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teacher usually enjoys a considerable degree of freedom in choosing
the subject matter of his course. This freedom is mainly limited by
tradition and, in the case of analytic functions of a complex variable,
the tradition in France is fairly well established. It will therefore perhaps
be useful to indicate here to what extent I have departed from this tradi-
tion. In the first place I decided to begin by offering not Cauchy’s point
of view (differentiable functions and Cauchy’s integral) but the Weierstrass
point of view, i.e. the theory of convergent power series (chapter 1).
This is itself preceded by a brief account of formal operations on power
series, i.e. whatis called nowadays the theory of formal series. Ihave also
made something of an innovation by devoting two paragraphs of chapter vi
to a systematic though very elementary exposition of the theory of
abstract complex manifolds of one complex dimension. What is referred
to here as a complex manifold is simply what used to be called a Riemann
surface and is often still given that name; for our part, we decided to
keep the term Riemann surface for the double datum of a complex mani-
fold and a holomorphic mapping of this manifold into the complex plane




PREFACE

(or, more generally, into another complex manifold). Inthisway adistinc-
tion is made between the two ideas with a clarity unattainable with orthodox
terminology. With a subject as well established as the theory of analytic
functions of a complex variable, which has been in the past the subject
of so many treatises and still is in all countries, there could be no question
of laying claim to originality. If the present treatise differs in any way
from its forerunners in France, it does so perhaps because it conforms
to a recent practice which is becoming increasingly prevalent : a mathema-
tical text must contain precise statements of propositions or theorems —
statements which are adequate in themselves and to which reference can
be made at all times. With a very few exceptions which are clearly
indicated, complete proofs are given of all the statements in the text.
The somewhat ticklish problems of plane topology in relation to Cauchy’s
integral and the discussion of many-valued functions are approached quite
openly in chapter . Hereagainit was thought thata few precise statements
were preferable to vague intuitions and hazy ideas. On these problems
of plane topology, I drew my inspiration from the excellent book by
L. Ahlfors (Complex Analysis), without however conforming completely
with the points of view he develops. The basic concepts of general
Topology are assumed to be familiar to the reader and are employed
frequently in the present work; in fact this course is addressed to students
of ¢ Mathematics I1° who are expected to have already studied the ¢ Mathe-
matics I’ syllabus.

I express my hearty thanks to Monsieur Reiji Takahashi, who are from
experience gained in directing the practical work of students, has consen-
ted to supplement the various chapters of this book with exersices and
problems. It is hoped that the reader will thus be in a position to
make sure that he has understood and as imilated the theoretical ideas
set out in the text.

HENRI CARTAN

Die (Dréme), August 4th, 1960

CHAPTER [

Power Series in One Variable

1. Formal Power Series

I. ALGEBRA OF POLYNOMIALS

Let K be a commutative field. We consider the formal polynomials
in one symbol (or ‘indeterminate’) X with coefficients in K (for the
moment we do not give a value to X). The laws of addition of two poly-
nomials and of multiplication of a polynomial by a ¢scalar’ makes the
set K[X] of polynomials into a vector space over K with the infinite base

L, X, ..., X" .

Each polynomial is a finite linear combination of the X" with coefficients

in K and we write it Y a,X", where it is understood that only a finite
n=0

number of the coefficients a, are non-zero in the infinite sequence of these
coefficients. The multiplication table

Xr. X9 = Xpt+e
defines a multiplication in K[X]; the product
AM s.x@v . AM sxcv
p q
is Mn..um..u where

(1.1) o= 2 apby.

p+q=n

This multiplication is commutative and associative. It is bilinear in the
sense that
(1. 2) P+ P) - Q=PQ + PQ

(A\P)- Q=1 (PQ)
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for all polynomials P, P;, P,, Q and all scalars A It admits as unit ele-

ment (denoted by 1) the polynomial Y a.X* such that gy =1 and
n>¢

2, = o for n>>o0. We express all these properties by saying that K[X],

provided with its vector space structure and its multiplication, is a commu-

tative algebra with a unit element over the field K; it is, in particular, a

commutative ring with a unit element.

2. THE ALGEBRA OF FORMAL SERIES

A formal power series in X is a formal expression D . X", where this time
20

we no longer require that only a finite number of the coefficients 4. are
non-zero. We define the sum of two formal series by

AM n=um=v -+ AM ?N:v = 3 X", where Ca = @n + ba,

nZ20 n20 nz=0

and the product of a formal series with a scalar by

A % s.x..v = 3 (a)Xn

20 R0

The set K[[X]] of formal series then forms a vector space over K. The
neutral element of the addition is denoted by o; it is the formal series with
all its coefficients zero.

The product of two formal series is defined by the formula (1.1), which
still has a meaning because the sum on the right hand side is over a finite
number of terms. The multiplication is still commutative, associative
and bilinear with respect to the vector structure. Thus K[[X]] is an
algebra over the field K with a unit element (denoted by 1), which is

the series ) a,X" such that g =1 and ¢, =o0 for n>o.
n20

The algebra K[X] is identified with a subalgebra of K[[X]], the
subalgebra of formal series whose coefficients are all zero except for a
finite number of them.

3- THE ORDER OF A FORMAL SERIES

Denote 2 2. X" by S(X), or, more briefly, by S. The order »(S) of this

n>0
series is an integer which is only defined when S 5 o; it is the smallest n
such that g, 5% 0. We say that a formal series S has order > k if it is o
or if o(8) > k. By abus de langage, we write »(S) > k even when S = o
although «(S) is not defined in this case.

Io
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Note. We can make the convention that w(0) = + «w. The S such

that o(S) >k (for a given integer k) are simply the series 2, ¢, X" such
n>0

that @, = o for n<Ck. They form a vector subspace of K[[X]].

Definition. A family (S:(X)):e1, where I denotes a set of indices, is said to
be summable if, for any integer k, »(S;) > £ for all but a finite number of
theindices . By definition, the sum of a summable family of formal series

Si(X) = X a4, X"
. . nZz20
is the series

S(X) = X a.Xn,

a0
where, for each n, a, = > a@. ;. This makes sense because, for fixed n, all
i

but a finite number of the a, ; are zero by hypothesis. The operation
of addition of formal series which form summable families generalizes the
finite addition of the vector structure of K[[X]]. The generalized addition
is commutative and associative in a sense which the reader should specify.

The formal notation M a,X" can then be justified by what follows. Let
n20

a monomial of degree p be a formal series M a, X" such that @, = o for
. nz20
n s« p and let ¢,X? denote such a monomial. The family of monomials

(@.X"aex (N being the set of integers > 0) is obviously summable, and

its sum is simply the formal series ), 2, X"
n2>0

Note. The product of two formal series
AM%QV . Av svcv
p q
is merely the sum of the summable family formed by all the products
(apXP) - (bX9) = (aphg)XPHe
of a monomial of the first series by one of the second.

ProvosrTioN §. 1. The ring K[[X]] is an integral domain (this means that
S £ oand T # o imply ST s o).

Proof. Suppose that S{X) = Y a,X? and T(X) = % 5,X? are non-zero.
p q
Let p = o(S) and ¢ = o(T), let
S(X)-T(X) = DaX";

11
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obviously ¢, = o for n<<p + ¢ and cpy, = aph,. Since K is a field and
since a, % 0, by % 0, we have that ¢,y % 0, so ST is not zero.
What is more, we have proved that

(3-1) o8 T) =0 + o(T) for Szo0 and TFo.

Note. One can consider formal series with coefficients in a commutative
ring A with a unit element which is not necessarily a field K; the above
proof then establishes that, if A is an integral domain, then so is A[[X]].

4. SUBSTITUTION OF A FORMAL SERIES IN ANOTHER

Consider two formal series

S(X) = D aXr, T(Y)= X b,Y~

n=0 p=0

It is essential also to assume that by = o, in other words that (T) > 1.
To each monomial 4,X" associate the formal series 4,(T(Y))", which has
a meaning because the formal series in Y form an algebra. Since b, = o,
the order of a,(T(Y))" is > n; thus the family of the a.(T(Y))" (as n takes

the values o, 1, ...) is summable, and we can consider the formal series
(4. 1) 2 a(T(Y),
R0

in which we regroup the powers of Y. This formal series in Y is said to be
obtained by substitution of T(Y) for X in $(X); we denote it by S(T(Y)), or
SoT without specifying the indeterminate Y. The reader will verify
the relations :

(4. 2) (S +85) o T=2S5,0T 4 S30T,
(S1Sg) o T = (S50 T) (830 T), 10T =1.

But, note carefully that So (T, + T,) is not, in general, equal to
SoT, + 80T,
The relations (4. 2) express that, for given T (of order > 1), the map-

ping S — S o T is a homomorphism of the ring K[[X]] in the ring K[[Y]]
which transforms the unit element 1 into 1.

Note. If we substitute o in S(X) = Y a,X", we find that the formal series
n=0

reduces to its ¢ constant term ’ @,

12
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If we have a summable family of formalseries S; and if o(T)>1,
then the family S; o T is summable and

9 (35)+T =3,
which generalizes the first of the relations (4. 2). For, let

Si(X) = X a, X"

we have i

28(X) = 3 (Zanr) X
whence
(4-4) AM mmv o T = WAM s.__v (T(Y),
while
(4- 5) 280T = w AW an,(T(Y) E.

To prove the equality of the right hand sides of (4. 4) and (4. 5), we
observe that the coeflicient of a given power Y? in each of them involves
only a finite number of the coefficients a,,; and we apply the associativity
law of (finite) addition in the field K.

PROPOSITION 4. 1. The relation
(4. 6) (SeT)oU=S0(T-U)

holds whenever »(T) > 1, o(U) > 1 (associativity of substitution).

Proof. Both sides of (4. 6) are defined. In the case when S is a monomial,
they are equal because

AA.. wv H:QGHA.HQCY.

which follows by induction on n from the second relation in (4. 2).
The general case of (4.6) follows by considering the series S as the
(infinite) sum of its monomials ,X"; by definition,

SoT = M Q:‘HJ.»

nz

and, from (4. 3),
(SeT) o U = 3 a(T*o 1),

n=0

13




POWER SERIES IN ONE VARIABLE

which, by (4. 7), 1s equal to
2 a,(ToU)r =S80 (ToU).

n20

This completes the proof.

5. ALGEBRAIC INVEKSE OF A FORMAL SERIES
In the ring K[[Y]], the identity
(5 1) (=W + Y4 e Y ) =1

can easily be verified. He ce the series 1 — Y has an inverse in K[[Y]]

PROPOSITION 5. 1. For S(X) == D, 4, X" to have an inverse element for the multi-

n

plication of K[[X]], it is necessary and sufficient that ay # o, i.e. that S(0) # o.

Proof. The condition is necessary because, if
TX) =X6X" andif SX)TX)=r1,

then gghy=1 and so g, 0. Conversely, suppose that g, 0; we shall
show that {g)~1S(X) = S;(X) has an inverse T;(X), whence it follows
that (a,)~1T,(X) is the inverse of S(X). Now

5;(X) =1 —U(X)  with o(U) > 1,
and we can substitute U(X) for Y in the relation (5. 1), from which it

follows that 1 — U(X) has an inverse. The proposition is proved.

Note. By considering the algebra of polynomials K[X] imbedded in the
algebra of formal series K[[X]], it will be seen that any polynomial Q (X)
such that Q (o) # o has an inverse in the ring K[[X]]; this ring then
contains all the quotients P(X)/Q(X), where P and Q are polynomials
and where Q) (0) # o.

6. FORMAL DERIVATIVE OF A SERIES

Let S(X) = % 2,X"; by definition, the derived series S'(X) is given by
the formula "

(6. 1) §'(X) = 3 na,Xr-1,
=0
It can also be written a8 sor 4 S. The derivative of a (finite or infinite)
dX =~ dX

14
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sum is equal to the sum of its derivatives. The mapping S — 8’ is a linear
mapping of K[[X]] into itself. Moreover, the derivative of the product
of two formal series is given by the formula

d ds dT
For, it is sufficient to verify this formula in the particular case when S
and T are monomials, and it is clearly true then.
If S(o) # o, let T be the inverse of S (c.f. n° 5). The formula (6. 2)
gives

d {1\ ____14dS
6.3) NWAWVI S:dX’

Higher derivatives of a formal series are defined by induction. If
5(X) = Y, X, its derivative of order 7 is

S™(X) = n!a, + terms of order > 1.
Hence,

(6. 4) S®™(0) = n! a,

where S((0) means the result of substituting the series o for the indeter-
minate X in S™(X).

7. COMPOSITIONAL INVERSE SERIES

The series I(X) defined by I(X) = X is a neutral element for the composition
of formal series :

MOH"m”HOm.

PROPOSITION 7. 1. Given a formal series S, a necessary and sufficient condition
Jor there to exist a formal series T such that

(7.1) T(o) =0; SoT=1I
is that
(7.2) S(0) =0, S'(0) # o.

In this case, T is unique, and T o S = 1: in other words T is the inverse of S
Jor the law of composition o .

Proof. Let S(X) = Y 4, X, T(Y)= X, b,Y" If
a0 nzt

(7-3) S(T(Y)) =Y,

15
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then equating the first two terms gives
(7.4) a4 = 0, aby = 1.

Hence the conditions (7. 2) are necessary.

m:wvo% that .9@% are satisfied; we write down the condition that the
coefficient of Y" is zero in the left hand side of (7. 3). This coefficient is
the same as the coefficient of Y* in

aT(Y) + ay(T(Y))? + -+ + au(T(Y))",

which gives the relation
(7.5) ab, + Po(ag, ..., @, by ..., beot) =0,

Srnn.n m.u._ is a known polynomial with non-negative integral coefficients
m:.m is linear in a,, ..., 4,.  Since @, # o0, the second equation (7. 4) deter-
mines &,; then, for n > 2, b, can be calculated by induction on n from
(7. 5). Thus we have the existence and uniqueness of the formal series
T(Y). The series thus obtained satisfies T(0) = o and T’(0) # o, and
so the result that we have just proved for S can be applied to T, giving a
formal series S, such that
S,(0) = o, ToeS; =1

This implies that

S, =108, = (SoT)eS; =S0o(ToS,)=SoI=S.
Hence S, is none other than S and, indeed, T o S = I, which completes
the proof.

Remark. Since S(T(Y)) =Y and T(S(X)) = X, we can say that the
¢ formal transformations ’

Y =8§X), X=T(Y)

are inverse to one another; thus we call T the ¢ inverse formal series®
of the series S.

Proposition 7. 1 is an ¢ implicit function theorem ’ for formal functions.

2. Convergent power series
1. THE GOMPLEX FIELD

From now on, the field K will be either R or €, where R denotes the
field of real numbers and € the field of complex numbers.

Wn.owz that a complex number z = x +- iy (x and y real) is represented by
a point on the plane R? whose coordinates are x and y. If we associate

16
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with each complex number z ==x+ iy its ° conjugate ° Z = x —1y,
we define an automorphism z — Z of the field C, since

2+7=2+7, 2 =Z7Z.
The conjugate of Z is z; in other words, the transformation z —>Z is invo-
lutive, i.e. is equal to its inverse transformation.
The norm, absolute value, or modulus || of a complex number £ is defined

by
iz = (z2)M"

It has the following properties :
g+ 2I<ld +12h =l =1

The norm |z| is always > o and is zero only when z = 0. This norm
enables us to define a _distance in the field € : the distance between z and 2’
is |z — 2|, which is precisely the euclidean distance in the plane R2
The space C is a complete space for this distance function, which means
that the Cauchy criterion is valid : for a sequence of points z,&€C to have
a limit, it is necessary and sufficient that

lim |2, — 2| = ©.

m3>
n>

The Cauchy criterion gives the following well-known theorem : if a series
N4, of complex numbers is such that Y|u| < + oo, then the series

n

converges (we say that the series is absolutely convergent). Moreover,
M:: A M _R.._.
n

We shall always identify R with a sub-field of €, i.e. the sub-field
formed by the z such that Z = z.  The norm induces a norm on R, which
is merely the absolute value of the real number. R is complete. The
norm of the field € (or R) plays an essential role in what follows.

We define

Re(z) = W (z+32) and Im(z) = mW (z—3)

the ‘real part’ and the ¢ imaginary coefficient *of zeC.

2. REVISION OF THE THEORY OF CONVERGENCE OF SERIES OF FUNCTIONS

(For a more complete account of this theory, the reader is referred to
Cours de Mathématiques I of J. Dixmier : Cours de I’A.C.E.S., Topologie,
chapter vi, § 9.)

17
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Consider functions defined on a set E taking real, or complex, values
(or one could consider the more general case when the functions take
values in a complete normed vector space; cf. loc. ¢it.). For each function
u, we write

llu| = sup Ju(x)],

z€EE

which is a number > 0, or may be infinite. Evidently,
llw + ol el + lloll, — haaf] = [X]. e

for any scalar X, when |ju]| << + oo : in other words, |j4|] is a norm on the
vector space of functions % such that |ju|| << + oo.

We say that a series of functions u, is normally convergent if the series of
norms llun]| is a convergent series of positive terms, in other words, if
n

2 ll#all << + 0. This implies that, for each xeE, the series X [u(x)| is

convergent, and so the series M (%) is absolutely convergent; moreover,

n
ifo(x) is the sum of this last series,
P

ol < Dliwall,  Lmflo — 2w = o

p>® n=0
p
The latter relation expresses that the partial sums 3 u, converge uniformly

n=90

to v as P tends to infinitiy. Thus, a normally convergent series is uniformly
convergent. If A is a subset of E, the series whose general term is u, is said
to converge normally for xe A if the series of functions

u, = u,|A (restriction of u, to A)

is normally convergent. This is the same as saying that we can bound
each [u,(x)| on A above by a constant ¢, > 0 in such a way that the

series D¢, is convergent. Recall that the limit of a uniformly convergent

n
sequence of continuous functions (on a topological space E) is continuous.
In particular, the sum of a normally convergent series of continuous functions is
continuous. An important consequence of this is :

ProrostTioN 1.2. Suppose that, for each n, lim u,(x) exists and takes

LTSN

Swe&:ma,..u‘\.«:u@wS«&&aMnaw :33&&.Sae%%%&&«%&&Ma:%
convergent and " "

Mn: = lim AM_ S.Axvv

‘m>xzg \ R

(changing the order cf the summation and the limiting process).
All these results extend to multiple series and, more generally, to sum-
mable families of functiors (cf. the above-mentioned course by Dixmier).

18
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3. RADIUS OF CONVERGENCE OF A POWER SERIES

All the power series to be considered will have coefficients in either the
field R, or the field C.

Note however that what follows remains valid in the more general case when
coefficients are in any field with a complete, non-discrete, valuation, that is,
a field K with a mapping x —>|x| of K into the set of real numbers >> 0 such that

?+.».T\ﬂ_x_+_§r“Q_H_a_._i.
WAE = 0) <= (x = 0),

and such that there exists some x % 0 with |x|# I.

Let S(X) = ¥ a,X" be a formal series with coefficients in R or C.
n=0 . .

We propose to mc\vm&gﬂo an element z of the field for the indeterminate X

and thus to obtain a ¢ value’ S(z) of the series, which will be an element of

. N . . . o a.z"
the field; but this substitution 1s not possible unless the series .W.o nZ

is convergent. In fact, we shall limit ourselves to the case when it is
absolutely convergent. i

To be precise, we introduce a real variable 7 >> o and consider the
series of positive (or zero) terms

2 |adlr,

r20
called the associated series of S(X). Its sum is a Sn.ﬂw-mnmzam. number
> o, which may be infinity. The set of r >0 for which

2 larm < + @

R0
is clearly an interval of the half line R+, and this interval is non-empty
since the series converges for r = 0. The interval can either be open or
closed on the right, it can be finite or infinite, or it can reduce at the msy.m_o
pointo. Inallcases, let p be the least upper bound of the interval, so p is a
number > o, finite, infinite, or zero; it is called the radius of convergence
of the formal power series 3 a.X». The set of z such that |z|<p is

- —ﬂwo . - . .

called the disc of convergence of the power series; it is an open mon.msm it
is empty if p = 0. It is an ordinary disc when the field of coefficients is
the complex field C.

ProrostTION §. 1.

a) For any r<Cp, the series 3 @,z converges normally for |z| <r. In par-
r=0

ticular, the series converges absolutely for each z such that |z| <Tp;
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b) the series Dy a.z" diverges for |z| > 9. (We say nothing about the case

n>0
when |z| = p.)

Proof. Proposition 3.1 follows from

ABEL’s LEMMA. Let 1 and 14 be real numbers such that o < r << 7. If there
exists a finite number M > o such that

lan(r)" <M for any integer n > o,

then the series X, " converges normally for [z} <r.

n=0

For, |a.z"| < |anjr" << M(r/ry)", and e, = M(r/r))" is the general term
of a convergent series — a geometric series with common ratio rlre << 1.
We now prove statement a) of proposition 3.1 : if r<C p, choose ry such

that 7 << ry < p; since ) |a,|(r,)" converges, its general term is bounded
n=0

above by a fixed number M, and Abel’s lemma ensures the normal

convergence of X a,z" for [2] < r. Statement b) remains to be proved :
n>20

if [2|> ¢, we can make |a,z"| arbitrarily large by chosing the integer
n suitably because, otherwise, Abels’ lemma would give an 1 with
p<<r' <|z| such that the series D |a,/r'" were convergent and this

a0
would contradict the definition of p.

Formula for the radius of convergence (Hadamard) : we shall prove the formula

(3- 1) 1/p = lim sup|a,|/~.
n->» 0
Recall, first of all, the definition of the upper limit of a sequence of real
numbers u,:
lim sup #, = lim Am:v S.v.

R3> 0 p>0 \RZp
To prove (3. 1), we use a classical criterion of convergence: if s, is a
sequence of non-negative numbers such that lim sup (s,)'* < 1, then

n->o0

Do < + o moreover, if they are such that lim sup (v,)¥* > 1, then

>0
2=+ o (this is “ Cauchy’s rule ” and follows by comparing the series
n
0. with a geometric series).

n

Here we put v, = |a,|r" and find that

lm sup (51" = r(lim sup a1,
n->»00 B>
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and so the series ; |a.|r* converges for 1/r > lim sup |a,|!/*, and diverges

n 300

for 1/r <lim sup |a,|". This proves (3. 1).

n> o0

Some examples. — The series 3 nlz» has zero radius of convergence;
nz20
— the series M P_N,. has infinite radius of convergence;
nzofl:
. 1 I
— each of the series % 2% 2 —2% X =3
n>0 a>0 1 a>0
equal to 1. It can be shown that they behave differently when lz] = 1.

z" has radius of convergence

4. ADDITION AND MULTIPLICATION OF CONVERGENT POWER SERIES.

PROPOSITION 4. 1. Let A(X) and B(X) be two formal power series whose radii
of convergence are > p. Let

S(X) = A(X) + B(X) and P(X) = A(X).B(X)

be their sum and product. Then :
a) the series S(X) and P(X) have radius of convergence > p;
b) for |z << p, we have

(4.1) S(z) = A(z) +B(z),  P(z) = A(R)B(2).

Proof. Let
AX)= Y aX" BX)= 25X, SX)=22aX, PX) =2d4X,

n>0 nz0 n=0 n=0

and let
Yn = th_ + _@Lv 8, = M MQL .

ogpn

bue -

We have |c.] <vyn |da] <8, If 1<, the series 3 |2 and X |ba|r

20 n20
converge, thus
3= (2 llr) + AM [Balr) <+ oo,
nz20 n>0 n>0
D Bt = A > _mv_i.v . AM _S_Iv < + oo.
n>0 p0 720

It follows that the series D) |ca|r* and Y. |da|r* converge and therefore
R0 n20

that any r<Cp is less than or equal to the radius of convergence of each of
the series S(X) and P(X). Thus both radii of convergence are > p.
The two relations (4. 1) remain to be proved. The first is obvious, and-
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the second is obtained by multiplying convergent series; to be precise,
we recall this classical result :

PROPOSITION 4.2. Let X u, and 3, v, be two absolutely convergent series. If
nz0 nz9

. |
Wy = X Uplnwp
0Lpsn

then the series ), w, is absolutely convergent and its sum is equal to the product

nz0
(2m) - (Z)
Write «p = 2 |ta]y By = 2 |0a]; we have

nZp nZq

5

2 Jwn| < 22 [up]-1vq] = aoBo;

nz0 p20q20
moreover, if m > 2n,

2 S*iAM SV.AM Sv

k<m kLn k<n
is _nmm than a sum of terms |u,|.|7,|, where for each term, at least one of
the integers p and ¢ is > n; thus, this sum is less than «gBa. 1+ Boar1,
which tends to zero as n tends to infinity. It follows that M w; tends to

the product of the infinite sums M u, and M I/ rm
nz0 n20

5. SUBSTITUTION OF A CONVERGENT POWER SERIES IN ANOTHER

For two given formal power series S and T with T(0) == o, we have defined
the formal power series So T in paragraph 1, no. 4.

ProposITION 5.1.  Suppose T(X) = X bX" If the radii of convergence

(>3

o(S) and o(T) are £ o, then the radius of convergence of U = S o T is also
% 0. Tobe precise, there exists an r>>0 suchthat Y, |balr" << p(S); the radius of

convergence of U is > r, and, for any z such that _MW 7, we have
» IT(R)i <e(S)

(5-1) S(T(z)) = U(2).
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Progf. Put 5(X) = 3, a.X». For sufficiently small r>o0, 3 |bar~ is finite

n>0 n2>i
since the radius of convergence of T is s o. Thus, 2, |bujr~—* is finite
for sufficiently small r > o, and, consequently, 21

M {balr™ = 7. A 3 _F_w..iv

n>1i azi
tends to o when r tends to 0. There exists, then, an r >0 such that

3 1balr" < p(S) as required. It follows that

rd
3 EA 2 i)’

p20 k21

isfinite. However, thisis a series > 1ur, and, if we put U(x) = 3 e X, we
a0 nz0

clearly obtain |¢.|< ya. Thus 2 |ealr® is finite and the radius of conver-
gence of U'is > r. n20

Relation (5. 1) remains to be proved. Put §,(X) = Y @Xk and let
S,o T = U,. For [¢| <7, we have esksn

Ua(2) = Sa(T(2)),

since the mapping T — T(z) is a ring homomorphism and S, is a polyno-
mial. Since the series S converges at the point T(z), we have

S(T(z)) = mwm Sa(T(2))-

On the other hand, the coefficients of U—U,= (8—35,) o T are bounded

by those of
2 lapl( 2 166r*) "

p>r k2t
a series whose sum tends to 0 as # — -+ co. It follows that, for [z[<1,
U(z) — Ua(z) tends to 0 as n—> + oo. Finally, we have
U(z) = lim U,(z) = lim 8,(T(z)) = S(T(z)) for <

nco n>c0

which establishes relation (5. 1) and completes the proof.

Interpretation of relation (5. 1) : suppose r satisfies the conditions of propo-
sition 5. 1. Denote the function z —T(z) by T, defined for |z|<1,
and similarly denote the functions defined by the series S and U by §
and U respectively. The relation (5. 1) expresses that, for |z|<(r, the
composite function § o T is defined and is equal to U. Thus the relation
U = S o T between formal series implies the relation U =80T if the
radii of convergence of S and T are 7o and if we restrict ourselves o
sufficiently small values of the variable z.
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6. ALGEBRAIC INVERSE OF A CONVERGENT POWER SERIES

We know (§ 1, proposition 5. 1) that, if S(X) = Y 2, X* with g, # o,

n2>0
there exists a unique formal series T(X) such that S(X)T(X) is equal
to I.

PropoSITION 6. 1. If the radius of convergence of S is # o, then the radius
of convergence of the series T such that ST = 1 is also # o.

Proof. Multiplying S(X) by a suitable constant reduces the proposition
to the special case when g, = 1. Put §(X) = 1 —U(X) so that U(0) = o.
The inverse series T(X) is obtained by substituting U(X) for Y in the series

1+ P Y*; moreover, the radius of convergence of the latter is equal to
n>0

1 and so % 0; proposition 6. 1 then follows from proposition 5. 1.

7. DIFFERENTIATION OF A CONVERGENT POWER SERIES

PROPOSITION 7. 1. Let S(X) = > a. X" be a formal power series and let

r20

S'(X) = 2 na, X1
nz0
be its derived series (cf. § 1, no. 6). Then the series S and S' have the same
radius of convergence. Moreover, if this radius of convergence p is % 0, we have,

Jor [z <o,
(7. 1) §'(2) = lim S& A —=8() \wl 8@,

where k tends to o without taking the value o.

Preliminary remark. If |¢j<<p, then |z + k| <<p for sufficiently small
values of & (in fact, for |h}<<p—|z|); thus S(z + A) is defined. On
the other hand, it is understood in relation (7. 1) that % tends to o through
non-zero real values if the field of coefficients is the field R, or by non-
zero complex values if the field of cocfficients is the field €. In the case
of the field R, relation (7. 1) expresses that the function z — S(z) has
derivative equal to S’(2); in the case of the complex field €, relation (7. 1)
shows that we also have the notion of derivative with respect to the complex
variable z. In both cases, the existence of a derived function 8'(z) obviously
implies that the function S(z).is continuous for |z| <Cp, which can also be
proved directly.
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Proof of proposition 7. 1. Let a, = |aa| and let p and ¢’ be the radii of conver-
gence of the series S and S’ respectively. If 7 < ¢’y the series 2 nart
converges, and so r

> n..i.AsA > :S,ilv <+ 0,

i r20
and, consequently, r < p. Conversely, if r<<p choose an 7' such that
r<r' <p; then

1 r\n1
noart = —(aar™) .ol 1
r r

since r’ < p, there exists a finitt M > o such that a.r' <M for all n,

whence
M /r\?
nart L —n{ —
a = r y »

n—1
and, since the series M. n A.Ml.v converges, the series M na,r"1 also
n2i nz1 .
converges; thus r <{p'.  We have then that any number <p' is <p and
any number < p is <{ ¢/, from which it follows that p = e
Relation (7. 1) remains to be proved. Choose a fixed 2z with 2] <p

and an r such that |z| <<r<p and suppose that
(7-2) 0 # Al <7 —I

in what follows.
Then S(z + k) is defined, and we have

(7-3)
where we have put
w2, B) = anf (2 + R+ 2(z + B2 4o 4 2 — 0

Since |z| and |z + | are < r, we have |u.(z, £)| < 2n«,r*1; and, since
r << p, we have S, na.rt << + oo; thus, given ¢ > o, there exists an integer
ngsuch that ">

mnﬁuu\_uw&wmﬂ.nmmv —S'(2) = % ua(2, h),

214

2 2nartt Lefa.
R>Rg

With this choice of n,, the finite sum Y. u.(z,h) is a polynomial in & which
R ng X
vanishes when % = o; it follows that 3 ua(zh) dm e/2 when [A] is
nLny

smaller than a suitably chosen . Finally, if £ satisfies (7. 2) and [A[ <,
we deduce from (7. 3) that

Elmxmvlm
|

% s@sT Y onarrt Lo

n<Lny n>ry

Thus we have proved the relation (7. 1).
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Nole. Tt can be shown that the convergence of Sz + \N\W — 5(z) towards

S'(z) is uniform with respect to z for |2/ <7 (r being a fixed number strictly
less than the radius of convergence p).

8. CALCULATION OF THE COEFFICIENTS OF A POWER SERIES

Let S(x) be a formal power series whose radius of convergence p # 0,
so that S(z) is the sum of the series 2 a.z* for |z] <<p. The function S(z)
nzo

has for derivative the function S'(z) = 2, na.2"~!. We can again apply
n20
proposition 7. 1 to the series S’ to obtain its derived function $7(z), the

sum of the power series D a(n —- 1)a.z"~?, whose radius of convergence is
n>0

also p. This process can be carried on indefinitely, and by induction we
see that the function S(z) is infinitely differentiable for |z| < p; its deriva-
tive of order n is

SM(z) = nla. + Ta(z),

where T, is a series of order > 1, in other words T,(0) = o. From this,
we have

(8. 1) &n%%§v

This fundamental formula shows, in particular, that, if the function
S(z) is known in some neighbourhood of o (however small), the coefficients
a, of the power series S are completely determined. Consequently, given
a function f (z) defined for all sufficiently small |z, there cannot exist more than

one formal power series S(X) = X, a, X" whose radius of convergence is # 0,
a0

and such that f(z) = 2, a.z" for |z| sufficiently small.
=0

g. COMPOSITIONAL INVERSE SERIES OF A CONVERGENT POWER SERIES.
Refer to § 1, proposition 7. 1.

ProrosiTioN g.1.  Let S be a power series such that S(0) = o and S'(0) # o,
and let T be its inverse series, that is the series such that

T(0) =0, SoT=L

If the radius of convergence of S is 5 0, then the radius of convergence of T is 7= 0.
The reader can accept this proposition without proof because a proof
(which does not use power series theory) will be given later (chap. 1v, § 5,
proposition 6. 1).
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Here, however, a direct proof using power series theory is given to satisfy
the reader with an inquisitive mind. It uses the idea of ¢ majorant series ’
(cf. chap. vir). Letus keep to the notations of the proof of proposition 7.1 in§ 1
and let us consider relations (7. 5) of § 1 which enable us to calculate the unknown
coefficients b, of the required series T(X). Along with the series S(X), we consider
a ‘majorant’ series, that is a series

5(X) =AX — 5 AX

nz=2

with coefficients A, > o such that |a,| < A, for all n; moreover we assume that
A, = |a;| Applying § 1 proposition 7. 1 to the series S, gives a series

T(Y) = X B.Y

a1

such that S(T(Y)) = Y; its coefficients B, are given by the relations

{9. 1) AB, —P(A, ...,A,B;,..,By) =0

which are analogs of (7. 5) of § 1. We obtain from them by induction on n:
(9-2) [6,| < B,

It follows that the radius of convergence of the series T is not less than that of
the series T. We shall prove proposition g. 1 by showing that the radius of conver-

gence of T is > o. :
To this end, we choose the series T as follows: let 7 > o be a number strictly
Jess than the radius of convergence of theseries S (by hypothesis, this radius of conver-

gence is = 0); the general term of the series M la,|r is then bounded above by
by a finite number M > o and, if we put n2t

(9. 3) Ay = |ay), Ap = M/ for n > 2,

we obtain the coefficients of a majorant series of S; its sum S(x) is equal to

S() = A —M 2 for x<r.

1 — x[r

We seek, then, a function T(y) defined for sufficiently small values of y which is

zero for y = o and which satisfies the equation S(T(y)) = » identically; T(y)
must satisfy the quadratic equation

(9-4) ‘ (Ayfr + M) T2 — (A + /)T +y = o,

which has for solution (which vanishes when y = 0)

T(y) = Art ol —V(A)® — 28yjr— 4Myr® 4%
2(Ay/r 4+ M/r?)

When | y| is sufficiently small, the surd is of the form A;y'1 + #, with |4|<C 1, and

so T() can be expanded as a power series in y, which converges for sufficiently
small | y|. Thus the radius of convergence of this series is # o, as required.
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3. Logarithmic and Exponential Functions

1. EXPONENTIAL FUNCTION

.<<o »wwﬁw already remarked (§ 2, no. 3) that the formal series 3 — X* has
infinite radius of convergence. For z complex, we define "> ont

" I
&= M — <%
nzo Ml

that is, the sum of an absolutely convergent series. This function has
derivative

(r.1) M@ —

by proposition 7. 1 of § 2.

On the other hand, applying proposition 4. 2 of § 2 to two series with
general terms

_ I 1
U, = §m Nzw Up = M_IN:.“
gives
W, = II.IWIINEN:.!E o .Iml A.N (T N\vs
o<p<npl(n—p)! n! )
Consequently
(1. 2) e+ = ge?

Eun. fundamental functional property of the exponential function). In
particular,

(1. 3) ce*=1, so ¢&£%0 forall z
Putting z = x 4 iy (with x and y real) gives
ety = g=.6,

so we need only study the two functions ¢ and ¢7, where x and y are real
variables. We have

d d ..
(1.4) &) =2 > (67) = ie".

2. REAL EXPONENTIAL FUNCTION ¢&*

. \
We have seen that e £ 0 : what is more, ¢* = (e#%)2 > 0. Moreover,
. x2
the expansion ¢®=1 4 x + Py -+ --- shows that ¢>1-4+2x when a>o0.
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Thus
lim e = 4 «;
-3+ 00
substituting — x for x leads to
lim e =o.
B3 ~— 00

We deduce that the function ¢ of the real variable x increases strictly
from o to 4 . The transformation ¢ = ¢ has therefore a inverse trans-
formation defined for ¢ > o; it is denoted by

x =logt.

This function is also strictly monotonic increasing and increases from
— to +o. The functional relation of ¢* is written

(2. 1) log (#t') =log t + log ¢/,

and, in particular, log 1 = o.
On the other hand, the theorem about the derivative of an inverse
function gives

(2. 2) m (log 1) = 1/t.

I
1+ u
which vanishes for # = o; moreover we have the following power series
expansion

Let us replace ¢ by 1 + z (2>— 1); log (1 + u) is the primitive of

I
14+ u

=1—u-+u24 .-+ Allmval;»ﬁ:l* + .

whose radius of convergence is equal to 1. From proposition 7. 1 of § 2,
it follows that the series of the primitive has the same radius of convergence
I

I+ u

and that its sum has derivative ; whence, for |u| <1,

(2.3) _omf+£":]Mm+...+ﬁl&=l*=|~“.+.

(in fact this expansion is also correct when z = 1).
Now put

) SO =3tx, T®=3 (0L,

=W»=m n>1

and examine the composed series U = S o T. We have from proposition
5. 10f§2, for —1 <<u<<+1,

U(w) = S(T(w);
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however, T(x) =log (1 + u), S(x) =e¢ —1, so
Ulg) =) — 1 = (1 4+ u) — 1 = u.

This shows that the formal series U is merely I because of the uniqueness

of the power series’ expansion of a function (cf. § 2, no. 8). Thus the
series S and T are inverse.

3. THE IMAGINARY EXPONENTIAL FUNCTION ¢” () REAL)

The series expansion of ¢ shows that ¢=¥ is the complex conjugate of ¢;

thus ¢7.¢77 is the square of the modulus of ¢7; but this product is equal
to 1 by relation (1.3). Thus

le] = 1.

We note that, in the Argand plane representation of the complex field C,
the point ¢¥ is on the unit circle, that is the locus of points whose distance
from the origin o is equal to 1. The complex numbers  such that ju| = 1
form a group U under multiplication and the functional property .

e0+Y) = g gl

expresses the following : the mapping y — €7 is a homomorphism of the additive
group R in the multiplicative group U. This homomorphism will be studied
more closely.

THEOREM.  The homomorphism y —» € maps R onto U, and iis “ kernel’ (subgroup
of the y such that &7 = 1, the neutral element of U) is composed of all the
integral multiples of a certain real number > o. By definition, this number
will be denoted by 2x.

Progf. Let us introduce real and imaginary parts of ¢; we put, by defini-
tion,

éY = cos y + ¢ sin
which defines two real functions cos y and sin y, such that
cos?y + sin? y = 1.
These functions can be expanded as power series whose radii of convergence

are infinite :

moowb\ﬂal.wl.emefi.;fmﬂqw_ﬁ%:nf:
iy y— L D
T:Q A AR iy A S

s

(3-1)
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We shall study the way in which these two functions vary. Observe
that separating the real and imaginary parts in the second equation (1. 4)
gives

d _ . d,. .

o (cosy) = —siny, > (sin y) = cosy.
When y = o, cos y is equal to 1; since cos y is a continuous function, there
exisis @ y > 0 such that cos y > o for 0 Ly <y, Hence sin y, whose
derivative is cos 3, is a. strictly increasing function in the interval [0, %]
Put sin y, = a>o0. We shall show that cos y vanishes for a certain

value of y which is > 0. Suppose in fact that cos y >0 for y, <y <
we have

(3. 2) oOM.euloowkeH!.\imm:Q%.
N Yo

However, sin y 3> a, because sin y is an increasing function in the interval
[ 70, 1] where its derivative is > o, thus

H. sin ydy > a(y; — Jo)-

Jo

By substituting this in (3. 2) and noting that cos y; > 0, we find that
o1
J1 I < €08 Jor

This proves that cos y vanishes in the interval ﬁ Yos Yo+ W\oom .QL.
Write M.. for the smallest value of y which is > o0 and for which cos y=o0
(this is a definition of the number =). In the interval Mou W% cos

decreases strictly from I to 0, and sin y increases strictly from o to 1; thus
the mapping y —¢7 is a bijective mapping of the compact interval

—Hov M.H onto the set of points (x, ») of the unit circle whose coordinates

4 and v are both >o0. By a theorem of topology about continuous,
bijective, mappings of a compact space, we deduce :

Lemma. The mapping y—>e? is a homeomorphism of ﬁov W.M— onio the sector

of the unit circle u? + v* = 1 in the positive quadrant u > 0, v > 0.

.h

For ;WAQAAV we have &Y = PR :)
that ¢7 takes each complex value of modulus 1 whose abscissa is < 0
and whose ordinate is>o0, and takes each value precisely once.

Analogous results can be deduced for the intervals Hav Wm@ and Wm. na“_.

, wnence we easily deduce
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Thus, for o<{y<C2mn, €7 takes each complex value of modulus 1
precisely once, whereas ¢2* = 1. Therefore the function ¢ is periodic
of period 2, and the mapping y — ¢” maps R on U. This completes the
proof of the theorem.

4. MEASUREMENT OF ANGLES. ARGUMENT OF A COMPLEX NUMBER

Let 2nZ denote the subgroup of the additive group R formed by
the integral multiples of the number 2x. The mapping y — &7
induces an isomorphism ¢ of the quotieni group R[2rZ on the group U.
The inverse isomorphism ¢~! of U on R/2xZ associates with any
complex number u such that |u| = 1, a real number which is defined
up to addition of an integral multiple of 2x; this class of numbers is called
the argument of u and is denoted by arg ». By an abuse of notation, arg u
will also denote any one of the real numbers whose class modulo 2% is
the argument of #; the function arg « is then an example of a many-valued
function, that is, it can take many values for a given value of the variable .
This function resolves the problem of ¢ measure of angles ’ (each angle is
identified with the corresponding point of U) : the ¢ measure of an angle’
is a real number which is only defined modulo 2x.

We topologize the quotient group R/2nZ by putting on it the guotient
topology of the usual topology on the real line R : let p be the canonical
mapping of R on its quotient R/2xZ, a subset A of R/2xZ is said to be open
if its inverse image p~1(A), which is a subset of R invariant under translation
by 2=, is an open set of R. It is easily verified that the topological space
R/27Z is Hausdorff (that is, that two distinct points have disjoint
open neighbourhoods). Moreover, it is compact; for, if I is the closed
interval [0,2x], the natural mapping I - R/2sZ takes the compact space I
onto the Hausdorff space R/2nZ which is then compact by a classical
theorem in topology. The homomorphism ¢ : R/2nZ — U is continuous
and is a bijective mapping of the compact space R/2xZ onto the Hausdorff
space U; hence ¢ is a homeomorphism of R/2xZ on U.

General definition of argument : for any complex number ¢ s o, define the
argument of ¢ by the formula

arg ! = arg A%v

The right hand side is defined already since ¢/|tjeU. (Note that
the argument of o is not defined.) As above, arg ¢ is only defined up to
addition of integral multiples of 2x. We thus have

AA.. mv = :T:nwa.
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Application. 'To solve the equation ¢"=a (where a0 is given) : the
equation is equivalent to
I
tj=lapir,  argt=Larga,

and has n complex solutions ¢ because one obtains for arg ¢ a real number
defined up to addition of an integral multiple of 2x/n.

5. CoMPLEX LOGARITHMS

Given a complex number ¢, we seek all the complex numbers z such that
*=¢.  Such numbers exist only when ¢ o. In this case, relation (4. 1)
shows that the z that we seek are the complex numbers of the form

(5. 1) log |t| + 7 arg t.
We define
(5. 2) logt =log|t| + i arg ¢,

which is a complex number defined only up to addition of an integral
multiple of 2ni. From this definition, we have ¢ =f When ¢ is
real and > o, we again have the classical function log ¢ if we allow only
the value o for arg ¢.

For any complex numbers ¢ and ¢’ both % o and for any values of log ¢,
log ¢’ and log #t', we have

(5-3) log (') = log t + log t' (mod 2mi).

Branches of the logarithm. So far we have not defined log ¢ as-a function
in the proper sense of the word.

Definstion.  'We say that a continuous function f () of the complex variable ¢,
defined in a connected open set D of the plane €, not containing the point
¢t = 0, is a branch of log ¢ if, for all { € D, we have ¢/® = ¢ (in other words, if
S (t) is one of the possible values of log ¢).

We shall see later (chapter 11, § 1, no. 7) what conditions must be satisfied
by the open set D for branch of log ¢ to exist in D. We shall now examine
how it is possible to obtain all branches of log ¢ if one exists.

PrROPOSITION 5.1 If there exists a branch f (t) of log ¢ in the connected open set D,
then any other branch is of the form f(t) + 2kni (k an integer); conversely,
f(t) + 2kni is a branch of log t for any integer k.
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Let us suppose the that f(#) and g(t) are two branches of logé. The

difference
h(t) H,\QM ‘%AD
2ni

is a continuous function in D which takes only integral values; since D
is assumed connected, such a function is necessarily constant. For, the set
of points te D such that A(t) is equal to a given integer n is both open and
closed. Thus the set is empty or is equal D. The constant must of course
be an integer. That f(t) + 2kni isa branch of log ¢ for any integer k is
obvious.

One defines similarly what must be understood by a branch of arg ¢
in a connected open set D which does not contain the origin. Moreover,
any branch of arg ¢ defines one of log ¢ and vice-versa.

Example. Let D be the open half-plane Re (¢) >0 (recall that Re (¢)
denotes the real part of £). For any ¢ in this half-plane, there is a unique

value of arg ¢ which is > |W m:& AW ‘“anonoarmma.mﬂ:ovw»ﬁm“.

We shall show that Arg ¢ is a continuous function and that consequently
log|t| + i Argt

is a branch of log ¢ in the half plane Re (¢) > o. It will be called the prin-
cipal branch of logt. Since Argt = Arg (¢/|t]) and since the mapping
t —>£[|t] is a continuous mapping of the half-plane Re (¢) > o on the set
of u such that |4/ = 1 and Re (u) > o, it is sufficient to show that the
mapping y = Arg u is continuous. However, this is the inverse mapping of
u = ¢ as y ranges over the open interval xl.w + m%v the function % =¢"
is a continuous bijective mapping of the compact interval Hlm, + Ww

on the set of « such that |u| = 1 and Re (1) > o; this thenisa homeomor-
phism and the inverse mapping is indeed continuous, which completes
the proof.

6. SERIES EXPANSION OF THE COMPLEX LOGARITHM

ProposITION 6. 1. The sum of the power series

T = 3 (— )t L

s
n>1 n

which converges for |u| < 1, is equal to the principal branch of log (1 + u).
Note first that if |u| < 1, # = 1 + « remains inside an open disc contained
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tn the half plane Re (¢) > 0. Again we use the notations of relation (2. 4)
and remember that the series S and T are inverse to one another; proposi-
tion 5.1 of § 2 shows that S(T(u)) = u for any complex number # such
.ﬁrmn lu]<<1. In other words, ¢ =1 + #; and consequently T(u)
is a branch of log (1 -+ #). To show that this is the principal branch,
it is sufficient to verify that it takes the same value as the principal branch
for a particular value of u, for instance, that it is zero when = 0, which
is obvious from the series expansion of T(x).

m.wowomﬁqoz 6. 2. .N\ Sf(t) is a branch of logt in a connected open set D, the
function f(t) has derivative f'(t) with respect to the complex variable t, and

S'@) =1/t
In fact, for & complex £ o and sufficiently small, we have

\Q.I&I\S _Sfl+h—f).

fErR i

and, when ¢ tends to o, this tends to the algebraic inverse of the limit of
& —¢
Z—z
the value of the derivative of ¢ for z = f(¢), which is equal to ¢/ = 1/¢,

as 2’ tends to z = f(¢); the limit we seek is then the inverse of

Note. 'This result checks with the fact that the derivative of the power
I

~+=.

-series T'(u) is indeed equal to

Definition. For any pair of complex numbers ¢+ 0 and «, we put

1% = Qﬂ?n“

This 1s 2 many valued function of ¢ for fixed «. A branch of ¢ in a

connected open set D is defined as above. Any branch of log ¢ in D
defines a branch of ¢+ in D.

Revision. Here the reader is asked to revise, if necessary, the power series
expansions of the usual functions, arc tan x, arc sin x, etc. Moreover,
for any complex exponent « and for » complex such that |x|<C 1, we consider

Am + &vn = g% _owﬁ_l.ﬁvu
where log (1 + x) denotes the principal branch (the function (1 4 x)*

then takes the value 1 for x = 0); the reader should study its power series
expansion.
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4. Analytic Functions of a Real or Complex Variable

1. DEFINITIONS

Definition 1. 1. We say that a function f (x), defined in some neighbourhood
of x4, has a power series expansion at the point x, if there exists a formal power

series $(X) = Y @.X" whose radius of convergence is 5 o and which
satisfies n>0

f(x) = D an(x — xg)" for |x— x,| sufficiently small.
n20

This definition applies equally well to the case when x is a real or a
complex variable. The series S(X), if it exists, is unigue by no. 8 of § 2.

If £ (x) has a power series expansion at x,, then the function fis infinitely
differentiable in a neigbourhood of x;, because the sum of a power series
has this property. If the product fg of two functions fand g having power
series expansions at x, is identically zero in some neighbourhoed of x,,
then a least one of the functions fand gisidentically zero in a neighbourhood
of x,; in fact, this is an immediate consequence of the fact that the ring
of formal series is an integral domain (§ 1, proposition §.1). If fhasa
power series expansion at x , there exists a function g also having a power
series expansion atx, and having derivative g’ = f in some neighbourhood
of xy; such a function is unique up to addition of a constant in some neigh-
bourhood of x,; to see why this is so, it is sufficient to examine the series
of primitives of terms of a power series expansion of the function f.
We shall consider in what follows an open set D of the real line R, or the
complex plane €. If D is open in R, D is a union of open intervals and,
if D is also connected, D is an open interval. We write x for a real or
complex variable which varies over the open set D.

Definition 1. 2. A function f(x) with real or complex values defined in
the open set D, is said to be analytic in D if, for any point x, € D, the function
S (x) has a power series expansion at the point x,. In other words, there

must exist a number p(%,) > 0 and a formal power series S(X) = Y, ¢, X"
with radius of convergence > p(x,) and such that n20

f@) = Dale—mx)r  for  |x—ix|<plx).

nz=0

The following properties are obvious : any analytic function in D is
infinitely differentiable in D and all its derivatives are analytic in D.
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The sum and product of two analytic functions in D are analytic in D :
that is to say, the analytic functions in D form a ring, and even an algebra.
It follows from proposition 6. 1 of § 2 that, if f(x) is analytic in D, then
1/f (x) is analytic in the open set D excluding the set of points x, such that
S (x5) = o.

Finally, proposition 5. 1 of § 2 gives that, if fis analytic in D and takes its
values in D' and if g is analytic in D’, then the composed function g o f
is analytic in D.

Let f be an analytic function in a connected set D; if f has a primitive g,
that is, if there exists a function g in D whose derivative g’ is equal to f,
then this primitive function is unique up to addition of a constant and it
is an analytic function.

Examples of analytic functions. Polynomials in x are analytic functions on
the whole of the real line (or in the complex plane). A rational function
P(x)/Q (x) is analytic in the complement of the set of points x, such that
Q (%) = 0. It will follow from proposition 2. 1 that the function ¢ is
analytic. The function arc tan « is analytic for all real x since its deriva-
tive — — is analytic.

|

2. CRITERIA OF ANALYTICITY

ProrosiTioN 2. 1. Let S(X) = Y @, X" be a power series whose radius of
convergence p is # 0. Let 2

S(x) = Y a.x

20

be its sum for |x| << p. Then S(x) is an analytic function in the disc |x| <.

This result is by no means trivial. It will be an immediate consequence
of what follows, to be precise :

PROPOSITION 2.2 With the conditions of proposition 2. 1, let xo be such that
lxg] << p. Then the power series

(2. 1) 2 2 SO X
n20 n.

has radius of convergence > p — |x,| and

(2.2) S(x) = X SO(x)(x—xp)"  Sor |5 — x| < p—|%-
20
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Proof of proposition 2. 2. Put 7y = |%g|, @ =]a.|. We have

S®(xy) = ) (tg)! piq(%0)>

720 Q_
1
50| < B T )
For ry < r << p, we have
i
(2:3) 3 IS0 (r—ror < Mrw«wfzeﬁlaﬁ
pzo . .
n! _
(1 —1¢)F ()" wv,
<Ze a2 i
< M an " < + .
20

Thus the radius of convergence of the series (2. 1) is > 7 —T7o. Since r
can be chosen arbitrarily near to p, this radius of convergence is > o — 7o-
Now let x be such that |x — xo| << p —7,. The double series

R A

pa P'g!
is absolutely convergent by (2. 3). Its sum can therefore be calculated
by regrouping the terms in an arbitrary manner. We shall calculate
this sum in two different ways. A first grouping of terms gives

Saf 5 -t (x — 3)(a0?) = 3, awe" = S(2)3

>0 \o<ren Bl (n —p)! n>0

another grouping gives

M = v@A M (¢ +9) 9)! a@+n?€vav M (x — x&nmg?&.

1
pzo P! >0 g} pzo P

Formula (2. 2) follows from a comparison of these two and this cornpletes
the proof.

Note 1. The radius of convergence of series (2. 1) may be strictly larger
than ; —|x, Consider, for example, the series

S(X) = X (@X)".
a0
Then $(x) = ——— for |x| < 1. Choose 2 real number for %, so we have
1 — X
! .|||I.H _ .l'\l.lk.lluao w“ " R.I.le:
1—ix 1 lson_ N_Il:ﬂ._v :M.,?\lcavi% ’
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This series converges for |x— x| << V1 + (%)% and V1 + a& is strictly
greater than 1 — |x).

Note 2. Let
Alr) = Xladr®  for  r<lo.

n2=0

From inequality (2. 3), we have

@xav_ _Ar) for 2] L <7 <op.

Q. — 7p)P

l1
Aw. A.v H\wﬂ

Note 3. If x is a complex variable, we shall see in chapter 11 that any func-
tion which is differentiable is analytic and is consequently infinitely diffe-
rentiable. The situation is completelv different in the case of a real
variable : there exist functions which have a first derivative but no second
derivative (one need only consider the primitive of a continuous function
which is not differentiable). Moreover, there exist functions which
are infinitely differentiable but which are not analytic; here is a simple
example : the function f(x), which is equal to zero for x = 0 and to &~ 4="
for x 5 o, is infinitely differentiable for all x; it vanishes with all its deri-
vatives at x = o so, if it were analytic, it would be identically zero in
some neighbourhood of x = o, which is not the case.

THEOREM. In order that an infinitely differentiable function of a real variable x
in an open interval D should be analytic in D, it is necessary and sufficient that any
point xoe D has a neighbourhood V with the following property : there exist numbers
M and t, finite and > o, such that

(2. 5) &RE?V <M.t forany xeV and any integer p >

Indication of proof. The condition is shown to be necessary by using
inequality (2. 4). It is shown to be sufficient by writing a finite Taylor
expansion of the function f(x) and using (2. 5) to find an upper bound
for the Lagrange remainder.

3. PRINCIPLE OF ANALYTIC CONTINUATION

Turorem. Let f be an analytic function in a connected open set D and let x4€ D.
The following conditions are equivalent :

a) f®(xy) = o jor all integers n > o;

b) fis identically zero in a neighbourhood of x;

¢) fis identically zero in D.
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Proof. It is obvious that ¢) implies a). We shall show that @) implies )
and b) implies ¢). Suppose a) is satisfied. We have then f™(x) =0
for all n> o with the convention that f@ = f. But f(x) has a power
series expansion in powers of (¥ — %) in a neigbourhood of %, and the
coefficients % fn(x,) are zero; thus f(x) is identically zero in a neighbour-
hood of x, which proves 5). .
Suppose conditions ) is satisfied. To show that £ is zero at all points of
D, it is sufficient to show that the set D’ of points xeD in a neighbourhood
of which f is identically zero is both open and closed (D' is not empty because
of b), thus, since D is connected, D’ will be equal to D). It follows from the
definition of D’ that it is open. It remains to be proved that, if x,eD
is in the closure of D, then x,e D’. However, f(x) =0 for eachn >0
at points arbitrarily close to x, (in fact, at the points of D’); thus f ?Xxo.v =0
because of the continuity of f; this holding for all n >0 implies as
above that f(x) is identically zero in a neighourhood of xp. Thus x, & U‘u
which completes the proof.

CoROLLARY 1. The ring of analytic functions in a connected open set D is an
integral domain.

For, if the product fz of two analytic functions in D is identically zero
and if x, € D, then one of the functions £ g is identically zeroina :ommrvo,.hr
hood of x, because the ring of formal power series is an integral QQ.dwE.
But, if fis identically zero in some neighbourhood of x,, then fis zeroin the
whole of D by the above theorem.

CoroLLARY 2. (Principle of analytic continuation) If two analytic functions
f and g in a connecied open set D coincide in a neighbourhood of a point of D,
then they are identical in D.

The problem of analytic continuation is the following : given an analytic
function £ in a connected open set D' and given a connected open set D
containing D', we ask if there exists an analytic function f in D sﬁwnr
extends k. Corollary 2 shows that such a function f is unique if it exists.

4. ZEROS OF AN ANALYTIC FUNCTION

Let f (x) be an analytic function in a neighbourhood of #, and let

Fx) = 2 an(x—x0)"

n>0

be its power series expansion for sufficiently small |x — xo|. Suppose
that f(x,) = 0 and that f(x) is not identically zero in a neighbourhood of x,.
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Let & be the smallest integer such that a, % 0. The series

) an(x — x5)"*
n2k
converges for sufficiently small |x — x| and its sum g(x) is an analytic

function such that g(x,) # o in some neighbourhood of "x. Thus, for x
near enough to x,, we have

(4 1) fx) = (x—xo)*g(x), &%) #o.

The integer & > o thus defined is called the order of multiplicity of the zero x4
for the function f. It is characterized by relation (4. 1), where g(x)

is analytic in a neighbourhood of x,. The order of multiplicity £ is also
characterized by the condition

F®(x) =0 for oLn<Ck, [f®(x) 5 o.

If k = 1, we call x, a simple zero. If k > 2, we call x, a multiple zero.
Relation (4. 1) and continuity of g(x) imply

f(x) #o0 for o<<|x— x| << (e > o sufficiently small).

In other words the point x, has a neichbourhood in which it is the unique
zero of the function f(x).

PROPOSITION 4. 1. If fis an analytic function in a connected open set D and if

f is not identically zero, then the set of zeros of f is a discrete set (in other words,
all the points of this set are isolated).

For, corollary 2 of no. g gives that f is not identically zero in a neigbour-
hood of any point of D, so one can apply the above reasoning to each
zero of f.

In particular, any compact subset of D contains only a finite number of
zeros of the function g.

5. MEROMORPHIC FUNCTIONS

Let f and g be two analytic functions in a connected open set D, and
suppose that g is not identically zero. The function f(x)/g(x) is defined
and analytic in a neighbourhood of every point x, of D such that g(x,) # o,
that is to say, in the whole of D except perhaps in certain isolated points.

Let us see how f(x)/g(x) behaves in a neighbourhood of a point
which is a zero of g(x); if f(x) is not identically zero, we have

S = (xr—x)i(x), &) = (x—x)"ailx}s
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where k and k' are integers with k > o and £' >0, f, and g; are analytic
in some neighbourhood of % with f;(%g) # 0 and g;(%g) # 03 hence, for
x # x, but near to X

\@y = (x— xg)*~¥ Mﬁmw

W (%) g1(%)

The function A, (%) = f1(%)/g1(x) s analytic in a neighbourhood of x4 and
we have that k,(x,) 7 0. Two cases arise :
10 k > k'; then the function
(x — %) ¥~ by (%)
is analytic in some neighbourhood of x, and coincides with f(x)/g(x) for

x # x,. Hence the extension of f|g to the point xg is analytic in a neigh-
bourhood of x, and admits x; as a zero ifk >k

20 k< k' : then

L0 ), ) o

We say in this case that % is a pole of the function fg; the integer kK —k
f(®)
(%)
to + . We can agree to extend the function f]g by giving it the value
“ infinity » at %,. We shall return later to the introduction of this
unique number infinity, denoted oo.

If f (x) analytic and has x, as a zero of order k > o0, then x, is clearly a pole
of order k of 1/f(x)-

tends

is called the order of muliiplicity of the pole. As x tends to X,

Definition. A meromorphic function in an open set D is defined to be a
function f(x) which is defined and analytic an the open set D’ obtained
from D by taking out a set of isolated points each of which is a pole
of f(x).

In a neighbourhood of each point of D (without exception), f can be
expressed as a quotient h(x)/g(x) of two analytic functions, the denominator
being not identically zero. The sum and product of two meromorphic
functions are defined in the obvious way : the meromorphic functions
in D form a ring and even an algebra. In fact they form a field because,
if £ (%) is not identically zero in D, it is not identically zero in any neigh-
bourhood of any point of D by the theorem of no. 3; so 1/f(x) is then
analytic, or has at most a pole at each point of D and is consequently
meromorphic in D.

PROPOSITION 5. 1. The derivative f! of a meromorphic Sfunction f in D is mero-
morphic in D the functions f and f' have the same poles; if % is a pole of order
k of f; then it is a pole of order k + 1 of f'.
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For, f' is defined and analytic at each point of D which is not a pole of f.

It remains to be proved that, if x, is a pole of f; x, is also a pole of f'.
Moreover, for x near x,,

f#) = ——g(%),

(x — x)*

g(x) being analytic with g(xg) % o, £ > o. Hence, for x # x,,

%3nﬂ&%ﬂ5|éﬁal§£nﬁk@ﬂ&§

and as g,(%,) # 0, %, is a pole of ' of order & 4- 1.

Exercises

1. Let K be a commutative field, X an indeterminate and E = K[[X]]

Mww algebra of formal power series with coefficients in K. For 8, T in E
efine .

if S=T,
if S#T, and o(S—T)=k.
a) Show that d defines a distance function in the set E.

E mr‘osﬁ that ﬁ.Wa mappings (S,T) >S4+ T and (5,T) >ST of EXE
into E are continuous with respect to the metric topology defined by d.

c) Show that the algebra K[X] of polynomials is everywhere dense in E
when considered as a subset of E.

(o]
a(s,T) = |5,

d) Show that the metric space Eis complete. (If (S,) is a Cauchy sequence

in E, note that for any integer m > o, the first m terms of S, do not depend
on n for sufficiently large 2.)

e) Is the mapping S — S8’ (the derivative of S) continuous?
2. Let p, g be integers > 1. Let §;(X) be the formal series
1+ X+ X4 Xt
and put
5x(X) = (5:(X))*.

a) Show, by induction on n, that

M 1 i+&ﬁ|&m po g bt D (pta—=D) _(pt+D)...(p+n)

n! n!
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and deduce (by induction on p), the expansion

(2) .yaunmﬁﬁ+§z¢xa

>0 n

\n . . . \n_
where A 1 v QodogmEogﬁosgﬁoonmmﬂma Ak — B!

b) Use S,(X).84(X) = Sprg(X) to show that

(3) ) As+w+_xa+=+~luvuﬁifjfv

0<i<n n—I1 n

(which is a generalisation of (1), the case when ¢ = 1).

3. Find the precise form of the polynomials P, in the proof of proposition 7. 1,
§ 1, for n<5 and calculate the terms of degree < 5 of the formal
(compositional) inverse series of

§(X) =X — Lxs 4+ L xs .. Y X g,
(%) = X — 104 LX0 e (X

4. Find the radii of convergence of the following series :

a) 2t (gl<n),
a0
b) D ez (p integer > o0),
a0
c) Y 2", with @y, = a®tl, g, = b* for n>o0,
n20

where ¢ and b are real and o0 <<a, b <1.

5. Given two formal power series

S(X) = S aX* and TX)= 25X (h#0),

r20 nz0

let

UX) = 3 @)X, VX)) =2 abX, WEX) =2 (@b)X

0 220 a0
(where p is an integer). Prove the following relations :
o(U) = (p(8)7  o(V) > p(S)-p(T),
and, if p(T) # o,
(W) < o(8)/p(T)-

EXERCISES

6. Let a,b and ¢ be elements of C, ¢ not an integer < 0. What is the
radius of convergence of the series

ity detD.0F D
SX) =1+ aumxT 2Tl 1) X2 +
aa+1)...(a+n—1)bb+1)...(b+n—1),
+ nle(c +1)...(c +n—1) Xr .-

Show that its sum S(z), for |z < p(S), satisfies the differential equation

2(1—2)8" + (¢c—(a + b + 1)2)S" —abS = o.

7. Let S(X) = X @.X" be a formal power series such that p(S) = 1.
Put n20
I

Sn=ay + - + a, N>H§+H?e+.m+...+&_v for n>o,

and put

UX) = XX, V(X)) = 2 tX"n

n0 n20

Show that : (i) p(U) = p(V) = 1, (i) for all 2] < 1,

- A 2 a,.mav = D $u2"

I—RZ n20 n20

8. Let S(X) = 3 a.X" be a formal power series whose coefficients are
nz0

defined by the following recurrence relations :
Gy =0, @y =1, @Gy = adn_1 + Ptz for n>2,
where «, 8 are given real numbers.

a) Show that, for n > 1, we have |a,| < (2¢)"! where ¢ = max (Jal, 1Bl 1/2)
and deduce that the radius of convergence p(S) # o.

b) Show that

(1—az—BeHS(R) =2 for lz[<p(S),
and deduce that, for |z| << p(S),
(1) S(2) <

== '|||I,||‘H e — WNN.

c) Let z,, z; be the two roots of X% «X-—1=0. By decomposing
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nrn. right hand side of (1) into partial fractions, find an expression for the
a, in terms of z; and 2z, and deduce that

p(S) = min (2y, |2,).

(Note that, if S(X) = §,(X) . S4(X), then p(S) > min (p(S,), ¢(Sy)).)

9. Show that, if x, y are real and n is an integer > o, then

Y sin (px + ) = sin AIM.& +.v.v&=: + ﬁa\mmnh.

0<pLn 2 2

Y cos (px + y) = cos A.m»a +&vmwn= + HR\.&SMJ

o< pga 2 2 2

(Use cos(px + ) + isin (px 4 p) = KP4 = ¢ir(gie)P,)
10. Prove the following inequalities for zeC :
o — 1] ol — 1 2] e

t1. Show that, for any integer n > 1 and any complex number z,

() mreee B0 (-5

2<pgn n

and deduce that

¢ = lim T + mv

n>»®

12. Show that the function of a complex variable 2 defined by

N: len . iz ___ p—iz
cCos 3 = + Anﬂwmu. smg = a'llml
2 21

is the mbm:\&n extension to the whole plane € of the function cos x (resp. sin x)
defined in § 3, no. 3, Prove that, for any z, 7' €C,

cos (2 + 2') = cos z cos 2/ —sin zsin 2/,
sin (¢ + 2') =sinzcos 2’ + cos zsin z';

cos2 z +sin?z = 1.

13. Prove the relations

2 .
ﬂxﬁm_bxﬁx for x real and o < x < xf2.
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14. Let z = » + 1 with x, y real.
(i) Show that
Isin (x + i) = sin® x - sinh?y,
|cos (x + i) [2 = cos?x + sinh?y;
(ii) determine the zeros of the functions sin az, cos az (where a is a real
number 5 0);

(iif) Show that, if — = < ¢ <= and n is a positive integer,

sin az|  cosh ay L
sin nz < cosh ny for z=n++v
and 4
) cosh a A: - -Hlv :
SR < 2/, for Nﬂa+ﬁ.A=+lv.
N A :
(N.B. By definition, cosh ¢ = cos (iz), sinhz = — isin (i2).)

15. LetIbeaninterval of the real line R. Show that, if f(x) is an analytic
function (of a real variable but with complex values) in I, it can be extended
to an analytic function in a connected open set D of the complex plane
containing I.

16. (i) Let (@), (Bs) be two sequences of numbers with the following
properties :
a) there is a constant M > o such that

lag + ag+ - +a|LM forall n>1,

b) the B, are real >0 and B; > By > -2>Ba 2>+ --
Show that, for all n > 1,

Txu.wu + Rmﬂw R -+ Rz@L A EW_.

(Introduce s, = @y +++++ and write
@By ot e = (B1—Ba)sy +- -+ (Boor— Bu)Sn—1 + Basn-)

(ii) Let S(X) = > @,X" be a formal power series with complex coeffi-

n20
cients such that p(S) = 1, and that S, a, is convergent. Use (i) to show
20
that the series 2 a.x* is uniformly convergent in the closed interval
n20

[0, 1] of R, and deduce that
lim D) 4" = X

z3>1 a0 nz0

ozt
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POWER SERIES IN ONE VARIABLE

(iii) Let S(X) = X X*/n® now and let D be the intersection of the open
nz>1

disc |2/ << 1 and of the open disc [ — 1/<C 1. Show that there exists a
constant & such that

S(z) +8(1—2) =a—Ilogzlog (1 —2) for zeD,

where log denotes the principal branch of the complex logarithm in the
half-plane Re(z) > o (which contains D).

AZQ@ that, if ze D, then log (1 —2) = — T(z) with
T(X) = X.8"(X),

because of proposition 6. 1 of § 3, and that proposition 6. 2 of § 3 gives

_omﬁuluv.lrumn for NmU.v

d -
2 (logzlog (1 —2)) = 2 —

Finally, use (ii) to show that

a= 2 1/n2,

a2t

a— (log2)? = M, 1/n%2"1,

(Cf. chapter v, § 2, no. 2, the application of proposition 2. 1.)
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