CcHAPTER 11

Holomorphic Functions,
Cauchy’s Integral

1. Curvilinear Integrals

1. GENERAL THEORY

We shall revise some of the elementary ideas in the theory of curvilinear
integrals in the plane R® Let % and y denote the coordinates in R%
A differentiable path is a mapping

(1. 1) t - v(t)

of the segment [a, 4] into the plane R?, such that the coordinates x(f) and
() of the point y(t) are continuously differentiable functions. We
shall always suppose that ¢ << b. The initial point of v is y(a) and its end
point is y(b). IfD is an open set of the plane, we say that v is a differen-

tiable path of the open set D if the function y takes its values in D.
A differential form in an open set D is an expression

o=Pdt+Qdy

whose coefficients P and Q are (real- or complex-valued) continuous
functions in D.
If y is a differentiable path of D and o 2 differential form in D, we

define the integral ,\. o by the formula
1

Jo=[ v,

where y*(v) denotes the differential form f(t) d¢ defined by
£(8) = P(x(t), 2(1)%'(8) + Q1) 2(0) ¥ ()3

49




HOLOMORPHIC FUNCTIONS, CAUCHY’S INTEGRAL

in other words, y*(w) is the differential form deduced from o by the
change of variables x = x(t), y = »(¢). Thus,

\Ne uhc\S .

Consider now a continuously differentiable function ¢ = i(u) for
a, <u< by (with ay <<b,;), whose derivative #'{u) ‘is always > o and
which is such that ¢(a) = a, £(b;) = 4. The composed mapping of
u — t(u) and the mapping (1. 1) is

(1.2) u — y(t(u)).

It defines a differentiable path y;. We say that y; is deduced from v
by change of parameter. The differential form f;(u) du deduced from o
by the mapping (1. 2) is equal to

S (t(w)t' (u) du,

by virtue of the formula giving the derivative of a composed function.
The formula for change of variable in an ordinary integral thus gives the

equation
r\<€ Nl/it\v w.
1 Ts

In other words, the curvilinear integral \; o does not change its value
1

if the differentiable path y is replaced by another which is deduced from vy

by change of parameter. We can, then, denote paths deduced from one

another by change of parameter by the same symbol.

Take now a continuously differentiable function ¢ =¢(u) defined for

a; < u < by, but such that '(z) << o, t(a,) = b, t(b,) = a (the description

of the segment is reversed). We then see that \ 0 =— \' 0. We
T 1

say therefore that we have made a change of parameter in y which

v
H

changes the orientation of y; the effect of this is to multiply r\ w by — 1.

Subdivide the interval [a, 5] described by the parameter ¢ into a finite
number of sub-intervals

[a, ], [t1, 2o, ceey [ta—1s ta]s [t 8],

where a <h <ty < B < ta_y <ty <<bh. Let y; be the restriction of
the mapping y to the i-th of these intervals; it is clear that

n

=2 (Le)
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This result leads to a generalization of the idea of a differentiable _u»"r.
A piecewise differentiable path is defined to be a continuous mapping

y:[a, b] > R,

such that there exists a subdivision of the interval [g, 5] into a finite number
of sub-intervals as above, with the property that the restriction of y to
each sub-interval is continuously differentiable. We define

fe=E (=)

The sum on the right hand side is independent of the decomposition.
The initial point of y, is called the initial point of y and the final point of Yo i1
is called the final pointof y. We say that a path is closed if its initial and
final points coincide.

A closed path y can also be defined by taking, instead of a real parameter ¢
varying from a to b, a parameter § which describes the unit circle.

Example. Consider, in the plane R?, the perimeter (or boundary ’)
of a rectangle A whose sides are parallel to the coordinate axes. The
rectangle is the set of points (x, y) satisfying

a; < x < ay, by Ky < by
Tts boundary consists of the four line segments
23 by <y < by,
by, a; < x K dy,

a, @n << by,
y=by, ay < % < a,.

w e x
Il

For this boundary to define a piecewise differentiable closed path v, it is
necessary to stipulate the sense of description chosen. We agree always
take the following sense of description :

 increases from b, to b,, along the side x = a,,
x decreases from a, to a,, along the side y = b,,
v decreases from b to by, along the side x = a4,
x increases from a, to a,, along the side y = ;.

Thus the integral .\  is well-defined ; it does not depend on the choice of
1

the initial point of y because it is always equal to the sum of integrals along
the four sides, each described in the sense indicated.
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2 PRIMITIVE OF A DIFFERENTIAL FORM

Lemma.  Let D be a connected open set of the plane. Any two points aeD
and b€ D are the initial and final points, respectively, of some piecewise differentiable
path in D.  (Briefly this says that ¢ and 4 can be joined by a piecewise
differentiable path).

Proof.  Each point ¢ e D is the centre of a disc contained in D and can be
joined to each point of this disc by a piecewise differentiable path contained
in D, for instance, a radius. Suppose that aeD is a given point; if ¢
can be joined to g, then any point sufficiently near to ¢ can also be joined
to a because of the previous remark; thus the set E of points of D which
can be joined to a is open. On the other hand, E is closed in D: because,
if ceD is in the closure of E, ¢ can be joined to some point of E because
of previous remarks, so ¢ can be joined to @. By hypothesis, D is connected ;
the subset E of D is non-empty (as aeE) and is both open and closed,
so it must be the whole of D. This completes: the proof.

Let D again be a connected open set in the plane and let y be a piecewise
differentiable path contained in D with initial point ¢ and final point 5.
Let F be a continuously differentiable function in D and consider the
differential form o = dF; then we have the obvious relation

(2. 1) \km — F(b) — F(a).

It follows from this and the lemma that, if the differential dF is identically
zero in D, the function F is constant in D.

Given a differential form « in a connected open set D, we investigate
whether or not there is a continuously differentiable function F(x, )
in D such that dF = ». If w=Pdx-+ Qdy, the relation dF = o is
equivalent to

(2.2) rop Yg.

Such a function F, if it exists, is called a primitive of the form ¢ In this
case, any other primitive G is obtained by adding a constant to F since
dF —G) =o.

ProrosiTion 2.1, 4 necessary and sufficient condition that a differential form o

has a primitive in D is that \ o =0 for any piecewise differentiable closed path
v contained in D.

Proof. 1. The condition is necessary because, if = dF, relation (2. 1)

shows that \. o = 0 whenever the initial and final points of y coincide.

[Vah ¢
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2. The condition is sufficient. For, choose a point (%, y,) € D; any point
(%, ») € D.can be joined to (%, ¥,) by a piecewise continuously differentiable.

path y contained in D (by the lemma); the integral \ o does not depend on
the choice of y because the integral of » round any closed path is zero
by hypothesis. Let F(x,y) be the common value of the integrals .\‘ )
1
along paths y in D with initial point (xy, 3,) and final point (x, y). We
shall show that the function F so defined in D satisfies relations (2. 2).
Give x a small increment #; the difference

Flx 4 &, y) — F(x, »)

is equal to the integral ,\, o along any path contained in D starting at

(x, ») and ending at (x+ %, ). In particular, let us integrate along the
line segment parallel to the x-axis (which is possible if |A]is small enough) :

@ + h
Fo+hy) —Fso) = [ PGy,

and consequently, if & 5% o,

Fr+hy)—F(xy) 1 [o*°

As h tends to o, the right hand side tends to P(x, y) because of the conti-
nuity of the function P. Hence we indeed have

OF

5 = Pl ).

We could prove F _ Q (%, y) similarly. This completes the proof of

proposition 2. 1. oy

Consider in particular the rectangles contained in D whose sides are
parallel to the axes (we mean that the rectangle must be entirely contained
in D, both its interior and its frontier). If y is the boundary of such a

rectangle, we must have ,\ o = o for the differential form w to have a

primitive in D. This boow%mw% condition is not always sufficient as
we shall see later. Nevertheless, it is sufficient when D is ¢simply
connected ’ (cf. no. 7). For the moment we shall confine ourselves to
proving following :

PropostTiON 2. 2. Let D be an open disc. If .\, o = 0 whenever y is the

boundary Qs a rectangle contained in D with sides b&&i lo the axes, then o has
a primitive in D.
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Proof. Let (x4, y,) be the centre of the disc D and let (x, ) be a general
point of D. There are two paths y, and v, starting at (x,, ,) and ending
at (x, ), each of which is composed of two sides of the rectangle (with sides
parallel to the axes) whose opposite corners are (x,, y,) and (x, y) [see

figure 1]. Thus this rectangle is contained in D and \. 0= ,\4 o. Let

vy T

(%..¥) Y2 (x,y

Y2 T

T

Axo.<0v (x,Ye)

Fig. 1.
F(x, ) be the common value of these two integrals; then we can show
OF _ 5 oF . .
as above, that — x T oy = which proves the proposition.

3. THE GREEN-RIEMANN FORMULA

This formula, in some sense, generalizes relation (2. 1) : instead of relating
the value of an ordinary integral to values of a function, it relates the value
of a double integral to that of a curvilinear one. Let A be a rectangle with
sides parallel to the axes, let y be its boundary and let P(x, ») and Q(x, )
be continuous functions defined in a neighbourhood D of A, the functions

having continuous partial derivatives WM and op.

0y
The Green-Riemann formula can then be Szzo:

(3. 1) \m&l;p& .\\Ai iWwv%&.

Proof. We shall prove for instance that

5@wboi_”ru.nﬁromozgnmswnmwﬁomﬁrono:&::ocmm::nao: o’p op:vo
calculated as follows : dx .

Q . Q)
0Q iy dy = Q
\Lx 7= @Q Y %v.

1
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However, .\. “ ap&x = Q (a3 ») —Q (a5, »); integrating this with respect
to y gives ¢

by by
Qe N — [ Qe ) &

which is precisely equal to \ Q dy.

This completes the proof.

The Green-Riemann formula is valid for more general domains than
rectangles, but we shall leave this question aside for the moment.

PROPOSITION 3. 1. Let © = Pdx + Qdy be a differential form in a connected

open set D, and suppose that the partial derivatives Ww and Q exist and are
continuous in D.  Then the relation Y 0x

P _2Q
(3-2) oy ox

is a necessary condition for w to have a primitive in Dj it is also sufficient if D is an
open disc.

Proof. From formula (3.1), condition (3.2) implies that H ®=0

whenever y is the boundary of a rectangle contained in D; if D is an open
disc, this implies that » has a primitive (proposition 2. 2). Conversely,

if .\, w =0 whenever y is the boundary of a rectangle A contained
T

in D with sides parallel to the axes, we have

(3. 3) ,\\Atlwﬁw dxdy = o

for any such rectangle A, Moreover, this implies relation (3. 2). For,
if the continuous function wuw|~%. is not identically zero in D, there
will be some point of D in a neighbourhood of which it is > o, say,
and consequently the integral

J1E-2) s

will also be > o for a rectangle A contained in this neighbourhood, contrary
to hypothesis (3. 3). Proposition §. g is thus proved.
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4. CLOSED DIFFERENTIAL FORMS

Definition. We say that a form o = P dx + Q dy, with continuous coefficients
Pand Q in an open set D, is closed if any point (x4, ,) € D has an open neigh-
bourhood in which o has a primitive. We can assume that such a neigh-
bourhood is a disc with centre (x,, 3,). Therefore, the results of nos. 2
and 3 immediately imply :

PROPOSITION 4. 1. A necessary and sufficient condition for a differential form
o with continuous coefficients in D to be closed is that \ o = 0 whenever y is the

. eeg ey s T .
boundary of a small rectangle contained (with its interior) in D with sides parallel
to the axes. If we also assume that P and Q have continuous partial derivatives

of the first order, then (3.2) is a necessary and sufficient condition Jor o fo be
closed.

We know from proposition 2. 2 that any closed form in an open disc has a

primitive. We shall now give an example of a closed form o in a connected
open set D which has no primitive in D.

PROPOSITION 4. 2. Let D be the open set consisting of all points z # o of the
complex plane C. The form o = dz|z is closed in D but has no primitive.

For, in a neighbourhood of each point z, % o, there is a branch of log 2z
and this branch s, in the neighbourhood of 2y, 2 primitive of dz/z. Hence o
is closed. To show that o has no primitive in D, it is sufficient to find a

closed path y in D such that .\, Wm # 0. In fact, let y be the unit circle
1

oobs.nmm:rno&mmbwzmmomolv&.muﬁrnwommﬂgmnan.Hoom_nzmmﬁa \ su
we put z = ¢ with ¢ running from o to 2x; we have v
de=ictd, R—ia
Z
and consequently

bid
£ [Titmain o
1% 0

(4-1)
This completes the proof.

In the preceding example, the form  is complex. Let us now take the
imaginary part of . Since

&N.”&quu.&eﬂx&auT‘e@.me&\fQ&x
z  x+y x4+ 5 x® 4

the differential form

3

o X —ydx
A4
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is closed in the plane with the origin excluded. It has no primitive because
we have by (4. 1)

\x &Nlu&x” wa
¢ %+

if y is the unit circle described in the positive sense. In fact, © is the
differential of arc tan WJ which is a many-valued function (that is to say with
many branches) in the plane with the origin excluded.

5. STUDY OF MANY-VALUED PRIMITIVES

Let o be a closed form defined in a connected open set D. Although o
has not necessarily a (single-valued) primitive in D, we shall define what
is meant by a primitive of w along a path y of D. Such a path is defined
by a confinuous mapping of the segment I=/[a, 5] into D; we do not
assume differentiability in this context.

Definition. Let y: [a, b] - D be a path contained in an open set D, and
let w be a closed differential form in D. A continuous function f(¢) (¢ des-
cribing [a, 8]) is called a primitive of » along y if it satisfies the following
condition :

(P) for any v €[a, b] there exists primitive F of o in a neighbourkood of the point
v(t) € D such that

(5- 1) F(y(#)) =5()

Sor t near enough to .

THEOREM 1. Such a primitive f always exists and is unique up to addition of
a constant.

Proof. First of all, if f; and f, are two such primitives, the difference
S1(£) —f{¢) is, by (5. 1), of the form F,(y(¢))—F,(y(¢)) ina neighbourhood
of each ze[a, b]; since the difference F; —F, of two primitives of o
is constant, it follows that the function f;(¢) — f3(¢) is constantin a neigh-
bourhood of each point of the segment I. We express this by saying that
the function fy—f, is locally constant. However, a continuous locally cons-~
tant function on a connected topological space (the segment I =[g, §] in this
case) is constant. Indeed, for any number u, the set of points of the space
where the function takes the value % is both open and closed.

It remains to be proved that there exists a continuous function f(¢) satis-
fying conditions (P). Each point rel has a neighbourhood (in I)
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mapped by v into an open disc where » has a primitive F. Since I is
compact, we can find a finite sequence of points

a=1ty<t; <o <ty <lpp1 =0,

such that, for each integer ¢ where o < ¢ <(n, y maps the segment [£;, #:,1]
into an open disc U, in which o has a primitive F;. The intersection
f.ﬂ. n Uiz contains y(t:41) so it is not empty; it is connected, so Fy;, — F;
is constant in U;n Uys. We can then, by adding a suitable constant to
each F,, arrange, step by step, that F;,1 coincides with F; in U;n U, 1.
Then, we let f(¢) be the function defined by

S(O) =F(@) for  telt, ti].

.: is obvious that f(¢) is continuous and satisfies condition (P); the latter
is clear when t is different from the #; and the reader should verify it
when = is equal to one of them.

Note. Suppose that vy is piecewise differentiable, in other words, that
there is a subdivision of I such that the restriction of y to each sub-interval

[#, tia] is continuously differentiable. Then the integral .\4 o 1s defined ;
Y

MA(\¢< v
¢ 153

If fis a primitive along vy, we have by formula (2. 1)

[ o =flw) —r,

i

whence, by addition,
(5-2) Jo=10)—s(@.

This leads to a definition of ,\. o for a continuous path v, without the hypo-
T

£

Hwn.mmm of differentiability of y : we take relation (5.2) as the definition,
which is valid because the right hand side does not depend on the choice
of primitive f along y.

Prorosttion 5.1 If v is a closed path which does not pass through the origin,
I dz .

—. | = is an integer.
2nt), 2
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Proof. o = &MN is a closed form. In the proof of theorem 1, we may
suppose each F; to be a branch of log z.  Thus f() — f{(a) is the difference
between two branches of log z at the point y(e) = y(b), and, consequently,

is of the form 2win, where z is an integer.

COROLLARY. — xdy —y dx is an integer (the same integer as above).
on), %4 3?
xdy —ydx

The quantit ,\,
of the point z = x + iy when this point descibes the path y (whether y
is closed or not).

is often called the variation of the argument

6. Homotory

For simplification, we shall only consider paths parametrized by the
segment I = [o, 1].

Definition. We say that two paths
v%:I—->D and v,:I—=D

having the same initial points and the same end points (that is to say
16(0) = 11(0), Yo(1) = ¥,(1)) are homotopic (in D) with fixed end poinis; if there
exists a continuous mapping (¢, u) — 3(t, u) of IxI into D, such that
(6. 1) ww? 0) = Yo(t),

3(0, u) = yo(0) = 11(0),

3(t, 1) = (1),

8(1, #) = vo(1) = 12(1)-

For fixed «, the mapping ¢ —> 5(t,u) is a path y, of D with the same initial
point as the common initial point of v, and y, and the same end point as
their common end point. Intuitively, this path deforms continuously
as u varies from o to I, its end points remaining fixed.

There is an analogous definition for two closed paths y, and vy, : we say that
they are homotopic (in D) as closed paths if there is a continous mapping
(¢, u) —3(t,u) of IXI into D, such that .

mQu Ov = ).\chV mAm. Hv = ,«HQVv
3(o, u) = 3(1,u) for all u,

(6. 2) :

(thus the path y, is closed for each ).  In particular, we say that a closed
path vy, is homotopic to a point in D if the above holds with y;(#) a constant
function.
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Mmmowmz 2. If yo and vy, are two homotopic paths of D with fixed end boinis
then v
[o=/o
70 1

Tueorem 2'. If v, and v, are closed paths which are homotopic as closed paths

then
fom [
v Te 11

Jor any closed form o in D.

Jor any closed form .

These two theorems are consequences of a lemma which we shall now
state. First of all, here is a definition :

Definition. Let (¢, u) — 3(¢, u) be a continuous mapping of a rectangle
(6. 3) a<<td, ad <Lu Y

into ﬁ.rn open set D, and let w be a closed form in D. A primitive of o
,ém.ogﬁ.a,m the mapping 3 is a continuous function f(¢, «) in the rectangle
satisfying the following condition :

(P") For any point (t, v) of the rectangle, there exists a primitive ¥ of v in a neigh-
bourhood of 3(x, v) such ihat

FG(4, u)) = f(6 u)

at any point (¢, u) sufficiently near fo (x, v).

Lemma.  Such a primitive always exists and is unique up to addition of a constant,
vam lemma is, in some sense, an extensicn of theorem 1. We shall prove
it in an similar way. By using the compactness of the rectangle, we can
quadrisect it by subdividing the interval of variation of ¢ by points {;
msm awwﬁ of u by points u;, in such a way that, for all 7, j, the small rectangle,
,.\i:or is the @woacﬁ of the segments [, #;4,], [#}, u;+,], is mapped by 8
into an open disc U, j, in which o has a primitive F; ;.

Keep ; fixed; since the intersection U; ;n U,y 1 ; is non-empty (and
connected), we can add a constant to each F. ; (J fixed and i variable) in
such a way that ¥, ; and F,;1 ; coincide in U, ;n Uy, ;; we then obtain,
for ue [u;, u;,.1], a function f;(¢, u) such that, for all 7, we have

Silt,w) = F: ;(3(¢, u)) when telt, tin].
Hence fj(¢, u) is continuous in the rectangle

&mwmvu ﬁ._.%\ﬁmﬁw.*.f
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and it is a primitive of o following the mapping 3 the restriction of 8
to this rectangle. Each function fj is defined up to the addition of a
constant; we can therefore, by induction on Jj, cheose these additive constants
in such a way that the functions f(¢, ) and fi+1(t, u) are equal when
u = uj41. Finally, let f(2, u) be the function defined in the rectangle (6. 3)
by the condition that, for all j, we have

.\.Qu 5 “,\va av when ue _“5.“ 5+L.

This is 2 continuous function which satisfies conditions (P') and is indeed
a primitive of o following the mapping 3. The lemma is thus proved.

Proof of theorem 2. Let 8 be a continuous mapping satisfying conditions (6. 1)
and let £ be a primitive of o following 8. It is obvious that f is a
constant on the vertical sides ¢ = 0 and ¢ = t of the rectangle I X I.
Thus we have

.\on ov H:\.Aou Hv» .\.Tv Ov H.\.A—u J

and, since

e

[o=sto—=fo0, [ o=rn=ron,

it
theorerr 2 is proved.

The proof of theorem 2’ is completely analogous; one uses a mapping 8
satisfying (6. 2).

7. PrRIMITIVES IN A SIMPLY CONNECTED OPEN SET

Definition. We say that D is simply connected if it is connected and if in
addition any closed path in D is homotopic to a point in D.

TuEOREM. 8. Any closed differential form o in a simply connected open set D
has a primitive in D.
For, from theorem 2', we have .\. o = o for any closed path y contained
1
in D, which implies by proposition 2. 1 that » has a primitive in D.
In particular, in any simply connected open set not containing o, the

closed form dz/z has a primitive; in other words, log 2 has a branch in any
simply connected open set which does not contain o.

Examples of simply connected open sets. We say that a subset E of the plane
is starred with respect to one of its points a if, for any point z e E, the line
segment joining a to 2 lies in E.
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Any open set D which is starred with respect to one of its points a is simply connected :
for, Dis obviously connected ; moreover, for each real number u between o
and 1, the homothety of centre ¢ and factor u transforms D into itself; as u
decreases from 1 to o, this homothety defines a homotopy of any closed curve
to a point.

In particular, a convex cpen set D is simply connected. For, a convex open
set is starred with respect to any of its points.

In contrast, the plane with the origin excluded is nof simply connected :
for example, the circle |z| = 1 is not homotopic to a point in € — jo)
since the integral .\, &N|u of the closed form m.% along this circle is not

zero (cf. relation (4.1)).
The reader is invited to prove the equivalence of the following four proper-
ties {for a connected open set D) as an exercise :

a) D is simply connected;
b) any continuous mapping of the circle |z| = 1 into D can be extended
to a continuous mapping of the disc |z{ < 1 into D;

¢) any continuous mapping of the boundary of z square into D can be
extended to a continuous mapping of the square itself into D.

d) if two paths of D have the same end points, then they are homotopic
with fixed end points.

8. THE INDEX OF A CLOSED PATH

Definition.  Let v be a closed path in the plane € and let a be a point of €
which does not belong to the image of y. The index of y with respect to a,
denoted by I{y, a), is defined to be the value of the integral

\ RS dz
8. 1) wﬁ..\«.u|a.

Proposition 5. 1 gives that the index I(y, a) is an integer. By referring back
to the definitions, we see that, in order to calculate the index, we must
find a continuous complex-valued function f(¢) defined for o <t <1
and such that

O = y(t) —a;

1(y, a) _S(1) —f(0),

b3.1)

then we have

PROPERTIES OF THE INDEX

1) If the point a is fixed, the index 1(y, a) remains constant when the closed path
v is continuously deformed without passing through the point a. This follows directly
from theorem 2’ of no. 6.
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2) If the closed path vy is fixed, the index 1(y, a) is a locally constant function of
a when a varies in the complement of the image of y. The proof is the same
as for 1). It follows that I(y, a) is a function of a which is constant in each
connected component of the complement of the image of y.

3) If the image of v is contained in a simply connected open set D which does not
contain the point a, then the index I(y, a) is zero. For, the closed path y can
then be deformed to a point while remaining in D, thus it never passes
through a; it is sufficient now, to use 1).

4) If v is a circle described in the positive sense (i.e. in the sense such
that I(y, 0) = -+ 1), the index I(y, a) is equal to o for a outside the circle and
equal to 1 _for a inside the circle. The case when ais outside the circle is covered
by 3); when a is inside the circle, it is sufficient to examine the case
where a is the centre of the circle because of 2); so, we apply relation

(4. 1).

PropPOSITION 8. 1. Let f be a continuous mapping of the closed disc x* + y* < r*
into the plane R* and let v be the restriction of f to the circle x* + 3 =% If
a point a of the plane does not belong to the image of y and if the index 1(y, a) is # o,
then f takes the value a at least once in the open disc x® + y* < 72,

We prove this by reductio ad absurdum supposing that f does not take the
value a. The restriction of f to concentric circles of centre o defines a
continuous deformation of the closed path y to a point. Consequently,

the integral ,\, dz
T

zZ—a

is zero, which contradicts the hypothesis.

Definition.  Let y, and y, be two closed paths which do not pass through
the origin 0. The product of these two paths means the closed path defined
by the mapping

£ > () . 72(t)s

where the dot means multiplication of the complex numbers y,(¢) and y,(¢).

ProposiTION 8. 2.  The index, with respect to the origin, of the product of two
closed paths, which do not pass through o, is equal to the sum of the indices of each
of these closed paths. In other words, .

I(y1ve ©) = I(y1, 0) + (Y3 0).

For, let f,(¢) and f,(¢) be two f continuous complex-valued functions such
that

SO = (t), O = py(t).
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Let y(t) = y,(¢).y2(¢) be the product of the two closed curves; the function
S @) =A(t) + fo(t) satisfies

& = 4(t)
and we have

I(y, 0) HE@HE@ LIEB =1I(yy, 0) +I(yy 0),

2n7 2ni PL)

which completes the proof.

PropoSITION 8. 3. Let y and vy, be two closed paths in the plane €. If v never
takes the value o and if we always have |y,(t)| <<|y(t)|, then the mapping
t — y(t) + y1(¢) never takes the value o and

I(y + Y15 o) = I(y, o).
For, we can write

. O
1) 4 1a() = éé +18);

the closed path ¢t —>1 + 7 1) has zero index with respect to the origin

1(2)
because it is contained in the open disc of centre 1 and radius 1. Thus
the closed path y+-y, is the product of two closed paths y and 1 + Y1,
~

and by applying proposition 8. 2, we obtain proposition 8.3.

9. COMPLEMENTS : ORIENTED BOUNDARY OF A COMPACT SET

LemMa.  If a path v is continuously differentiable and if its derivative ' is every-
where 5= 0, then, in a neighbourhood of each value of the parameter t, the mapping
t —y(t) is injective and its image cuts the plane (locally) into two regions.

The exact meaning of this statement will be made clear in the proof which
follows. Let ¢ — y(t) be a continuously differentiable mapping of the
segment [g, 6] into the plane R? and let the derivative y'(¢) be o for all
values of . The coordinates x, y of the point y(¢) are then continuously
differentiable functions v,(¢), y,(¢) and their derivatives y/(¢), v.(¢) do not
vanish simultaneously. The implicit function theorem shows then that,
if ¢, is an interior point of the interval (that is, if a <C £, << b) and if we
write xg= v, (%), Jo= Y2(f,), there exists a continuously differentiable mapping
(¢, ©) —>3(¢, u) of an open neighbourhood U of the point (£, 0) onto an open
neighbourhood V of point (xy, 3,), which satisfies the following conditions :

(i) 8(t, 0) = x(2);
(11) 8 is a homeomorphism of U on V whose Jacobian is >0 at each point
of U (thus 3 preserves ° orientation ’). Thus V is mapped homeomor-
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phically by the inverse homeomorphism of 8 onto U, the points of the
path y going onto the points of the line # = 0. The points of V comple-
mentary to y are then partitioned into two open sets V+ aad V= : that

5

—

A4
e (1s,0) b

S

Fig. 2. *

for which uis > 0 and that for which u is << 0. If we take U to be an
open disc of centre (¢, 0), then the open sets V¥ and V- are connected.
Thus the path y splits the open set V into two coruected components,
which completes the proof of the lemmia.

Definition. Let K be a compact subset of the plane €, and let I' ={I'}};g
be a finite set of closed piecewise differentiable paths. We say that I' is
the orienied boundary of the compact set K if the following conditions are
satisfied :

(BO 1) each mapping ¢ —T',(¢) takes any two distinct points into distinct
points, except for the initial and final points of the defining segment, and,
moreover, the images of the various I'; are disjoint and their union is the
JSrontier of K;

(BO 2) if y is a differentiable path of any of the I';, its derivative y'(¢)
is always # o, and, if 4, is an interior point of the defining interval of y
and the open set V of the previous lemma is chosen to. be sufficiently small,
then V= does not meet K while V* is contained in the interior of K.

Condition (BOz2) is expressed intuitively by saying that, when y is described
in the direction of ¢ increasing, the interior points of K are always on the
left, whereas the points in the complement of K are on the right.

Example. 'Take K to be a (closed) rectangle whose sides are parallel to
the axes, then the perimeter of this rectangle, as defined at the end of
n° 1, is the oriented boundary of K.

We shall admit, without proof, that the Green-Riémann formula holds
for the oriented boundary I' of a compact set K. A precise statement
of the formula is that, if & = P dx 4 Q dy is a differential form with conti-
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nuously differentiable coefficients in an open set containing the compact
set K, then

(9. 1) [ra+o= [[ (35«

A..E,_a notation ‘\, means N_ " where I'; are the closed paths of m.v.

T
In particular, if the form o is closed in D, we have the relation

(9. 2) heuo

whenever T is the oriented boundary of a compact subset of D.

2. Holomorphic Functions; Fundamental Theorems

1. REVISION OF DIFFERENTIABLE FUNCTIONS

Let D be an open set of the plane R? and let f(x, ¥) be a real- or complex-
valued function defined in D. We say that f is differentiable at the point
‘% 7o) € D if there is a linear function ak 4 bk of the real variables 2 and
k, such that

(1.1)  flF0+ ko + k) —f(xp) = ah + bk + aVE + &2,

for all sufficiently small values of 4 and %; « is a (real-or complex-valued)
function of & and & whose absolute value tends to o when A% 4 k% tends
to o. If fis differentiable at the point (%, y,), the (real or complex) cons-
tants  and b are uniquely determined and are equal to the partial deriva-
tives

= s, =Y e

Jo)s o)

Recall that the existence of the partial derivatives of f at the point

(%95 %) is not sufficient for the function to be differentiable at this point;

but if f has partial derivatives at every point ‘sufficiently near to (o, %)
and if these partial derivatives are continuous functions at the point
(%p> 7o), then f is differentiable at this point. A function which has conti-
nuous partial derivatives in an open set D is said to be continuously diffe-
rentiable in D.

2. CoONDITION FOR HOLOMORPHY

Let D be an open subset of the complex plane € and let f be a function of
the complex variable z = x 4 iy defined in D.
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Definition.  We say that f(z) is holomorphic at the point z,eD if

?.;v _MBE.WQQ
u>0 u
uzs0
(u denotes a variable complex number). This is the same as saying that f
has a derivative with respect to the complex variable at the point z,. We
say that f is holomorphic in the open set D if it holomorphic at each point
of D.
Condition (2. 1) can also be written

(2. 2) Sz + u) —f(20) = cu + a(u)[u]

where «(u) tends to o as u tends to o; ¢ is the derivative f'(z,). Since
z = x + iy, relation (2.2) can also be written

(2.3) [ (%o + h, 3o+ k) — f (50, 30) = clh + ik) + al(h, VI + k.

This shows that f, considered as a function of two real variables x and y,
is differentiable and that

a=c¢, b = ic,

where a and b are the constants in relation (1. 1). Thus we have o.\. =

and of _ ic, whence
dy

(2. 4) a“ wlk&sﬂ o.

Conversely, let f be a differentiable function of the real variables x and y
satisfying (2.4). Then, relation (1.1) implies (2.3) with ¢ =a and
ic = b. Thus, f is holomorphic at the point zy = %, + iy,. We have,
in fact, proved the following proposition :

ProrosiTiON 2. 1. For f to be holomorphic at a point, it is necessary and sufficient
that f, considered as a function of the real variables x and y, is differentiable at
this point and that relation (2. 4) holds between the partial derivatives of f at this
point.

We express relation (2. 4) more explicitly : if we put f =P +iQ , where P
and Q are real functions, then we obtain the Cauchy conditions

op P _ Q.
ob. oy ox

(2.5) mw
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3. INTRODUGTION OF THE VARIABLES X AND Z

Let f be a (real- or complex-valued) differentiable function of the real
variables x and y. Consider the differential

(5.1 s=L i+ L.

The particular functions z = x + iy and Z = x—1y have differentials
(3. 2) dz = dx + idy, dZ = dx — i dy;

thus we have conversely
1 = I -
(3-3) de = —(dz+d2), &= (k—dz).

By substituting this in (3. 1) we obtain the equation

&\,l].A|t|NLMv&N+|~IAo\+N \v

ox 0y

This leads us to introduce the symbols

d_1 (2 ;2 2_1(2 .wv.
(3- 4) Nmu.mﬁ.mlzv %iw?f&

With this notation, we obtain the equation
. _ \ o 43
(3-5) df =3, d 45 dz.

Condition (2. 4), which expresses that f is a holomorphic function of
the complex variable z, can now be written

(3.6) 2o

In other words, a necessary and sufficient condition for f to be holomorphic
is that the coefficient of dZ is zero in the expression (3. 5) for the differential
df. Or again: df must be proportional to dz, the coefficient of propor-
tionality being simply the derivative f'(z).

We shall apply this to prove the following result : Let f be a holomorphic
Sfunction in a connected open set D; if w\a real part of f is constant, then f is constant.

For, the real part Re(f) is simply — A f -+ F); byhypothesisd(f + F) =0

in D, which can be written

¥z + 8L az + Ui+ Laz=o.
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Bug, since fis is holomorphic, we have W.M = 0; by passing to the complex

conjugate, we have W&.mm =o0. Hence,

o\&\u.f Nkmﬂo.

However, an expression adz -+ bdZ can only be identically zero if the coeffi-
cients ¢ and b are zero, which gives WN. =0, l.\lln =o0. Thus, df = o,
and fis constant in D. <

We deduce from this that, if f is holomorphic and % o in a connected open
set U and if either log | f| is constant or arg f is constant, then f is constant.

For, counsider the function

g(z) = log f(2) = log | f(2)| -+ i arg f (2).

We stay in some neighbourhood of the point z, and we choose a branch of
the argument; g is holomorphic and its real (or imaginary) part is constant.
Thus g is constant in some neighbourhood of z,. Thus = ¢ is locally
constant in D and is consequently constant since D is connected.

4. CAUCHY’S THEOREM

THEOREM 1. If f(2) ts holomorphic in an open set D of the complex plane, then
the differential form f(z)dz is closed in D.

In view of the importance of this theorem, we shall give two proofs :

First proof. This proof requires an extra hypothesis. We suppose that

the partial derivatives .\ and \. mH.n continuous in D. (In fact the second
proof shows that this gﬂonwnm_m is automatically satisfied when f is holo-
morphic.) To verify that the differential form f(z) dz = f(2) dx + if (z) dy

is closed, itis sufficient, by the Green-Riemann formula (§ 1, formula (3. 1)),
to verify that

However, this is precisely condition (2. 4) expressing that f is holo-
morphic, and the proof is completed.

Second progf. 'This proof, unlike the first, does not need any additional
hypothesis, but it requires a more subtle argument. To show that f{z)dz
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is closed, we must prove that the integral ,\. f(2) dz is zero along the

boundary y of any rectangle R contained (with its interior) in D. To
this end, we put a priori

(4- 1) ,\ f(z) dz = «(R).

Divide the rectangle R into four equal rectangles by dividing each side
into two equal parts.

__.
- -

Fig. 3.

Let y, be the (oriented) boundaries of the four smallrectangles (i = 1, 2, 3, 4)
It is easily verified (cf. fig. 3) that

\KE dz = w \:\gﬁuw 2(Ry).

i=1 =1
Thus among there four rectangles there is at least one such that
|e(R4)] VM:_QQC_. Call this rectangle R®. Now divide the rec-
tangle R® into four equal rectangles at least one of which, say R®,

will satisfy the condition |«(R®)| > Mm «(R)|. We can repeat this
operation indefinitely to obtain a sequence of rectangles each included in
the previous one; the k& rectangle R® will have sides 2* times smaller
than those of R and its area will then be 4* times smaller than that of
the rectangle R. If y(R®) denotes the oriented boundary of the rectangle

R®, then

(4. 2)

ﬁii\g &uw‘V% la(R)]-

By the Cauchy criterion of convergence, there is a unique point z, common
to all the rectangles R®. Obviously z,eD. Thus f(z) is holomorphic
at the point z, and, consequently,

f(2) =1 (z0) + S (z0) (2—20) + £(2) 2 — 2|

lime(z) = o.
1 3zg

with
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We deduce

g )o@ L= Sy e+ [
\ +k\4?§m§ [z —2z,| dz.

On the right hand side of (4. 3), the first two integrals are zero and the
third is negligible compared with the area of the rectangle R® as £ in-
creases indefinitely; it is then negligible compared with % Comparing
this with (4. 2) shows that we must have «(R) = o; consequently by the

) (2 —2q) dz

definition of «(R), we have ,\ S(z)dz=o0. This completes the proof.
¥

CororrArRY 1. A holomorphic function f(2) in D has locally a primitive,
which is holomorphic.

This statement means that any point of D has an open neighbourhood
in which fhas a holomorphic primitive. The local existence of a primitive
follows from the definition of a closed form; and this local primitive is
indeed holomorphic because it has f as its derivative.

CorOLLARY 2. If f(z) is holomorphic in D, then | f(2)dz= o jor any
closed path y of D which is homotopic to a point in D. T

This follows from theorem 1 above and theorem 2’ of § 1, no. 6.
Generalization. 'We shall prove theorem 1 again with less strict conditions,

TueoreMm 1'. Let f(2) be an continuous functionin a open set D, which is holo-
morphic at every point of D except perhaps at the points of a line A parallel fo
the real axis. Then the form f(z) dz is closed. In particular, if f is holomorphic
at any point of D except perhaps at some isolated points, then the form f(z) dz is
closed.

Proof. We must prove that the integral r\ Sf(z)dz is zero for the
1

boundary y of any rectangle contained in D. However, this is obvious
if the rectangle does not intersect the line A. Suppose that the rectangle
has a side contained in A and let uw,u -+ a, 4 + ib, u + a + ib be the four
corners of the rectangle, # and % - & being on the line A; 2 and & are
real, and we assume, say, that 5 > 0. Let R(c) be the rectangle with
corners

w-tie, uta--1s, u-1tb, u-a-+ib,
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¢ being a very small number > o ; the integral .\« f(z) dz is zero round
the boundary of R(c); however, as ¢ tends to o, this integral tends to the

integral round the boundary v of the rectangle R. Thus \‘ f&)dz=o.
1

Finally, if the line A meets the rectangle without containing one of its
horizontal sides, the line A splits R into two rectangles R’ and R” and

the integral .\. f(z) dz is zero when taken round the boundaries of

either R’ or R”, because of the previous remarks; however, the sum

of these integrals is equal to the integral .\, f(2) dz round the boundary
of R. This completes the proof.

5. CAUCHY’S INTEGRAL FORMULA

Tueorem 2. Let f be a holomorphic function in an open set D.  Let aeD
and let y be a closed path of D which does not pass through a and which is homotopic
to a pointin D. Then,

(5. 1) L (LR _ o) r),

oni ), 2—a
where 1(v, a) denotes the index of the closed path ¢ with respect ot a (cf. § 1, no. 8).
Proof. Let g(z) be the function defined in D by

2(2) = \.ANW“ H.M.Aav for zF a,

g(z) =f'(a) for z = a;

this function g is continuous because of the definition of the derivative.
It is holomorphic at any point of D except the point a. By theorem 1,

we have
.\m\‘m\mv I.\.m&v&.m”o
y R—a )
However,

fla) dz _ ani I(y, a) f(a),

12— 4a
by the definition of the index. This proves relation (5. 1).

Example. Let f be a holomorphic function in some neighbourhood of a
closed disc and let y be the boundary of the disc described in the positive
sense. Then,

fl2)dz Ww.ﬁ, f(a) if a is inside the disc,
. 2—a (o if @ is outside the disc.
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6. TAYLOR EXPANSION OF A HOLOMORPHIC FUNCTION

THEOREM 3. Let f(2) he a holomorphic function in the open disc |z| < p; then
fcan be expanded as a power series in this disc.

This means that there exists a power series $(X) = Y, 4,X" whose
n>0
radius of convergence is > p and whose sum S(z) is equal to f(z) for|z]| < p.

Proof. Let r be <<p. We shall find a power series which converges
normally to f(z) for |zi < r. This series will be independent of r because
of the uniqueness of the power series expansion of a function in a neigh-
bourhood of 0. The theorem will then be proved.

Choose an g such that r <<ry<Cp. We shall apply the integral formula
of theorem 2 by taking y to be the circle of radius 7, centred at o described
in the positive sense :

f(z) HMHM «,\MANIV.M.N for gl L 7.

. I . . .
The function —— which occurs under the integral sign can be

t—z
expanded as a series since |z| <<[¢|]. Explicitly,

I I I I

t—z § 11—zt 1

(+5+ 24

consequently,

isuu\mM@mB&.

Mﬂu... >0 N:.TH

The series converges normally for |z| < r and |¢| = r,. We can therefore
|ntegrate term by term and we obtain a normally convergent series for
iz <

.\.A‘Nv = M 3",

n20
where the coefficients are given by the integrals

(6. 1) = 1! f() dt,

a, = —,

mqg. [ti=rg m=+u

Hence we have proved theorem 3.
Comment. Theorem g shows that any holomorphic function in an open
set D is analytic in D. Conversely, any analytic function in D is holomor-

phic in D since we know that analytic functions have derivatives. Hence,
for functions of a complex variable, there is an equivalence between Aolo-
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morphy and analyticity. If we apply the known results mow. msmqao. mc.dom.osm
to holomorphic functions, we see that a holomorphic .\::.&83 is infinitely
differentiable and, in particular, is continuously differentiable, and that
the derivative of a holomorphic function is holomorphic.

7. MORERA’S THEOREM

TueoreM 4. (Converse of theorem 1). Let f(z) be a continuous ..\§§.§
in an open set D. If the differential form f(2) dz is closed, then the function f(Z)
is holomorphic in D.

For, f has a primitive g locally. This primitive mm. H.Howoao%rmou mu.m
f =g is the derivative of a holomorphic function, so is itself holomorphic
from the above remarks.

CororrarY. If f(2) is continuous in D and holomorphic .& all ?Ea of D
except perhaps at the points of some line A, then f is holomorphic at all points of D
without exception.
For, we can suppose A to be parallel to the real axis, by rotating if necessary.
By theorem 1, the form f(z) dz is closed. Thus by theorem 4, f is holo-
morphic at all points of D. o

We see then that theorem 1’ was only an apparent generalization of
theorem 1. However, we needed to establish it for technical reasons.

8. ALTERNATIVE FORM OF CAUCHY’S INTEGRAL FORMULA

THEOREM 5. Let T be the oriented boundary of a compact subset K. of an open
set D and let f(2) be a holomorphic function in D. Then,

\h\@ dz = o;

if, moreover, a is an interior point of K, then

@. 1) [ =z oif(a).

ri—a

Proof. The first assertion follows from 85&05.@. 1) of § 1. To prove
the second assertion, we consider a small open disc S centred at a whose
closure is in the interior of K. The oriented boundary of @5 oo.gwmn.n
set K — S is composed of I' and the m,onmon-o?.u_o of S described in ﬁWn
negative sense. We shall say that this oznbﬁ.n& Uotbmwaw. is the
difference of T and the frontier-circle y of S taken in the positive sense.
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By applying the first part of theorem 5 to the compact set K— S
and the function E. which is- holomorphic in D — {a}, we obtain

z—a
fR)de_ [f(x)dz

rZ—a + 2—a

which, along with theorem 2, gives relation (8. 1).

9. SCHWARZ’ PRINCIPLE OF SYMMETRY

We have seen (corollary to theorem 4) that, if f(z) is continuous in an
open set D and holomorphic at any point of D except perhaps at points on
the real axis, then fis holomorphic at all points of D without exception.
Consider, then, a non-empty, connected, open set D which is symmetric
with respect ot the real axis; let D’ be the intersection of D with the closed
half-plane y > o and let D" be the intersection of D with the half-plane
y< 0. Suppose we are given a function f(z) which is continuous in D’,
which takes real values at the points of the real axis, and which is holo-
morphic at points of D’ where y > 0. We shall show that there is a holo-
morphic function in D which extends f; such a function is unique by the
principle of analytic continuation (cf. chap. 1, § 4, no. 3).

Consider the function g(z) defined in D” by the equation

2(z) =1(2).

This function is continuous in D” and it can quickly be shown that it
is holomorphic at any point of D" not lying on the real axis. The function
h(z) which is equal to f(z) in D’ and g(z) in D’ is continuous in D and
holomorphic at all points of D not lying on the real axis. It is therefore
holomorphic at all points of D without exception.

Note that the function 4 takes complex conjugate values (that is, symmetric
values with respect to the real axis) at pairs of points of D which are sym-
metric with respect to the real axis. This is why the preceding construction
is called the “ principle of symmetry ».

Exercises

I. a) Let y be a piecewise differentiable path and let y be its image under
the mapping 2z —Z (symmetry with respect to the real axis.) Show

that, if f(2) is a continuous function on Y, the function z — f(Z) is conti-
nuous on ¥ and that

[r@d=[7@

75




HOLOMORPHIC FUNCTIONS, CAUCHY’S INTEGRAL

(b) In particular, if y is the unit circle described in the positive sense,
then

[rod=—[TE%

2. Let y be a continuous path (not necessarily piecewise differentiable).

Show that
\.\?:, + emv H\wew ‘T%ef

\asna\eu
b 1

if wy, w,, w are closed forms and a=C. Am‘oﬂ the definition of «\ o, see
Noie § 1, no. 5.) '

3. Let y be a piecewise differentiable path, whose image is contained
in an open set D, and let 4(z) be a holomorphic function in D taking
values in an open set A (of the plane of the complex variable w). Show
that T = ¢ o yis a piecewise differentiable path and that, for any continuous
function f(w),

[ @) dw= [ ria@)e@ de
Is this formula still true when y is no longer necessarily differentiable?

4. Let y be the (differentiable) path t—>y(t) =ret, 0o <t < 2w, and
let vy, be the path ¢ — ya(£) = (1 — 1/n)re", with ¢ varying over the same
interval. Show that, if f(z) is continuous in the closed disc lz] <L 7,
then

>0

\\@ dz = lim 1\8 dz.

5. Show that, if f(z) is continuous in the closed disc |2] < r and holomorphic
in the open disc |z| < 7, then

flg) == SO g for all j2]<r,

T omi, t=rt—2%
where the integral is taken in the positive sense.
6. Find a path {—>y(#) with ¢ varying in [o, 2r], having the ellipse
x%/a® + 3?/b? = 1 in the plane R? (¢, b > 0) as image. Calculate the

integral \4 %in two different ways, and deduce that
4
1

2 &N . mm
,\M a%cos?t -+ b2sin?t  ab
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7. Let P.(¢) =" + au_1t™' + --- + g9 be a polynomial of degree
n>> 1 with complex coefficients andlet y; be the image of the circle
[t = R under the mapping { — z = P,(¢). Show that, if R is sufficiently
large, 14 does not pass through the origin z = o and that I(yy, 0) =n;
deduce from this that P,(¢) = o has at least one root. (First show that,
for sufficiently large R, [t"|> l@,_1t"1 + -+ + q| for [£|> R. Then
use proposition 8. g of § 1 to show that I(yy, 0) is equal to the index, with
respect to the origin, of the image of the circle |¢| = R by the mapping
L"),

8. Let f(z) = u(x, ) + iv(x, y) be a holomorphic function in a connected
open set D. If

au(x, b\v + bo(x, .3 =¢ in D,
where 4, b and ¢ are real constants which are not all zero, then f(z) is

constant in D.

9. Let D be a convex open set in the plane and let f(z) be a holomorphic
function in D. Show that, for any pair of points g, be D, we can choose
two points ¢ and d on the line segment joining ¢ and & such that

Sfl@) —f(8) = (a—b) Re (f'(c) + i Im(f7(d)))-

(Consider the function of a real variable 7 defined by

F(t) =f(b + (a—0b)t)/(a— 1),

and apply the mean value theorem to the real and imaginary parts of

F(t).)

10. Let D be a connected open set, which is symmetrical with respect to
the real axis and has non-empty intersection I with it. Any holo-
morphic function f(z) in D can be expreseed uniquely in the form

f(z) =g(z) +ihk(z) forall zeD,

where g and % are holomorphic functions in D which take real values in I.
Show that, in this case,

ANVV \«AMV = \RNV
(2) — ih(z), forall zeD.

s =g
and @ =g
11. Let fand g be two holomorphic functions in a connected open set D

of the plane, which have no zeros in D if there is a sequence (a,) of points
of D such that

lima, =a, aeD and a,#% a for all ,
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and if

£i(a) _g'(a) .
Fan) I%Aa,.v for all n,

show that there exists a constant ¢ such that f(z) = ¢g(z) in D.

12. Let ¢(2) be a continuous function on the oriented boundary I' of a
compact set K. Let D be open set complementary to T in €, and put,
for zeD,
fz) = ,\, kmwn&n.
r{—=z
I

i) If p=inf|[{ —a f D, sh that
(i) p mMa [{—a for ae show tha -

jc—a| <7 with 0o<<r<Cp, can be expanded in a series of powers
of (¢ —a) which is normally convergent; deduce that f(z) is analytic
in a neighbourhood of each aeD. (cf. the proof of theorem 3, §2.)

(ii) Show that

, for el and

Fa) ":m,\nA,an“Ar«wa&mu

for any integer 7> 1, aeD (cf. chapter m, § 1).

13. Let f(z) be holomorphic in |z]| < p; show that, if 0 <7< p, then

lim flz+ \~W~ —f(z) =f'(2)

h>0
0 hj<<e—r

uniformly for |z] < r. Aww using 12., show that

fG+h) —f(2) —f(2) ~ .k Sf(¢) dt

k 2mi = (t — 2 — B)(f — 2) %

where 7' = (p +1)f2, |B|<(r'—7)[2 = (p—1)/4, say, and deduce
from this that, if M = sup | f(¢)], then

jtj=r"

Leth) —f@)_ ot r
) @) < L)

14. Iftwo closed paths of € —{o} have the same index with respect to o,
show that they are homotopic as closed paths in ¢ —jo}.
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