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Abstract. Let A(t) be a path of bounded operators on a real Hilbert space,
hyperbolic at +00. We study the Fredholm theory of the operator Fy =
d/dt— A(t). We relate the Fredholm property of F'4 to the stable and unstable
linear spaces of the associated system X’ = A(t) X . Several examples are
included to point out the differences with respect to the finite dimensional
case, in particular concerning the role of the spectral flow. We define a general
class of paths A for which many properties typical of the finite dimensional
framework still hold. Our motivation is to develop the linear theory which
is necessary for the set-up of Morse homology on Hilbert manifolds.

Introduction

Consider a smooth vector field £ on the Euclidean space R™ and the corre-
sponding system of differential equations

u'(t) = &(u(t)). (1)

Letx,y € R™ be equilibrium points for the above system, &(x) = £(y) = 0,
which we assume to be hyperbolic, meaning that the Jacobian matrices
VE(z) and VE(y) do not have purely imaginary eigenvalues. Assume that
(1) has a solution u which connects x to y:
li = li =y.
dm u®) =2, M u®) =y
If one wants to examine the structure of the solutions of (1) connecting x
to y and close to u, the object to be studied is the operator obtained by
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linearizing (1) along w:
v v — VE(u),

defined on some space of curves v : R — R" vanishing at —oo and +00. A
natural domain for such an operator is C’é (R; R™), the space of continuously
differentiable curves vanishing at infinity together with their first derivatives.
Another useful domain is H!(IR; R™), the Hilbert space of square integrable
curves whose weak derivatives are also square integrable!. Clearly, the do-
main can be chosen in a large class of function spaces, but this choice turns
out to be not very relevant, see Remark 5.1. So one is lead to study a bounded
operator of the form

Favu(t) =o' (t) — A(t)v(t),

from C§ to CY (or from H! to L?, etc.) where A is a path of matrices ad-
mitting limits at —oo and +o0o and such that A(—o0) and A(+00) have no
purely imaginary eigenvalues. Matrices without purely imaginary eigenval-
ues are said hyperbolic, so the paths with the above property will be called
asymptotically hyperbolic. The following result is well known (see [Sch93],
Propositions 2.12 and 2.16, or [RS95], Theorem 2.1).

Theorem A Let A be an asymptotically hyperbolic path of n by n matrices.
Then F 5 is a Fredholm operator of index

ind Fy =dim V™ (A(+00)) — dim V™ (A(—00)).

Here V'~ (T') denotes the T-invariant subspace of R™ corresponding to
the eigenvalues with negative real part in the spectral decomposition of 7.
When Fy () is onto, the above theorem implies that its kernel has dimension
dim V~(V{(y)) — dim V'~ (VE(x)): so, by the implicit function theorem,
the set of solutions of (1) connecting = to y and close to u is a manifold
of dimension dim V= (V£(y)) — dim V= (VE(z)).2 If vector field £ is the
negative gradient of a Morse function f, the above result can be used as the
starting point to develop a Morse homology for f, an alternative approach
to Morse theory, based on the study of the gradient flow lines connecting
critical points (notice that in this case V&(z) = V2 f(x), the Hessian of f
in z, so the dimension of V'~ (V¢(x)) is the Morse index of ). See [Sal90]
or [Sch93].

! This is a suitable space of perturbations of the curve w. Indeed, since the equilibrium
points x and y are non-degenerate, all the connecting solutions converge to them exponen-
tially fast, and in particular, they are square integrable together with their first derivatives.

% Such a result could be obtained also by looking at the intersection between the unstable
manifold of x and the stable manifold of y. In fact, it can be proved that these manifolds have
transversal intersection at u(t) if and only if Fiy¢(,,) is onto, see Sect. 8, or [Sal90] Theorem
3.3.
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In this paper we present a detailed study of the properties of the operator
F4 when A is an asymptotically hyperbolic path of bounded operators on
a possibly infinite dimensional Hilbert space E. The aim is to provide a
useful machinery which could be employed to develop Morse homology
theories for functionals defined on infinite dimensional Hilbert manifolds.
In [AMO1] we constructed a Morse homology for functionals on a Hilbert
space, consisting of the sum of a non-degenerate quadratic part and of a
term with compact gradient. The generalization of Theorem A which was
proved there is the following (see also [AvdV99])>.

Theorem B Assume that the asymptotically hyperbolic path A has the form
A(t) = Ao+ K(t), where A is a hyperbolic operator and K (t) is compact.
Then F4 is Fredholm and

ind Fy = dim(V ™~ (A(+00)), V™ (A(—00))).

Here dim(V, W) denotes the relative dimension of the (possibly infinite
dimensional) subspace V' with respect to WW:

dim(V, W) =dimV n W+ —dim VN Ww.

See Sect.3 for more details on the relative dimension. Therefore, in the
class of compact perturbations of some fixed hyperbolic operator, things go
essentially as in the finite dimensional case. We will see that outside this
class new phenomena occur.

Let X 4 be the path of operators solving the Cauchy problem

{Xﬁm = A()XA(),
XA(0) = 1.

Two important objects related to such a system are the stable and the unstable
spaces:

W3 = {x € E| tETmXA(t)x = 0},

3

= {m eE| tlim Xa(t)x :0}.
——00

The fact that these are linear subspaces of E follows directly from the defini-
tion. Proving that they are closed and establishing further properties requires
a fixed point argument: the following theorem is proved in Sect. 1 and 2.

3 Actually, in [AvdV99] and [AMO1] only paths of self-adjoint operators are considered,
but the generalization stated here presents no difficulties. See also Sect. 6, where Theorem
B is deduced as a consequence of more general facts.
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Theorem C Let A be an asymptotically hyperbolic path. Then W3 and W'
are closed subspaces of E. Moreover, X 4(t)W 4 convergesto V— (A(+00))
fort — +o0o, while X 4(t)W converges to V' (A(—o0)) for t — —oo.

See Sect.2 and Theorem 2.1 for the definition of convergence of sub-
spaces and for a richer statement. We point out that this is also an existence
result for the stable and the unstable space. More properties, such as the
behavior of the stable and the stable spaces when the path A is perturbed
by a path which either is small or consists of compact operators, will be
established in Sect. 3. The importance of the stable and the unstable spaces
can be seen from the following characterization, proved in Sect.5, with a
more detailed statement.

Theorem D Let A be an asymptotically hyperbolic path. Then F4 has
closed image if and only if W35 + W} is closed, Fy is Fredholm if and
only if (W3, W}) is a Fredholm pair, in which case

ind Fiy = ind (W3, W}4).

We recall that a Fredholm pair is a pair of closed subspaces (V, W) such
that V' 4+ W is closed and finite codimensional, V' N W is finite dimensional.
The index of a Fredholm pair (V, W) is the integer

ind (V,W) =dimV NW — codim (V + W).

The characterization given by Theorem D has many interesting conse-
quences, on which more will be said in Sect.5 and 7.

(i) The operator F4 is Fredholm whenever V~(A(+00)) and
V= (A(—00)) are finite dimensional, regardless the behavior of A(t)
in between. In this case the formula of Theorem A still holds.

(i) Since any two closed subspaces can be the stable and the unstable space
of an asymptotically hyperbolic system, in general F'4 may have very
bad properties: it may not have a closed image, it may not have finite
dimensional kernel and/or co-kernel.

(iii) Also when F4 is a Fredholm operator, it is not true anymore that, as
in Theorems A, B and in (i), its index depends only on the end-points
of the path, A(+00) and A(—00).

(iv) In general, the spectral flow of the path A, an algebraic count of the
eigenvalues of A(t) which cross the imaginary axis, has no connection
whatsoever with the index of F4. This is in sharp contrast with what
happens with paths of self-adjoint unbounded operators with compact
resolvent (see [RS95]).

Besides these negative results, it is possible to find classes of asymptot-
ically hyperbolic paths much more general than the one of Theorem B, for
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which F4 is Fredholm and its index depends only on the end-points. A result
which seems interesting for its implications in the calculus of variations is
the following.

Theorem E Assume that E has a splitting E = E~ © E™ and that the
asymptotically hyperbolic path A has the form A(t) = Ao (t)+ K (t), where
the operators K (t) are compact, E~ and E™ are Ay(t)-invariant for every
t, Ao(f00) are hyperbolic, and

V= (Ag(£o0)) = E~, VT (Ag(+o))=E".
Then F4 is Fredholm and its index is
ind Fy =dim(V™ (A(+00)), V™ (A(—0))).

The proof of this result is contained in Sect. 6, together with more general
statements. An example will show that in some sense, this is the most general
situation in which a result of this kind is to be expected. In the last section
we present no new results, but we explain how to use the theory developed
so far in a nonlinear setting.

We wish to remark that all the statements proved in this paper could be
generalized to paths of bounded operators on a Banach space.

1 The stable and unstable spaces

Let E be a real Hilbert space, with inner product u - v and related norm
|u|. Denote by L(E) the Banach algebra of bounded linear operators on E,
by L.(E) the closed ideal of compact operators, by ||7'|| the norm of an
operator T' € L(E), and by o(T") the spectrum of 7.

Definition 1.1 A bounded operator T € L(E) is said hyperbolic if its
spectrum does not meet the imaginary axis.*

Every hyperbolic operator is invertible. An invertible self-adjoint oper-
ator is hyperbolic. The set of hyperbolic operators is open, by the semi-
continuity of the spectrum (see [Kat80] IV.3). By definition, the spectrum
of a hyperbolic operator 1" consists of two isolated closed components (one
of which may be empty)

o(T)N{z€C|Rez< 0} and o(T)N{ze€C|Rez>0}.

Let
E=V(T)e V) (2

* In the framework of discrete dynamical systems, a hyperbolic operator is a bounded
operator whose spectrum does not meet the unit circle. In that context, an operator satisfying
Definition 1.1 should be called infinitesimally hyperbolic.
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be the corresponding 7'-invariant splitting of £ into closed subspaces, given
by the spectral decomposition, with projections P~ (7)) and P (T). So

o(Tly—r)) =o(T)N{z€C|Rez <0} and

o(Tly+) =o(T)N{z € C|[Rez > 0}.
Furthermore

V(=T =V (T):, V=T =vHD)"L

If, moreover, " is normal, meaning that 7" and 7™ commute, the splitting
(2) is orthogonal and

Tz -z < —alz|*> YeeV(T), Tz -z>alz]> VoeVTH(T),

where o := inf [Re o (T)|.
If A is a piecewise continuous £(F)-valued path on an interval J con-
taining 0, let X 4 be the associated linear flow, i.e. the solution of the linear

problem?’
{X’(t) = A(t)X (1),
X(0)=1.

The path of operators A will appear as a subscript of many objects we are
going to introduce. We will omit such subscript whenever no ambiguity is
possible. From the uniqueness of linear Cauchy problems, it is readily seen
that

Xoae = (X305, 3)
XA+B =Xa- XXngXA7
XA(‘_*_S)(t) = X (t+ S)XA(S)_l.

Moreover,
XB(t) = XA(t) + /(;t XA(t)XA(T)_l(B — A)(T)XB(T) dr. @)

Notice that if A is bounded, X 4 satisfies an estimate of the kind
XA Xa(s) Y < e, fort>s, 5)

for some ¢ > 1, A € R. When the path A is constant, A(t) = Ay, the linear
flow is X 4(t) = e!49; for any number \ > sup Re o(Ay), the constant

¢ := sup ||et(A°_>‘I)H
>0

5 Working with piecewise continuous paths instead of continuous ones gives us some
freedom which is sometimes useful to build examples. We have no good reason here for
considering a further level of generality, such as A € L*°(J; L(E)).
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is finite and (5) holds with the pair (¢,
to choose A = sup Re o (Ap) and ¢ =
By the last identity in (3),

XA(+7) (t)XA(-JrT)(S)il =Xa(t+7)Xa(s+ 7')717

). When Ay is normal, we are allowed
1.

so inequality (5) holds with the same constant ¢, A when we replace A by
the translated path A(- 4+ 7). By the second identity in (3),

X st (X aspr(s) ™ = eI X4 (1) X a(s) 7,

so inequality (5) holds with constants ¢, A+ y when we replace Aby A+l .

The constant ¢ in (5) plays a role when A is subject to more general
perturbations. More precisely, it determines how much the constant A is
sensitive to perturbations:

Lemma 1.1 Let A and H be piecewise continuous and bounded L(E)-
valued paths on R™, and let c, \ be such that X 4 satisfies (5). Then

IXasmr (X arn(s) M < e, fort > s >0,
with i := X+ ¢||H||0o-

Proof. By our previous considerations, we may assume s = 0 and p = 0.
Fix some ¢ > 0. In this case, the curve X 44 H|[O,t] is a fixed point of the
contraction

Y Xa() [I + / Xa(r) ' H(T)Y (1) dr
0
on C([0, t]; L(E)) with the uniform norm. It is easy to check that the closed
ball of radius ¢ of C([0,t]; L(E)) is invariant, so || X a1 (t)] < c. 0

Let A be a piecewise continuous £(E)-valued path on R, respectively
on R™. The stable space, respectively unstable space, corresponding to the
system X’ = A(t)X are the linear subspaces of F

Wi = {x €E| t£+mOOXA(t)x = 0} ,
Wy = {$ eE| tLiEIlOOXA(t)x = 0}

The last identity of (3) implies that

When the path A is constant, A(t) = Ag with Ay a hyperbolic operator,
the stable and unstable spaces are the invariant subspaces

Wi =V"(4), Wi=VT(A).
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If A(t) is a small perturbation of a constant path, W3 and W} are closed
subspaces (in general not invariant) close to V'~ (Ag) and V1 (Ay), as the
next proposition shows.

Proposition 1.2 Let Ay be a hyperbolic operator, E~ := V= (Ag), E* :=
V1 (Ap), and ¢ > 1, X > 0 be constants such that

et 0] p || < ce™, et 0 g ]| < ce™™, Wt 0.

Let A(t) := Ao + H(t), where H is piecewise continuous on R™ and

1
1H o < 50—%.

3

Set v = X\ — 2C%HHHOO and b := 2c2. Then the following facts hold
(“evolution towards E~"):
(i) for every t > 0, X(t)W3 is the graph of an operator S(t) €
L(E~,E*);
(ii) [S@)] < ¢ [ e T H(r)| dr
(iii) the function S has as much differentiability as X 4,
(iv) for every ug € W3 and every t > s > 0 there holds

| X 4 (t)ug| < be™" =9 X 4(s)ug|.
Moreover ( “evolution from E+”):
(v) for every t > 0, X(t)E™ is the graph of an operator T(t) €
L(ET,E™);
i) [T < ¢ fy e D H(7)|| dr;

(vii) the function T’ has as much differentiability as X 4;
(viii) for every yg € ET and every t > s > 0 there holds

[ Xa(t)yol = b~ "X a(s)yol.

Proof. Denote by P_ and P, the linear projections associated with the
decomposition E~ @ ET. Splitting uasu = x +y,z = P_u,y = Pyu,
the equation v’ = A(t)u becomes

{1,/ = A (t)x + A:F(t)y’ (7)
Y = AL(t)r + AL (t)y,

which is equivalent to the system of integral equations

z(t) = Xa_(t)Xa_(s) 'a(s) (8)
/ Xa ()X (r) " Ag(r)y(r) dr.
y(t) = Xa, ()X, () "y(r) ©)

— /t Xa, () Xa, (7)Y As(T)z(7) dr.
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Choosing s <t < r, Lemma 1.1 provides bounds for the above integrals,
with any pair of continuous functions (z, y): setting y := A —¢|| H ||, Since

| Hl|oo < cfgu, we obtain

/ Xa (X4 (7) Ax(r)y(r) dr

<ec </ e P || A (7)) dr) 19| 0, s,

15l
1
_1 (s

<c 2(1_6 uit ))HyHoo,[s,t]v

IN

e(1 — e 1)) [1Ylloc, 5.4 (10

and using the identity

X s ()X 4+ (1) M = [1(Xa+ ()X s (1) 7|
= | Xa, (1) Xa, (0"
= [IX s (1) X _ax ()7,

we obtain also

/tT Xa () Xa, (1)t AL (1)z(r) dr

<ec (/ eu(ft)HAi(T)Hdr) [ P
t

H|0o
LI an
i

<3 (1— e P2 oo -

<e(l— e—u(f‘—t))

Now, if u = x 4 y solves ' = A(t)u with u(0) € W*, Lemma 1.1 and
estimate (11) allow to take the limit for » — 400 in (9), so taking s = 0 in
(8), (z,y) is a solution of the fixed point problem

s ()

where zg = x(0) and L 4 is the linear operator on C,(R*; E~ @ E™) defined

< Jo Xa_()Xa_ (1) Ax(r)y(7) dr ) (13)

— ftoo Xa, ()X a, (1) tAs(r)2(r) dT

~
b
N
NS
N———
=
i
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Conversely, taking s = 0 and r = oo in (10) and (11), we deduce that L 4
is a linear contraction. Therefore problem (12) has a unique solution (z, y),
which clearly satisfies (8) and (9); from Lemma 1.1 and (10), for¢ > s

2 (t)] < ce )|z (s)| + 2 (1— e P |yl ooy (14)

_1
< max{c|z(s)], ¢ 2[|Ylloo,[s,00[}>

hence
120 5,001 < max{elz(s)], ¢ 2 [y lloo,js o0} (15)
while from (11),
()] < ¢ 2|2 oo .00, (16)
hence
19lloo.fs.00] < €2 12l oo, 00 (17)

Estimates (15) and (17) give
12l oo, 5,001 < max{ela(s)], ¢ H|zlloo,fs,000}-
Since ¢! < 1, the last inequality implies that

HxHoo,[s,oo[ < C’x(3)|a (18)

and (16) becomes
ly(®)] < e2la(t)]. (19)
So there exists a continuous path of rank-one operators U (t) € L(E~, E™)
such that
U@)a(t) =y(), U] < e2.

Then the first equation of (7) becomes
2 = [A_(1) + Az (U (1)),

and since || A+ (U (1) < c3 ||H ||, a further application of Lemma 1.1
yields
o(t)] < ce " a(s)], (20)

for v := pu — 2 || H||so. Again by (19),

3

ly(t)| < cze 7 |z(s)], 1)

hence x and y vanish at infinity. The conclusion is that, for any zp € E—,
there exists a unique yp € E1, namely yo = y(0), such that z + yo € W*:



Ordinary differential operators in Hilbert spaces and Fredholm pairs

that is, TW* is the graph of a (linear) operator Sy : E~ — E™. From the first
inequality in (11) with ¢ = 0,7 = o0, and (18), we have

Sool = Jyo| < c ( [ ermiasm dr) oo
0

< ( /0 T H)| dT) 2ol,

for v < p. This proves (i) and (ii) in the case ¢ = 0; the general state-
ments follow by considering the shifted path A(- + t) and using the identity
Xat)W3 = me ) Claim (iv) follows from (19) and (20): indeed
()] < le(®)] + ly@®)] < 1+ e2)ee™ N a(s)] < 2027 u(s)].
Since graph S(t) = X 4(¢)W?, the representation
S(t) = Py (P-|x.yws)
= Py Xa(t)(Ig- + 8(0))[P-Xa(t)(Ig- + S(0))]

-1

implies (iii).

As for the second part of the proposition, notice that for any ¢ > 0 and
u € E, we have that u belongs to X 4(f)E™ if and only if there exists a
solution u of u’ = A(t)u such that u(0) € E and u(f) = . In other terms,
setting as before x(t) = P_u(t), y(t) = Pyu(t), uis in X 4(¢)ET if and
only if (z,y) is a solution of system (8) and (9) with conditions z(0) = 0,
x(t) = T := P_u, z(t) = T := P_u. That is, (x,y) is a solution of the
fixed point problem

@ i (i) i <XA+(.)XOA+ @1?3), (22)

where My is the linear operator on C([0,%]; E~ & E™T) defined by

Y (x) @ ( Jo Xa_(OXa_ (1) Az (r)y(r) dr )
A = - .

— [E XA, ()X a, (T) T AL (T)x(7) dr
As before, from (10) and (11), M 4 is a linear contraction. We conclude that,
for any § € ET, there exists a unique T € E~, namely 7 = x({), such
that Z+y € X4(t)E™: thatis, X 4(¢) E* is the graph of a (linear) operator
T(t): ET — E~.From (10), (22),for0 <t < r <,

1
[2(®)] < ¢ [yl o115 (23)

hence L
||x||oo,[0,r] Sc 2 ”yHoo,[O,'r}- (24)
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From Lemma 1.1, (9), (11)) and (22),
()] < ce Ty (r)] + ¢ 2 (1 — O |[2]| oo o

< max{cly(r)], ¢ % @]l jo }
hence 1
[9lloo,f0,r] < max{cly(r)|, ™2 |[#|[oo,0,r}- (25)
Estimates (24) and (25) imply
19lloo.jo.r < max{ely(r)], ¢ ylloo 0.7}
Since ¢~ < 1, we have
1Ylloo,j0.r] < cly(r)]. (26)
Then (23) becomes
[ (8)] < e2ly(1)] @7
From the first part of (10), with s = 0, and (26),

t _
Tyl = 7] = |z()| < c (/O e M| A ()| dT) 1Yllo0,f0.2

P
<c (/ 6_”(t_T)I\H(T)||dT) 11,
0

for v < p, proving (v) and (vi). Let U (t) be a continuous path of rank-one
operators in L(E1, E~) such that

1
Ut)y(t) =z@t), U@ < c2.
Then the second equation of (7) becomes
y' = [AL(OU() + Ar(t)]y

and since | A+ (£)U(t)| < c2 || H ||, we can apply directly Lemma 1.1 and
obtain
ly(D)] = ¢ ey s)],

for v := 1 — c2 || H||so. By (27),

SO
1 .
[Xa@®uol = [y(0)] = e y(s)] = Se2e" I Xals)uol,
proving (viii). Claim (vii) follows from the representation

T(t) = P_ (Pelx,p+) = P-Xa®)[PyXa(®) ™"
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Remark 1.1 For further applications, we point out that the operator S(0) =
S4(0) of the above proposition can be represented as

S(0)xg = Pyevo(I — La)" ' Xa_(-)o,

where evg denotes the evaluation map for ¢ = 0.

2 Asymptotically hyperbolic systems

Although Proposition 1.2 would allow to handle a more general situation,
we will be mainly interested in those paths of operators which have a limit
fort — +o0.

Definition 2.1 An asymptotically hyperbolic path of operators on R :=
R U {—00, 400} is a piecewise continuous map A : R — L(E) such that
A(400) and A(—o0) are hyperbolic.

Similarly, we can define an asymptotically hyperbolic path of operators
on RT := [0,00], respectively R := [—00,0], by requiring that A is
defined and piecewise continuous on R" ,respectively R, and that A(+00),
respectively A(—o0), is hyperbolic.

Let G(F) be the Grassmannian of E, i.e. the set of all closed subspaces
of E.For V € G(F), denote by Py the orthogonal projection onto V. The
distance

dist (V, W) := [[Pv — Pw||

makes G(F) a complete metric space, isometric to the subset of L(E) of
all orthogonal projections. If dist (V, W) < 1, then Py|y : W — V is an
isomorphism, being the restriction to W of the isomorphism

I—(Py—Py)(Pw—Py.) = PyPy+PyPyr - WaW 5 VeVt

In particular, dim and codim are continuous functions from G(E) to NU
{o0}. A useful equivalent distance is

5(V, W) := max{p(V, W), p(W,V)},
where
p(V,W) := sup inf |v—w|=|Py.Pv|.
veV wew
lv|=1
Indeed, § is a distance because of the inequality
1P Pell < P Py By |+ | Py Pys Pyl| < || Pyrs Pyl|+1| Prs P,

and the equivalence between ¢ and dist follows from

S(V,W) = max{||[(Py — Pw)Py ||, |(Pw — Pv)Pw|} < |[Pv — Pyl
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and

Py — Pw| < [(Py — Pw)Py|| + [(Pv — Pw)Py|
= ||Pwo Pyl + | Pw Py
= p(V,W) + || Py Pw||
=p(V,W) 4+ p(W,V) < 26(V,W).

The image T'V of a closed subspace V' by an invertible operator 7" contin-
uously depends on the pair (7',V) € GL(E) x G(E), as the identity

Pry = TPy[TPy + T I — Py)] ! (28)

shows. In particular, if ¥ = E~ @ E™, a sequence of operators (S,,) C
L(E~, E™) converges to S if and only if the graphs of .S,, converge to the
graph of S.

Theorem 2.1 Let A be an asymptotically hyperbolic path of operators on

R'. Then W7 is a closed subspace and the following convergence results
fort — +o0 hold:

(i) W3 is the only closed subspace W such that X (t)W —
V= (A(+00));

(ii) | Xa(®)lwsl < ce_’\(t_S)HXA(s)]WZHfor suitable ¢, A > 0, and for
everyt > s > 0.

If the closed linear subspace V' C E is topological complement of W3,

(iii) XaA(t)V — V1 (A(+00));

(iv) inf | X 4(t)v| — oo exponentially fast.
veV
lv|=1

Furthermore

(v) W2, = (W3)*.

Proof. If t is large enough, the shifted path A(-+t) satisfies the assumptions
of Proposition 1.2, with E~ := V~(A(+c0)) and E* := VT (A(+00)).
So X4(t)W§ = W44y is the graph of an operator S(t): E- — ET.
Since X 4(t) is invertible, W] is a closed subspace. By Proposition 1.2 (ii),
||S(t)]| tends to zero for t — oo, hence X 4(t)W3 — E~, proving the first
part of (i).

Conclusion (ii) readily follows from Proposition 1.2 (iv).

Up to a time-shift, we may assume that £ is in direct sum with W4 and
that the conclusions (iv) and (viii) of Proposition 1.2 hold for some b, v > 0.
Since V' is also in direct sum with W7, it is the graph of a bounded operator
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L from E to W5. Therefore, if v € X 4(¢)V, writingv = X4(¢)(y + Ly)
withy € ET,we getthatu := X 4(t)yis anelement of X 4(t) E™ satisfying
v —ul = [Xa(t)Ly| < be™"|[Lll|y| < b%e™**|| || Xa(t)y]

< b e LII(lv] + v = ul).

Hence |v — u| = o(1)]|v|, so
P(Xa(t)V, Xa(t)ET) = 0. (29)

On the other hand, for any u = X a(t)y € X4(t)E™, setting v := u +
Xa(t)Ly € Xa(t)V, we get that

u— v = |Xa(t)Ly| < be || L|y| < b*e~>""|| L] |ul,
so |u —v| = o(1)|u| and
p(XA(t)ET, Xa(t)V) — 0. (30)

From (29) and (30), (iii) follows, because X 4(t)E™ — E™T by Proposition
1.2 (v), (vi).

Now, as a consequence of (iii), we have that any closed subspace
W such that X4(t)W — V~(A(+0o0)), necessarily has null intersec-
tion W NV = (0) with any topological complement V' of W§. This
implies that W C W3, so also XA(t)W C Xa(t)W§ for any ¢. As
we have dist (Xa(t)W, Xa(t)W3) < 1 for large ¢, we conclude that
Xa(t)W = Xa(t)W§ and W = W3. This shows the uniqueness of the
subspace W and ends the proof of assertion (i).

For any v € V,v = y 4+ Ly, by Proposition 1.2 (iv) and (viii),

[ Xa(t)v] > [Xa(Oyl = [ Xa(t)Ly| > b~ e |y| — be™'| Ly]

1
> b—l Vt_b —vt ) > b_l l/t_b —vt L
> (67 = b LI ) 2 T (7' b L) ol

proving (iv).
By the first assertion, the curve of subspaces

X (0) (W] = (a7 [(Wa)*] = [Ka)Wil
converges to (E7)% = V= (—A*). By assertion (i), (W5)*t =W?*,.. O

We conclude this section with the characterization of the asymptotically
hyperbolic paths for which the evolution of the stable space is constant.

Lemma 2.2 Let A be an asymptotically hyperbolic path of operators on
R Then Xa(t)W3 = V= (A(+00)) for every t > 0 if and only if
A(t)V~(A(+00)) C V7 (A(400)) for every t > 0.
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Proof. The first condition implies the second one by differentiation. Con-
versely, the second condition implies X 4 (¢)V ™ (A(+00)) C V™~ (A(400)),
so X 4(t) restricts to a continuous path of injective semi-Fredholm opera-
tors on V'~ (A(+400)). Since X 4(0) = I, the continuity of the Fredholm
index implies that X 4(¢)V = (A(+00)) = V7~ (A(+00)) for any ¢. Then by
Theorem 2.1 (i), W§ = V™~ (A(400)). 0

3 Perturbations

It is interesting to see what happens to the stable space W§ when the path A
is subject to a perturbation by a path which is either small in the L°° norm,
or consists of compact operators. We begin with the small perturbations.

Theorem 3.1 The stable space W3 depends continuously on the path A,
with respect to the standard topology of G(E) and to the L™ topology on
the set of asymptotically hyperbolic paths.

Proof. Let (Ay,)n>1 be a sequence of asymptotically hyperbolic paths con-
verging uniformly to the asymptotically hyperbolic path A . It is enough to
prove that for some ¢y > 0, (an(,ﬂo)) converges to W3 ., in G(E):

the claim then follows from identity (6) and from the fact that (X 4, (o)1)
converges to X 4__ (to) L.

Therefore, up to a time shift and to a shift of the indices, we can assume
that the hypotheses of Proposition 1.2 are satisfied, with Ag := Ao (00) and
H(t) := A,(t) — Ap, forany 1 < n < oco. As a consequence, keeping the
notations of Proposition 1.2, we have that IV} is the graph of an operator
Sy, € L(E~, ET) and the estimates

X, (X4, (1) M < ce "7 127, (31)

X,y ()X a, (1) M S ce #7780, t <7,

hold, where A, := P_A,P_, A+ := Py A, P;. By Remark 1.1,

Sa,x0 = Prevgo (I —La,) ' X4, (-)x0, VYao€ E,
where L4, is the bounded operator on C,(R™; E) defined as

x Jo Xa,_ ()X a, (1) Apg(r)y(7) dr
LAn (t) = [e.e] 1 9
— [ Xa,, ()X a,, (7)Y Aps (T)x(7) dr

with operator norm || L 4,, || < o < 1. Notice that

evo(I —La, ) ' Xa, ZLA X4, (32)
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is absolutely convergent in L(E~, E), uniformly in n:
L5, X4, (0l zz-m) < ca®, 1<n< oo

As we are going to prove, (LZ,LXAW (0)) converges to LZOO Xa, (0)in
L(E~, E) for every k, so identity (32) passes to the limit. This shows that
(S4, ) converges to S4__, concluding the proof.

To prove the claim, notice first that (X4, (¢)) converges to
Xa,, (t) for every t; moreover, if Z,(t) := LQHXA% (t) converges to
Zoo(t) = L’jlooXAoo_ (t), then Lij;iXAn— (t) = La, Zn(t) converges to
Ly Zx(t) = Lljﬁ;j_ X4, (t), because the integrands in the expression
for L4, Z,(t) pass to the limit pointwise, and by (31), are dominated by an
integrable function. The claim follows by induction. ad

In order to study the perturbations by paths of compact operators, it
is necessary to recall some concepts from [AMO1]. Two closed subspaces
V,W C E are said commensurable if their orthogonal projectors differ by
a compact operator. The relative dimension of W with respect to V is the
integer

dim(W, V) :=dim W NV+ —dimV N W+ = ind (W, V1),

If (V, Z) is a semi-Fredholm pair (see Sect.5) and W is commensurable to
V', then (W, Z) is also a semi-Fredholm pair, of index

ind(W,Z) =ind (V, Z) + dim(W, V). (33)
The following lemma is a simple variant of Proposition 2.2 in [AMO1].

Lemma 3.2 Let T, S be two hyperbolic operators such that T’ — S is com-
pact. Let P*(T) and P*(S) be the projectors given by the spectral de-
composition of T and S. Then P~ (T) — P~(S) and P (T) — P (S) are
compact.

The following lemma is proved in [AMO1], Proposition 2.3.

Lemma 3.3 Let Ey, Ey be Hilbert spaces, and let T, S € L(FE, E2) be
operators with compact difference and closed image. Then kerT' is com-
mensurable to ker S, ranT, the range of T, is commensurable to ran S
and

dim(ran 7', ran S) = — dim(ker 7', ker S).

Lemmas 3.2 and 3.3 imply that, if 7', S are hyperbolic operators on £
with compact difference, then V'~ (T") is commensurable to V= (S), while
V(T is commensurable to V1 (S).

Identity (4) immediately implies:
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Lemma 34 Let J C R be an interval containing zero. If A(t) — B(t) is
compact for every t € J, then X 5(t) — Xp(t) is compact for every t € J.

Lemma 3.5 Let J C R be an interval and let K : J — L(E) be an
integrable path consisting of compact operators. Then

Cb(J;E)BU'—)/K(T)U,(T)dTGE
7

is a compact operator.

Proof. The claimis obvious when K is a characteristic function of a bounded
interval. The general case follows by linearity and by a density argument.
d

Theorem 3.6 Let A and B be two asymptotically hyperbolic paths such
that A(t) — B(t) is compact for every t. Then W3 is commensurable to W7},
and

dim(W3, W) = dim(V ™ (A(+00)), V™ (B(+00))).

Proof. Assume at first that A and B satisfy the assumptions
of Proposition 1.2 with E* equal to V*(A(4+o0)), respectively
VE(B(+00)). In this case, W5 and W3 are graphs of two
bounded operators, S4 € L(V~(A(4+00)), VT(A(+o0))) and Sp €
L(V~(B(+)), VT(B(+0))). Let P; and P} denote the projections
associated to the splitting £ = V'~ (A(+00)) & V1 (A(+00)); then

W5 =ker(Pf — SaPy), Wp=ker(Pg —SaPg). (34
Since A(+00) — B(+00) is compact, P, — Py and P} — P;; are compact,
by Lemma 3.2. We shall prove that Sy P, and Sp Py differ by a compact
operator.

Recall, from the proof of Proposition 1.2, that Ly € L(Cy(R; E))
writes as

t
Lau(t) :/0 XP;AP;(t)XP;APX(T)*lpgA(T)P;(u(r) dr
—/t XPXAP;{(t>XPjAPj(7)_1PXA(T)PZU(T) d’i'.

The operator L 4 maps bounded subsets of C,(R™; F) into equicontinuous
sets: indeed

%(LAU) = (PfAP{ + Py AP;)(La— Du+ Au
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is uniformly bounded, for u varying in a bounded subset of C;,(R™; E). Since
Py A(t)P; — Py B(t)P5 and P A(t)PS — P} B(t) P} are compact for
every t > 0, the operators

Xprap; (t) - Xp-pP; (t) and Xptapt (t) - Xpippi (t)

are compact for every ¢t > 0 (Lemma 3.4). Hence, for every ¢t > 0, the paths

consist of compact operators. Since K _ is integrable on [0,¢] and K is
integrable on [¢, co[, by Lemma 3.5 the set

{[(La = Lp)ul(t) | u € B}

is relatively compact, for any bounded set B C C,(R™; E). Together with
the equicontinuity stated before, by Ascoli-Arzela theorem this implies that
L — Lp is a compact operator. Thus, (I — L) ' and (I — L)~ ! have a
compact difference. By Remark 1.1,

SAPK = :{eUO(I - LA)_IXPXAPX (')P,L

and every operator in the above chain changes by a compact operator when
we replace A by B. Therefore, Sy P, — SpPp is compact, so identities
(34) and Lemma 3.3 imply that W} is commensurable to W3 and

dim(W35, W§) = — dim(ran (P — SaPy),ran (P — SaPg))
= —dim(V*1(A(4+00)), VT (B(+0)))
= dim(V™ (A(4+00)), V™ (B(+0))).

Let g be the above integer. In the general case, the preceding consid-
erations show that for ¢ large enough, (X A(t)W3, Xp(t)W}) is a pair of
commensurable subspaces of relative dimension ¢q. By Lemma 3.3, so is the
pair (W4, Xa(t) ' Xp(t)W§). By Lemma 3 4, the invertible operator

Xp(t) ' Xa(t) =1+ Xp(t) [ Xalt) — X5(t)]

is a compact perturbation of the identity, so Lemma 3.3 implies that
(W4, W3) is a pair of commensurable subspaces of relative dimension ¢,
concluding the proof. a
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We conclude this section with the problem of when the evolution of the
stable space remains in the same commensurable class. Let V' be a closed
subspace of E. Differentiating (28), it is easy to show that the orthogonal
projector P(t) onto X 4(¢)V verifies

P'(t) = (I - P(t)A@®)P(t) + P)A®) (I - P(t). (35

Denote by a(t) and p(t) the projections of A(t) and P(t) in the Calkin
algebra L(E)/L.(E). By (35), p solves the following Riccati equation

¢ =(1—q)ag+qa*(1 —q). (36)

The subspaces X 4(t)V are commensurable if and only if p(¢) = p(0) for
any t. In this case, p’ = 0, and from (36) we obtain

[a(?), p(0)]p(0) = (1 = p(0))a()p(0) = (1 — p(t))a(t)p(?)
=7/ (t)p(t) = 0.

Conversely, if [a(t), p(0)]p(0)] = 0, then also

p(0)a(t)"(1 —p(0)) = ([a(t), p(0)]p(0))" =0,

so the constant map ¢(t) = p(0) solves (36), and from the uniqueness of
the solution of the Cauchy problem, we conclude that p(¢) = p(0). Thus we
have proved:

Lemma 3.7 Let A : Rt — L(FE) be a piecewise continuous path of op-
erators, and let V be a closed subspace of E. Then X o(t)V is a path of
commensurable subspaces if and only if [A(t), Py| Py is compact for every
t € RY.

Remark 3.1 Let P, be two projectors onto V. Since [A,Q|Q =
[[4, P]P,Q]Q, if [A, P]P is compact for a projector onto V/, it is com-
pact for any projector onto V', and more generally, onto any closed subspace
commensurable to V.

Coming back to the evolution of the stable space, we have the following
characterization (compare Lemma 2.2).

Proposition 3.8 Let A be an asymptotically hyperbolic path of operators
onR" ;s let V be a closed subspace of E, and let P be a projector onto V.
Then the following are equivalent:

(i) Xa(t)W3 is commensurable to'V for any t > 0;
(ii) V~(A(400)) is commensurable to V and [A(t), P|P is compact for
anyt > 0.
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Proof. Assume (i). By Theorem 2.1 (i), Xa(t)W3 converges to
V7~ (A(+00)) for t — +o0, proving the first part of (ii), because the com-
mensurability classes are closed. By Lemma 3.7 and Remark 3.1, [A(¢), P| P
is compact and (ii) holds.

Assume (ii): by Remark 3.1, the operator

B(t) := A(t) — [A(t), Py~ (A(+oo)) PV (A(+00))
is a compact perturbation of A(t). Moreover, B(+00) = A(+400) and
B(t)V™ (A(+0)) C V™ (A(+00)).

By Lemma 2.2, Xp(t)W3 = V7~ (A(4+00)), and by Theorem 3.6 and iden-
tity (6), X 4(t)W3 is commensurable to X p(t)W 3, hence to V. 0

4 The operator F'4

Let L?(J; E) denote the space of square integrable E-valued functions on
J,and H!(J; E) the space of square integrable E-valued functions on .J
whose weak derivatives are square integrable. For simplicity of notations,
set
L?:=L*R;E), L[2:=L*R%E), L%:=L*R;E),
H':=H'R;E), H}:=H'(R"E), H!:=H(R;E).
Let A be an asymptotically hyperbolic path on R (see Definition 2.1). We
can define the bounded linear operator F4 from H! to L? by setting

Fau:=v —Au Yue H.

Similarly, if A is an asymptotically hyperbolic path on R* , respectively on
R, we have the operator F;{ from H i to Li, respectively F', from H 1
to L2 , defined as

Fj{u:u/—Au Vue HY,

Fiu=u'—Au Yue H'.
Denote by P} and P} the orthogonal projections onto W3 and W73 . It

is useful to introduce the following families of operators

Ght, 7)== X4(t
V(t, T
GZ(t, T):= Xt
V(t, T

[p+(t = 7)Pi — 1p-(t — 7)(I = P3)]Xa(r) ",
eRT xRT,
[1p+(t—7)(I = P§) — 1p-(t — 7) P{] X a(r) ",
eR™ xR™.

—_ — o —
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Lemma 4.1 Let A be an asymptotically hyperbolic path of operators on
R™. Let A > 0 be such that

supRe [o(A(+00))N{z € C|Rez < 0}] < —
Then there is a positive number c such that
IGH(t, 7| < ce 1 v(t,7) € RT x RT,
Proof. From the identity G (7,t) = —G* ,.(t,7)*, it s clearly sufficient
to show the bound for all pairs (¢,7) with ¢ > 7 > 0. In this case, using

Theorem 2.1 (ii),

IGT () = X O)lwsP X (1)~ (37)
< ce M X () PEX (1) 7.

Now notice that X (7)P*X (7)~! is the linear projection on the first factor
of the splitting

E=X(1)W*a X(r)(W*)*.
From Theorem 2.1 (i) and (iii),
X()W* =V (A(+o0)) and X(r)(W*)* = VH(A(+00)),

for 7 — o0o. Therefore X (7)P*X (7)~! is a continuous path of linear pro-
jectors which converges for 7 — oo. In particular, it is bounded and the
conclusion follows from inequality (37) taking into account the initial ob-
servation. a

Proposition 4.2 The operator FX is onto and a right-inverse le €
L(L2,L%) is defined as

(RER)(t /GAtT T)dr, VYhe L%,

Furthermore, the splitting Hi = ker FZ 4 ran RJAF is given by the repre-
sentation

ult) = Xa(t)Pju(0) + REF{u(t), Vue HL.

Analogous statements hold for F, with

0
t) _/ G, (t,7)h()dr, Vhe L2
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Proof. Firstnotice that R™ is a well defined bounded operator: indeed, from
Lemma 4.1, for any & € Li and t > 0 we have

- TYh(t)dr| <c¢ ooe_)‘“_ﬂ )| dr
| eranmear <c | Ih(r)|d

= clexp(=Al - ) % [R()[1(D),
s0, by Young’s inequality, R*h is in Li and

[(RTh)()] =

2
IRTh| 12 < X”h”m-

Furthermore, since

R*h(t) / PsX (r)dr

—/t (I - P*)X(r) " h(r) dr],

by direct computation one gets that Rh € H} = dom F* and FTR*h =
h, as we wished to prove.

Since F'" is continuous from H}r to L2+ and R* is a right inverse for
F, one has the corresponding splitting into closed subspaces

H_1~_ =ker FT ®ran R,

with projections I — RTF* and RTFT. So, for any u € H! there exists
vg € W?¥ such that

u(t) = X(t)vo + RTF1u(t)

and

u(0) = vo + RT FTu(0).
By the definition of R, RT Ftu(0) € (W*)~+, and we conclude that vy =
Lemma 4.3 The operator h — R{h(0) maps C2°(]0, oo[; E) onto (W§)*.
The operator h — R;h(0) maps C2°(] — 0o, 0[; E) onto (W4)L.

Proof Let go € C2°(]0,00[; R) be a function such that the operator U :=
I e (1)"Ydr € L(E) is invertible. Given vy € (W$)+, we can
deﬁne h € C'OO(] ,o00[; E) as h(t) := —p(t)U tvg. Then
RIK(0) = —/ (I — PHYXA(T) " h(r)dr
0

= (I - P? /OOO o(1) X a(T) L drU g = (I — P*)vp = vp.
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5 On the Fredholm property of F's

We recall that a pair (V, W) of closed subspaces of E is said a semi-Fredholm
pair if V + W is closed and at least one of the numbers

dimV NW, codimg(V + W)
is finite. In this case the Fredholm index of the pair (V, W) is
ind(V,W) =dimV NW — codimg(V + W) € ZU {—0c0, +0}.

When ind (V,W) € Z, (V,W) is called a Fredholm pair. If the closed
subspaces W and Z are commensurable, the pair (Z, W) is Fredholm and

ind (Z, W) = dim(Z, W).

If (V, W) is a Fredholm pair and Z is commensurable to W, then also (V, Z)
is a Fredholm pair and its index is

ind(V,Z) = ind (V,W) 4+ dim(Z, W).

Theorem 5.1 Let A be an asymptotically hyperbolic path of operators on
R. Then:

(i) Fa has closed range if and only if the subspace W3 + W is closed.
(ii) Fa is ontoif and only if W3 + W} = E;
(iii) Fa is injective if and only if W5 N W4 = {0}.
(iv) Faisinvertible if and only if E = W3 © Wj.
(v) Fy is a semi-Fredholm operator if and only if (W3, W4) is a semi-
Fredholm pair. In this case

ind Fy = ind (W3, W}).

The proof of the above theorem is based on the following useful charac-
terizations.

Proposition 5.2 Let A be an asymptotically hyperbolic path of operators
onR. Then:

(i) ker Fy = {Xa(t)ug | up € Wi NW}};
(ii) ran F)y = {h € L?| (th)(O) — (R4h)(0) e W3 + W}{}
(iii) ran Fy = {h € L* | (R}h)(0) — (R;h)(0) € W5 + W}};
Proof. (i).The first claim follows from the fact that the solutions of the linear

system starting from W* N W™ have exponential decay at oo (Theorem
2.1 (ii)).

(ii). The image of F' consists of those i € L? such that the equation
u = Alt)u+h (38)
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has a solution w in L? (hence, from (38), in H'). The solution of (38) such
that (0) = o can be written as
u(t) = X (t)[ug — RTh(0)] + R h(t), for t > 0,
1 X(#)[uo — R~ h(0)] + R™h(t), fort < 0.
So u belongs to L? if and only if
ug — RTh(0) € W, (39)
ug — R™h(0) € W (40)
If A is in the image of F', subtracting (40) from (39), we obtain
RTh(0) — R™h(0) € W* + WH. (41)
Conversely, if h satisfies (41), RTh(0) — R™h(0) = vs + vy, for some
vg € W* and v, € W™. Choosing
ug == RTh(0) — vs = R™h(0) + vy,
(39) and (40) hold, so the corresponding u is in L2
@iii). By () and by the fact that H =
{h e L?| R h(0) — Ryh(0) € W5+ W4} is closed, we get that
ranFy C H. By Lemma 4.3, according to the open mapping theo-
rem, there exists ¢ > 0 such that for every wy € (I/ijl)L there exists
ho € C2°(]0, 00; E) such that R ho(0) = wo and ||ho| 12 < c|wo.
Given h € H and € > 0, we may write R{h(0) — R,h(0) = vy + w,
where vg € W3+ W} and |w| < €/c. By the above claim, there exists hy €
C(]0,00(; E), ||ho| 2 < €,such that R} ho(0) — R ho(0) = R} ho(0) =
(I — P®)w, and setting h, := h — hg, we have that ||h. — h||;2 < € and

Rihe(0) — R;he(0) = v +w — (I — P*)w = vy + Pow.

Since such a vector is in W3 + W, claim (ii) implies that h, € ran Fu.
Since e is arbitrary, h € ran F4. O

Proof of Theorem 5.1. (i) Proposition 5.2 (ii)-(iii) implies that if W* + W™
is closed then F' has closed range.

Conversely, assume that F' has closed range. Let vg € W5 + W4, By
Lemma 4.3, there exists h € C2°(]0, oo[; E) such that R{h(0) — R, h(0) =
(I—P?)vg.Since (I—P*)vy = vg—PSvg € W + W, Proposition 5.2 (iii)
implies that A € ran F'. Since ran ' = ran F', assertion (ii) of Proposition
5.2 implies that (I — P*)vy € W*+W*".Hence vy = (I — P*)vg+ P*vg €
W?# 4+ W™, This proves that Ws + W» C W?* + W, hence W?% + W*" is
closed.

All the other statements follow immediately from Proposition 5.2 (i) and
(ii), taking into account Lemma 4.3. a
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Remark 5.1 All the results of sections 4 and 5 hold for different choices
of the spaces between which F4 is defined. As a consequence, the fact of
being Fredholm and the value of the index do not depend on these spaces.
In particular, assuming the path A to be continuous, the proofs of all these
results hold with no change for F4 as a bounded operator between the
Banach spaces

1._ 1. : _ : 11y —
Cy = {u eC'(RE) | t_lgcnoou(t) =0, tlirinoou (t) = O} and
0._ 0. ; —
Cy = {u € C°(R;E) | tilimoou(t) = 0} .
Remark 5.2 Seen as an unbounded operator on L? with domain H', F4 is
closed. The domain of its adjoint operator is again H! and
Fi = —F_4-.
Compare this formula with the identities X_ 4+ = (X ;)" and W* ,, =
(W)
Example 1. When FE is finite dimensional, F'4 is always a Fredholm operator
of index
ind Fy =dim V™ (A(4+00)) — dim V™ (A(—00)).

Indeed in a finite dimensional space (W3, W}) is always a Fredholm pair
and since the evolution of 1V under the flow X 4 convergesto V'~ (A(+0o0))
for t — +oo, while the evolution of W converges to VT (A(400)) for
t — —oo (Theorem 2.1 (1)),

dim W3 = dim V™ (A(+00)), dim W} = dim V" (A(—o0)).
Therefore Iy is a Fredholm operator of index
ind F4 = ind (W3, W3)

=dimWji +dim W} —dim F
=dim V™ (A(+0)) — dim V™ (A(—o0)). 0

Example 2. If A(—o0) and A(+o00) have negative eigenspaces of finite
dimension, the same conclusions hold

ind Fy = ind (V™ (A(+00)), VT (A(~00)))
=dim V™ (A(+00)) —dim V™ (A(—00)).

no matter what is the form of A(¢) for ¢ € R.
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Indeed, by Theorem 2.1 (i), X 4(t)W73 is a continuous path of closed
subspace which converges to V" (A(+0o0)) for t — +o0. The dimension
is a continuous function on G(E), so dimW§ = dim V™ (A(+0o0)). On
the other hand, X 4(¢)W} is a continuous path of closed subspace which
converges to V1 (A(—o0)) for ¢ — —oo, and the codimension is a con-
tinuous function on G(E), so codimpW} = codimpV T (A(-00)) =
dim V7 (A(—o0)). A finite dimensional and a finite codimensional sub-
space always make a Fredholm pair, of index

ind (W3, W3) = dim W3 — codimgW}
=V (A(+0)) —dim V™ (A(—0)).

The conclusion follows again by Theorem 5.1. ad

But in infinite dimensional Hilbert spaces, more possibilities arise.

Example 3. Let V_ and V. be two arbitrary closed subspaces of E. Then
there exists an asymptotically hyperbolic path of operators A on R such that
(i) A is smooth, (ii) A(t) is self-adjoint for every ¢ and (iii)

Wi =V., Wi{=V,.

Indeed, let ¢ be a smooth function such that ¢ = 1 on [—1/2,1/2] and
¢ = —1 on [—o0, —1] U [1, 00]. A path satisfying the above conditions is
the following

Py, + @(t)PVJrL, fort <0,
A( o PV_J_ + gO(t)Pv_, fort > 0. 0

This example, together with the characterization given by Theorem 5.1,
provides us with an easy way to build asymptotically hyperbolic paths A
such that F'4 does not have closed range, or such that F4 has closed range
but an infinite dimensional kernel and/or co-kernel.

As we have seen in Examples 1 and 2, there are classes of asymptotically
hyperbolic paths with the property that the corresponding F' is Fredholm and
its index depends only on the end-points of the path. In general, also when
F happens to be Fredholm, this fact may not hold anymore.

Example 4. There exists a family (Ay), k € Z,of asymptotically hyperbolic
paths of operators having identical end-points at +-00, Ax (+00) = Ag(F00)
for any k, such that F4, is Fredholm of index k.

For this purpose, set

E :=(%7) = {u = (un) €RZ | Y un|* < oo} ,

nel
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with its usual inner product
U-v= Zunvn.
neL
Set
Et ;—zQ(ZﬂJ{o} ={ue *(Z)|u, =0forn <0},
E~:=0Z {u€€2Z)]un:Of0rn20},

sothat E = E~ @ E*.Ifk € Z,let S¥ € L(F) be the k-shift
(S%u)y = Ui

Since the set of invertible operators on the infinite dimensional Hilbert space
E is connected® (a classical result due to Putnam and Wintner [PW51], see
also [Kui65] for more information on the general group of a Hilbert space),
there exists a smooth path Y : R — GL(FE) such that Y (t) = I fort < 0
and Y (t) = S¥ for t > 1. Let ¢ be a smooth function such that ¢ = 0 on
[0,1],¢ =1on] — oo, —1] U [2, 00[ and set

(t)(PE+—PE ) fOTtSO,
Aty = Y')Y(t)™! for0 <t <1,
o(t)(Pg+ — PE ), fort > 1.

Then A(+00) = A(—o0) = Pg+ — Pp- and X 4(t) = Y (¢) for t € [0, 1].
It is readily seen that

Wi=E", Xa()Wi=E",
and since X4(1) = Y (1) = Sk, W5 = S™FE~. Therefore (W35, W) is a

Fredholm pair of index
ind (W5, W%) =ind (S™*E~, ET)
=dimS™*E- N EY — codim(S*E~ + Et) = k.
Therefore F4 is a Fredholm operator of index k. ad

Let {e,,} be the standard orthonormal system in ¢?(Z) and consider the
invertible operator defined by

€on, ifn >0,
Tepn := { €n/2, if n < 0iseven,
€_n, ifn < 0isodd.

® For example, I is connected to S* in O(E) by the path [0, 7/2] 5 t — e~ "/ e, where
Je; =sgn (i+1/2)e_;—1 and Ke; = (sgni)e_;.
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Replacing the path Y by a path connecting I to either T'or 7~ in GL(E), the
same construction shown above allows to build asymptotically hyperbolic
path still having the same end-points, but index —oo or +o00. If we connect
I to the operator R such that Re,, = e_,,, we get an operator F'4 with closed
range but infinite dimensional kernel and co-kernel. We just mention that a
suitable choice of Y would make A a path of self-adjoint operators in the
examples above.

6 Essentially splitting paths

In this section we shall consider an asymptotically hyperbolic path A and
the related operator F4 (either from H' to L? or from C’& to Cg , in which
case A is assumed to be continuous). It is interesting to see what happens
when the path A is subject to a perturbation by a path of compact operators.

Theorem 6.1 Let A and B be two asymptotically hyperbolic paths on R
such that B(t) — A(t) is compact for every t € R. Assume that Fu is
semi-Fredholm. Then also Fg is semi-Fredholm and

ind Fp = ind Fq + dim(V ™ (B(+00)),
V7 (A(+00))) = dim(V™(B(—00)), V™ (A(=00))).
Notice that, if B(t) — A(t) vanishes at —oo and at 400, this result is a
simple consequence of the fact that the multiplication by a path of compact
operators, infinitesimal at infinity, gives a compact operator from H' to L?
and from C& to C3), and that a perturbation of a semi-Fredholm operator by

a compact one is semi-Fredholm with the same index. In general, everything
follows from Theorem 3.6.

Proof. Since Fy is semi-Fredholm, (W35, W7}) is a semi-Fredholm pair of
index ind F'4. By Theorem 3.6, W5 and W are commensurable to W3 and
W, respectively, and

dim(Wg, W3) = dim(V ™ (B(4+00)), V™ (A(+))), (42)
dim(Wg, W4) = dim(V(B(—0)), VT (A(—))).

Identity (33) shows that when we replace the elements of the semi-Fredholm
pair (W3, W) by their commensurable spaces W}, and W}, we obtain
another semi-Fredholm pair (W}, W}) of index

ind (W3, WY) +dim(Wg, W3) — dim(Wg, W}).
The thesis follows from (42). O

Theorem E is a corollary of the above result:
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Corollary 6.2 Assume that E has a splitting E = E~ ® E™ and that the
asymptotically hyperbolic path A has the form A(t) = Ao(t)+ K (t), where
the operators K (t) are compact, Ay is piecewise continuous, E~ and E*
are Ay (t)-invariant for every t, Ag(£00) are hyperbolic, and

V= (Ag(£o0)) = E~, VT (Ag(+o))=E".
Then F4 is Fredholm and its index is
ind Fy = dim(V™ (A(+00)), V™ (A(—0))).

Proof. Under these assumptions, Ay is an asymptotically hyperbolic path,
and Theorem 2.1 (i) implies that

Wi, =E", Wi =E".

Hence, by Theorem 5.1 (iv), F'4, is an invertible operator. So Theorem 6.1
implies that F'4 is a Fredholm operator of index

ind s = dim(V ™~ (A(+00)), E7) — dim(V " (A(-)), E™)
= dim(V ™ (A(+00)), E7) + dim(V~ (A(-0)), E7)
=dim(V™ (A(4+00)), V™ (A(—00))). 0

This corollary generalizes Example 2 to a case where both the subspaces
in the spectral decomposition of A(+c0) are infinite dimensional. It also
generalizes [AvdV99] Lemmas 15, 16 and [AMO1] Theorem 3 4.

In order to state a more general result, a few preliminaries are needed.
A splitting E = E; @ E» is said to be essentially invariant for an operator
T € L(F) if it is an invariant splitting for some compact perturbation of
T. Equivalently, denoting by P one of the two projections associated to
such a splitting, the splitting is essentially invariant for 7" if and only if
[T, P| := TP — PT is compact. The essential commutator of T',

eC(T):={S e L(E)|[ST]eLAE)},

is the pre-image of the commutator of [7] in the Calkin algebra
L(E)/L(E). Therefore, eC(T") is a closed subalgebra with identity of
L(E), invariant with respect to compact perturbations, and eC (1) = eC(.S)
whenever S — 1" is compact.

Here is a generalization of Corollary 6.2, which says that in the case
of essentially splitting paths, the stable and the unstable spaces can be re-
placed by V'~ (A(+00)) and VT (A(—0c0)) in the characterization given by
Theorem 5.1.

Theorem 6.3 Let A be an asymptotically hyperbolic path of operators on R.
Denote by P~ (+00) and P" (400) the projectors associated to the splittings
E =V (A(£o0)) & VT (A(£o00)). Assume that A(t) € eC(P~(+00))
foreveryt >0, and A(t) € eC(P~(—0o0)) for every t < 0. Then
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(i) F has closed range if and only if the subspace V~(A(400)) +
VT (A(—0o0)) is closed;

(ii) ' is a semi-Fredholm operator if and only if
(V= (A(4+00)),VT(A(—00))) is a semi-Fredholm pair. In this
case

ind Fy = ind (V™ (A(+00)), VT (A(—00))).
Proof. Set

Ao(f) P~ (+00)A(t) P~ (+00) + P (400)A(t) Pt (+00), if t > 0,
0() 3= 1 P=(—o0) A(t) P~ (—00) + P+(—o00)A(t) P*(—o0). if t < 0.

The asymptotically hyperbolic path Ay is such that A(t) — Ay(¢) is compact
for every t. Theorem 2.1 (i) implies that

Wi, =V (A(+0)), Wi, =V (A(-00)),

so Theorem 3.6 implies that W3 and W} are commensurable to
V= (A(+o0)) and VT (A(—00)), respectively, and

dim(W§, V™ (A(+00)) =0, dim(WY, VT (A(-c0)) = 0.

Notice that if we replace two subspaces having a closed sum by commen-
surable ones, we obtain two subspaces still having a close sum. Then (i)
follows from Theorem 5.1 (i). Claim (ii) follows from Theorem 5.1 (v) and
identity (33). O

We would like to remark that the assumptions of Corollary 6.2 or of
Theorem 6.3 (ii), are far from being a necessary condition in order to have
F Fredholm. Indeed, we have seen that the Fredholm property of F' can
be expressed by looking at the relative position of the stable and unstable
spaces. These spaces drastically change when A is changed by a time repa-
rameterization, so the Fredholm property in general is not preserved under
such a transformation. The assumption of Corollary 6.2, instead, is invariant
for time reparameterizations.

However, the assumption of Corollary 6.2 is somehow sharp, if one wants
to look at conditions involving only the form of A(¢) and not its dependence
on ¢. To see this, notice that, when A(t) = Ay(t), F' is invertible (the stable
and unstable spaces in this case are £~ and £). One could think that, if the
invariant spaces of A(t) are not fixed, but are allowed to vary within a small
angle, F' should still be invertible. In this way, one could hope to replace
the compact perturbations by small perturbations in Corollary 6.2. In some
sense this is true, simply because the set of invertible operators is open in
the operators’ norm and adding a small perturbation in L* to A changes
F'4 by a small operator. However how small the norm of the perturbation
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must be highly depends on the whole path A. To show this, we begin with
a finite dimensional example.

Example 5. For any 6 €]0, 7[there exists a path of invertible symmetric 3 by
3 matrices { A(t) },cg.such that all the positive eigenspaces {V* (A(t)) }ier
are one-dimensional and make angles not larger than 6 with each other, and
such that W5 N W} # (0).

To exhibit an example in R?, fix some o €]0, 5[ such that

1 — cos(2a) 0
— " < tan(=). 43
sin(2a) < an(2) “3)
Set 11 := 7 sin(2a) tan(%); set
( ) l+cosae 1—cosa 1—cos(2a)
a=(a1,az,a3) = (— —
1, 42,43 2 ) 2 ) 4 )

and '
« e .
q:=(q1,q2,q3) = <uc0s(2), us1n(§), 4sm(2a)) ,

then define the matrices

al 0 g3 —q
Ay = as Q:==1|-9 0 q L:=A4)-Q.
as @2 —q 0

The eigenvalues of the matrix L are

M=az—1, X=iy/pu?2—a3, \3=—i\/u?—ad3,

and p? — a2 > 0 because of (43). The vector e3 := (0,0, 1) belongs to the
the eigenspace V (L; {\a2, A3}). Indeed V (L; { X2, A3}) = V(L*; {\ D)5
but V/(L*; {\1}) is generated by the eigenvector

« —q3 Q2 Al —a1 ¢ Al —ar —gq3
- - 0
¢ <>\1—a2—Q1’ B —q " q3 )\1—<12>7,é ’
At—a1 —q3

andinfact{*-e3 = = 0. As aconsequence, exp(tL)es -

g3 A1 —az
es has the form csin(y/p? — a(t — to)) for some c and ¢y > 0, whence
in particular exp(tgL)es - e3 = 0 We now define a continuous path of
symmetric matrices, unitary conjugate to Ao, setting

Ay fort <0,
A(t) :=  exp(tQ)Apexp(—tQ) for0 <t <tp,
exp(toQ) Ao exp(—toQ) for ty < t.
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Hence VT (A(t)) = exp(tQ)[V T (Ap)] = exp(tQ)[Res] for 0 < ¢ < to.
Now, since ¢ is the axis of the rotation exp(tQ),

ang (exp(tQ)es, ¢) = ang (exp(tQ)es,
exp(tQ)q) = ang (e3, q)

o (!es X q!)
— arcsin
lq|

= arcsin

2 2
= arctan qliw
q3

4 B Q
sin(2a) ) 2°
Thus the angle between V1 (A(t)) and VT (A(t')) is never larger than 6.
The solution of v/ = A(t)u such that u(0) = e is

= arctan

exp(tas)es fort <0,
u(t) := { exp(tQ) exp(tL)es for 0 <t < t,
exp(toQ) exp((t — to)Ao) exp(toL)es for g < t.

Clearly u(t) — 0 ast — —oo, but also as t — +o00, because exp(toL)es €
V™ (Ap). Therefore e3 = u(0) € Wi NnWj. 0

Example 6. Given 6 > 0, there exists a continuous path A of self-adjoint
invertible operators such that V'~ (A(¢)) and V' (A(¢)) vary within an angle
of 8, and such that I'4 is not semi-Fredholm.

We can couple an infinite number of copies of the previous example: on

the Hilbert sum -
E:=Pr?,
k=0

we consider the path A(t) = @, , A3(t), where A3 is the path constructed
in Example 5.1t is a continuous path of self-adjoint invertible operators such
that V'~ (A(t)) and VT (A(t)) vary within an angle of 6. However the stable
and unstable spaces have an infinite dimensional intersection and an infinite
codimensional sum, so F4 is not semi-Fredholm. 0O

7 The spectral flow

If the Hilbert space E is finite dimensional and A is a continuous asymptoti-
cally hyperbolic path, its spectral flow sf(A) can be defined as the algebraic
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multiplicity of the eigenvalues of A(t) whose real part changes from nega-
tive to positive, minus the multiplicity of those eigenvalues whose real part
changes from positive to negative. Since the end-points of A are hyperbolic,

sf(A) = dim VT (A(+00)) — dim VT (A(—0)),

so Theorem A can be restated by saying that the Fredholm index of F'4
coincides with minus the spectral flow of A.

When FE is infinite dimensional, there is still a large class of paths for
which the spectral flow can be defined. An operator I’ € L(F) is said
essentially hyperbolic if its essential spectrum

oe(T) = {\ € C| A\I — T is not semi-Fredholm}

does not meet the imaginary axis. Equivalently, T is essentially hyperbolic
if and only if it is a compact perturbation of a hyperbolic operator, or if
and only if its purely imaginary spectrum consists of finitely many isolated
eigenvalues having finite multiplicity. The set of essentially hyperbolic op-
erators will be denoted by e (E). The spectral flow sf(A) can be defined
for continuous asymptotically hyperbolic paths in e (E) (see [BBW93],
[FPR99], or [Phi96] for rigorous definitions and for the properties stated in
this section’). A natural question is whether ind F4 coincides with —sf(A)
for such paths.

When FE is finite dimensional, e ( E') coincides with £( E): in particular
eH(F) is connected and contractible. When FE is infinite dimensional, still
separable, e (F) consists of three connected components: the first one,
eH .+ (E), consisting of the operators whose essential spectrum has positive
real part, the second one, eH_ (F), consisting of the operators whose es-
sential spectrum has negative real part, the last one, e (E'), consisting of
those operators whose essential spectrum contains numbers with positive
real part and numbers with negative real part. The components eH  (E)
and eH_(F) are star-shaped with respect to the operators I and —1, re-
spectively: in particular, they are contractible. We already know that, if an
asymptotically hyperbolic path takes value in eH (E) or in eH_(E), Fu
is Fredholm of index

ind Fy =dim V™ (A(+00)) —dim V™ (A(—o0)), or
ind Fy = codimV ™ (A(—o0)) — codimV ™~ (A(4+0)),
respectively: indeed, this is a particular case of Example 2. It would not be

hard to show that, when such a path A is also continuous, the Fredholm
index of F4 coincides with minus the spectral flow of A.

7 Actually, in all these references, only self-adjoint Fredholm operators are considered,
but the extension to essentially hyperbolic operators presents no difficulties.
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The topology of e (E) is more complicated. Since the spectral flow
is invariant with respect to homotopies which fix the end-points, it defines
a homomorphism

sf:m(eH+(E)) = Z.

An interesting fact is that such a homomorphism is an isomorphism (see the
main theorem in [Phi96], pag. 464). As a consequence, the spectral flow of
a path in e+ (E) does not depend only on the end-points.

Example 6 provides us with a continuous path A of self-adjoint invertible
(hence hyperbolic) operators, such that F'4 is not semi-Fredholm: this shows
that there are asymptotically hyperbolic continuous paths in eH 1 (F) such
that the Fredholm index of F4 is not defined. However, such an A has spectral
flow zero and F'4 is almost a Fredholm operator of index zero, meaning that
there are arbitrarily small perturbations of the path A which would make F'4
Fredholm of index zero. In this sense, this is not a strong counterexample to
the identity ind F'4 = —sf(A). A more striking example is the following.

Example 7. Let k € Z. There exists a smooth path A € C*°(R; L(E)) such
that A(t) is self-adjoint and invertible for every ¢ € R, and F'4 is Fredholm
of index k.

Consider two orthogonal splittings into infinite dimensional spaces
E=V aeVt=W-aWwt,

such that (V' =, W) is a Fredholm pair of index k. Let T' be an orthogonal
operator which maps W™ onto V', and W~ onto V. Choose a smooth
path of orthogonal operators U : R — O(FE) such that U(t) = I fort <0
and U(t) = T for t > 1 (the orthogonal group of an infinite dimensional
Hilbert spaces is connected, see [Kui65]). For every € > 0, consider the
smooth path

A(t) == U(t/e) " [Py+ — Py-]U(t/e), teR,

The operators A.(t) are self-adjoint and invertible for every ¢ € R. When ¢
converges to zero, A, converges L*(R; £(E)) to the piecewise continuous
path

[Py — Py ift <0,
Ao(t) = {PW+ _ Py ift >0,

Since Wjo =V~ and W}{O =W, F4, is a Fredholm operator of index
k. The multiplication operator by A. — Ag converges to zero in L(H*, L?),
so when e is small enough, F'4_ is a Fredholm operator of index k. ad

The path A = A, constructed above is such that o(A(t)) = oc(A(t)) =
{—1,1},forevery t € R, so it is a path in eH (E) with spectral flow zero.
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However F'4 may have every index, so the identity ind F)y = —sf(A) does
not hold. It would hold in more restricted classes, such as the class of paths
of operators which are both essentially hyperbolic and satisfy the hypothesis
of Theorem E (a proof for paths of operators which satisfy the hypothesis
of Theorem B can be found in [AvdV99]).

8 Nonlinear consequences

Let M be a C? Hilbert manifold modeled on the Hilbert space E. Let ¢ be
a C'! tangent vector field on M and consider the system

u'(t) = E(ult)), wu(t) € M. (44)

Letop: 2 — M, 2 C R x M,be local flow defined by the above system,
i.e. the maximally defined solution of

{ Bo(t,p) = E((t,p)),
¢(07 p) =Dp.

If x is an equilibrium point for £, that is £(z) = 0, a local representation
of the Jacobian V&(x) is well defined up to conjugacy, meaning that, if
¢ :(E,0) = (U,x) is a local chart, the pull-back of the vector field

Eo(y) = (do(y)) (oY), v € E,

isa C! map from E to F and its differential in 0 changes by a conjugacy when
we choose a different chart. Therefore it makes sense to define a hyperbolic
equilibrium point x as an equilibrium point such that V&(x) is a hyperbolic
operator. Recall that a hyperbolic equilibrium point = has a stable and an
unstable manifold

We(z) = {p €M | Jm P(t,p) = fv} ,
W) = {p € a1 | tim_o(t.r) =}

These are immersed C'! submanifolds of M , invariant for the local flow and
such that T, W*(x) & T,W"(x) = E. In the case of a gradient flow, they
are actually embedded submanifolds.

Let p € W#(x) and set u(t) := ¢(¢, p). We can choose a trivialization
U:R"xE — u* (T'M) and identify £ with T),M in such a way that
U(0) = Ir. We may read the linearized flow on E as

X(t) == U(t)"rdo(t,u(0)), (45)
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for t € RT, where d denotes differentiation with respect to the variable on
M. The function X : R™ — L(E) is the solution of an asymptotically
hyperbolic linear system on R™ in E

X'(t) = AR X (¢),
{0 = o 6

where A(+4-00) is conjugated to a local representation of V&(x). Choosing
a different trivialization, X is changed to X (t) = G(t)X(t), for some

G € CY(R"; GL(E)). Correspondingly, A and F’} are changed to
A=-G'G'+GAG™!, Fl=GoF}joG™
Thanks to the identification £/ = T, M, we have that
Wi =T,W*(x).

Then Theorem 2.1 (iii) implies the following convergence result (where the
definition of convergence of linear subspaces in 7'M is reduced via local
charts to the convergence in G(F)).

Corollary 8.1 Let p € W*(x) and let V. C T,M be a closed subspace
such that T,M =V & T,W?(x). Then the path of subspaces do(t,p)V
converges to T, W"(z) for t — +oc.

Now let 2 and y be two hyperbolic equilibrium points such that W*(x)
and W*(y) have a non-empty intersection. In other words, there exists a
solution u of (44) such that

Jim () =, Jim () =
As before, choosing a trivialization U : R x E — u*(T M) and identifying
E with T,,yM in such a way that U(0) = Ig, the linearized flow X
is defined for all ¢ € R as in (45), and it solves (46), which is now an
asymptotically hyperbolic linear system on R. The operators A(—oo) and
A(400) are conjugated to local representations of V&(z) and VE(y), and
by the identification £ = T, )M,

Wi =TyoW"(z), Wi=T,oWy). (47)

Recall that two submanifolds N, O C M are said transversal at p €
NNOifT,N +T,0 = T,M. Similarly, two submanifolds N,O C M
are said to have a Fredholm intersection at p € N N O if (T,,N,T,0) is a
Fredholm pair of linear subspaces. Theorem 5.1 and (47) have the following
consequence.

Corollary 8.2 The following facts hold:
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(i) Fa has closed range if and only if T,y W (z) + Ty, 1y W* (y) is closed

for some t € R (hence for everyt € R);

(ii) dimker Fly = dim T,y W (x) N T,y W*(y) for some t € R (hence
foreveryt € R);

(iii) F4 is onto if and only if W"(x) and W*(y) are transversal at u(t),
for some t € R (hence for every t € R);

(iv) F4 is Fredholm if and only if W"(z) and W*(y) have a Fredholm
intersection at u(t), for some t € R (hence for every t € R).

In particular, if Z is a connected component of W*"(x) N W#(y) such
that W*"(z) and W*(y) are transversal and have a Fredholm intersection at
every z € Z,then Z is an immersed manifold of dimension

dim Z = ind F4 = dim ker F'4,

where w is any solution of (44) belonging to Z.
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