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Abstract. Let A(t) be a path of bounded operators on a real Hilbert space,
hyperbolic at ±∞. We study the Fredholm theory of the operator FA =
d/dt−A(t).We relate theFredholmproperty ofFA to the stable and unstable
linear spaces of the associated system X ′ = A(t)X . Several examples are
included to point out the differences with respect to the finite dimensional
case, in particular concerning the role of the spectral flow.Wedefine ageneral
class of pathsA for which many properties typical of the finite dimensional
framework still hold. Our motivation is to develop the linear theory which
is necessary for the set-up of Morse homology on Hilbert manifolds.

Introduction

Consider a smooth vector field ξ on the Euclidean space Rn and the corre-
sponding system of differential equations

u′(t) = ξ(u(t)). (1)

Let x, y ∈ Rn be equilibrium points for the above system, ξ(x) = ξ(y) = 0,
which we assume to be hyperbolic, meaning that the Jacobian matrices
∇ξ(x) and ∇ξ(y) do not have purely imaginary eigenvalues. Assume that
(1) has a solution u which connects x to y:

lim
t→−∞

u(t) = x, lim
t→+∞

u(t) = y.

If one wants to examine the structure of the solutions of (1) connecting x
to y and close to u, the object to be studied is the operator obtained by
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linearizing (1) along u:

v %→ v′ −∇ξ(u)v,

defined on some space of curves v : R → Rn vanishing at−∞ and+∞. A
natural domain for such an operator isC1

0 (R; Rn), the space of continuously
differentiable curves vanishing at infinity togetherwith their first derivatives.
Another useful domain isH1(R; Rn), the Hilbert space of square integrable
curves whose weak derivatives are also square integrable1. Clearly, the do-
main can be chosen in a large class of function spaces, but this choice turns
out to be not very relevant, see Remark 5.1. So one is lead to study a bounded
operator of the form

FAv(t) = v′(t)−A(t)v(t),

from C1
0 to C0

0 (or from H1 to L2, etc.) where A is a path of matrices ad-
mitting limits at −∞ and +∞ and such that A(−∞) and A(+∞) have no
purely imaginary eigenvalues. Matrices without purely imaginary eigenval-
ues are said hyperbolic, so the paths with the above property will be called
asymptotically hyperbolic. The following result is well known (see [Sch93],
Propositions 2.12 and 2.16, or [RS95], Theorem 2.1).

Theorem A LetA be an asymptotically hyperbolic path of n by nmatrices.
Then FA is a Fredholm operator of index

indFA = dimV −(A(+∞))− dimV −(A(−∞)).

Here V −(T ) denotes the T -invariant subspace of Rn corresponding to
the eigenvalues with negative real part in the spectral decomposition of T .
WhenF∇ξ(u) is onto, the above theorem implies that its kernel has dimension
dimV −(∇ξ(y))− dimV −(∇ξ(x)): so, by the implicit function theorem,
the set of solutions of (1) connecting x to y and close to u is a manifold
of dimension dimV −(∇ξ(y)) − dimV −(∇ξ(x)).2 If vector field ξ is the
negative gradient of a Morse function f , the above result can be used as the
starting point to develop a Morse homology for f , an alternative approach
to Morse theory, based on the study of the gradient flow lines connecting
critical points (notice that in this case ∇ξ(x) = ∇2f(x), the Hessian of f
in x, so the dimension of V −(∇ξ(x)) is the Morse index of x). See [Sal90]
or [Sch93].
1 This is a suitable space of perturbations of the curve u. Indeed, since the equilibrium

points x and y are non-degenerate, all the connecting solutions converge to them exponen-
tially fast, and in particular, they are square integrable together with their first derivatives.
2 Such a result could be obtained also by looking at the intersection between the unstable

manifold of x and the stable manifold of y. In fact, it can be proved that these manifolds have
transversal intersection at u(t) if and only if F∇ξ(u) is onto, see Sect. 8, or [Sal90] Theorem
3.3.
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In this paper we present a detailed study of the properties of the operator
FA when A is an asymptotically hyperbolic path of bounded operators on
a possibly infinite dimensional Hilbert space E. The aim is to provide a
useful machinery which could be employed to develop Morse homology
theories for functionals defined on infinite dimensional Hilbert manifolds.
In [AM01] we constructed a Morse homology for functionals on a Hilbert
space, consisting of the sum of a non-degenerate quadratic part and of a
term with compact gradient. The generalization of Theorem A which was
proved there is the following (see also [AvdV99])3.

Theorem B Assume that the asymptotically hyperbolic pathA has the form
A(t) = A0+K(t), whereA0 is a hyperbolic operator andK(t) is compact.
Then FA is Fredholm and

indFA = dim(V −(A(+∞)), V −(A(−∞))).

Here dim(V, W ) denotes the relative dimension of the (possibly infinite
dimensional) subspace V with respect toW :

dim(V, W ) = dimV ∩W⊥ − dimV ⊥ ∩W.

See Sect. 3 for more details on the relative dimension. Therefore, in the
class of compact perturbations of some fixed hyperbolic operator, things go
essentially as in the finite dimensional case. We will see that outside this
class new phenomena occur.
Let XA be the path of operators solving the Cauchy problem

{

X ′
A(t) = A(t)XA(t),

XA(0) = I.

Two important objects related to such a system are the stable and the unstable
spaces:

W s
A :=

{

x ∈ E | lim
t→+∞

XA(t)x = 0
}

,

W u
A :=

{

x ∈ E | lim
t→−∞

XA(t)x = 0
}

.

The fact that these are linear subspaces ofE follows directly from the defini-
tion. Proving that they are closed and establishing further properties requires
a fixed point argument: the following theorem is proved in Sect. 1 and 2.
3 Actually, in [AvdV99] and [AM01] only paths of self-adjoint operators are considered,

but the generalization stated here presents no difficulties. See also Sect. 6, where Theorem
B is deduced as a consequence of more general facts.
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Theorem C LetA be an asymptotically hyperbolic path. ThenW s
A andW u

A
are closed subspaces ofE. Moreover,XA(t)W s

A converges to V −(A(+∞))
for t → +∞, while XA(t)W u

A converges to V +(A(−∞)) for t → −∞.

See Sect. 2 and Theorem 2.1 for the definition of convergence of sub-
spaces and for a richer statement. We point out that this is also an existence
result for the stable and the unstable space. More properties, such as the
behavior of the stable and the stable spaces when the path A is perturbed
by a path which either is small or consists of compact operators, will be
established in Sect. 3. The importance of the stable and the unstable spaces
can be seen from the following characterization, proved in Sect. 5, with a
more detailed statement.

Theorem D Let A be an asymptotically hyperbolic path. Then FA has
closed image if and only if W s

A + W u
A is closed, FA is Fredholm if and

only if (W s
A, W u

A) is a Fredholm pair, in which case

indFA = ind (W s
A, W u

A).

We recall that a Fredholm pair is a pair of closed subspaces (V, W ) such
that V +W is closed and finite codimensional, V ∩W is finite dimensional.
The index of a Fredholm pair (V, W ) is the integer

ind (V, W ) = dimV ∩W − codim (V + W ).

The characterization given by Theorem D has many interesting conse-
quences, on which more will be said in Sect. 5 and 7.

(i) The operator FA is Fredholm whenever V −(A(+∞)) and
V −(A(−∞)) are finite dimensional, regardless the behavior of A(t)
in between. In this case the formula of Theorem A still holds.

(ii) Since any twoclosed subspaces canbe the stable and the unstable space
of an asymptotically hyperbolic system, in general FA may have very
bad properties: it may not have a closed image, it may not have finite
dimensional kernel and/or co-kernel.

(iii) Also when FA is a Fredholm operator, it is not true anymore that, as
in Theorems A, B and in (i), its index depends only on the end-points
of the path, A(+∞) and A(−∞).

(iv) In general, the spectral flow of the path A, an algebraic count of the
eigenvalues ofA(t)which cross the imaginary axis, has no connection
whatsoever with the index of FA. This is in sharp contrast with what
happens with paths of self-adjoint unbounded operators with compact
resolvent (see [RS95]).

Besides these negative results, it is possible to find classes of asymptot-
ically hyperbolic paths much more general than the one of Theorem B, for
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whichFA is Fredholm and its index depends only on the end-points. A result
which seems interesting for its implications in the calculus of variations is
the following.

Theorem E Assume that E has a splitting E = E− ⊕ E+ and that the
asymptotically hyperbolic pathA has the formA(t) = A0(t)+K(t), where
the operatorsK(t) are compact, E− and E+ are A0(t)-invariant for every
t, A0(±∞) are hyperbolic, and

V −(A0(±∞)) = E−, V +(A0(±∞)) = E+.

Then FA is Fredholm and its index is

indFA = dim(V −(A(+∞)), V −(A(−∞))).

The proof of this result is contained in Sect. 6, together withmore general
statements. An examplewill show that in some sense, this is themost general
situation in which a result of this kind is to be expected. In the last section
we present no new results, but we explain how to use the theory developed
so far in a nonlinear setting.
We wish to remark that all the statements proved in this paper could be

generalized to paths of bounded operators on a Banach space.

1 The stable and unstable spaces

Let E be a real Hilbert space, with inner product u · v and related norm
|u|. Denote by L(E) the Banach algebra of bounded linear operators on E,
by Lc(E) the closed ideal of compact operators, by ‖T‖ the norm of an
operator T ∈ L(E), and by σ(T ) the spectrum of T .

Definition 1.1 A bounded operator T ∈ L(E) is said hyperbolic if its
spectrum does not meet the imaginary axis.4

Every hyperbolic operator is invertible. An invertible self-adjoint oper-
ator is hyperbolic. The set of hyperbolic operators is open, by the semi-
continuity of the spectrum (see [Kat80] IV.3). By definition, the spectrum
of a hyperbolic operator T consists of two isolated closed components (one
of which may be empty)

σ(T ) ∩ {z ∈ C | Re z < 0} and σ(T ) ∩ {z ∈ C | Re z > 0} .

Let
E = V −(T )⊕ V +(T ) (2)

4 In the framework of discrete dynamical systems, a hyperbolic operator is a bounded
operator whose spectrum does not meet the unit circle. In that context, an operator satisfying
Definition 1.1 should be called infinitesimally hyperbolic.
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be the corresponding T -invariant splitting ofE into closed subspaces, given
by the spectral decomposition, with projections P−(T ) and P+(T ). So

σ(T |V −(T )) = σ(T ) ∩ {z ∈ C | Re z < 0} and
σ(T |V +(T )) = σ(T ) ∩ {z ∈ C | Re z > 0} .

Furthermore

V −(−T ∗) = V −(T )⊥, V +(−T ∗) = V +(T )⊥.

If, moreover, T is normal, meaning that T and T ∗ commute, the splitting
(2) is orthogonal and

Tx · x ≤ −α|x|2 ∀x ∈ V −(T ), Tx · x ≥ α|x|2 ∀x ∈ V +(T ),

where α := inf |Reσ(T )|.
If A is a piecewise continuous L(E)-valued path on an interval J con-

taining 0, letXA be the associated linear flow, i.e. the solution of the linear
problem5

{

X ′(t) = A(t)X(t),
X(0) = I.

The path of operators A will appear as a subscript of many objects we are
going to introduce. We will omit such subscript whenever no ambiguity is
possible. From the uniqueness of linear Cauchy problems, it is readily seen
that

X−A∗ = (X−1
A )∗, (3)

XA+B = XA · XX−1
A BXA

,

XA(·+s)(t) = XA(t + s)XA(s)−1.

Moreover,

XB(t) = XA(t) +
∫ t

0
XA(t)XA(τ)−1(B −A)(τ)XB(τ) dτ. (4)

Notice that if A is bounded, XA satisfies an estimate of the kind

‖XA(t)XA(s)−1‖ ≤ ceλ(t−s), for t ≥ s, (5)

for some c ≥ 1, λ ∈ R. When the path A is constant, A(t) = A0, the linear
flow is XA(t) = etA0 ; for any number λ > sup Reσ(A0), the constant

c := sup
t≥0

‖et(A0−λI)‖

5 Working with piecewise continuous paths instead of continuous ones gives us some
freedom which is sometimes useful to build examples. We have no good reason here for
considering a further level of generality, such as A ∈ L∞(J ; L(E)).
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is finite and (5) holdswith the pair (c, λ).WhenA0 is normal, we are allowed
to choose λ = sup Reσ(A0) and c = 1.
By the last identity in (3),

XA(·+τ)(t)XA(·+τ)(s)−1 = XA(t + τ)XA(s + τ)−1,

so inequality (5) holds with the same constant c, λ when we replace A by
the translated path A(· + τ). By the second identity in (3),

XA+µI(t)XA+µI(s)−1 = eµ(t−s)XA(t)XA(s)−1,

so inequality (5) holds with constants c, λ+µwhenwe replaceA byA+µI .
The constant c in (5) plays a role when A is subject to more general

perturbations. More precisely, it determines how much the constant λ is
sensitive to perturbations:

Lemma 1.1 Let A and H be piecewise continuous and bounded L(E)-
valued paths on R+, and let c, λ be such that XA satisfies (5). Then

‖XA+H(t)XA+H(s)−1‖ ≤ ceµ(t−s), for t ≥ s ≥ 0,

with µ := λ+ c‖H‖∞.

Proof. By our previous considerations, we may assume s = 0 and µ = 0.
Fix some t > 0. In this case, the curve XA+H |[0,t] is a fixed point of the
contraction

Y %→ XA(·)
[

I +
∫ ·

0
XA(τ)−1H(τ)Y (τ) dτ

]

onC([0, t];L(E))with the uniform norm. It is easy to check that the closed
ball of radius c of C([0, t];L(E)) is invariant, so ‖XA+H(t)‖ ≤ c. -.

Let A be a piecewise continuous L(E)-valued path on R+, respectively
on R−. The stable space, respectively unstable space, corresponding to the
system X ′ = A(t)X are the linear subspaces of E

W s
A :=

{

x ∈ E | lim
t→+∞

XA(t)x = 0
}

,

W u
A :=

{

x ∈ E | lim
t→−∞

XA(t)x = 0
}

The last identity of (3) implies that

XA(t)W s
A = W s

A(·+t), XA(t)W u
A = W u

A(·+t). (6)

When the path A is constant, A(t) = A0 with A0 a hyperbolic operator,
the stable and unstable spaces are the invariant subspaces

W s
A = V −(A0), W u

A = V +(A0).
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IfA(t) is a small perturbation of a constant path,W s
A andW u

A are closed
subspaces (in general not invariant) close to V −(A0) and V +(A0), as the
next proposition shows.
Proposition 1.2 Let A0 be a hyperbolic operator, E− := V −(A0), E+ :=
V +(A0), and c ≥ 1, λ > 0 be constants such that

‖etA0 |E−‖ ≤ ce−λt, ‖e−tA0 |E+‖ ≤ ce−λt, ∀t ≥ 0.

Let A(t) := A0 + H(t), where H is piecewise continuous on R+ and

‖H‖∞ <
1
2
c− 3

2λ.

Set ν := λ − 2c
3
2 ‖H‖∞ and b := 2c

3
2 . Then the following facts hold

(“evolution towards E−”):
(i) for every t ≥ 0, XA(t)W s

A is the graph of an operator S(t) ∈
L(E−, E+);

(ii) ‖S(t)‖ ≤ c2 ∫ ∞
t e−ν(τ−t)‖H(τ)‖ dτ ;

(iii) the function S has as much differentiability as XA;
(iv) for every u0 ∈ W s

A and every t ≥ s ≥ 0 there holds

|XA(t)u0| ≤ be−ν(t−s)|XA(s)u0|.
Moreover (“evolution from E+”):
(v) for every t ≥ 0, XA(t)E+ is the graph of an operator T (t) ∈

L(E+, E−);
(vi) ‖T (t)‖ ≤ c2 ∫ t

0 e−ν(t−τ)‖H(τ)‖ dτ ;
(vii) the function T has as much differentiability as XA;
(viii) for every y0 ∈ E+ and every t ≥ s ≥ 0 there holds

|XA(t)y0| ≥ b−1eν(t−s)|XA(s)y0|.
Proof. Denote by P− and P+ the linear projections associated with the
decomposition E− ⊕ E+. Splitting u as u = x + y, x = P−u, y = P+u,
the equation u′ = A(t)u becomes

{

x′ = A−(t)x + A∓(t)y,
y′ = A±(t)x + A+(t)y,

(7)

which is equivalent to the system of integral equations

x(t) = XA−(t)XA−(s)−1x(s) (8)

+
∫ t

s
XA−(t)XA−(τ)−1A∓(τ)y(τ) dτ,

y(t) = XA+(t)XA+(r)−1y(r) (9)

−
∫ r

t
XA+(t)XA+(τ)−1A±(τ)x(τ) dτ.
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Choosing s ≤ t ≤ r, Lemma 1.1 provides bounds for the above integrals,
with any pair of continuous functions (x, y): setting µ := λ−c‖H‖∞, since
‖H‖∞ < c− 3

2 µ, we obtain
∣

∣

∣

∣

∫ t

s
XA−(t)XA−(τ)−1A∓(τ)y(τ) dτ

∣

∣

∣

∣

≤ c

(
∫ t

s
e−µ(t−τ)‖A∓(τ)‖ dτ

)

‖y‖∞,[s,t]

≤ c(1− e−µ(t−s))
‖H‖∞

µ
‖y‖∞,[s,t] (10)

≤ c− 1
2 (1− e−µ(t−s))‖y‖∞,[s,t],

and using the identity

‖XA+(t)XA+(τ)−1‖ = ‖(XA+(t)XA+(τ)−1)∗‖
= ‖XA+(τ)−1∗

XA+(t)∗‖
= ‖X−A∗

+
(τ)X−A∗

+
(t)−1‖,

we obtain also
∣

∣

∣

∣

∫ r

t
XA+(t)XA+(τ)−1A±(τ)x(τ) dτ

∣

∣

∣

∣

≤ c

(
∫ r

t
e−µ(τ−t)‖A±(τ)‖ dτ

)

‖x‖∞,[t,r]

≤ c(1− e−µ(r−t))
‖H‖∞

µ
‖x‖∞,[t,r] (11)

≤ c− 1
2 (1− e−µ(r−t))‖x‖∞,[t,r].

Now, if u = x + y solves u′ = A(t)u with u(0) ∈ W s, Lemma 1.1 and
estimate (11) allow to take the limit for r → +∞ in (9), so taking s = 0 in
(8), (x, y) is a solution of the fixed point problem

(

x

y

)

= LA

(

x

y

)

+
(

XA−(·)x0

0

)

, (12)

wherex0 = x(0) andLA is the linear operator onCb(R+;E−⊕E+) defined
by

LA

(

x

y

)

(t) :=
(

∫ t
0 XA−(t)XA−(τ)−1A∓(τ)y(τ) dτ

−
∫ ∞
t XA+(t)XA+(τ)−1A±(τ)x(τ) dτ

)

. (13)
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Conversely, taking s = 0 and r = ∞ in (10) and (11), we deduce that LA

is a linear contraction. Therefore problem (12) has a unique solution (x, y),
which clearly satisfies (8) and (9); from Lemma 1.1 and (10), for t ≥ s

|x(t)| ≤ ce−µ(t−s)|x(s)| + c− 1
2 (1− e−µ(t−s))‖y‖∞,[s,∞[ (14)

≤ max{c|x(s)|, c− 1
2 ‖y‖∞,[s,∞[},

hence
‖x‖∞,[s,∞[ ≤ max{c|x(s)|, c− 1

2 ‖y‖∞,[s,∞[}, (15)

while from (11),
|y(t)| ≤ c− 1

2 ‖x‖∞,[t,∞[, (16)

hence
‖y‖∞,[s,∞[ ≤ c− 1

2 ‖x‖∞,[s,∞[. (17)

Estimates (15) and (17) give

‖x‖∞,[s,∞[ ≤ max{c|x(s)|, c−1‖x‖∞,[s,∞[}.

Since c−1 ≤ 1, the last inequality implies that

‖x‖∞,[s,∞[ ≤ c|x(s)|, (18)

and (16) becomes
|y(t)| ≤ c

1
2 |x(t)|. (19)

So there exists a continuous path of rank-one operators U(t) ∈ L(E−, E+)
such that

U(t)x(t) = y(t), ‖U(t)‖ ≤ c
1
2 .

Then the first equation of (7) becomes

x′ = [A−(t) + A∓(t)U(t)]x,

and since ‖A∓(t)U(t)‖ ≤ c
3
2 ‖H‖∞, a further application of Lemma 1.1

yields
|x(t)| ≤ ce−ν(t−s)|x(s)|, (20)

for ν := µ− c
3
2 ‖H‖∞. Again by (19),

|y(t)| ≤ c
3
2 e−ν(t−s)|x(s)|, (21)

hence x and y vanish at infinity. The conclusion is that, for any x0 ∈ E−,
there exists a unique y0 ∈ E+, namely y0 = y(0), such that x0 + y0 ∈ W s:
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that is,W s is the graph of a (linear) operator S0 : E− → E+. From the first
inequality in (11) with t = 0, r = ∞, and (18), we have

|S0x0| = |y0| ≤ c

(
∫ ∞

0
e−µτ‖A±(τ)‖ dτ

)

‖x‖∞

≤ c2
(

∫ ∞

0
e−ντ‖H(τ)‖ dτ

)

|x0|,

for ν < µ. This proves (i) and (ii) in the case t = 0; the general state-
ments follow by considering the shifted pathA(·+ t) and using the identity
XA(t)W s

A = W s
A(·+t). Claim (iv) follows from (19) and (20): indeed

|u(t)| ≤ |x(t)| + |y(t)| ≤ (1 + c
1
2 )ce−ν(t−s)|x(s)| ≤ 2c

3
2 e−ν(t−s)|u(s)|.

Since graphS(t) = XA(t)W s, the representation

S(t) = P+
(

P−|XA(t)W s

)−1

= P+XA(t)(IE− + S(0))[P−XA(t)(IE− + S(0))]−1

implies (iii).
As for the second part of the proposition, notice that for any t̄ ≥ 0 and

ū ∈ E, we have that ū belongs to XA(t̄)E+ if and only if there exists a
solution u of u′ = A(t)u such that u(0) ∈ E+ and u(t̄) = ū. In other terms,
setting as before x(t) = P−u(t), y(t) = P+u(t), ū is in XA(t̄)E+ if and
only if (x, y) is a solution of system (8) and (9) with conditions x(0) = 0,
x(t̄) = x̄ := P−ū, x(t̄) = x̄ := P−ū. That is, (x, y) is a solution of the
fixed point problem

(

x

y

)

= MA

(

x

y

)

+
(

0
XA+(·)XA+(t̄)−1ȳ

)

, (22)

whereMA is the linear operator on C([0, t̄];E− ⊕ E+) defined by

MA

(

x

y

)

(t) :=
(

∫ t
0 XA−(t)XA−(τ)−1A∓(τ)y(τ) dτ

−
∫ t̄
t XA+(t)XA+(τ)−1A±(τ)x(τ) dτ

)

.

As before, from (10) and (11),MA is a linear contraction. We conclude that,
for any ȳ ∈ E+, there exists a unique x̄ ∈ E−, namely x̄ = x(t̄), such
that x̄+ ȳ ∈ XA(t̄)E+: that is,XA(t̄)E+ is the graph of a (linear) operator
T (t̄) : E+ → E−. From (10), (22), for 0 ≤ t ≤ r ≤ t̄,

|x(t)| ≤ c− 1
2 ‖y‖∞,[0,t], (23)

hence
‖x‖∞,[0,r] ≤ c− 1

2 ‖y‖∞,[0,r]. (24)
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From Lemma 1.1, (9), (11)) and (22),

|y(t)| ≤ ce−µ(r−t)|y(r)| + c− 1
2 (1− e−µ(r−t))‖x‖∞,[0,r]

≤ max{c|y(r)|, c− 1
2 ‖x‖∞,[0,r]},

hence
‖y‖∞,[0,r] ≤ max{c|y(r)|, c− 1

2 ‖x‖∞,[0,r]}. (25)
Estimates (24) and (25) imply

‖y‖∞,[0,r] ≤ max{c|y(r)|, c−1‖y‖∞,[0,r]}.

Since c−1 ≤ 1, we have
‖y‖∞,[0,r] ≤ c|y(r)|. (26)

Then (23) becomes
|x(t)| ≤ c

1
2 |y(t)|. (27)

From the first part of (10), with s = 0, and (26),

|T (t̄)ȳ| = |x̄| = |x(t̄)| ≤ c

(

∫ t̄

0
e−µ(t̄−τ)‖A±(τ)‖ dτ

)

‖y‖∞,[0,t̄]

≤ c2

(

∫ t̄

0
e−ν(t̄−τ)‖H(τ)‖ dτ

)

|ȳ|,

for ν < µ, proving (v) and (vi). Let U(t) be a continuous path of rank-one
operators in L(E+, E−) such that

U(t)y(t) = x(t), ‖U(t)‖ ≤ c
1
2 .

Then the second equation of (7) becomes
y′ = [A±(t)U(t) + A+(t)]y

and since ‖A±(t)U(t)‖ ≤ c
1
2 ‖H‖∞, we can apply directly Lemma 1.1 and

obtain
|y(t)| ≥ c−1eν(t−s)|y(s)|,

for ν := µ− c
3
2 ‖H‖∞. By (27),

|y(s)| ≥ 1
2
c− 1

2 |u(s)|,
so

|XA(t)u0| ≥ |y(t)| ≥ c−1eν(t−s)|y(s)| ≥ 1
2
c− 3

2 eν(t−s)|XA(s)u0|,

proving (viii). Claim (vii) follows from the representation

T (t) = P−
(

P+|XA(t)E+
)−1 = P−XA(t)[P+XA(t)]−1.

-.
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Remark 1.1 For further applications, we point out that the operator S(0) =
SA(0) of the above proposition can be represented as

S(0)x0 = P+ev0(I − LA)−1XA−(·)x0,

where ev0 denotes the evaluation map for t = 0.

2 Asymptotically hyperbolic systems

Although Proposition 1.2 would allow to handle a more general situation,
we will be mainly interested in those paths of operators which have a limit
for t → ±∞.

Definition 2.1 An asymptotically hyperbolic path of operators on R :=
R ∪ {−∞,+∞} is a piecewise continuous map A : R → L(E) such that
A(+∞) and A(−∞) are hyperbolic.

Similarly, we can define an asymptotically hyperbolic path of operators
on R

+ := [0,∞], respectively R
− := [−∞, 0], by requiring that A is

defined and piecewise continuous onR
+, respectivelyR

−, and thatA(+∞),
respectively A(−∞), is hyperbolic.
Let G(E) be the Grassmannian of E, i.e. the set of all closed subspaces

of E. For V ∈ G(E), denote by PV the orthogonal projection onto V . The
distance

dist (V, W ) := ‖PV − PW ‖
makes G(E) a complete metric space, isometric to the subset of L(E) of
all orthogonal projections. If dist (V, W ) < 1, then PV |W : W → V is an
isomorphism, being the restriction toW of the isomorphism

I−(PW−PV )(PW−PW ⊥) = PV PW +PV ⊥PW ⊥ : W⊕W⊥ → V ⊕V ⊥.

In particular, dim and codim are continuous functions from G(E) to N ∪
{∞}. A useful equivalent distance is

δ(V, W ) := max{ρ(V, W ), ρ(W,V )},

where
ρ(V, W ) := sup

v∈V
|v|=1

inf
w∈W

|v − w| = ‖PW ⊥PV ‖.

Indeed, δ is a distance because of the inequality

‖PW ⊥PV ‖ ≤ ‖PW ⊥PY PV ‖+‖PW ⊥PY ⊥PV ‖ ≤ ‖PW ⊥PY ‖+‖PY ⊥PV ‖,

and the equivalence between δ and dist follows from

δ(V, W ) = max{‖(PV − PW )PV ‖, ‖(PW − PV )PW ‖} ≤ ‖PV − PW ‖,
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and

‖PV − PW ‖ ≤ ‖(PV − PW )PV ‖+ ‖(PV − PW )PV ⊥‖
= ‖PW ⊥PV ‖+ ‖PW PV ⊥‖
= ρ(V, W ) + ‖PV ⊥PW ‖
= ρ(V, W ) + ρ(W,V ) ≤ 2δ(V, W ).

The image TV of a closed subspace V by an invertible operator T contin-
uously depends on the pair (T, V ) ∈ GL(E)× G(E), as the identity

PTV = TPV [TPV + T ∗−1(I − PV )]−1 (28)

shows. In particular, if E = E− ⊕ E+, a sequence of operators (Sn) ⊂
L(E−, E+) converges to S if and only if the graphs of Sn converge to the
graph of S.

Theorem 2.1 Let A be an asymptotically hyperbolic path of operators on
R

+. Then W s
A is a closed subspace and the following convergence results

for t → +∞ hold:

(i) W s
A is the only closed subspace W such that XA(t)W →

V −(A(+∞));
(ii) ‖XA(t)|W s

A
‖ ≤ ce−λ(t−s)‖XA(s)|W s

A
‖ for suitable c, λ > 0, and for

every t ≥ s ≥ 0.

If the closed linear subspace V ⊂ E is topological complement of W s
A,

(iii) XA(t)V → V +(A(+∞));
(iv) inf

v∈V
|v|=1

|XA(t)v| → ∞ exponentially fast.

Furthermore

(v) W s
−A∗ = (W s

A)⊥.

Proof. If t is large enough, the shifted pathA(·+t) satisfies the assumptions
of Proposition 1.2, with E− := V −(A(+∞)) and E+ := V +(A(+∞)).
So XA(t)W s

A = W s
A(t+·) is the graph of an operator S(t) : E− → E+.

SinceXA(t) is invertible,W s
A is a closed subspace. By Proposition 1.2 (ii),

‖S(t)‖ tends to zero for t →∞, hence XA(t)W s
A → E−, proving the first

part of (i).
Conclusion (ii) readily follows from Proposition 1.2 (iv).
Up to a time-shift, we may assume thatE+ is in direct sumwithW s

A and
that the conclusions (iv) and (viii) of Proposition 1.2 hold for some b, ν > 0.
Since V is also in direct sum withW s

A, it is the graph of a bounded operator
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L from E+ toW s
A. Therefore, if v ∈ XA(t)V , writing v = XA(t)(y + Ly)

with y ∈ E+, we get that u := XA(t)y is an element ofXA(t)E+ satisfying

|v − u| = |XA(t)Ly| ≤ be−νt‖L‖|y| ≤ b2e−2νt‖L‖|XA(t)y|
≤ b2e−2νt‖L‖(|v| + |v − u|).

Hence |v − u| = o(1)|v|, so

ρ(XA(t)V, XA(t)E+) → 0. (29)

On the other hand, for any u = XA(t)y ∈ XA(t)E+, setting v := u +
XA(t)Ly ∈ XA(t)V , we get that

|u− v| = |XA(t)Ly| ≤ be−νt‖L‖|y| ≤ b2e−2νt‖L‖|u|,

so |u− v| = o(1)|u| and

ρ(XA(t)E+, XA(t)V ) → 0. (30)

From (29) and (30), (iii) follows, becauseXA(t)E+ → E+ by Proposition
1.2 (v), (vi).
Now, as a consequence of (iii), we have that any closed subspace

W such that XA(t)W → V −(A(+∞)), necessarily has null intersec-
tion W ∩ V = (0) with any topological complement V of W s

A. This
implies that W ⊂ W s

A, so also XA(t)W ⊂ XA(t)W s
A for any t. As

we have dist (XA(t)W,XA(t)W s
A) < 1 for large t, we conclude that

XA(t)W = XA(t)W s
A and W = W s

A. This shows the uniqueness of the
subspaceW and ends the proof of assertion (i).
For any v ∈ V , v = y + Ly, by Proposition 1.2 (iv) and (viii),

|XA(t)v| ≥ |XA(t)y| − |XA(t)Ly| ≥ b−1eνt|y| − be−νt|Ly|

≥
(

b−1eνt − be−νt‖L‖
)

|y| ≥ 1
‖I + L‖

(

b−1eνt − be−νt‖L‖
)

|v|,

proving (iv).
By the first assertion, the curve of subspaces

X−A∗(t)
[

(W s
A)⊥

]

= (XA(t)−1)∗
[

(W s
A)⊥

]

= [XA(t)W s
A]⊥

converges to (E−)⊥ = V −(−A∗). By assertion (i), (W s
A)⊥ = W s

−A∗ . -.

We conclude this section with the characterization of the asymptotically
hyperbolic paths for which the evolution of the stable space is constant.

Lemma 2.2 Let A be an asymptotically hyperbolic path of operators on
R

+. Then XA(t)W s
A = V −(A(+∞)) for every t ≥ 0 if and only if

A(t)V −(A(+∞)) ⊂ V −(A(+∞)) for every t ≥ 0.



A.Abbondandolo, P.Majer

Proof. The first condition implies the second one by differentiation. Con-
versely, the second condition impliesXA(t)V −(A(+∞)) ⊂ V −(A(+∞)),
so XA(t) restricts to a continuous path of injective semi-Fredholm opera-
tors on V −(A(+∞)). Since XA(0) = I , the continuity of the Fredholm
index implies thatXA(t)V −(A(+∞)) = V −(A(+∞)) for any t. Then by
Theorem 2.1 (i),W s

A = V −(A(+∞)). -.

3 Perturbations

It is interesting to see what happens to the stable spaceW s
A when the pathA

is subject to a perturbation by a path which is either small in the L∞ norm,
or consists of compact operators. We begin with the small perturbations.

Theorem 3.1 The stable space W s
A depends continuously on the path A,

with respect to the standard topology of G(E) and to the L∞ topology on
the set of asymptotically hyperbolic paths.

Proof. Let (An)n≥1 be a sequence of asymptotically hyperbolic paths con-
verging uniformly to the asymptotically hyperbolic pathA∞. It is enough to
prove that for some t0 ≥ 0, (W s

An(·+t0)) converges toW s
A∞(·+t0) in G(E):

the claim then follows from identity (6) and from the fact that (XAn(t0)−1)
converges to XA∞(t0)−1.
Therefore, up to a time shift and to a shift of the indices, we can assume

that the hypotheses of Proposition 1.2 are satisfied, withA0 := A∞(∞) and
H(t) := An(t)− A0, for any 1 ≤ n ≤ ∞. As a consequence, keeping the
notations of Proposition 1.2, we have thatW s

An
is the graph of an operator

SAn ∈ L(E−, E+) and the estimates

‖XAn−(t)XAn−(τ)−1‖ ≤ ce−µ(t−τ), t ≥ τ, (31)
‖XAn+(t)XAn+(τ)−1‖ ≤ ce−µ(τ−t), t ≤ τ,

hold, where An− := P−AnP−, An+ := P+AnP+. By Remark 1.1,

SAnx0 = P+ev0 ◦ (I − LAn)−1XAn−(·)x0, ∀x0 ∈ E−,

where LAn is the bounded operator on Cb(R+;E) defined as

LAn

(

x

y

)

(t) :=
(

∫ t
0 XAn−(t)XAn−(τ)−1An∓(τ)y(τ) dτ

−
∫ ∞
t XAn+(t)XAn+(τ)−1An±(τ)x(τ) dτ

)

,

with operator norm ‖LAn‖ ≤ α < 1. Notice that

ev0(I − LAn)−1XAn− =
∞

∑

k=0

Lk
An

XAn−(0) (32)
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is absolutely convergent in L(E−, E), uniformly in n:

‖Lk
An

XAn−(0)‖L(E−,E) ≤ cαk, 1 ≤ n ≤ ∞.

As we are going to prove, (Lk
An

XAn−(0)) converges to Lk
A∞

XA∞−(0) in
L(E−, E) for every k, so identity (32) passes to the limit. This shows that
(SAn) converges to SA∞ , concluding the proof.
To prove the claim, notice first that (XAn−(t)) converges to

XA∞−(t) for every t; moreover, if Zn(t) := Lk
An

XAn−(t) converges to
Z∞(t) := Lk

A∞
XA∞−(t), then Lk+1

An−
XAn−(t) = LAnZn(t) converges to

LA∞Z∞(t) = Lk+1
A∞−

XA∞−(t), because the integrands in the expression
for LAnZn(t) pass to the limit pointwise, and by (31), are dominated by an
integrable function. The claim follows by induction. -.

In order to study the perturbations by paths of compact operators, it
is necessary to recall some concepts from [AM01]. Two closed subspaces
V, W ⊂ E are said commensurable if their orthogonal projectors differ by
a compact operator. The relative dimension of W with respect to V is the
integer

dim(W,V ) := dimW ∩ V ⊥ − dimV ∩W⊥ = ind (W,V ⊥).

If (V, Z) is a semi-Fredholm pair (see Sect. 5) andW is commensurable to
V , then (W,Z) is also a semi-Fredholm pair, of index

ind (W,Z) = ind (V, Z) + dim(W,V ). (33)

The following lemma is a simple variant of Proposition 2.2 in [AM01].

Lemma 3.2 Let T, S be two hyperbolic operators such that T − S is com-
pact. Let P±(T ) and P±(S) be the projectors given by the spectral de-
composition of T and S. Then P−(T )− P−(S) and P+(T )− P+(S) are
compact.

The following lemma is proved in [AM01], Proposition 2.3.

Lemma 3.3 Let E1, E2 be Hilbert spaces, and let T, S ∈ L(E1, E2) be
operators with compact difference and closed image. Then ker T is com-
mensurable to ker S, ranT , the range of T , is commensurable to ranS
and

dim(ranT, ranS) = −dim(kerT, ker S).

Lemmas 3.2 and 3.3 imply that, if T, S are hyperbolic operators on E
with compact difference, then V −(T ) is commensurable to V −(S), while
V +(T ) is commensurable to V +(S).
Identity (4) immediately implies:
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Lemma 3.4 Let J ⊂ R be an interval containing zero. If A(t) − B(t) is
compact for every t ∈ J , then XA(t)−XB(t) is compact for every t ∈ J .

Lemma 3.5 Let J ⊂ R be an interval and let K : J → L(E) be an
integrable path consisting of compact operators. Then

Cb(J ; E) 3 u %→
∫

J
K(τ)u(τ) dτ ∈ E

is a compact operator.

Proof. The claim is obviouswhenK is a characteristic functionof a bounded
interval. The general case follows by linearity and by a density argument.

-.

Theorem 3.6 Let A and B be two asymptotically hyperbolic paths such
thatA(t)−B(t) is compact for every t. ThenW s

A is commensurable toW s
B

and
dim(W s

A, W s
B) = dim(V −(A(+∞)), V −(B(+∞))).

Proof. Assume at first that A and B satisfy the assumptions
of Proposition 1.2 with E± equal to V ±(A(+∞)), respectively
V ±(B(+∞)). In this case, W s

A and W s
B are graphs of two

bounded operators, SA ∈ L(V −(A(+∞)), V +(A(+∞))) and SB ∈
L(V −(B(+∞)), V +(B(+∞))). Let P−

A and P+
A denote the projections

associated to the splitting E = V −(A(+∞))⊕ V +(A(+∞)); then

W s
A = ker(P+

A − SAP−
A ), W s

B = ker(P+
B − SAP−

B ). (34)

SinceA(+∞)−B(+∞) is compact, P−
A −P−

B and P+
A −P+

B are compact,
by Lemma 3.2. We shall prove that SAP−

A and SBP−
B differ by a compact

operator.
Recall, from the proof of Proposition 1.2, that LA ∈ L(Cb(R+; E))

writes as

LAu(t) =
∫ t

0
XP −

A AP −
A

(t)XP −
A AP −

A
(τ)−1P−

A A(τ)P+
A u(τ) dτ

−
∫ ∞

t
XP+

A AP+
A

(t)XP+
A AP+

A
(τ)−1P+

A A(τ)P−
A u(τ) dτ.

The operator LA maps bounded subsets of Cb(R+;E) into equicontinuous
sets: indeed

d

dt
(LAu) = (P+

A AP+
A + P−

A AP−
A )(LA − I)u + Au
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is uniformly bounded, foruvarying in a bounded subset ofCb(R+;E). Since
P−

A A(t)P−
A − P−

B B(t)P−
B and P+

A A(t)P+
A − P+

B B(t)P+
B are compact for

every t ≥ 0, the operators

XP −
A AP −

A
(t)−XP −

B BP −
B

(t) and XP+
A AP+

A
(t)−XP+

B BP+
B

(t)

are compact for every t ≥ 0 (Lemma 3.4). Hence, for every t ≥ 0, the paths

K−(τ) := XP −
A AP −

A
(t)XP −

A AP −
A

(τ)−1P−
A A(τ)P+

A

−XP −
B BP −

B
(t)XP −

B BP −
B

(τ)−1P−
B B(τ)P+

B ,

K+(τ) := XP+
A AP+

A
(t)XP+

A AP+
A

(τ)−1P+
A A(τ)P−

A

−XP+
B BP+

B
(t)XP+

B BP+
B

(τ)−1P+
B B(τ)P−

B ,

consist of compact operators. Since K− is integrable on [0, t] and K+ is
integrable on [t,∞[, by Lemma 3.5 the set

{[(LA − LB)u](t) | u ∈ B}

is relatively compact, for any bounded set B ⊂ Cb(R+; E). Together with
the equicontinuity stated before, by Ascoli-Arzelà theorem this implies that
LA −LB is a compact operator. Thus, (I −LA)−1 and (I −LB)−1 have a
compact difference. By Remark 1.1,

SAP−
A = P+

A ev0(I − LA)−1XP −
A AP −

A
(·)P−

A ,

and every operator in the above chain changes by a compact operator when
we replace A by B. Therefore, SAP−

A − SBP−
B is compact, so identities

(34) and Lemma 3.3 imply thatW s
A is commensurable toW s

B and

dim(W s
A, W s

B) = −dim(ran (P+
A − SAP−

A ), ran (P+
B − SAP−

B ))
= −dim(V +(A(+∞)), V +(B(+∞)))
= dim(V −(A(+∞)), V −(B(+∞))).

Let q be the above integer. In the general case, the preceding consid-
erations show that for t large enough, (XA(t)W s

A, XB(t)W s
B) is a pair of

commensurable subspaces of relative dimension q. By Lemma 3.3, so is the
pair (W s

A, XA(t)−1XB(t)W s
B). By Lemma 3.4, the invertible operator

XB(t)−1XA(t) = I + XB(t)−1[XA(t)−XB(t)]

is a compact perturbation of the identity, so Lemma 3.3 implies that
(W s

A, W s
B) is a pair of commensurable subspaces of relative dimension q,

concluding the proof. -.
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We conclude this section with the problem of when the evolution of the
stable space remains in the same commensurable class. Let V be a closed
subspace of E. Differentiating (28), it is easy to show that the orthogonal
projector P (t) onto XA(t)V verifies

P ′(t) = (I − P (t))A(t)P (t) + P (t)A(t)∗(I − P (t)). (35)

Denote by a(t) and p(t) the projections of A(t) and P (t) in the Calkin
algebra L(E)/Lc(E). By (35), p solves the following Riccati equation

q′ = (1− q)aq + qa∗(1− q). (36)

The subspaces XA(t)V are commensurable if and only if p(t) = p(0) for
any t. In this case, p′ = 0, and from (36) we obtain

[a(t), p(0)]p(0) = (1− p(0))a(t)p(0) = (1− p(t))a(t)p(t)
= p′(t)p(t) = 0.

Conversely, if [a(t), p(0)]p(0)] = 0, then also

p(0)a(t)∗(1− p(0)) = ([a(t), p(0)]p(0))∗ = 0,

so the constant map q(t) ≡ p(0) solves (36), and from the uniqueness of
the solution of the Cauchy problem, we conclude that p(t) = p(0). Thus we
have proved:

Lemma 3.7 Let A : R+ → L(E) be a piecewise continuous path of op-
erators, and let V be a closed subspace of E. Then XA(t)V is a path of
commensurable subspaces if and only if [A(t), PV ]PV is compact for every
t ∈ R+.

Remark 3.1 Let P, Q be two projectors onto V . Since [A, Q]Q =
[[A, P ]P, Q]Q, if [A, P ]P is compact for a projector onto V , it is com-
pact for any projector onto V , and more generally, onto any closed subspace
commensurable to V .

Coming back to the evolution of the stable space, we have the following
characterization (compare Lemma 2.2).

Proposition 3.8 Let A be an asymptotically hyperbolic path of operators
on R

+; let V be a closed subspace of E, and let P be a projector onto V .
Then the following are equivalent:

(i) XA(t)W s
A is commensurable to V for any t ≥ 0;

(ii) V −(A(+∞)) is commensurable to V and [A(t), P ]P is compact for
any t ≥ 0.
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Proof. Assume (i). By Theorem 2.1 (i), XA(t)W s
A converges to

V −(A(+∞)) for t → +∞, proving the first part of (ii), because the com-
mensurability classes are closed.ByLemma3.7 andRemark 3.1, [A(t), P ]P
is compact and (ii) holds.
Assume (ii): by Remark 3.1, the operator

B(t) := A(t)− [A(t), PV −(A(+∞))]PV −(A(+∞))

is a compact perturbation of A(t). Moreover, B(+∞) = A(+∞) and

B(t)V −(A(+∞)) ⊂ V −(A(+∞)).

By Lemma 2.2,XB(t)W s
B = V −(A(+∞)), and by Theorem 3.6 and iden-

tity (6), XA(t)W s
A is commensurable to XB(t)W s

B , hence to V . -.

4 The operator FA

Let L2(J ;E) denote the space of square integrable E-valued functions on
J , and H1(J ;E) the space of square integrable E-valued functions on J
whose weak derivatives are square integrable. For simplicity of notations,
set

L2 := L2(R;E), L2
+ := L2(R+;E), L2

− := L2(R−;E),
H1 := H1(R;E), H1

+ := H1(R+; E), H1
− := H1(R−;E).

Let A be an asymptotically hyperbolic path on R (see Definition 2.1). We
can define the bounded linear operator FA from H1 to L2 by setting

FAu := u′ −Au ∀u ∈ H1.

Similarly, if A is an asymptotically hyperbolic path on R
+, respectively on

R
−, we have the operator F+

A from H1
+ to L2

+, respectively F−
A from H1

−
to L2

−, defined as

F+
A u = u′ −Au ∀u ∈ H1

+,

F−
A u = u′ −Au ∀u ∈ H1

−.

Denote by P s
A and P u

A the orthogonal projections onto W s
A and W u

A. It
is useful to introduce the following families of operators

G+
A(t, τ) := XA(t)[1R+(t− τ)P s

A − 1R−(t− τ)(I − P s
A)]XA(τ)−1,

∀(t, τ) ∈ R
+ × R

+,

G−
A(t, τ) := XA(t)[1R+(t− τ)(I − P u

A)− 1R−(t− τ)P u
A]XA(τ)−1,

∀(t, τ) ∈ R
− × R

−.
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Lemma 4.1 Let A be an asymptotically hyperbolic path of operators on
R

+. Let λ > 0 be such that

sup Re [σ(A(+∞)) ∩ {z ∈ C | Re z < 0}] < −λ.

Then there is a positive number c such that

‖G+
A(t, τ)‖ ≤ ce−λ|t−τ | ∀(t, τ) ∈ R

+ × R
+.

Proof. From the identity G+
A(τ, t) = −G+

−A∗(t, τ)∗, it is clearly sufficient
to show the bound for all pairs (t, τ) with t ≥ τ ≥ 0. In this case, using
Theorem 2.1 (ii),

‖G+(t, τ)‖ = ‖X(t)|W sP sX(τ)−1‖ (37)
≤ ce−λ(t−τ)‖X(τ)P sX(τ)−1‖.

Now notice that X(τ)P sX(τ)−1 is the linear projection on the first factor
of the splitting

E = X(τ)W s ⊕X(τ)(W s)⊥.

From Theorem 2.1 (i) and (iii),

X(τ)W s → V −(A(+∞)) and X(τ)(W s)⊥ → V +(A(+∞)),

for τ → ∞. Therefore X(τ)P sX(τ)−1 is a continuous path of linear pro-
jectors which converges for τ → ∞. In particular, it is bounded and the
conclusion follows from inequality (37) taking into account the initial ob-
servation. -.

Proposition 4.2 The operator F+
A is onto and a right-inverse R+

A ∈
L(L2

+, L2
+) is defined as

(R+
Ah)(t) :=

∫ ∞

0
G+

A(t, τ)h(τ) dτ, ∀h ∈ L2
+,

Furthermore, the splitting H1
+ = kerF+

A ⊕ ranR+
A is given by the repre-

sentation

u(t) = XA(t)P s
Au(0) + R+

AF+
A u(t), ∀u ∈ H1

+.

Analogous statements hold for F−
A with

(R−
Ah)(t) :=

∫ 0

−∞
G−

A(t, τ)h(τ) dτ, ∀h ∈ L2
−.
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Proof. First notice thatR+ is a well defined bounded operator: indeed, from
Lemma 4.1, for any h ∈ L2

+ and t ≥ 0 we have

|(R+h)(t)| =
∣

∣

∣

∣

∫ ∞

0
G+(t, τ)h(τ) dτ

∣

∣

∣

∣

≤ c

∫ ∞

0
e−λ|t−τ ||h(τ)| dτ

= c[exp(−λ| · |) ∗ |h(·)|](t),

so, by Young’s inequality, R+h is in L2
+ and

‖R+h‖L2 ≤ 2
λ
‖h‖L2 .

Furthermore, since

R+h(t) = X(t)
[

∫ t

0
P sX(τ)−1h(τ) dτ

−
∫ ∞

t
(I − P s)X(τ)−1h(τ) dτ

]

,

by direct computation one gets thatR+h ∈ H1
+ = domF+ and F+R+h =

h, as we wished to prove.
Since F+ is continuous from H1

+ to L2
+ and R+ is a right inverse for

F+, one has the corresponding splitting into closed subspaces

H1
+ = kerF+ ⊕ ranR+,

with projections I − R+F+ and R+F+. So, for any u ∈ H1
+ there exists

v0 ∈ W s such that

u(t) = X(t)v0 + R+F+u(t)

and
u(0) = v0 + R+F+u(0).

By the definition of R+, R+F+u(0) ∈ (W s)⊥, and we conclude that v0 =
PW su(0). -.

Lemma 4.3 The operatorh %→ R+
Ah(0)mapsC∞

c (]0,∞[;E) onto (W s
A)⊥.

The operator h %→ R−
Ah(0) maps C∞

c (]−∞, 0[;E) onto (W u
A)⊥.

Proof. Let ϕ ∈ C∞
c (]0,∞[; R) be a function such that the operator U :=

∫ ∞
0 ϕ(τ)XA(τ)−1 dτ ∈ L(E) is invertible. Given v0 ∈ (W s

A)⊥, we can
define h ∈ C∞

c (]0,∞[;E) as h(t) := −ϕ(t)U−1v0. Then

R+
Ah(0) = −

∫ ∞

0
(I − P s)XA(τ)−1h(τ) dτ

= (I − P s)
∫ ∞

0
ϕ(τ)XA(τ)−1 dτU−1v0 = (I − P s)v0 = v0.

-.
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5 On the Fredholm property of FA

Werecall that a pair (V, W ) of closed subspaces ofE is said a semi-Fredholm
pair if V + W is closed and at least one of the numbers

dimV ∩W, codimE(V + W )

is finite. In this case the Fredholm index of the pair (V, W ) is

ind (V, W ) = dimV ∩W − codimE(V + W ) ∈ Z ∪ {−∞,+∞}.

When ind (V, W ) ∈ Z, (V, W ) is called a Fredholm pair. If the closed
subspacesW and Z are commensurable, the pair (Z, W⊥) is Fredholm and

ind (Z, W⊥) = dim(Z, W ).

If (V, W ) is a Fredholm pair andZ is commensurable toW , then also (V, Z)
is a Fredholm pair and its index is

ind (V, Z) = ind (V, W ) + dim(Z, W ).

Theorem 5.1 Let A be an asymptotically hyperbolic path of operators on
R. Then:
(i) FA has closed range if and only if the subspace W s

A + W u
A is closed.

(ii) FA is onto if and only if W s
A + W u

A = E;
(iii) FA is injective if and only if W s

A ∩W u
A = {0}.

(iv) FA is invertible if and only if E = W s
A ⊕W u

A.
(v) FA is a semi-Fredholm operator if and only if (W s

A, W u
A) is a semi-

Fredholm pair. In this case

indFA = ind (W s
A, W u

A).

The proof of the above theorem is based on the following useful charac-
terizations.

Proposition 5.2 Let A be an asymptotically hyperbolic path of operators
on R. Then:
(i) ker FA = {XA(t)u0 | u0 ∈ W s

A ∩W u
A};

(ii) ranFA =
{

h ∈ L2 | (R+
Ah)(0)− (R−

Ah)(0) ∈ W s
A + W u

A

}

;
(iii) ranFA =

{

h ∈ L2 | (R+
Ah)(0)− (R−

Ah)(0) ∈ W s
A + W u

A

}

;

Proof. (i). The first claim follows from the fact that the solutions of the linear
system starting from W s ∩ W u have exponential decay at ±∞ (Theorem
2.1 (ii)).

(ii). The image of F consists of those h ∈ L2 such that the equation

u′ = A(t)u + h (38)
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has a solution u in L2 (hence, from (38), in H1). The solution of (38) such
that u(0) = u0 can be written as

u(t) =
{

X(t)[u0 −R+h(0)] + R+h(t), for t ≥ 0,
X(t)[u0 −R−h(0)] + R−h(t), for t ≤ 0.

So u belongs to L2 if and only if

u0 −R+h(0) ∈ W s, (39)
u0 −R−h(0) ∈ W u. (40)

If h is in the image of F , subtracting (40) from (39), we obtain

R+h(0)−R−h(0) ∈ W s + W u. (41)

Conversely, if h satisfies (41), R+h(0) − R−h(0) = vs + vu, for some
vs ∈ W s and vu ∈ W u. Choosing

u0 := R+h(0)− vs = R−h(0) + vu,

(39) and (40) hold, so the corresponding u is in L2.
(iii). By (ii) and by the fact that H :=

{

h ∈ L2 | R+
Ah(0)−R−

Ah(0) ∈ W s
A + W u

A

}

is closed, we get that
ranFA ⊂ H . By Lemma 4.3, according to the open mapping theo-
rem, there exists c > 0 such that for every w0 ∈ (W s

A)⊥ there exists
h0 ∈ C∞

c (]0,∞[;E) such that R+
Ah0(0) = w0 and ‖h0‖L2 ≤ c|w0|.

Given h ∈ H and ε > 0, we may write R+
Ah(0) − R−

Ah(0) = v0 + w,
where v0 ∈ W s

A +W u
A and |w| < ε/c. By the above claim, there exists h0 ∈

C∞
c (]0,∞[;E), ‖h0‖L2 < ε, such thatR+

Ah0(0)−R−
Ah0(0) = R+

Ah0(0) =
(I − P s)w, and setting hε := h− h0, we have that ‖hε − h‖L2 < ε and

R+
Ahε(0)−R−

Ahε(0) = v0 + w − (I − P s)w = v0 + P sw.

Since such a vector is in W s
A + W u

A, claim (ii) implies that hε ∈ ranFA.
Since ε is arbitrary, h ∈ ranFA. -.

Proof of Theorem 5.1. (i) Proposition 5.2 (ii)-(iii) implies that ifW s + W u

is closed then F has closed range.
Conversely, assume that F has closed range. Let v0 ∈ W s + W u. By

Lemma 4.3, there exists h ∈ C∞
c (]0,∞[;E) such thatR+

Ah(0)−R−
Ah(0) =

(I−P s)v0. Since (I−P s)v0 = v0−P sv0 ∈ W s + W u, Proposition 5.2 (iii)
implies that h ∈ ranF . Since ranF = ranF , assertion (ii) of Proposition
5.2 implies that (I−P s)v0 ∈ W s +W u. Hence v0 = (I−P s)v0 +P sv0 ∈
W s + W u. This proves that W s + W u ⊂ W s + W u, hence W s + W u is
closed.
All the other statements follow immediately from Proposition 5.2 (i) and

(ii), taking into account Lemma 4.3. -.
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Remark 5.1 All the results of sections 4 and 5 hold for different choices
of the spaces between which FA is defined. As a consequence, the fact of
being Fredholm and the value of the index do not depend on these spaces.
In particular, assuming the path A to be continuous, the proofs of all these
results hold with no change for FA as a bounded operator between the
Banach spaces

C1
0 :=

{

u ∈ C1(R; E) | lim
t→±∞

u(t) = 0, lim
t→±∞

u′(t) = 0
}

and

C0
0 :=

{

u ∈ C0(R; E) | lim
t→±∞

u(t) = 0
}

.

Remark 5.2 Seen as an unbounded operator on L2 with domain H1, FA is
closed. The domain of its adjoint operator is againH1 and

F ∗
A = −F−A∗ .

Compare this formula with the identities X−A∗ = (X−1
A )∗ and W s

−A∗ =
(W s

A)⊥.

Example 1. WhenE is finite dimensional,FA is always a Fredholm operator
of index

indFA = dimV −(A(+∞))− dimV −(A(−∞)).

Indeed in a finite dimensional space (W s
A, W u

A) is always a Fredholm pair
and since the evolution ofW s

A under the flowXA converges toV −(A(+∞))
for t → +∞, while the evolution of W u

A converges to V +(A(+∞)) for
t → −∞ (Theorem 2.1 (i)),

dimW s
A = dimV −(A(+∞)), dimW u

A = dimV +(A(−∞)).

Therefore FA is a Fredholm operator of index

indFA = ind (W s
A, W u

A)
= dimW s

A + dimW u
A − dimE

= dimV −(A(+∞))− dimV −(A(−∞)). -.

Example 2. If A(−∞) and A(+∞) have negative eigenspaces of finite
dimension, the same conclusions hold

indFA = ind (V −(A(+∞)), V +(A(−∞)))
= dimV −(A(+∞))− dimV −(A(−∞)).

no matter what is the form of A(t) for t ∈ R.
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Indeed, by Theorem 2.1 (i), XA(t)W s
A is a continuous path of closed

subspace which converges to V −(A(+∞)) for t → +∞. The dimension
is a continuous function on G(E), so dimW s

A = dimV −(A(+∞)). On
the other hand, XA(t)W u

A is a continuous path of closed subspace which
converges to V +(A(−∞)) for t → −∞, and the codimension is a con-
tinuous function on G(E), so codimEW u

A = codimEV +(A(−∞)) =
dimV −(A(−∞)). A finite dimensional and a finite codimensional sub-
space always make a Fredholm pair, of index

ind (W s
A, W u

A) = dimW s
A − codimEW u

A

= V −(A(+∞))− dimV −(A(−∞)).

The conclusion follows again by Theorem 5.1. -.

But in infinite dimensional Hilbert spaces, more possibilities arise.

Example 3. Let V− and V+ be two arbitrary closed subspaces of E. Then
there exists an asymptotically hyperbolic path of operatorsA onR such that
(i) A is smooth, (ii) A(t) is self-adjoint for every t and (iii)

W s
A = V−, W u

A = V+.

Indeed, let ϕ be a smooth function such that ϕ = 1 on [−1/2, 1/2] and
ϕ = −1 on [−∞,−1] ∪ [1,∞]. A path satisfying the above conditions is
the following

A(t) :=

{

PV+ + ϕ(t)PV ⊥
+

, for t < 0,

PV ⊥
−

+ ϕ(t)PV− , for t ≥ 0. -.

This example, together with the characterization given by Theorem 5.1,
provides us with an easy way to build asymptotically hyperbolic paths A
such that FA does not have closed range, or such that FA has closed range
but an infinite dimensional kernel and/or co-kernel.
As we have seen in Examples 1 and 2, there are classes of asymptotically

hyperbolic pathswith the property that the correspondingF is Fredholm and
its index depends only on the end-points of the path. In general, also when
F happens to be Fredholm, this fact may not hold anymore.

Example 4. There exists a family (Ak), k ∈ Z, of asymptotically hyperbolic
paths of operators having identical end-points at±∞,Ak(±∞) = A0(±∞)
for any k, such that FAk is Fredholm of index k.
For this purpose, set

E := +2(Z) =

{

u = (un) ∈ R
Z |

∑

n∈Z

|un|2 < ∞
}

,
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with its usual inner product

u · v =
∑

n∈Z

unvn.

Set

E+ := +2(Z+ ∪ {0}) =
{

u ∈ +2(Z) | un = 0 for n < 0
}

,

E− := +2(Z−) =
{

u ∈ +2(Z) | un = 0 for n ≥ 0
}

,

so that E = E− ⊕ E+. If k ∈ Z, let Sk ∈ L(E) be the k-shift

(Sku)n := un+k.

Since the set of invertible operators on the infinite dimensional Hilbert space
E is connected6 (a classical result due to Putnam and Wintner [PW51], see
also [Kui65] for more information on the general group of a Hilbert space),
there exists a smooth path Y : R → GL(E) such that Y (t) = I for t ≤ 0
and Y (t) = Sk for t ≥ 1. Let ϕ be a smooth function such that ϕ = 0 on
[0, 1], ϕ = 1 on ]−∞,−1] ∪ [2,∞[ and set

A(t) =







ϕ(t)(PE+ − PE−), for t ≤ 0,
Y ′(t)Y (t)−1, for 0 ≤ t ≤ 1,
ϕ(t)(PE+ − PE−), for t ≥ 1.

Then A(+∞) = A(−∞) = PE+ − PE− and XA(t) = Y (t) for t ∈ [0, 1].
It is readily seen that

W u
A = E+, XA(1)W s

A = E−,

and sinceXA(1) = Y (1) = Sk,W s
A = S−kE−. Therefore (W s

A, W u
A) is a

Fredholm pair of index

ind (W s
A, W u

A) = ind (S−kE−, E+)
= dimS−kE− ∩ E+ − codim(S−kE− + E+) = k.

Therefore FA is a Fredholm operator of index k. -.

Let {en} be the standard orthonormal system in +2(Z) and consider the
invertible operator defined by

Ten :=







e2n, if n ≥ 0,
en/2, if n < 0 is even,
e−n, if n < 0 is odd.

6 For example, I is connected to S1 inO(E) by the path [0, π/2] # t $→ e−tJetK , where
Jei = sgn (i + 1/2)e−i−1 andKei = (sgn i)e−i.
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Replacing the pathY by apath connecting I to eitherT orT−1 inGL(E), the
same construction shown above allows to build asymptotically hyperbolic
path still having the same end-points, but index −∞ or +∞. If we connect
I to the operatorR such thatRen = e−n, we get an operator FA with closed
range but infinite dimensional kernel and co-kernel. We just mention that a
suitable choice of Y would make A a path of self-adjoint operators in the
examples above.

6 Essentially splitting paths

In this section we shall consider an asymptotically hyperbolic path A and
the related operator FA (either from H1 to L2 or from C1

0 to C0
0 , in which

case A is assumed to be continuous). It is interesting to see what happens
when the pathA is subject to a perturbation by a path of compact operators.

Theorem 6.1 Let A and B be two asymptotically hyperbolic paths on R

such that B(t) − A(t) is compact for every t ∈ R. Assume that FA is
semi-Fredholm. Then also FB is semi-Fredholm and

indFB = indFA + dim(V −(B(+∞)),
V −(A(+∞)))− dim(V −(B(−∞)), V −(A(−∞))).

Notice that, if B(t) − A(t) vanishes at −∞ and at +∞, this result is a
simple consequence of the fact that the multiplication by a path of compact
operators, infinitesimal at infinity, gives a compact operator fromH1 to L2

and from C1
0 to C0

0 , and that a perturbation of a semi-Fredholm operator by
a compact one is semi-Fredholmwith the same index. In general, everything
follows from Theorem 3.6.

Proof. Since FA is semi-Fredholm, (W s
A, W u

A) is a semi-Fredholm pair of
index indFA. By Theorem 3.6,W s

B andW u
B are commensurable toW s

A and
W u

A, respectively, and

dim(W s
B, W s

A) = dim(V −(B(+∞)), V −(A(+∞))), (42)
dim(W u

B, W u
A) = dim(V +(B(−∞)), V +(A(−∞))).

Identity (33) shows that whenwe replace the elements of the semi-Fredholm
pair (W s

A, W u
A) by their commensurable spaces W s

B and W u
B , we obtain

another semi-Fredholm pair (W s
B, W u

B) of index

ind (W s
A, W u

A) + dim(W s
B, W s

A)− dim(W u
B, W u

A).

The thesis follows from (42). -.

Theorem E is a corollary of the above result:
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Corollary 6.2 Assume that E has a splitting E = E− ⊕ E+ and that the
asymptotically hyperbolic pathA has the formA(t) = A0(t)+K(t), where
the operators K(t) are compact, A0 is piecewise continuous, E− and E+

are A0(t)-invariant for every t, A0(±∞) are hyperbolic, and

V −(A0(±∞)) = E−, V +(A0(±∞)) = E+.

Then FA is Fredholm and its index is

indFA = dim(V −(A(+∞)), V −(A(−∞))).

Proof. Under these assumptions, A0 is an asymptotically hyperbolic path,
and Theorem 2.1 (i) implies that

W s
A0 = E−, W u

A0 = E+.

Hence, by Theorem 5.1 (iv), FA0 is an invertible operator. So Theorem 6.1
implies that FA is a Fredholm operator of index

indFA = dim(V −(A(+∞)), E−)− dim(V +(A(−∞)), E+)
= dim(V −(A(+∞)), E−) + dim(V −(A(−∞)), E−)
= dim(V −(A(+∞)), V −(A(−∞))). -.

This corollary generalizes Example 2 to a case where both the subspaces
in the spectral decomposition of A(±∞) are infinite dimensional. It also
generalizes [AvdV99] Lemmas 15, 16 and [AM01] Theorem 3.4.
In order to state a more general result, a few preliminaries are needed.

A splitting E = E1 ⊕ E2 is said to be essentially invariant for an operator
T ∈ L(E) if it is an invariant splitting for some compact perturbation of
T . Equivalently, denoting by P one of the two projections associated to
such a splitting, the splitting is essentially invariant for T if and only if
[T, P ] := TP − PT is compact. The essential commutator of T ,

eC(T ) := {S ∈ L(E) | [S, T ] ∈ Lc(E)} ,

is the pre-image of the commutator of [T ] in the Calkin algebra
L(E)/Lc(E). Therefore, eC(T ) is a closed subalgebra with identity of
L(E), invariant with respect to compact perturbations, and eC(T ) = eC(S)
whenever S − T is compact.
Here is a generalization of Corollary 6.2, which says that in the case

of essentially splitting paths, the stable and the unstable spaces can be re-
placed by V −(A(+∞)) and V +(A(−∞)) in the characterization given by
Theorem 5.1.
Theorem 6.3 LetA be an asymptotically hyperbolic path of operators onR.
Denote byP−(±∞)andP+(±∞) the projectors associated to the splittings
E = V −(A(±∞)) ⊕ V +(A(±∞)). Assume that A(t) ∈ eC(P−(+∞))
for every t ≥ 0, and A(t) ∈ eC(P−(−∞)) for every t ≤ 0. Then
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(i) F has closed range if and only if the subspace V −(A(+∞)) +
V +(A(−∞)) is closed;

(ii) F is a semi-Fredholm operator if and only if
(V −(A(+∞)), V +(A(−∞))) is a semi-Fredholm pair. In this
case

indFA = ind (V −(A(+∞)), V +(A(−∞))).

Proof. Set

A0(t) :=
{

P−(+∞)A(t)P−(+∞) + P+(+∞)A(t)P+(+∞), if t ≥ 0,
P−(−∞)A(t)P−(−∞) + P+(−∞)A(t)P+(−∞), if t < 0.

The asymptotically hyperbolic pathA0 is such thatA(t)−A0(t) is compact
for every t. Theorem 2.1 (i) implies that

W s
A0 = V −(A(+∞)), W u

A0 = V +(A(−∞)),

so Theorem 3.6 implies that W s
A and W u

A are commensurable to
V −(A(+∞)) and V +(A(−∞)), respectively, and

dim(W s
A, V −(A(+∞)) = 0, dim(W u

A, V +(A(−∞)) = 0.

Notice that if we replace two subspaces having a closed sum by commen-
surable ones, we obtain two subspaces still having a close sum. Then (i)
follows from Theorem 5.1 (i). Claim (ii) follows from Theorem 5.1 (v) and
identity (33). -.

We would like to remark that the assumptions of Corollary 6.2 or of
Theorem 6.3 (ii), are far from being a necessary condition in order to have
F Fredholm. Indeed, we have seen that the Fredholm property of F can
be expressed by looking at the relative position of the stable and unstable
spaces. These spaces drastically change when A is changed by a time repa-
rameterization, so the Fredholm property in general is not preserved under
such a transformation. The assumption of Corollary 6.2, instead, is invariant
for time reparameterizations.
However, the assumption ofCorollary 6.2 is somehow sharp, if onewants

to look at conditions involving only the form ofA(t) and not its dependence
on t. To see this, notice that, when A(t) = A0(t), F is invertible (the stable
and unstable spaces in this case areE− andE+). One could think that, if the
invariant spaces ofA(t) are not fixed, but are allowed to vary within a small
angle, F should still be invertible. In this way, one could hope to replace
the compact perturbations by small perturbations in Corollary 6.2. In some
sense this is true, simply because the set of invertible operators is open in
the operators’ norm and adding a small perturbation in L∞ to A changes
FA by a small operator. However how small the norm of the perturbation
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must be highly depends on the whole path A. To show this, we begin with
a finite dimensional example.

Example 5. For any θ ∈]0, π[ there exists a path of invertible symmetric 3 by
3matrices {A(t)}t∈R

, such that all the positive eigenspaces {V +(A(t))}t∈R

are one-dimensional and make angles not larger than θ with each other, and
such thatW s

A ∩W u
A 6= (0).

To exhibit an example in R3, fix some α ∈]0, π
2 [ such that

1− cos(2α)
sin(2α)

< tan(
θ

2
) . (43)

Set µ := 1
4 sin(2α) tan( θ2); set

a = (a1, a2, a3) :=
(

−1 + cosα
2

, −1− cosα
2

,
1− cos(2α)

4

)

,

and
q := (q1, q2, q3) =

(

µ cos(
α

2
), µ sin(

α

2
),

1
4

sin(2α)
)

,

then define the matrices

A0 :=





a1
a2

a3



 Q :=





0 q3 −q2
−q3 0 q1
q2 −q1 0



 L := A0 −Q.

The eigenvalues of the matrix L are

λ1 = a3 − 1, λ2 = i
√

µ2 − a2
3, λ3 = −i

√

µ2 − a2
3,

and µ2 − a2
3 > 0 because of (43). The vector e3 := (0, 0, 1) belongs to the

the eigenspace V (L; {λ2, λ3}). Indeed V (L; {λ2, λ3}) = V (L∗; {λ1})⊥;
but V (L∗; {λ1}) is generated by the eigenvector

ξ∗ =
(∣

∣

∣

∣

−q3 q2
λ1 − a2 −q1

∣

∣

∣

∣

, −
∣

∣

∣

∣

λ1 − a1 q2
q3 −q1

∣

∣

∣

∣

,

∣

∣

∣

∣

λ1 − a1 −q3
q3 λ1 − a2

∣

∣

∣

∣

)

6= 0,

and in fact ξ∗ ·e3 =
∣

∣

∣

∣

λ1 − a1 −q3
q3 λ1 − a2

∣

∣

∣

∣

= 0. As a consequence, exp(tL)e3 ·

e3 has the form c sin(
√

µ2 − a2
3(t − t0)) for some c and t0 > 0, whence

in particular exp(t0L)e3 · e3 = 0 We now define a continuous path of
symmetric matrices, unitary conjugate to A0, setting

A(t) :=







A0 for t ≤ 0,
exp(tQ)A0 exp(−tQ) for 0 ≤ t ≤ t0,
exp(t0Q)A0 exp(−t0Q) for t0 ≤ t.
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Hence V +(A(t)) = exp(tQ)[V +(A0)] = exp(tQ)[Re3] for 0 ≤ t ≤ t0.
Now, since q is the axis of the rotation exp(tQ),

ang (exp(tQ)e3, q) = ang (exp(tQ)e3,

exp(tQ)q) = ang (e3, q)

= arcsin
(

|e3 × q|
|q|

)

= arcsin

(

√

q2
1 + q2

2
|q|

)

= arctan

(

√

q2
1 + q2

2
q3

)

= arctan
(

4µ

sin(2α)

)

=
θ

2
.

Thus the angle between V +(A(t)) and V +(A(t′)) is never larger than θ.
The solution of u′ = A(t)u such that u(0) = e3 is

u(t) :=







exp(ta3)e3 for t ≤ 0,
exp(tQ) exp(tL)e3 for 0 ≤ t ≤ t0,
exp(t0Q) exp((t− t0)A0) exp(t0L)e3 for t0 ≤ t.

Clearly u(t) → 0 as t → −∞, but also as t → +∞, because exp(t0L)e3 ∈
V −(A0). Therefore e3 = u(0) ∈ W s

A ∩W u
A. -.

Example 6. Given θ > 0, there exists a continuous path A of self-adjoint
invertible operators such that V −(A(t)) and V +(A(t)) vary within an angle
of θ, and such that FA is not semi-Fredholm.
We can couple an infinite number of copies of the previous example: on

the Hilbert sum

E :=
∞

⊕

k=0

R
3,

we consider the pathA(t) =
⊕∞

k=0 A3(t), whereA3 is the path constructed
in Example 5. It is a continuous path of self-adjoint invertible operators such
that V −(A(t)) and V +(A(t)) vary within an angle of θ. However the stable
and unstable spaces have an infinite dimensional intersection and an infinite
codimensional sum, so FA is not semi-Fredholm. -.

7 The spectral flow

If the Hilbert spaceE is finite dimensional andA is a continuous asymptoti-
cally hyperbolic path, its spectral flow sf(A) can be defined as the algebraic
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multiplicity of the eigenvalues of A(t) whose real part changes from nega-
tive to positive, minus the multiplicity of those eigenvalues whose real part
changes from positive to negative. Since the end-points ofA are hyperbolic,

sf(A) = dimV +(A(+∞))− dimV +(A(−∞)),

so Theorem A can be restated by saying that the Fredholm index of FA

coincides with minus the spectral flow of A.
When E is infinite dimensional, there is still a large class of paths for

which the spectral flow can be defined. An operator T ∈ L(E) is said
essentially hyperbolic if its essential spectrum

σe(T ) = {λ ∈ C | λI − T is not semi-Fredholm}

does not meet the imaginary axis. Equivalently, T is essentially hyperbolic
if and only if it is a compact perturbation of a hyperbolic operator, or if
and only if its purely imaginary spectrum consists of finitely many isolated
eigenvalues having finite multiplicity. The set of essentially hyperbolic op-
erators will be denoted by eH(E). The spectral flow sf(A) can be defined
for continuous asymptotically hyperbolic paths in eH(E) (see [BBW93],
[FPR99], or [Phi96] for rigorous definitions and for the properties stated in
this section7). A natural question is whether indFA coincides with −sf(A)
for such paths.
WhenE is finite dimensional, eH(E) coincides withL(E): in particular

eH(E) is connected and contractible. When E is infinite dimensional, still
separable, eH(E) consists of three connected components: the first one,
eH+(E), consisting of the operators whose essential spectrum has positive
real part, the second one, eH−(E), consisting of the operators whose es-
sential spectrum has negative real part, the last one, eH±(E), consisting of
those operators whose essential spectrum contains numbers with positive
real part and numbers with negative real part. The components eH+(E)
and eH−(E) are star-shaped with respect to the operators I and −I , re-
spectively: in particular, they are contractible. We already know that, if an
asymptotically hyperbolic path takes value in eH+(E) or in eH−(E), FA

is Fredholm of index

indFA = dimV −(A(+∞))− dimV −(A(−∞)), or
indFA = codimV −(A(−∞))− codimV −(A(+∞)),

respectively: indeed, this is a particular case of Example 2. It would not be
hard to show that, when such a path A is also continuous, the Fredholm
index of FA coincides with minus the spectral flow of A.
7 Actually, in all these references, only self-adjoint Fredholm operators are considered,

but the extension to essentially hyperbolic operators presents no difficulties.
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The topology of eH±(E) is more complicated. Since the spectral flow
is invariant with respect to homotopies which fix the end-points, it defines
a homomorphism

sf : π1(eH±(E)) → Z.

An interesting fact is that such a homomorphism is an isomorphism (see the
main theorem in [Phi96], pag. 464). As a consequence, the spectral flow of
a path in eH±(E) does not depend only on the end-points.
Example 6 provides uswith a continuous pathA of self-adjoint invertible

(hence hyperbolic) operators, such thatFA is not semi-Fredholm: this shows
that there are asymptotically hyperbolic continuous paths in eH±(E) such
that theFredholm indexofFA is not defined.However, such anAhas spectral
flow zero and FA is almost a Fredholm operator of index zero, meaning that
there are arbitrarily small perturbations of the pathAwhich would makeFA

Fredholm of index zero. In this sense, this is not a strong counterexample to
the identity indFA = −sf(A). A more striking example is the following.

Example 7. Let k ∈ Z. There exists a smooth pathA ∈ C∞(R;L(E)) such
that A(t) is self-adjoint and invertible for every t ∈ R, and FA is Fredholm
of index k.

Consider two orthogonal splittings into infinite dimensional spaces

E = V − ⊕ V + = W− ⊕W+,

such that (V −, W+) is a Fredholm pair of index k. Let T be an orthogonal
operator which maps W+ onto V +, and W− onto V −. Choose a smooth
path of orthogonal operators U : R → O(E) such that U(t) = I for t ≤ 0
and U(t) = T for t ≥ 1 (the orthogonal group of an infinite dimensional
Hilbert spaces is connected, see [Kui65]). For every ε > 0, consider the
smooth path

Aε(t) := U(t/ε)−1[PV + − PV − ]U(t/ε), t ∈ R,

The operators Aε(t) are self-adjoint and invertible for every t ∈ R. When ε
converges to zero, Aε converges L1(R;L(E)) to the piecewise continuous
path

A0(t) :=
{

PV + − PV − if t ≤ 0,
PW+ − PW − if t > 0.

Since W s
A0

= V − and W u
A0

= W+, FA0 is a Fredholm operator of index
k. The multiplication operator by Aε−A0 converges to zero in L(H1, L2),
so when ε is small enough, FAε is a Fredholm operator of index k. -.

The pathA = Aε constructed above is such that σ(A(t)) = σe(A(t)) =
{−1, 1}, for every t ∈ R, so it is a path in eH±(E) with spectral flow zero.



A.Abbondandolo, P.Majer

However FA may have every index, so the identity indFA = −sf(A) does
not hold. It would hold in more restricted classes, such as the class of paths
of operators which are both essentially hyperbolic and satisfy the hypothesis
of Theorem E (a proof for paths of operators which satisfy the hypothesis
of Theorem B can be found in [AvdV99]).

8 Nonlinear consequences

LetM be a C2 Hilbert manifold modeled on the Hilbert space E. Let ξ be
a C1 tangent vector field onM and consider the system

u′(t) = ξ(u(t)), u(t) ∈ M. (44)

Let φ : Ω → M , Ω ⊂ R×M , be local flow defined by the above system,
i.e. the maximally defined solution of

{

∂
∂tφ(t, p) = ξ(φ(t, p)),
φ(0, p) = p.

If x is an equilibrium point for ξ, that is ξ(x) = 0, a local representation
of the Jacobian ∇ξ(x) is well defined up to conjugacy, meaning that, if
ϕ : (E, 0) → (U, x) is a local chart, the pull-back of the vector field

ξϕ(y) := (dϕ(y))−1ξ(ϕ(y)), y ∈ E,

is aC1map fromE toE and its differential in0 changes by a conjugacywhen
we choose a different chart. Therefore it makes sense to define a hyperbolic
equilibrium point x as an equilibrium point such that∇ξ(x) is a hyperbolic
operator. Recall that a hyperbolic equilibrium point x has a stable and an
unstable manifold

W s(x) =
{

p ∈ M | lim
t→+∞

φ(t, p) = x

}

,

W u(x) =
{

p ∈ M | lim
t→−∞

φ(t, p) = x

}

.

These are immersedC1 submanifolds ofM , invariant for the local flow and
such that TxW s(x) ⊕ TxW u(x) = E. In the case of a gradient flow, they
are actually embedded submanifolds.
Let p ∈ W s(x) and set u(t) := φ(t, p). We can choose a trivialization

U : R
+ × E → u∗(TM) and identify E with TpM in such a way that

U(0) = IE . We may read the linearized flow on E as

X(t) := U(t)−1dφ(t, u(0)), (45)
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for t ∈ R+, where d denotes differentiation with respect to the variable on
M . The function X : R+ → L(E) is the solution of an asymptotically
hyperbolic linear system on R+ in E

{

X ′(t) = A(t)X(t),
X(0) = I,

(46)

where A(+∞) is conjugated to a local representation of ∇ξ(x). Choosing
a different trivialization, X is changed to X̃(t) = G(t)X(t), for some
G ∈ C1(R+;GL(E)). Correspondingly, A and F+

A are changed to

Ã = −G′G−1 + GAG−1, F+
Ã

= G ◦ F+
A ◦G−1.

Thanks to the identification E = TpM , we have that

W s
A = TpW

s(x).

Then Theorem 2.1 (iii) implies the following convergence result (where the
definition of convergence of linear subspaces in TM is reduced via local
charts to the convergence in G(E)).

Corollary 8.1 Let p ∈ W s(x) and let V ⊂ TpM be a closed subspace
such that TpM = V ⊕ TpW s(x). Then the path of subspaces dφ(t, p)V
converges to TxW u(x) for t → +∞.

Now let x and y be two hyperbolic equilibrium points such thatW u(x)
and W s(y) have a non-empty intersection. In other words, there exists a
solution u of (44) such that

lim
t→−∞

u(t) = x, lim
t→+∞

u(t) = y.

As before, choosing a trivialization U : R×E → u∗(TM) and identifying
E with Tu(0)M in such a way that U(0) = IE , the linearized flow X
is defined for all t ∈ R as in (45), and it solves (46), which is now an
asymptotically hyperbolic linear system on R. The operators A(−∞) and
A(+∞) are conjugated to local representations of ∇ξ(x) and ∇ξ(y), and
by the identification E = Tu(0)M ,

W u
A = Tu(0)W

u(x), W s
A = Tu(0)W

s(y). (47)

Recall that two submanifolds N,O ⊂ M are said transversal at p ∈
N ∩ O if TpN + TpO = TpM . Similarly, two submanifolds N,O ⊂ M
are said to have a Fredholm intersection at p ∈ N ∩ O if (TpN,TpO) is a
Fredholm pair of linear subspaces. Theorem 5.1 and (47) have the following
consequence.

Corollary 8.2 The following facts hold:
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(i) FA has closed range if and only if Tu(t)W
u(x)+Tu(t)W

s(y) is closed
for some t ∈ R (hence for every t ∈ R);

(ii) dim kerFA = dimTu(t)W
u(x)∩Tu(t)W

s(y) for some t ∈ R (hence
for every t ∈ R);

(iii) FA is onto if and only if W u(x) and W s(y) are transversal at u(t),
for some t ∈ R (hence for every t ∈ R);

(iv) FA is Fredholm if and only if W u(x) and W s(y) have a Fredholm
intersection at u(t), for some t ∈ R (hence for every t ∈ R).

In particular, if Z is a connected component of W u(x) ∩ W s(y) such
thatW u(x) andW s(y) are transversal and have a Fredholm intersection at
every z ∈ Z, then Z is an immersed manifold of dimension

dimZ = indFA = dim kerFA,

where u is any solution of (44) belonging to Z.
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