential singularity of f(z).

Note. The case when z, is an essential singularity is obviously reduced
to the case when z, = o by replacing 2 by 2— 2

The following theorem, which we shall not prove, is much more precise
than the Weierstrass theorem :

PicarD’s THEOREM. If 0 is an isolated esserial singularity of the holomorphic
Sunction f (2), then the image by f of any punctured disc 0 <|z|<e is either the
whole plane C, or the plane C with one point missing.

. H~. ..
Example. The function '/ = A holomorphic in the punctured
nz07% s

plane z % o and has an isolated essential singularity at the origin since the
coefficient of m—ﬂ is £ 0 for all n>o0. This function never takes the
value o; a worthwhile exercise is to show that it takes any value 5 0 in any
punctured disc 0 <C|z| <Te.

5. Introduction of the Point at Infinity. Residue Theorem

1. RIEMANN SPHERE

In the space R3, let #, y, u be the coordinates of a point and let us consi-
der the unit sphere §,, :

x4+ +ut=1.

The sphere §,, with the topology induced by that of the space R3 is a
compact space since §, is a bounded closed subset of R®. Let P and P’
be two points of 8§, whose coordinates are respectively (o, o, 1) and
(0, 0, —1). We shall consider stereographic projection from the pole P.
It associates with any point M of §, other than P the point of the plane
4 — o collinear with P and M. The complex coordinate z of this point

is given by the formula
Xt

I —

3

8 g

(1. 1) z=

where x, », u are the coordinates of the point M. Similary, we consider
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stereographic projection from the pole P’ but we take the point of the
plane # = o which is the complex conjugate of the point corresponding to
M(x, y, u) under this stereographic projection. Its complex coordinate
Z' is given by the formula

P _x—1y
(1. 2) N|H+a

Note that, for any point M(x, y, 4) other than P or P, the correspon-
ding complex numbers z and 2’ are related by

(1. 3) 2z = 1.

The mapping (x, y,4) -z is a homeomorphism of §, — Ponto €; we
say that we have a chart of §, — P on the complex plane €. Similarly, the
mapping (¥, y, u) — 2’ is a chart of §, — P’ onto the complex plane C.
Provided with these two charts, S, is called the Riemann sphere.

Let D be an open set of §,. We say that a function f defined in D is
holomorphic in D if, in some neighbourhood of any point MeD distinct
from P, it can be expressed as a holomorphic function of z, and if, in some
neighbourhood of any point MeD distinct from P’, it can be expressed
as a holomorphic function of 2’. We note that, in a neighbourhood of
a point distinct from both P and P’, any holomorphic function of z is a
holomorphic function of 2, and conversely, because of relation (1. 3).
By means of relation (1. 1), we shall always identify the complex plane €
with the sphere S, with the point Pexcluded. We see that 8, is obtained by
adding ‘ a point at infinity ’, to €. To study a function in a neighbourhood
of the point at infinity P we use the complex variable 2’ = 1/z, which is
zero at the point P. The open sets |z]>7 in C form a fundamental
system of neighbourhoods of the point at infinity. A function f (z) defined
in such an open set is ¢ holomorphic at infinity ’ if, by the change of
variable z = 1/7/, it is expressed as a holomorphic function of z' for
|2 << 1fr.

Similarly, a function f (2) is meromorphic at infinity if, when expressed as a
function of 2/, it is meromorphic in a neighbourhood of 2/ = o. Finally,
a holomorphic function f (z) for |z| > r has an isolated essential singula-
rity at the point at infinity if the function f(1/z') has an isolated essential
singularity at the origin 2’ = o.

If

f2) = Ma,&.

is the Laurent expansion of f(z) for |z] > 7, a necessary and sufficient-

condition for the point at infinity to be a pole of fis that @, = o for all
the integers n > o except for a finite number of them ; the condition for an
essential singularity at the point at infinity is that there exist an infinity
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of integers n > o such that a. # 0. . |
The mnoanovﬂm of differentiable path, closed path, and oriented boundary of a

compact set can be defined for the sphere S,.

2. RESIDUE THEOREM.

First, let us consider a holomorphic function f(z) in an annulus

< |z| < py centred at the origin. o
wuwwow_om_n.ﬁozH 2. 1. If v is a closed path contained in the annulus, then

(2:1) L [ £ de=1(x,0) a,

ami

where 1(y, 0) is the index of the path x with respect to the origin o and a_, is the
coefficient of 1]z in the Laurent expansion of f.

Proof. We have Fl2) = a4)z + 2(),

== ..N:
2(2) iMLa

is holomorphic on the annulus and has a primitive in it equal to

M an .N=+__

where

(cf. § 4,n01).

nFgE—1 n l_... I

Thus, we have the relation

(2. 2) [f@) de=ay [ dzle+ [ gl e
h 1 b

But, ,\a g(z)dz=o0 since g has a primitive, and

\ dzjz = 2 1(y, 0) by the definition of the index.
b

These two relations, along with (2.2), give (2. 1). )
Formula (2. 1) is applied particularly in the case when the mznoacnm I
has an isolated singularity at the origin o An:row a pole, or an essential
singularity). In this case, y is 2 closed path in some neighbourhood
of 0 which does not pass through o. The coefficient a of the Hb..&d:a
expansion is then called the residue of the function fat the w.Sm:_m_. point o.
In particular, if y is a circle centred at o with small radius described in

the positive sense then

(2-3) [ (@) de = amia—..

The residue at any isolated singularity situated at any point of the plane €
is defined in a similar way.
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A residue at the point at infinity needs a special definition : let £ (z) be a holomor-

phic function for |z| > 7 and put z = W\w then,
4

fR)de=—25 AWV dz'.

4

By definition, the residue of f at the point at infinity is equal to the residue

. 1 1 .

of the function —7r AMV at the point 2’ = o. Thus, if Ya.z" is
the H.wm:nbﬁ expansion of f (z) in a neighbourhood of the point at m:mdm&a
the residue of f at infinity is —a_;.

Wmmzucm THEOREM. Let D be an open set of the Riemann sphere S, and let f
be a holomorphic function in D except perhaps at isolated points whick are singularities
of f- Let T be the oriented boundary of a compact subset A of D and suppose that T
does not pass through any singularities of f, or the point at infinity. Then, only
a finite number of singularities z, are contained in A, and

(2. 4) [ @) dz= ari( SRes (f, @),

where Res ( f, zi) denotes the residue of the function f at the point z,; the summation
extends over all the singularities 2z, e A including the point at infinity if it qualifies.

Proof. We distinguish between the two cases where the point at infinity
belongs or does not belong to A.

Fig. 4.

N. B. The shaded parts represent the complement of the compact set A.

I st.case. The point at infinity does not belong to A; A is then a (bounded)
compact set of the plane € (cf. fig. 4); each singular point 2, is the centre
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of a closed disc S in the interior of A and we can choose the radii of tlese
discs small enough for the discs to be disjoint. Let v be the boundary
of the disc 3, described in the positive sense. Let A’ be the compact set
obtained by removing the interiors of the above discs from A; the oriented
boundary of A’ is the difference between I' (the oriented boundary of A)
and the circles y,. Since fis holomorphic in some neighbourhood of A’,
we have (cf. chapter 11, § 2, no. 8, theorem 5)

(2. 5) [ =3 [ 1o de

k

On the other hand, by (2. 3)
S(z) dz = 2miRes (f; 24),
Tk
and substituting this in (2. 5) gives the required relation (2. 4)-

2 nd. case. The point at infinity belongs to A. Let|z|>rbea neighbourhood
of the point at infinity which does not intersect I' and such that f(2) is
holomorphic in this neighbourhood (the point at infinity being excluded).
Let A” be the compact set obtained by removing the open set |2[>7
from A (cf. fig. 5)

lz] =r

Fig. 5.
N. B. The shaded portion represents the complemrent of A.

The oriented boundary of A” is the sum of the oriented bourdary T of A
and of the circle |z| = r described in the positive sense. By applying
the results we have proved in the first case to A”, we obtain

(2. 6) \q fz) dz +

where the sum on the right hand side extends over all singularities 2z

flz) dz = wﬁ.MW@m (fs 2>

fzl=r
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contained in A other than the point at infinity. Moreover, by the definition
of the residue at infinity, we have

f(z) dz = — 2mi Res (f, ),

fej=r

and this substituted in (2. 6) gives

\K@ dz = oni Awa (f, ») +Wuwa £ vi

which is none other than ‘the required relation (2. 4) when the point at
infinity is one of the singularities z.

Note. Consider in particular the case where the compact set is the whole
sphere 8,. In this case, the boundary is empty, and relation (2. 4) becomes:

4
(2. 7) 2 Res (fs z)=o0.

p
For example, the sum of the residues of a rational function (including the residue
at infinity) is zero.
3. PRACTICAL CALCULATION OF RESIDUES

The case of a simple pole whick is not at infinity. Let zo be a simple pole of f;
then

where g is holomorphic in some neighbourhood of z, with g(zo) #= 0. Let

2(2) = X a(zg—zp)"

nzo
be the Taylor expansion of g(z) in a neighbourhood of Zy; we see that,

in the Laurent expansion of f (z), the coefficient of —I s equal to g(z,).

Thus, L%
(3. 1) Res (f; z0) = FBQ (2 —20) f(2).
:#

If fis given in the form of a quotient P/Q, where P and Q are holomor-
phic in a neighbourhood of z, and where z, is a simple zero of Q with
P(z,) + o, then

P(z,)
3.2 Res (f; zo) = =%,
A,w v A.\. OV o\ A ch
Q' denoting the derivative of Q.
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Example. Let f(z) = ——— ; the function has iwo simple poles z = =7;

we have P/Q/ = X 4= and, consequently, the residue of f at the pole i
22
:

i l to ——.
is equa 2

The case of a multiple pole. Let f(z) = lelm.wlcﬂ g(z), where g(z) is holo-

morphic in a neighbourhood of the point z, with %Amov # 0. The wnmﬁ:o
of £(z) is equal to the coefficient of (z — zo)** in the .H.mﬁmun expansion
of g(z) at the point z,. The problem is nom:nnm“.arnwv to finding a :a.:nnﬂ
expansion of g(z). To this end, it is often convenient to take a new variable

t = 2z — 2,

Example. Let f(2) Hmﬁ»'”.mﬂ and let us calculate residue of f(z)

at the double pole z = i. In this case,
N.,u
&) = z(z +9)®
Put z = i + ¢, so we must find coefficient of ¢ in the Taylor expansion of

h(t) =

It is sufficient to write down the limited expansion of degree 1 of each of
the terms
o) — mlu? +it 4 - .vv
(i+t)yr=—i( IEI.H =

(2i +t)-2 = IWAH l.uw“v

sAH |T~n+ v»

—-2 1 B
=1 t 4 ),
»?.TN )

whence

h(t) H%.? + 3it + ),

3
4¢

and the required residue is —

Application. Residue of a logarithmic derivative. Let f(z) be a Bo«oﬁ.wo%_&o
function in a neighbourhood of z,. We propose to find the residue of
the logarithmic derivative f'[f at the point z,. We have

f(z) = (z—2z0)*glz)

where g is holomorphic at the point 2, and g(2,) # 0; the integer kis > o
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i fis holomorphic at z,, and k < 0if z,is a pole of f; taking the logarithmic
derivative of the two sides gives
%\
"Nf=———r + g'[g;

S'1f NIQ+QF
thus £’/ f has 2z, as a simple pole and the residue of this pole is equal to the integer k,
the order of multiplicity of the zero or pole z, (counted positively for a zero
and negatively for a pole).

4. APPLICATION TO FINDING THE NUMBER OF POLES AND ZEROS OF A MERO-
MORPHIC FUNCTION.

Huwom.owzqoz»;.h&.\Amvwmazsase%ﬁa,\:am&e:Sﬁ%&a&%ﬁ&i
in an open set D and let T" be. the oriented boundary of a compact set K contained in D.
Suppose that the function J has no poles on T and doss not take the value a on T'.

Then,

SR _z p
(4 1) ami Jr f2)—a g
where 7. denotes the sum of the orders of multiplicity of the roots of the equation
f(z)—a=o0

contained in K, and P denotes the sum of the orders of multiplicity of the poles of f
containzd in K.

This is an immediate consequence of the residue theorem and of the
I
) —a
In particular, when f is holomorphic, the integral on the left hand side
of (4. 1) is equal to the number of zeros of f(z) —a contained in K,
it being understood that each zero is counted as many times as its order
of multiplicity.
You will notice that the value of the integral on the left hand side of (4. 1)
is equal to the quotient by 2= of the variation of the argument of f(z)—a
when z describes the closed path T' (cf. chapter 11, § 1, no. 5).

explicit calculation of the residues of the function

PROPOSITION 4. 2. Let 2o be a root of order k of the equation f(z) = a,
f being a non-constant, holomorphic functior in some neighbourhood of z4. For any
sufficiently small neighbourhood V of zo, and for any b sufficiently near to a and # a,
the equation f () = b has exactly k simple solutions in V.

For, let y be a circle centred at z, with sufficiently small radius to ensure
that z, is the only solution to the equation f (z) = a contained in the closed
disc bounded by v. Suppose also that the radius of v is sufficiently staall
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to ensure that f'(z) is # o at any point of the disc except the centre z,.
We consider the integral
1 fl(zx)dz
(4-2) L .
2miJ. f(2) —b

We know that (4. 2) remains constant when b varies in a connected compo-
nent of the complement of the image of y under f (cf. chapter 1, § 1, no. 8).
Thus, for any 4 sufficiently near to a, we have

LRl _ [ fRd

eni /), fz) —b  ewni), f(R)—a
and, consequently, the equation f (z) = b has exactly £ roots in the interior
of y, if each root is counted with its order of multiplicity. But, for 4 suffi-
ciently near to a but 34 g, the roots of the equation f(z) == b are all simple
because the derivative f'(z) is s 0 at any point of z sufficiently near to
zy and # z,. Hence, proposition 4. 2 is proved.

5. APPLICATION TO DOUBLY PERIODIC FUNCTIONS

Let ¢, and ¢, be two complex numbers, which are linearly independent
over the real field R, that is to say, such that ¢, % o and that their quotient
eyle; is not real. The totality of vectors of the form nye;, + nye,, where ny
and », are arbitrary integers, forms a discrete subgroup Q of the additive
group of the field C. We say that a function f(z) defined on the plane
has the group Q as group of periods if

(5.1) S (& 4 niey + nyey) = f(2)

for all z and for all integers n, and n,. A necessary and sufficient condition
for this is that

(5-2) fzte)=rk) [flz+e) =S

Let z, be any complex number. We consider the (closed) parallelogram
with vertices z,, 2y + €5, 2o - €3, 2o + €1 -+ €5 It consists of all points
of the form z, + #;¢, + ty¢5, where 0 < ¢; <1 and o <{t, < 1. Such a
parallelogramm is called a parallelogram of periods with first vertex z,.
Let f(z) now be a meromorphic function in the whole plane which has
Q as its group of periods, and choocse z; in such a way that f(z) has no
poles on the boundary y of parallelogram of periods with z, as first vertex.
We can consider the integral | f(z) dz, whose value is zero because of
the periodicity; for ¥

[f@de= [([Fleo+ 100 —F(zo + o b te)]
[ [ o+ e+ te) —f (o + teg)] .

|
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By appling this result to the logarithmic derivative '/ f and using propo-
sition 4. I, we obtain :

ProrosiTioN 5. 1. If f(z) is a non-constant meromorphic function in the whole
plane whick has Q as group of periods, the number of zeros of this function contained
in a parallelogramm of periods is equal to the number of poles contained in the same
parallelogram, if no zeros or poles of the function f occur on the boundary of the
parallelogram.

CoRrOLLARY. A holomorphic function in € having Q as group of periods is
constant.

Otherwise, the number of zeros of f (z) — a would be equal to the number
of poles, that is zero; but, this is true for all a, which is absurd.

Moreover, consider the function z f’'(z)/(f(z) —a). It is not periodic,
so we can no longer say that its integral round the boundary y of some
parallelogram of periods is zero. We shall show that the value of the integral

2f'(2) dz
(5-3) 2ril, f (D) — a

belongs to the group Q of periods. For, it is equal to

& % fR)de | f(z) dz

27l f.\.vaIl& Dﬁs «w.\uAN 'h

where v, denotes the side of the parallelogram mﬁmnmmm at z, and ending
at 25 +¢;, and y, denotes the side of the parallelogram starting at
Nc and ending at .me + ¢;. However, the values of the integrals

[(z) dz F1(2) dz .
wﬁs 3.\,ANVIIQ and _ w.ﬂ _..\ANvll& are integers.

On the other hand, the integral (5. 3) is equal to the sum of the residues
of the function zf'(2)/(f(z) —a). Let us calculate these residues. The
poles are at most the poles of f (z) and the zeros of f(z) —a. If B isa
pole and £is its order of multiplicity, then the residue for this pole is equal
to — B:.  Similarly, the residue of a zero o; of multiplicity & of £ (z) — a is
equal to ka;.

This is summed up by the following :

ProrosiTiON 5. 2. Let f(z) be a non-constant, meromorphic function in the
whole plane having Q as group of periods. For any complex number a, we have

M @ = M B: mod. Q,
where the «; denote the roots of the equation f(Z) = a (each occurring as often
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as its multiplicily) and the B denote the poles (occurring as often as their multiplicity)
contained in a mSE&&e,mSS of periods.

In particular, the sum ), « taken modulo Q is independent of a.

i

6. Evaluation of Integrals by the Method of Residues

We propose to evaluate definite integrals without finding a primitive of
the integrand, but by interpreting the value of the integral as the sum of
the residues at the singular points of a suitably chosen holomorphic function.
There is no general method of dealing with this problem. We shall
limit ourselves to some classical types and indicate, for each of them,
the procedure by which the problem can be transformed into a residue
calculation.

1st type. Consider an integral of the form

I= \%WA&: ¢, cost) dt,

0

where R(x, y) is a rational function without a pole on the circle x2 4 3% =1.
Put z = ¢*, so that z describes the unit circle as ¢ increases form o to 2m.
Thus, I is equal to 2xi times the sum of the residues of the function

A ()

at the poles contained in the unit disc.

We then have

I - QmwanWw@lev. =+ vvm

the sum extending over poles contained in the unit disc.

- b t .
Example. Let ,\, Lmlwl, where a is a real number > 1. Then,
o a-+sint
2t
= 2 2, Res —-ro—.
M z% 4 2taz — 1

The only v&o contained in the unit disc is z, = —ia + iVa% —1; its

I 2n
residue is -~~~ = —zmo——=, SO = ———.

No+§ Va: —1 Va* —1
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2 nd type. Consider an integral of the form

Hu\w@v?
where R is a rational function without a real pole . We also need to
assume that the integral is convergent, and a necessary and sufficient
condition for this is that the principal part of R(x) at infinity is of the form
Wu with the integer n > 2. An equivalent condition is that
‘2. 1) lim xR(x) = o.
[Ea

To calculate this integral I, we shall integrate the function R(z) of the
complex variable z along the boundary v of a half-disc of centre o and
radius 7 situated in the half-plane y >0 (fig. 6). For sufficiently large 7,

Y

_ -

o Y Aﬂscu b3
Fig. 6.

the function R(z) is holomorphic on the boundary y and the integral

.\, R(z) dz is equal to the sum of the residues of the poles of R which are
1

inside y. Then

R(z) dz = 2ni % Res (R(2)),

J 3

(2. 2) %ltwg dv +

where 3(r) denotes the half-circle centred at o of radius 7 described in the
positive sense, and where the summation extends over the residues of
poles situated in the half-plane y > o. As r tends to + oo, the first
integral on the left hand side of (2. 2) tends to I; we shall show that the
second integral on the lcft hand side of (2. 2) tends to o. This will give

(2. 3) [7TRE) ds = 2mi BRes (R,

the sum extending over all the poles of R in the upper half-plane y > 0.
Similarly,

\:owg dx — — 2mi S Res (R(2)),

— 20
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the sum this time being taken over all the poles in the lower half-plane
y<<o.

It remains to be proved that R(z) dz tends to o as rtendsto 4 <o,

. . 3
which will be an immediate consequence of the following lemma :

Lemma 1. Let f(2) be a coniinuous function defined in the sector
@u A 6 A @mv
r and ¢ denoting the modulus and argument of z. If

lim zf(z) =0 (0, < argz < 6y),

Jz]>0

then the integral ‘\ f(2) dz extended over ithe arc of the circle (z. = r contained
in the sector tends to o as r tends to 4 0.

For, let M(r) be the upper bound of |f(z)| on the arc of the circle
|z} = r. Then

| 7@ de| < MO) 10— 02,

and the lemma follows immediately from this.
We could prove the following lemma similarly :

Lemma 2. Let f(2) be a continuous function defined in a sector
ou A J /A @w.
r and 8 being the modulus and argument of z. If

limzf(z) =0 (6;<argz <0y,

then the integral \, S (2) dz over the arc of the circle |zj = r contained in the secior
tends to o as r tends to o.

Example. To evaluate the integral

M”/\TYSIF.
I s
1

The function ——— has six poles, all on the unit circle; the three poles

1+ 2

which are in the upper half-plane are
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I Z

The residue of such a pole is equal to i Hence,
1 +8|&|&I“|@A«mw+w~w+aﬂwv

- n,\uls I 4 a8 6
H|M|Amm§|m.+ Hv = M

grd type. We shall study integrals of the the form

I= f (x) e= dx,
where f (2) is a holomorphic function in a neighbourhood of each point of
the closed half-plane y > o, except perhaps at a finile number of points.
We shall first consider the case when the singularities are not on the real
axis. Then, the integral

- r
S (%) e dx
—_r
has a meaning, and, as r tends to + o, its value tends to

"7 F () e=dx
if the latter integral is convergent.
We shall prove the following result :

ProposiTiON 3. 1. If lim f(z) = o for y > o, then

2]

(3. 1) lim £ (x) €= dx = 2mi 2, Res (f(2) €%),

roe+xd —r
the summation extending over the singularities of f(2) contained in the upper half-
plane y > o.

+ ®
First, we note that, if the integral | f(x)| dx is convergent, the proposed

“+ o —

integral f(x)e= dx is absolutely convergent; relation (3. 1) then gives

(3. 2) % (%)e dx = 2mi 3 Res (£(2) ).

—a0

The integral o f(x) ¢=dx can also be convergent without being abso-

—o
lutely convergent; for example it is well-known that, if the function f(x)
is real and monotonic for x>0 and tends to o as x tends to + oo, then the
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integral S (%) €® dx is convergent (by applying the second mean value
0

theorem); in such a case, relation (3. 2) is again true.

Before starting the proof of proposition 3. 1, we note that |¢#| < 1 in the
half-plane y > o. This leads us to integrate on the half-plane y > o
along the contour already used above for the second type of integral. With

the same notations as in (2. 2), we shall show that the integral \ f(R)e® dz
)
tends to 0 as r tends fo 4+ oo. Proposition 3. 1 will follow obviously from this.

If we knew that lim z2f(z) == o, it would be sufficient to apply lemma 1.

|20

Relation (3. 1) is thus proved in thiscase. For example, consider the integral
+*® cos x I A .
.\o x!n[:lu+m&x|xmuwﬂoﬂe\“\3 xlmx_zm&xvv

its value is equal to = ), Res A v, the summation extending over

o
2241
poles situated in the upper half-plane. There is only one pole z =1, it is
simple, and its residue is

Q.L +xoomx s.
— whence ,\, ——dr ==
27 o XTI 2¢

To prove that Sf(z) é"dz tends to zero with only the hypothesis of

()
proposition 3. 1, we use the following lemma :

LemMa 3. Let f(2) be a function defined in a sector of the half-plane y > o.
If mwg S (z) =o, theintegral ,\ S (z) = dz extended over the arc of the circle |z|=r
contained in the sector tends fo 0 as r tends to + .

For, let us put z = r¢® and let M(r) be the upper bound of | f (re®)| as 6
varies, the point ¢® remaining in the sector. Then

(3-3) _\\@ ¢ im Ea\ouléia

We shall show that \ " e~n% dg is bounded above by a fixed number
Jo

independent of 7, which will complete the proof of lemma g. In fact,

x
2

Amw. A.v \aa w]wmmuoﬂ.&o o M,\; Q]«.wmbaﬂ &@ A T
0

<0
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Proof of (3. 4) : we have

2 sin §
2<
T ]

L1 for voAMl.

whence

3 =

2 2 |rw.~.¢ + o I|mxo o
\4 mlziﬂ&aﬁ,\, e " smaﬁ\ e " rdy =~
0 0 0

Hence the proposition 3. I is completely proved.

We now examine the case when f(z) can have singularities on the real
axis. We shall limit ourselves to one example, the case when f(z) has
a simple pole at the origin. In this case, it is appropriate to H.ﬁw&@ the
path of integration to make it by-pass the origin along a semicircle y(e)
of small radius ¢ > o centred at the origin and situated in the upper half-plane
(g. 7). We use the following lemma :

on) -

Oﬁﬂ»Ov A.JOV x
Fig. 7.

LemMA 4. If z =0 is a simple pole of g(z), then

(3-4) lim [ g(z) dz = =i Res (g 0);

e>0 o (s)

v(c) being described in the direction of increasing argument.

For, we have g(z) = £ 4 h(z), where h is 2 holomorphic function at
For, 2

h(z) dz tends to 0 as ¢ tends to o, and the
176 )
integral 2 dz is equal to mia. This gives relation (3. 4).
1o £ ] )
This lemma will be applied to the function 2(2) = f (2)e".

the origin. The integral

Example. To evaluate the integral

ool 4+ 00 ot x 1. — ¢ plE +8®MH
I= mubx&xuh sm &R”]:g \‘ \&X»T —dx |.
0 X 2J)_w X 21 >0 —e X 4+ X

By figure 7, this is equal to

* T

2 .

I

1.
—lim

iz wmn
¢ gz = T Res AIJ ov
21 e>0Jye £ 2

4
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Important note. 1If, instead of f (x)é= dx, we had to calculate the inte-

+ 00 00

gral f (%) e—™= dx, then it would be necessary to integrate in the lower

half-plane instead of the upper half-plane; for, the function | #| is bounded
in the lower half-plane y < o and it is in this half-plane that lemma 3
is applicable (mutatis mutandis). ~ More generally, an integral of the form

Vet 0O

f(x)e® dx (where a is complex constant) can be evaluated by inte-

grating in the half-plane where |¢*| < 1.
Remember that sin z and cos z are not bounded in any half-plane. 'To
evaluate integrals of the forms

,\+8.\Axv sin® x dx,

+8
\Axvoomzx&xv
one always expresses the trigonometric functions in terms of complex expo-
nentials so that the preceding methods can be applied.

4 th type. Consider integrals of the form

H .\l.lr\lyooﬁklv%u
0 x*

where a denotes a real number such that 0 < « < 1, and R(x) isa rational
function with no pole on the positive real axis x > o. It is clear that such
an integral converges for the lower limit of integration 0. A necessary
and sufficient condition for it to converge at the upper limit + oo is that

the principal part of R(x) at infinity is of the form MI; with # > 1: in other

words, it is necessary and sufficient that

(4. 1) lim R(x) = o.

%2>+ 00

To calculate such an integral, we consider the function f (2) = WMWL

of the complex variable z, defined in the plane with the positive real axis
x> 0 excluded. Let D be the open set thus defined. It is necessary to
specify the branch of z* chosen in D : we shall take the branch of the

R(z)

2

along the closed path 3(r, ¢) defined as follows: we describe, first, the real
axis from ¢ > o0 to r > 0, then the circle y(r) of centre 0 and radius r in the
positive sense, then the real axis from r to e, and, finally, the circle y(¢)
of centre 0 and radius ¢ in the negative sense (cf. figure 8). The integral

\ R(z) dz
r, €) z*

argument of z between o and 2n. With this convention, integrate
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is equal to the sum of the residues of the poles of Hlﬂmmmw contained in D, if

r has been chosen sufficiently large and ¢ sufficiently small. We have

R, _ [ R@ R(2) s ("R
,\w,?, €) &N o R.s.e.v z" &N IT &N + An v,\, @

2 ) 2 . X%

o
.

because, when the argument of z is equal to 2=, we have z* = |z
Since the argument of z remains bounded, zf (z) tends to o when z tends

Y(r)

Fig. 8.

to o or when |z| tends to infinity; thus the integrals along v(r) and y(e)
tend to o as 7 tends to oo and ¢ tends to o (lemmas 1 and 2). On thelimit,
we have

(4. 2) (1 — %) = 25 3, Res Aw@
(o <<a<<1). Here we have

<
and this relation allows us to calculate 1.

Example. Hwo evaluate I = r\:o +8mﬂﬂ&mﬂ|xv.

R(z) = ; there is only one pole z = -—1; because the branch

g . . R(z)
of the argument of z is equal to = at this point, the residue of o

at this pole is equal to . Relation (4. 2) then gives

s

HII ™

sin mo

5th type. Let us consider integrals of the form

,\,+8W®® log x dx,
0

where R is a rational function with no pole on the positive real axis x> o,
and such that lim #R(x) =o0. This last condition ensures that the integral

x>0

is convergent.
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We consider the same open set D as for integrals of the 4th type and the
same path of integration. Here again, we must specify the branch chosen
for log z; we shall choose the argument of z between o and 2x. For a reason
which will soon be apparent, we shall integrate, not the function R(z)log z,
but the function R(z) (logz)2. Here again the integrals along the
circles y(r) and y(c) tend to o as r tends to o, and ¢ tends to o because of
lemmas 1 and 2. When the argument of z is equal to 2=, we have

log z = log x + 2mi,

% denoting the modulus of z. Thus we have the relation

.\o% swmxv (logx) w&xlﬂ\w sWAxV (logx + 2mi) 2dx = 2mi ), Res {R(z) (logz)¥;

hence,

+ oo

5. 1) in\eéwg log x dx — ma.\o R(x) dv = Y Res {R(2) (log 2)¥.

Basically this only gives one relation between the two integrals ,\ R(x) dx
+ 00 0
and \ R(x)logxdx. Let us suppose, however, that the rational
0

function R is real (that is, it takes real values for x real) ; by separating real
and imaginary parts of the relation (5. 1), we obtain the two relations

(5. 2) \Mswg log x dx = — —Re (ZRes {R(2) (log2)?}),

(53 [ "R(x)dr=— L Im(JRes {R(2) (log2)?).

(%

The summation extends over all the poles of the rational function R(z)
contained in D.

Example. To evaluate the integral

— [T logx
Hl\c et

2
The residue of %Ww.ﬁwvw at the pole 2 =—1 is equal to the coefficient

of £ in the limited expansion of (i + log (1 — ¢))?2; it is therefore 1 — im,
1
2

and we find I = —

Note. By integrating the function R(z)logz in the same way. we obtain
the formula

(5. 4) \Mswg dx = — 3 Res {R () log 2}
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The above method can also be applied in some cases when the rational
function R has a simple pole at x = 1; in this case, the integral

.\ R(x) log x dx still has a meaning because the principal branch of
0

log z has a simple zero at the point 1. It is then necessary to modify
the contour of integration which we used before; when we integrate along
the positive real axis with the argument of z equal to 2w, we must by-pass

Fig. g.

the point z =1 along a semi-circle of centre 1 and small radius (fig. 9).
The reader should prove that, when the function R is real, it satisfies

(5. 5) %éw@ log ¥ dx = =* Re (Res (R, 1)) — = Re (3 Res (f)),

0
where f denotes the function R(z) (logz)? and where the summation
extends over all the poles of f other than z = 1. For example, it can be
verified that

\1.8 _omx dx iw.w

Exercises

1. Let f(z) be holomorphic in |z << R, R > 1. Evaluate the integrals

Sl (o))

taken over the unit circle in the positive sense in two different ways and
deduce the following relations :

2 [T f (e cost do =2(0) +7'(0)
m.\wés sin? = d0 = 2f (0) —f"(0).
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2. Let £ () be a holomorphic function in an open set containing the disc
Izl <R and let y be the image of the circle |z] = R under the mapping
z—f(2); suppose that fis simple, i.e. f(2) # f () if 2 #2'. Show that

Nqﬂ
the length L of vy is equal to R \ |f/(Re®)|do; deduce that
0

L > 2R| /(o).

Show that, under the same conditions, the area A of the image of the closed
disc |z| < R under the same mapping is given by

\ | (x + i)|? dx dy;
Iz I<R

deduce the inequality

A > =R2f/(0)]2.
(Change to polar coordinates and note that, for o <7 < R,

"o)]2 = -1
o=

2 2
S (re®) do
0
i\ [ 2 . | 0y (24
Aﬁ\ | ()| %\% \ Lf(re") |2,
because of the Cauchy-Schwarz inequality for integrals.)

3. Show that, if f(z) is holomorphic in an gpep set containing the
closed disc |z| < 1, then ;

BNV R VORI LR
FO)—fGf@) i lal>1,

2nt jz|=18 — @
where the integral is taken in the positive sense. (Use exercise 1.b) of
chapter 1 and Cauchy’s integral formula.)

4. Let f(2) be a holomorphic function in the whole plane, and suppose
that there is an integer n and two positive real numbers R and M such that

SR <M.z for [zl >
Show then that £ (z) is a polynomial of degree at most n.
5. Let f be a non-constant, holomorphic function in a connected open
set D, and let D’ be a connected open set whose closure D' is a compact

subset of D. Show that, if | f(z)| is constant on the frontier of D', there
is at least one zero of f(z) in D'.  (Use reductio ad absurdum by considering

1f(2)-)
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6. Let D be a bounded, connected, open set and consider » points Py,

P,, ..., P, in the plane R%. Show that the product PP;. PP, ... PP, of

the distances from a point P, which varies in the closure D, to the points
P,, P,, ..., P, attains its maximum at a frontier point of D.

7. Let f(z) be a holomorphic function in the disc |z] < R, and put
M(r) = sup |f(z)], for o <r<<R. Show that

jz|=r

a) M(r) is a continuous, monotonic increasing (in the broad sense),
function of r in o < r << R,

b) if £(2) is not constant, M(r) is strictly increasing.

8. Hadamard’s three circles theorem : let £ (z) be a holomorphic function
in an open set containing the closed annulus

<zl < (0 <<Try<<ry),
and put M(r) = sup | f(z)| for r; <r<r.. Show that the following
inequality holds '*'="
logre —logr logr—logr.
(1) M(r) < M{ry) oers=oime, Mi(rg) 957574,

for r, < r < r,. (Apply the maximum modulus principle to the function
22(f(2))? with p, ¢ integers and g¢>>o; choose « real such that
rsM(r;) = r2M(r,), and a sequence of pairs of integers (fns g») such that
lim p./g. = «.) Verify that inequality (1) expresses that log M(r) is a

n> oo

convex function of log r for r; < r <7,
9. Letf(z) be holomorphic in |z| << R and put

27
I,(r) = mw |f(re®)|2do, for o<r<R.

TJ o
Show that, if a, denotes the n-th Talylor coefficient of f () at the point
2z = o, then

Ly(r) = 2 |aaftr?;
n=0

deduce that, if o < r <R,
(i) Iy(r) is a continuous, monotonic increasing (in the broad sense),
function of r;

(i) [f) < I(r) < (M(r)?% (M(r) has the same meaning as in 7.);

(iti) log I4(r) is a convex function of log 7 in the case when fis not Ensm-.

cally zero (show that, if
s=logr, J() =1Iye) = D |afer®, then (logJ)' = J'J luwa\v»

=0

b
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to show that JJ" — (J')% > o, use the Cauchy-Schwarz inequality for
absolutely convergent series :

Y el < AM ?.3 A ¥ _?_uvv .

R0 R0 R0

10. Let f be a holomorphic function in the disc |z|<C 1, such that | f(z) <1
in this disc; if there exist two distinct points ¢ and b in the disc such that

f(a) = a and f(b) = b, show that f(z) = z in the disc. (Consider the
function g(z) = H\NIAINHVMMMAMVJ with A(z) H.\AHM\W.IMMV_ for which g(o) = o,

Awlav _b—2 nd|g(z) <1 in the disc.)

1 — ab 1 —ab

11. Let f be a holomorphic function in an open set containing the disc
|zl << R. For o<{r <R, put

A(r) = sup Re(f(re")).

0Lt
(i) Show that A(r) is a continuous, monotonic increasing (in the broad
sense), function of r (note that e*/® = [/},
(ii) Show that, if f(0) = o also, then, for o <7 <R,

’ 2r )

(Consider the function g(z) = f(2)/(2A(R) —f(2))-)
(iii) Show that, for o {7 <R, -

M(r) < g2 AR) + 37| f (o)

12. Let x be a complex parameter.

(i) Show that the Laurent expansion of the function

(o))

at the origin z = o, is of the following form :

exp AxAN -+ I.Wv\mv = ag + M a_.A.mz -+ |~MV for

n>1 4

o< z|<<+ =,

with

<9
na,hlux\«asn:oomi&v for n>o.
® Jo
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mwoémmgzmlv\avmﬁarn?bo&cznxw ARAN l- ‘Wv \ nv rmmﬁrmnwis
. 4
sion co

exp AxANIPJ \nv = by + % SAN,. + .meuv for o<(|z]<+ »,
with
n > 0.

et
by = - \ cos (nf— xsint) dt, for

(Note that, if 2/ = — 1/z, then

exp (x(z' — 1/2)/2) =exp (x(z — 1/z)[2) for o<z} <<+ =.)

(ii) Let m, n be two integers >- 0. Show that
[ (E1)P(n+ 2 . .
I (2 1)"dz _ ,A V=A+.Eﬁ3 y if 3W=+w~? with p
\wﬂa o= gmn+l \ an integer >: 0,

. 0 otherwise,

and deduce the power series expansions of a,, b. as functions of the para-
meter x (b,, as a function of x, is called Bessel’s function of the first kind).

13. Let f(z) be a meromorphic function in a neighbourhood of the origin
z = 0 with a simple pole at the crigin. Let x be any complex number.
Show that the Laurent expansion of the function of 2

f'(z)
f@)—=x

is of the form

I
- ;NI|T Uy + upz + 0 A U2 T

where u, is a polynomial in x of degree n. (An identification can be made
by using the Taylor =xpansion of the function zf (z).)

14. Let f(z) be a holomorphic function in the upper rm:,.ﬁ_m:ow+
defined by Im (z) > o, and suppose that f(z + 1) = f () for all ze P+,
Show that there is a holomorphic function g(¢) in the punctured disc

0o < t <1, such that

S (z) = g(e¥%),  for

Deduce that f(z) has an expansion of the form

ze P+,

flr) = ¥ gt

—oL AL+ D
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where

1
== ,\‘ .\.AP ‘+. Qv@lmn~=AR+Qv &Xu
0

for any y >o0. Show that this series is normally convergent in any compact
subset of P+. Show also that, if there exists a constant M > o0 and an
integer n, such that

-.\.A.X. + Qv_ A meuaa

and uniformly in x, then the expansion is of the form

for all sufficiently large y,

fl) = M 4%,

nZ>—no

15. (i) Show that the function f(z) = 1/(¢—1) is meromorphic
in the whole plane € and has simple poles at the points z = 2pwi, p an
integer. Calculate its Laurent expansion at the point 2 = opni. If
2, (n> —1) denote the coefficients of the expansion for p = o, show
that ay, = o for ¢ = 1,2,..., and i’

B, = (—1)"Y(2n)! azn1, forn>1,

show that the following recurrence relation holds :

. (—1)~1B,
CEI T T ) (e

= 0,

for n > 1 Av< equating coefficients on the two sides of the relation

Aal lz+ 2 =V_.P.m v AsMw,ﬁms\S_V = ~v.
(ii) For n > 1, put

San(2) =

and let v, be the perimeter of the square whose vertices have complex
coordinates == (2m + 1)m == (2m + 1)mi. Show that

| fan(2)| < 2/((2m + 1)m)*"

and deduce, by integrating fz.(2) round the contour yn in the positive sense
and letting m —> o, that

if zis on yu,

M [p?r = MRE

pz1 2(2n)!

(N.B. The numbers B, are called the Bernoulli nurmbers.)
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16. Let ¢ be an essential singularity of a holomorphic function f(z) in

the punctured disc D given by o <<|z —¢| << p.

(1) For any yeC and « > o, show that there exists a 2’eD and a real
number ¢’ > o such that

A(fR), ) ecanaly, ),

where A denotes the image of D under the mapping z — f(z) and where

A(b, r) (resp. A(d, 7)) is the open (resp. closed) disc of radius  centred at b
(note that proposition 4. 2 of § 5 implies that A is open (this also follows
from the theorem in chapter v1, § 1, no. 3), and use Weierstrass’ theorem,

no. 4 of § 4).

(ii) Let D be the punctured disc 0 << _N.IL < p/2" and let A, be its
image under f; for n > 0. Given y,eC, ¢4 > 0, show, by induction on #,
the existence of a sequence (en).31 of positive real numbers and a sequence
(2a)nz1 of points of D satisfying the following conditions :

zeD,_,, g > > > .., A(f(21), €1) €A N0 Ao &)
A(f (2n41)s €ns1) © An 0 A(S (Za)s €n) for n>1,

deduce that there exists a sequence (c,)a>0 of points in D such that

lime, =¢ and  f(e) = for all n, with [y — Yol << g

and that f (z) is not simple in any punctured disc 0 < |z — ¢] <C 7 however
small 7 is.

17. Let @: (%, 3, #) -2 be the stereographic projection of §,—- P onto C.
(i) Express x, y and « as functions of 2.

(i) Show that, if C is a circle of 8,, which does not pass through P,
¢(C) is a circle in the plane C, and that, if C passes through P, ¢(C —P) is
alinein C.

(iii) Let z;, z,eC; show that a necessary and sufficient condition for
¢71(z;) and ¢71(z,) to be antipodal is that 2,2, = — 1.

(iv) Show that the distance P,P, (in R?) between

Py = ¢7zy) and Py = ¢73(z,)

is given by the formula

wvlmuln _ 2|2y — 2, )
V(1 + 12 (1 + [z,

What happens to the formula when z, tends towards the point infinity ?
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18. Show that a meromorphic function on the Riemann sphere is necessa-
rily rational. (Show first that such a function can only have a finite number
of poles.)

19. Rouché’s theorem. Let f(z) and g (z) be holomorphic functions
in an open set D and let T = (T';);e: be the oriented boundary of a compact

subset K of D. If .
If(R)|>]g(z)] on T,

show that the number of zeros of f(z) + g(z) inKisequal to the number
of zeros of f(z) in K. (Consider the closed paths fo T, iel and apply
proposition 4. 1 of § 5 and proposition 8.3 of chapter 1, §1.)

Example. If f(z) is holomorphic in an open set containing the closed
disc |z] < 1 and if | f(2)|<< 1 for |z| = 1, then the equation f(z) = 2"
has exactly n solutions in |z| <C 1, for any integer n > o.

20. Evaluate the following integrals by calculating residues :

. +s &x : +so0mm§l,nomnwx
|l|||| l!l»l!&x.v _v
(i) .\M @+ 60 (a, b >0), (i) ,\. 2 Aanmmv

(i ,\isxm]&n mEx&k (a>o0), A_c‘ve\, cos nt dt (la] # 1)
0

x2 |- g? 1 —2acosi+ a?
(integrate the function 2*/(z — a)(z — 1/a) round the unit circle).

21. Integrate the function f(z) = e, where log denotes

(2% + a?) log 2
the branch such that — = < arg 2z < =, along the closed path 3(r, ¢)
defined as follows : describe in turn the negative real axis from —r to
— ¢, then the circle y(¢) of radius ¢ centred at o in the negative sense,
then the negative real axis from —¢ to —r, and, finally, the circle y(r)
of radius r centred at o anticlockwise (0 <<e<Ca<Cr); deduce that

bt dx . T __r
\o (2 + a?)((log #)® + =%)  24((loga)® + =*/4) 1 + a?
22. Let a be > 0 and v be real. Show that

- " v ’
cosh x + cosha sinh nvsinha

\8 cos vx dx = sin va
0

by integrating the function ¢*/(coshz -+ cosha) along the perimeter of
the rectangle with vertices = R, =R + 2mi.

23. (i) Let n be an integer > 2. Show that

\5 dx =/n
Jo 1 ¥ 2 sin (w/n)’
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by integrating the function 1/(1 4 2") along the contour formed by the
segment [0, R] of the positive real axis, the arc represented by Re",
o < t < 2x/n, and the segment represented by ¥/, o < r < R.

(ii) Let n be an integer > 2 and let « be a real number such that
n>1 -+ o> 0. Evaluate, by the same method, the integral

\8 x* dx
Jo Tt

24. Let p,g be two real numbers > o and let n be an integer >> 1. By
integrating the function z"~'¢~ along a contour analogous to the above
(in exercise 23), but with a suitable choice of the angle at the origin,
prove the following relations :

asx:lum!van s ax d “?[ Mvmmﬂa (p ..Ts.ava,
J e

8R=|um~l.na Mwh— & _— A»& - uv _ HBA% I_I nQva.
h N

x

Amﬂoom: that .\; xr~le2dy = (n— &m.v
0

25. (i) Show that the function = cot =z is meromorphic in the whole
complex plane, that it has simple poles at the points z = n for n an integer,
and that its residue at the pole 2 =n isequal to 1 forall' n. Let

f(R) =P(R)/Q(2)

be a rational function such that deg Q > deg. P -~ 1, and let a;, @y, .. ., @n
beits poles and let 4, by, ..., b, be the corresponding residues. Suppose
also that the ¢, are not integers for 1 <{ g <{ m. Let v, denote the perimeter

of the square with vertices == Aa + Wv =+ Ax -+ %vw where 7 is a positive
2

integer. Show that there exist two positive real numbers M;, K indepen-
dent of # such that

a) Im cot mz| < M, on Y
b) I fR)| < K[izP for sufficiently large |z].

Deduce that

~

lim | f(z)= cot nzdz = o.

n>od T,
and that
(1) lim Y f(p) =— 3 by cotna,
@ o —nLpLn 1LgLm
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AZORH b) implies that lim Y f(p) exists, thus the left hand sidef

mal>n —nL pLn’

of (1) can be replaced by X \@.v

—w<pLo

Example. > 1/(a + bn?), S, n2/(nt + a*) (a, b positive real numbers).

> n>1

(ii) Show that the conclusion is valid even if we only have deg Q > deg P.
Amwo‘é first that f (z) can be written g(z) -+ ¢/z with ¢ a constant and g(z) a

rational function which satisfics the conditions of (i); show next that

,\. noﬂam&mﬂo anmsﬁnmnm_m&ozmovvom:mm&amnm:onc.Zonm”
¥ <

lim >, f(p) does not exist in this ommn.v

nn' >0 —rLpLn

‘n

Example. Calculate lim M I . and deduce the value o
g Ao —nLpLn RI%
1 . .
Y —-—— when & is not an integer.

PRy
p2t ¥ —p
(iii) Let « be a real number such that — = <{a <= Show that:
¢) there exists a positive real number M,, which does not depend on =,
such that .

_ glas

sin wz
. N~ﬂn
d) lim | ———dz=o0.

now 1,2 sin w2
(Note that

A gw on Yns

iaz . sin «g . sin a.
\;lalu&mﬂmﬁ\all.l\ﬁuvamN e
S

0w sin nz z sin ©z Lz sin w2

[ “in

where v, (resp. yi) denotes the line segment represented by

\ .
z=n +m~,+§ < +M]A8mv&ﬂ ¢ 4 ;a +w.v, _x_%alfwv,
and use exercise 14. of chapter 1.) Deduce finally that, if f(2) is a
rational function and satisfies the conditions of (ii), then
lim % (=P f(pew =—n % p L0

>0 —nLpln 1<qgm was \H&Q

Example.  Take f(z) = 1/(x—2) and show that, if —= <<« <=, then

W COs an T COS aXx I
S (— ) = e
n>1 x2—n 2xsin ©x 2%
M ( Saamms an T sin ax
- = L]
"1 x2—n? 2 sin mx

forx 40, 1, 22, ....
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