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Introduction

These lectures consist of three parts. In the first one we review some results about
the dynamics of dferentiable flows with hyperbolic rest points, in a Banach space
setting. In particular, we prove the local stable manifold theorem, the Grobman —
Hartman linearization theorem, and we describe the global stable and unstable
manifolds in the case of a flow admitting a Lyapunov function.

In the second part we study the Morse complex of gradient-like flows on
Banach manifolds, assuming that all the rest points have finite Morse index. We
introduce this chain complex as the cellular chain complex of a suitable cellu-
lar filtration of the underlying manifoldM. In particular, the homology of the
Morse complex is isomorphic to the singular homology{or to the singular
homology of the pair ¥, A), in the relative case, in which we consider a gra-
dient like flow onM, with a positively invariant open sét, and we consider
the rest points ilM = M \ A in the construction of the Morse complex). Then
we describe the chain boundary operator in terms of the intersection numbers of
the unstable and stable manifolds of pairs of rest points with indégrdnce
equal to 1. Finally, we specialize the analysis to the negative gradient flow of a
Morse function on a Riemannian Hilbert manifold. In this case, we prove that the
Morse —Smale transversality assumption holds for generic perturbations of the
metric, and that the isomorphism class of the Morse complex does not depend on
the metric. These results provide an alternative approach to infinite dimensional
Morse theory, as developed by Palais and Smale in the sixties, see Palais (1963)
and Smale (1964a; 1964b).

The third part is an exposition of recent results by the authors (see Abbon-
dandolo and Majer, 2003b) about the Morse complex approach for gradient-like
flows whose rest points have infinite Morse index and co-index. The framework is
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that of a Hilbert manifoldvl with a fixed infinite-dimensional and -codimensional
subbundleV of the tangent bundle. When the gradient-like flow satisfies suitable
compatibility conditions with respect ¥, each rest point can be given a relative
Morse indexm(x, V), and the unstable and stable manifolds of pairs of critical
pointsx, y intersect in submanifolds of finite dimensian{x, V) — m(y, V). The
study of the Hilbert Grassmannian, and in particular of the determinant bundle
on the space of Fredholm pairs of subspaces of a Hilbert space, allow to prove
that these intersections carry coherent orientations. Finally, suitable integrability
assumptions ofV, together with compactness assumptions on the flow, imply that
the above intersections have compact closuid iffhese facts allow to define the
Morse complex.

The first two parts contain fairly detailed proofs of all the statements, most
of which—especially in the second part— are folklore results, for which we
could not find appropriate reference in the literature. The style of the third part
is different: proofs are only sketched, or given in a simplified framework. We
refer to Abbondandolo and Majer (2003b) for a more complete presentation.

1. Afew facts from hyperbolic dynamics

1.1. ADAPTED NORMS

Let E be a real Banach space. A bounded linear opetatarE is saidhyperbolic
if its spectrum does not meet the imaginary &xis(L) NiR = @. In this case,
the decomposition of the spectrumlointo the disjoint closed subsets (L) =
o(L)n{Rez > 0} ando~(L) = o(L) N {Rez < 0} induces the splittingc = EY® E®
into L-invariant closed linear subspaces, such tiaigv) = o* (L) ando(L|gs) =
o~ (L), with projectorsP! = y(rez0}(L), P® = x{rez<0)(L). The spaceg" = EY(L)
andE® = ES(L) are often called theositive (or unstabl¢ and thenegative(or
stablg eigenspaces df (although they may not consist of eigenvectors).
An L-adapted nornis an equivalent norr- || on E such that:

lléll = max(|IPU&ll, [P°ll}, Ve € E, 1)
and there ist > 0 such that for every> 0
el < el ve € S, lleTthell < e el vé € B ()
As a consequence, also

letel > eMigll vé e ES,  |l€héll > eig]| Ve e EY, 3)

1 In the framework of discrete dynamical systems, a hyperbolic operator is a bounded operator
whose spectrum does not meet the unit circle. In that context, an opksdtsfyingo(L)NIiR = &
should be calleéhfinitesimally hyperbolic
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for everyt > 0. Such an adapted norm exists. Actually, for every the interval
10, min| Reo(L)|[ there is a nornji - || satisfying (1), (2), and (3). The construction
is based on the following lemma, appliedlfgs and to—L|gu.

LEMMA 1.1. LetL be a bounded operator on the Banach spéggd| - ||o), and
let A be a real number such that> max Res(L). Then there exists a norin ||
on E equivalent td| - [|p such that|e'-¢|| < €4||] for every¢ in E andt > 0.

Proof. Up to replacingL by L — Al, we may assume that = 0, soa =
max Reo(L) is negative, and we must find an equivalent ndfmi| for which
llet&ll < 111, for everyé € E andt > 0. Still denoting by - ||o the operator norm
induced byl - |lo, the spectral radius formula and the spectral mapping theorem
imply

tL”1/t
0

Jim e = max|o(e")| = max|e”)| = e < 1.
—+00

Therefore, there existg > 0 such thatle't||g < coe®/? for everyt > 0, so
—+00 ZCO
€l = jc; le-&llo dt < 7|I§I|o V¢ € E,

defines a norm ot not finer than|| - ||[o. On the other hand, by compactness
lle o < ¢ for everyt € [0, 1], so

1
1

€1l > f € éllodt > =lillo V& € E,
0 C1

and the nornjl - || is equivalent td) - ||p. Finally, for everyt > 0 and¢ € E,

+00 +00
Il = fo 1650 o ds = f lestellods < [l
t

concluding the proof. O

EXERCISE 1.2. Find an adapted norm for the hyperbolic operatde enR?
defined by the matrix
(1 u
(o 4)

whereu € IR, and draw the corresponding unit ball whers large.

EXERCISE 1.3. Prove that if is a normal operator on a Hilbert spalde that
is L commutes with its adjoint*, then the Hilbert norm is-adapted.
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1.2. LINEAR STABLE AND UNSTABLE SPACES OF AN ASYMPTOTICALLY
HYPERBOLIC PATH

Let A: [0, +o0] — L(E) be a continuous path of bounded linear operators on the
Banach spacg, such thatA(+0) is hyperbolic. LetXa: [0, +oo[ — L(E) be the
solution of the linear Cauchy problem

{x;\(t) = AWXA).
Xa(0) = I.

EXERCISE 1.4. Prove thaa(t) is an isomorphism for evetty and find a linear
Cauchy problem solved by its inverse.

The linear subspace &
Wj = {¢ € E| lim Xa)¢ =0}

is said thdinear stable spacef the asymptotically hyperbolic path Similarly,
if A:[-00,0] — L(E) is a continuous path of operators such tA&too) is
hyperbolic, the linear unstable spacefo defined as

WA = (¢ € E| lim Xa(0¢ = O]

EXERCISE 1.5. Prove that i(t) = L is constant (and hyperbolic), th&ii; =
ES(L), the negative eigenspace bf andW, = EY(L), the positive eigenspace
of L.

A consequence of the hyperbolicity A{+co) is that the linear subspacé&
andW, are closed and complementeddnand they are isomorphic &°(A(+co))
and toEY(A(-)), respectively. Indeed, one can prove thadifs close enough
to A(+c0) in the L™ norm, thenW; is the graph of a bounded operator from
ES(A(+0)) to EY(A(+0)). The statement for a general asymptotically hyperbolic
pathA follows, because
W3 = Xa(®) Wi -

See for instance Abbondandolo and Majer (2003c, Proposition 1.2) for a complete
proof (the case of a Hilbert space is treated in that reference, but the proof in the
Banach setting presents ndfdrence).

Denote byC{([0, +co[, E) the Banach space of &l curvesu: [0, +oo[ — E
such that

Jim U@ =0 vhe{01,...,k.

PROPOSITION 1.6.Let A € CY([0, +0], £L(E)) be a path of bounded linear
operators on the Banach spaBesuch thatl = A(+0) is hyperbolic.
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(i) The bounded linear operator
Fx: C3([0, +oo[, E) — C3([0, +o[,E), u+ U — Ay,
is a left inverse. MoreoveF,; admits a right invers&;, such that
W3 + {REV(0) | v € C3([0, +oo[, E), v(0) = O} = E. (4)

(i) The evaluation map
kerF — E, uwm u(0),

is a right inverse.
Proof. We endowE with a Banach nornjj - || adapted td..
(i) Let us start by considering the case of the constant pédh= L. By (2),
the operator valued piecewise continuous function

G:R — L(E), G(t) = e (1r: ()P - Lr-(H)PY),

satisfieg|G(t)|| < e, in particular it is integrable ofk. Letv € C3([0, +eo[, E).
It is readily seen that the curve

+00
u(t) = (G =v)(t) = f G(t - 7)v(r)dr
0
is continuously dierentiable and solves the equation
u'(t) — Lu(t) = w(t). (5)
Moreover, the inequality
U < IGllLa(w, £E)) Ml (s +oof + IGIL1t-sif,£(EY)VIloo» (6)

shows thau € C3([0, +oo[, E), so by (5),u € C3([0, +oo[, E). We conclude that
the operator

R} CY([0, +oo[, E) — C3([0, +oo[,E), V> GxV,

is a right inverse of". Indeed, such a linear map is continuous by (5) and (6)
with s = 0. Let us check that the operator» Rv(0) mapsv € CZ(]0, +oo, E)
onto EY; sinceE" is a direct complement dE® = W this implies that the right
inverseR" satisfies (4). Lep be a smooth real function with suppc ]0, +oo[ SO
small that the operator

. e T —7L T
u._fo o(r)e ™ dr € £L(E)



42 A. ABBONDANDOLO AND P. MAJER

is an isomorphism. The operatdrpreserves the splitting = EY @ ES. If £ € EY,
settingv = —pU~1¢, there holds

RIv(0) = fo - e "PUy(r)U e dr = ( fo

proving the claim.
Let us now consider the general case. Setfg) = A(s + t), we have that

+00

pr)edr)ule = ¢,

lim Ff =F/
S—+oo As L

in the operator norm of(C}, Cg). Since the set of left inverses is open, by our
previous case we deduce tt‘l%;s has a right inverst/':S for s large, such that
R;S — R/ in the operator norm fos — +co. Since the space of surjective
operators is operR;S satisfies (4) forslarge.

Fix such a larges. We can now define a right inver$® of F; by setting
R.V = u, whereu is the solution of the linear Cauchy problem

u—-Au=vy,
u(s) = R;SVS(O).

The continuity ofR; is easily seen by the formula

t
REV)(®) = XA(t)(XA(s)’lR;SvS(O) + f Xa(1) V(1) dr).
S
Finally, the fact thaRj\S satisfies (4) implies that ald®} satisfies (4). Indeed, let
& € E, and letv € CJ([0, +oo[, E) with v(0) = 0 be such that
Xa(9)¢ € Rp v(0) + Vv/is. @)
Sincev(0) = 0, the curve

_Jvt-9 ift>s,
W(t)_{o ifo<t<s,

belongs toC8([O,+oo[, E). Sincew vanishes on [0s], Riw solves the equation
U —-Au=00n]Qg,so

REV(0) = REW(S) = Xa(9REW(O) @)
By (7) and (8),
£ € RAw(0) + Xa(9)'W3_ = RAw(0) + W3,

concluding the proof of (i).
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(i) The kernel ofF is
kerF3 = (Xa(0)¢ | £ € W3},
so if Q € L(E) is a projector ontd\, the linear map
E—kerFZ, &0 Xa()Qe,
is a left inverse of the evaluation at O,

kerF;z — E, uwm u(0). O

REMARK 1.7. If Pis a projector ontd\V, it can be shown that

REV(D) = fo " XaO)@r- (t = )P = T (t = 7)1 = PY)Xa(r) W(x) dr

defines a right inverse d¥,. See Abbondandolo and Majer (2003c) for a more
extensive discussion of the topics of this section.

We conclude this section by establishing some properties of the opéydter
A(t) on the whole real line.

PROPOSITION 1.8. Assume thaA € C%(R, £(E)) has hyperbolic asymptotic
operatorsA(—o0) and A(+), both with finite-dimensional positive eigenspace.
Then the bounded linear operator

Fa:CY(R,E) —» CY(R,E), umUu -Au
is Fredholm of index
ind Fa = dim EY(A(-0)) — dim EY(A(+0)).
Moreover,W, + W3 is closed and
kerFa = Wi nN'W3, cokerFa = E/(W, + W3). 9
Proof. SinceWy = EY(A(-)) andWy = ES(A(+)), the first space is finite-
dimensional and the second one is finite-codimensional, with
dimW, = dimE"(A(-)), codimWg = dimE"(A(+c0)). (10)
Therefore W, + W5 is (closed and) finite-codimensional, and

dimW, N W3 — codimW, + W3) = dimWjy — codimW;. (11)
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The kernel ofF 4 is the linear subspace
kerFa = {Xa(t)¢ | € € Wy N Wa),

SO
dimkerFa = dimW, N Ws. (12)

By Proposition 1.6(i), the operators
FA:Ca([0, +oo[, E) — C3([0, +eo[,E), um U - Ay,
Fa:Ca(-c0,0], E) —» C3(]-,0L,E), um u - Ay,

have right inverse®, andR,. If v is an element 0C8(]R, E), any solution of
U — Au = v has the form

u(t) = Xa(t)(u(0) — Rav(0)) + Rav(t), Vt=>0,
u(t) = Xa(t)(u(0) — Ryv(0)) + Ryv(t), Vt<O.

Such a curvel belongs t(ﬁcl)(]R, E) if and only if u(0) — Riv(0) € W3 andu(0) -
R.V(0) € W,. Therefore,v belongs to the range d¥, if and only if the dfine
subspace®;v(0) + W3 andR,Vv(0) + W, have nonempty intersection, that is if
and only ifR;v(0) — R,v(0) belongs toN; + W,. So the range of  is the linear
subspace

ranFa = {v € C3(R, E) | RiV(0) — Ryv(0) € Wy + W3],

Such alinear subspace is closed. By the second assertion in Proposition 1.6(i), the
operator

E
0 _
is onto, so
codimranFa = codim@Wy + W3). (13)
All the statements follow from (10) - (13). O

1.3. MORSE VECTOR FIELDS

Let M be a Banach manifold of clag?, i.e., a paracompact Hausdoiopolog-
ical space, locally homeomorphic to a Banach spacendowed with an atlas
whose transition maps are of cla8$. See Lang (1999) for foundational results
on Banach manifolds. £ tangent vector field on M defines a local flow
solving

op(t, p) = X(o(t, p)), #(0,p)=p, YpeM, —co <t7(p) <t <t'(p) < +oo,
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where }7(p),t"(p)[ denotes the maximal interval of existence of the above
Cauchy problem. The functionts andt* are upper and lower semi-continuous,
respectively. Denote b§(X) the subset oR x M which lies strictly between the
graph oft™ and the graph of*. ThenQ(X) is an open neighborhood ¢} x M,

and the mapp: Q(X) — M is of classC!. The vector fieldX is saidcomplete
(resp.positively completeresp.negatively complejeif Q(X) = R x M (resp.
Q(X) 2 [0, +0o[ X M, resp.Q(X) D ]—o0,0] x M).

Let A be apositively invariantsubset ofM: this means that ipp € A then
é(t, p) € Aforeveryt € [0,t"(p)[. The vector field is saigositively complete with
respect toA if for every p € M such that*(p) < +co there existg € [0, t"(p)[
such thatg(t, p) € A. Similarly, one defines a negatively complete vector field
with respect to a negatively invariant subset.

A rest pointof X is a pointx € M such thaiX(x) = 0. The set of rest points of
X will be denoted by resy). TheJacobianof X at a rest poink is the bounded
linear operator oimxM defined byVX(x)¢ = [X, Y](X), where& € TxM andY
is a tangent vector field ol such thatY(x) = £. Indeed, the fact thaX(x) = 0
implies that this definition does not depend on the choice of exteisairz.

EXERCISE 1.9. Give an alternative definition of the Jacobian of a vector field
at a rest point in terms of a local chartidfU — E maps a neighborhood of

x € restX) diffeomorphically onto an open subset of the Banach sgadefine

the operatoW X(x) on TxM by

@(VX(X)€) = D(e.X) (e8], V€ € TuM,

where, forp € TpM, ¢.n is the vector irE defined byp.n = De(p)[7]. Show that
such a definition does not depend on the choice of the ghart

A rest pointx of X is saidhyperbolicif the Jacobian oK at x is a hyperbolic
operator. The corresponding splitting of the tangent spagevédt be denoted by
TxM = E} @ E;. By the inverse mapping theorem, the hyperbolic rest points are
isolated in resf). TheMorse indexm(x) € N U {+o0} of the hyperbolic rest point
X is the dimension of the subspaE&. The Morse co-indexs the dimension of
ES. If all the rest points ofX are hyperbolic, the vector field is said aMorse
vector field

1.4. LOCAL DYNAMICS NEAR A HYPERBOLIC REST POINT

Let U be an open neighborhood of 0 in the Banach sf@gand letX € C1(U, E)
be a vector field having 0 as a hyperbolic rest point. Denoteé:lfy(X) — U
the local flow ofX. Let L := VX(0) = DX(0), with splitingE = E" @ ES and
projectorsPY, PS, and let us endov with anL-adapted nornjj - ||. If V c Eis a
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closed linear subspac¥(r) will denote the closed ball i of radiusr centered
in 0, andaV(r) will be the relative boundary of(r) in V. Consider the cones

C'={£cE|IIP¢I <P} D EY, C°={¢eE||Pl <P} > ES

We recall that ifA c B c U the setA is saidpositively(negatively invariant with
respect toB if for every ¢ € A and for everyt > 0, ¢([0,t] x {¢}) ¢ B implies
#([0,1] x {£)) c A (resp. for evern¢ € A and for everyt < 0, ¢([t,0] x {£}) c B
implies¢([t, 0] x {£}) Cc A).

LEMMA 1.10. For everyr > 0 small enough there holds
(i) the setC" n E(r) is positively invariant with respect t&(r);
(i) the setC® N E(r) is negatively invariant with respect &(r);
(iii) if £ belongs to the se&" N JE(r) = AEY(r) x ES(r) then||PYs(t, &) > r for
everyt € 10, 1], and||P!¢(t, &)|| < r for everyt € [-1,0];

(iv) if £ belongs to the se2° N JE(r) = EY(r) x dE3(r) then||PSs(t, &)|| < r for
everyt € 10, 1], and||P%¢(t, £)|| > r for everyt € [-1,0].
Proof. Sincet*(0) = +oc0 andt™(0) = —c0, we havet™(¢) > 1 andt™(¢) < -1
for ||£]| small enough. A first order expansiondit, -) at O yields to

P(t,&) = e+ 0@t foré — 0,

uniformly in t € [-1,1]. Therefore, ifr > 0 is small enough, for every €
CSn E(r) andt € [0, 1], (2) implies

IPp(t, £)Il = P&l + o)t = [I€-P4¢]| + o(Pé)t

e 1||P%¢l + o(P°E)t < &P,

IA

and similarly, for every € CY n E(r) andt € [0, 1], (3) implies
IPUp(t, &)l = /2P

All the statements follow from the above inequalities and from the analogous
inequalities holding fot € [-1, O]. O

REMARK 1.11. Inthe language of Conley theoB(r) is an isolating neighbor-
hood for the invariant s¢0}, andoE"(r) x E3(r) is its exit set.
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1.5. LOCAL STABLE AND UNSTABLE MANIFOLDS

Givenr > 0, thelocal unstable manifoléind thelocal stable manifoldbf O are
the sets

Wi, (0) = {¢ € E() ‘ t7(&) = ~oo, ¢(—00,0]x (£)) C E(r), lim 4(t.€) = 0},
WE. (0) = {£ € E(r) | t(£) = +o0, ¢([0, +oo[ x {£]) € E(r), Jim g(t.¢) = 0.

Whenr is small, these sets are actually graphs of regular maps.

THEOREM 1.12 (Local (un)stable manifold theorerfyssume thad is a hyper-
bolic rest point of theCX vector fieldX: U — E, k > 1. For anyr > 0 small
enough\W? . (0) is the graph of &K mapos: ES(r) — EY(r) such thatrS(0) = 0
and Do%(0) = 0. Similarly, WY _ (0) is the graph of &Ck mapo: EY(r) — ES(r)

loc,r

such thair*(0) = 0, Do(0) = 0.

See Shub (1987, Chapter 5) for a proof based on the graph transform method.
Here we will present a proof based on the study of the orbit space and on Propo-
sition 1.6.

Proof. We shall prove the conclusion for the local stable manifold, the case of
the unstable one following by considering the vector fiekli The map

@: C}([0, +oo[, U) — C3([0, +oo[,E), U+ U —Xou,
is of classCK, and its diferential atu e Cg([o, +oo[,U) is
D®(u): C3([0, +oo[, E) — C([0, +oo[,E), V>V — DX(u)V.

SinceDX(u(t)) converges td. = DX(0) fort — +oo, statement (i) of Proposi-
tion 1.6 implies thaD®(u) is a left inverse, s@ is aCk submersion. In particular,
its set of zero®~1({0}) is aC¥ submanifold ofCé([O, +oo[, U). The set of zeros is
nonempty, because it contains the curve 0. Actually

To® 1({0}) = kerD®(0) = ker(v — V' — Lv) = {e''¢ | £ € ES). (14)

By statement (ii) of Proposition 1.6, the evaluation mag ev— u(0) subor-
dinates an immersion
ev: 71({0) - U,

which is injective by the uniqueness of the solution of Cauchy problems. There-
fore,

WA(0) := evo(@1({0})) = {¢ € U

t(€) = +oo, lim (t.8) = 0]
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is the image of an injectiv€k immersion. The point 0 belongs W3(0), and by
(14),
ToW*(0) = D evo(0)To® *({0}) = evo(To®*({0})) = E®.

By the implicit function theorem, if is small enough the path-connected compo-
nent of W5(0) N E(r) containing 0 — call iZ, — is the graph of £X map

o E3(r) — EY(r)

such that-5(0) = 0 andDo5(0) = O.

We claim that ifr is so small that the conclusions of Lemma 1.10 hold, and
that the Lipschitz norm af® is less than 1, thed, = V\/lf)c,r(O), which concludes
the proof. Indeed, by definitioWIf)C’r(O) C Z, a path connecting € V\/If)c’r(O) to
0 within W5(0) n E(r) being provided by the orbit @f. On the other hand, notice
that by definitionZ, is positively invariant with respect &(r). So if there exists
& € ZL\W,(0), by Lemma 1.10 there is sorhe 0 for which¢(t, &) € (9E"(r) x
ES(r)) (the latter is the exit set d(r)) ande(t, &) € Z (Z; is positively invariant
with respect tdE(r)). ThereforeZ; N (OEY(r) x ES(r)) is nonempty, contradicting
the fact thatz, is the graph of a map whose Lipschitz constant is less than 1, taking
value 0 at 0. O

1.6. THE GROBMAN-HARTMAN LINEARIZATION THEOREM

The Grobman —Hartman theorem says that up to a change of variables, the dynam-
ics near a hyperbolic point is the dynamics given by a linear vector field. We will
deduce this fact from the analogous statement for discrete dynamical systems. The
proof is adapted from Shub (1987). Let us start with a result about the existence,
unigueness, andafider regularity of a semi-conjugacy between two perturbations

of a linear operator.

PROPOSITION 1.13.LetE = EY @ E® be an invariant splitting for the bounded
invertible operatorT. LetP" and P® be the corresponding projectors, and assume
that there existg < 1 such that

max{||PT P, [[P“T P!} < u.

Lety andy be Lipschitz continuous maps frdato E such that
(1) llp = Ylieo < +00;
(ii) lip o <14

(iii) lip w < 1/IT74.
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Then there exists a unique bounded rgag — E such that

(T+)o(l+9)=(+09)o(T+y). (15)
Moreover, | |
% = Ylloo
19l < m,
and setting

9= . =4
:=max|[T| + lipy, W ,

g is a-Holder continuous for every

—log(u + lip ¢)
< —-
logo

Notice that if EY # (0), then||T|| > [|PYTPY| 1/u, while if ES # (0),
then | T > |IPSTYPS| > 1/u. Therefore log —logu, so the quantity
—log(u + lip ¢)/ log @ appearing in the above proposition does not exceed 1. In
general, the mag is not locally Lipschitz, even whep andy are smooth.

Proof. For anE-valued mapf, we denote byf, and fs its components with
respect to the splitting = E" @ ES, that isf, := PUf, fs := PSf. By applying the
projectorsP" andPs, (15) is equivalent to

{(Tu +o)o(l+9) = (P +a)o (T +y), e

>
=

(Ts+@s)o (I +9) = (P°+gs) o (T + ).

Since lipT 1y < [T Ylipy < 1, the magl + ¢ = T(I + T~Yy) is a homeomor-

phism of E onto E. Actually, its inverse is Lipschitz continuous with
T

1-1T-Ylipy

By a simple algebraic manipulation, (16) is equivalent to the fixed point problem
F(9) = g, where

lip(T +¢) L =lip((1l + T X)) T H < (17)

F(Qu= TJl(gu o (T +¢)—quo(l +9)+yu),
F(@)s= (TsOs+@so (I +9) —ys) o (T + lﬂ)_l-

Since

IF@ullo < u((X+lip ©)lGlleo + [l = ¥lleo)
< (u+1lip @)l + plle — Ylloos (18)
IF@slle < (ITsll + lip @)lI9lleo + [l = ¥lleo
<

(1 + lip ©)lglleo + [l — ¥lloo (19)
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F mapsB(E, E), the Banach space of bounded maps frento E, into itself.
Actually, (18) and (19) imply that ifgll.. < R, with

. II‘?O_(ﬁ”oo
e ETI)

then||F(g)lle < R Moreover, the map§, = P'F:B(E,E) — B(E,E") and
Fs = PSF: B(E, E) — B(E, ES) are Lipschitz with

lip Fy < [ITull™* @ +lipg) < u(l+lipy) < 1,
lipFs<||Tyl+lipe<u+lipp <1,

soF:B(E,E) — B(E,E) is a contraction, proving that there exists a unigue
B(E, E) satisfying (15). Sinc& maps the closeR-ball of C°n B(E, E) into itself,
the fixed point is continuous and bounded By

If h € B(E, E) has modulus of continuifyw, then F(h), has modulus of
continuity

t = uw((ITI+ lip Y)t) + plip ew(t) + u(lip ¢ + lip Y)t, (20)
while by (17),F (h)s has modulus of continuity
t= (u+lipp)w(ot) + (lipy +lip p)ot, (21)
whereo = [T~ Y|/(1- T3 lip ¢). Comparing (20) and (21), we find that setting
a:=(lipy +lipy)o,

the function
t (u+lip @w(6t) + at

is a modulus of continuity foF (h). If moreover|h||. < R, we have thatF (h)||. <
R, soF(h) has modulus of continuity

t — min{(u + lip )w(6t) + at, 2R}.
Therefore, if a modulus of continuity satisfies
min{(u + lip @)w(6t) + at, 2R} < w(t) VYt € [0, +oo, (22)
we deduce that the nonempty closed subs&(&f E)

{h e B(E, E) | ||hll.c £ R, h has modulus of continuity}

2 Here, moduli of continuity are always assumed to be nondecreasing.
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is F-invariant, hence the fixed poigthas modulus of continuity. A function of
the formw(t) = ct® satisfies (22) if

(u+lipp)e* <1,

andc is large enough. The conclusion follows. O

If we symmetrize the assumptions of the above proposition, a standard argu-
ment involving unigueness yields to the following global version of the Grob-
man —Hartman theorem for discrete dynamical systems.

COROLLARY 1.14. LetT be an invertible bounded operator @hsatisfying the
same assumptions of Proposititrli3 Lety andy be Lipschitz continuous maps
from E to E such that

(i) llp = Ylieo < +00;
(i) lip @ < min{1 — 1, 1/}, lip ¥ < min{1 — g, 1/|[T 4]},
Then there exists a unique bounded myag — E such that
(T+e)o(l+9)=(+9)o(T+y).

Moreover,g is Holder continuous, antl+ g is homeomorphism & ontoE.
Proof. Applying Proposition 1.13 to the paip(¥) and to the pairy, ¢), we
find Holder continuous bounded magisE — E andh: E — E such that

(T+@)o(l+9) = (1 +g) o (T +y),
(T+y)o(l +h) (I +h)o (T + ).

It follows that ( + g) o (I + h), which is of the forml + k with k € B(E, E), satisfies

T+ o(l+K) =(+K) o(T+¢).

By the uniqueness statement of Proposition 1.13 applied to theypaiy, k must
be the zero map, thatis€g)o (I + h) = I. Similarly, (| +h)o (1 +g) =1, sol +g
is a homeomorphism d& onto E with inversel + h. O

Now we can derive a global version of the Grobman—Hartman theorem for
flows.

THEOREM 1.15. LetL be a hyperbolic operator ok. Let|| - || be anL-adapted
norm onkE, satisfying(1) and(2) for some positiva. LetB;: E - E andBy: E —
E be Lipschitz continuous maps such that

(i) 1By — Bolleo < +00;
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(ii) lip By < A, lip B < A.

Then the flows,, ¢>: R x E — E of the vector field¥;(£) = LE + B1(£) and
Xa(€) = L& + By(¢) are conjugated. More precisely, there is a uniqgue bounded
mapg: E — E such that

Pt (1 + 9)(€) = (I + Q)(¢2(t.&) V(t.&) e RXE,

and| + gis a homeomorphism & onto E. Moreoverg is a-Holder continuous
for every
A-—Iip Bl
_ _ L +1ip By ) )
Proof. A c-Lipschitz vector fieldX produces a globally defined flow with
lip ¢(t,-) < €. If two c-Lipschitz vector fieldsX;, X, have bounded distance,
then

a <

lpa(t, -) — pat, Yoo < X1 — XollooltIE™.

Letyi(t, &) = ¢i(t, &) — €¢, fori = 1, 2. By our initial considerations, for evety
the mapsyi(t, -) andy(t, -) are Lipschitz and have bounded distance. The maps
i satisfy

t
(&) = fo dUNB(EE +pi(sé)ds V(L) e RXE  (23)

By (23),

A

t
lipwi(t.) < lip Bi\ fo 1941t + lip wi(a-))oq

IA

tlip B supllet]‘suplle™ | + suplip vi(s )
[sI<|t| |s<|t] [sI<|t|

tlip B(1 + suplip (s ))a+ o),

for t — 0. Taking the supremum for dt| < =, we obtain

suplip i(t,-) < lip Bilr|(1+ o(1)) fort — 0. (24)

[tI<t
Since lipB; < 4, the last inequality implies that there exists 0 such that
lipyitt,) <1—e™ lipyit,) <1/et), vo<|ti<t i=12

By Corollary 1.14 applied td@ = €', u = e, ¢ = y(t,-), andy = ya(t, ), for
every O< |t| < T there exists a uniqug € B(E, E) such that

$a(t, (1 + 9)(©) = (I + g)(2(t. £)), (25)
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andl +g; is a homeomorphism @& ontoE. If n € Z\ {0} and|nt| < 7, (25) implies

$r(nt, (1 + 3 () = (I + g)(g2(nt, ),

so by uniquenesg; = gn:. If p,qare rational numbers in-fr, 7] \ {0}, they have
a common sub-multiple, sg, = gq. Thereforeg, = g for every rationalp €
[-7,7] \ {0}. By the continuity ofp; and¢, with respect ot,

$a(t, (1 +9)() = (I + 9)(¢2(t. "))

holds for evenyt| < 7, hence by taking iterates, for evarg R.
There remains to estimate thedlder exponent of). Let 0 < t < 7. By
Proposition 1.13); is a-Holder for every

—log(e™" + lip y1(t, )
log (1) :

where

le~th| }

o(t) = maX{IletLll w2l ) Tt yate, )

Sinceg; = g, gis a-Holder for every

_ —log(e™ + lip y(t, )
< B :=limsu .
@ <p:=limsup loga(t)

By (24),
—log(e™ + lip w1 (t, -)) > —log(e™" + lip Byt + o(t)) = (1 — lip Byt + o(t) (26)

fort — 0*. Since
et < e = 1+ 1Lt + oft),

fort — 0%, by (24) there holds

€M)+ lip ya(t,) < 1+ (LIl + lip Bo)t + o(t),

et < 1 +]ILJit + oft)
1-lletlipyo(t,) — 1-lip Bat+oft)

fort — 0*. Therefore

loga(t) < log(1 + (JILI| + lip B2)t + o(t)) = (|IL]| + lip B2)t + oft), 27)
fort — 0*. The inequalities (26) and (27) imply that
—log(e™" + lip y1(t, ) > lim (A-lipByt+o(t)  A-lipB;

=1+ (|IL]] + lip B)t + oft),

=limsu > - = - ,
p t—0* P log6(t) t—0* (JIL|| + lip Bo)t + o(t)  |IL|| + lip B>
concluding the proof. O

It is then straightforward to deduce the following local linearization result.
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COROLLARY 1.16. Assume tha0 is a hyperbolic rest point of th€! vector

field X:U — E, and letL = DX(0). If r > 0O is small enough, the local flow
restricted toE(r) is conjugated to the linear flot,¢) — €& by a bi-Holder
continuous homeomorphism. More precisely, there exists a bi-Holder continuous
homeomorphisrh: E(r) — h(E(r)) c E such that

h(g(t,£)) = €-h(&) V(L&) € QX))

We conclude the discussion about the local dynamics at a rest point with the
following proposition.

PROPOSITION 1.17.For everyr > 0 small enough there hold$or every se-
quencgé,) c E converging to 0 and for every sequeritg c [0, +oo[ such that
#([0,tn] x {&n}) € E(r) ande(tn, &) € IE(r), there holds

dISI(¢(tn7 fn), V\/|Lé)c,r (0) N 8E(r)) - 0
Proof. If the vector field is linearX(¢) = Lé, the conclusion is immediate:
indeed in this cas&/j/_ (0) = EY(r), and for any £,) c E converging to 0 and

any () c [0, +oo[, by (2) we have

lim supdist(e"-&n, EY) = lim sup||PSe"t&,|| < lim supe™™|PSg,|| = O.
N—s oo n—oco n—co
By the Grobman-Hartman theorem,r§ > 0 is small enough the local flow
¢ restricted toE(rg) is conjugated to its linearizatiort,£) — €&, by a bi-
uniformly continuous homeomorphism. By the local (un)stable manifold theorem,
we may also assume thiatis so small thaWj . r0(0) is the graph of a uniformly
continuous map: EY(ro) — E3(ro).

Letr < rg and sety, = ¢(th, &n) € OE(r), with &, — 0 andt, > 0. By
Lemma 1.10||PUny|| = r. By the linear case and by the uniform continuity of the
conjugacy, there existgf) c W, . rO(O) such thatin,—nyll is infinitesimal. Setting
= (P'nn, o(P'mn)) € Wi, (0) N JE(r), by the uniform continuity ot we
have

dist(r7n, W, (0) N IE())

< bgn =il
< Iz = mpll + 1Py = P Il + 1IPSyp, = Pyl
= [l = mqll + 1P, = Pl + [l (PUng) = o (P )l — O,

concluding the proof. O
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1.7. GLOBAL STABLE AND UNSTABLE MANIFOLDS

Let us assume that is aC?! tangent vector field on the Banach maniféid and
thatx is a hyperbolic rest point of. We shall identify a neighborhood afwith a
neighborhood of 0 in the Banach spdte= TxM, identifying x with 0. We shall
consider & X(x)-adapted norm oy, and we will use the notation introduced in
the above sections: for instandg,(r) ¢ M will denote the closed ball centered
in X.

Theunstableand thestable manifold®f the rest poink are the subsets éf

w%m:{pthxm:_wmme¢@m=xL
WE(X) = {pe M

twm=+mmMJp¢mm=x}

THEOREM 1.18. Let x € M be a hyperbolic rest point of theX vector field
X, k > 1, on the Banach manifol1. ThenWY(x) and W3(x) are the images
of injectiveCX immersions of manifolds which are homeomorphi&§oand ES,
respectively.

Proof. By Theorem 1.12, ifr is small enough the local unstable manifold
Wi, (¥) is the graph of £% mapo: EY(r) — EX(r). Since

WH(X) = {g(t, p) | p € Wiae, (¥, O <t <t*(p)},

the setW!(x) inherits the structure of @ manifold from that oW, (X) by the

maps{¢(t, )}, and the inclusion 0iV(x) into M is aCX injective immersion.
If 6: EY(r) — WY _ (X) is theCK diffeomorphismd(¢) = & + o4(¢), the map

loc,r

A= {¢ € Eg|logliéll < t*(8(ré/IIE)} — WH(x), € = g(logliéll, 6(ré/IIE)),

is a homeomorphism from a star-shaped open subdgf ethus homeomorphic
to EY itself - ontoW!(x). The analogous results fov3(x) follow by considering
the vector field-X. O

REMARK 1.19. If M is a Hilbert manifold, then the regularity of the norm
implies thatW!(x) andWs(x) are actually images @¥ immersions oEY andES,
respectively.

In generalW!(x) and W5(x) need not be embedded submanifolds: actually,
they need not be locally closed.

A Lyapunov functiorior X is aC* function f: M — R such thaD f (p)[X(p)]
< 0 for everyp € M \ rest(X). In this case, of course crit] c restX). If X is
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a Morse vector field, the two sets actually coincide. Indeed, we can assume that
M = E is a Banach space, sofe rest(X) andt € R we have

D f (x+tV)[ X(x+tv)] = Df(X)[X(x+tv)]+0o(t) = tDf(X)[DX(X)v]+o(t) fort — O.

The principal part of the right-hand side is an odd function. &ince the above
quantity has to be negative for evety+ 0, such a principal part has to be
identically zero. Sinc®X(X) is an isomorphism, we deduce tHaf(x) = 0

THEOREM 1.20. Assume thaiX admits a Lyapunov functiofi, and that for
everyrg > 0 small enough there holds

Suqf(p) | p E loc, ro(x) N 8EX(rO)} < Inf f(p) | p G loc, I’o(x) N 6EX(r0)} (28)
Then ifr > 0is small enough

(i) for everyp € M, the closed sét = {t € [t (p), t*(p)[ | ¢(t. p) € Ex(r)}is an
interval, and its interior it € ]t (p), t*(P)[ | #(t, p) € Ex(r)};

(i) if 1 is upper bounded, thes(maxl, p) € JEZ(r) N E3(r); conversely, if
#(t, p) € IEY(r) N ES(r), thent = maxl;

(iii) if 1 is lower bounded, theg(minl, p) € Ex(r) N 0E(r); conversely, if
#(t, p) € EX(r) N 9ES(r), thent = minl;

(iv) WH(X) N Ex(r) = Iocr(x) andWs(x) N Ex(r) = W . (X);

(V) WH(X) andW5(x) are submanifolds of.

Proof. Let ry be so small that (28) and the conclusions of Lemma 1.10, The-
orem 1.12, and Proposition 1.17 hold. Sinicés of classC!, up to choosing a
smallerro we may also assume thais uniformly continuous orfex(ro).

We shall prove the first assertion in (i) arguing by contradiction. In fact, as-
sume that there exist an infinitesimal sequence of positive numigre( < ro,

a sequence of pointg{) € dEx(on), and a sequence of positive numbeg3 guch
thaté(tn, &n) € 0Ex(on) andg(]0, ta] x {&n}) N Ex(on) = @. Lemma 1.10(iv) implies
that (at least fon large)é, € dE(on) X E3(on) € CYN Ex(ro) By Lemma 1.10(i),
CY N Ex(ro) is positively invariant with respect tBy(rg), and by (iii)) ift > 0
and ([0, t] x {&n}) c CY N Ex(ro) theng(t, &) ¢ Ex(on). Therefore, there exists
an € 10, ty[ such thaty([0, an] x {&n}) € Ex(ro) ande(an, &n) € 0Ex(ro). Similarly,
there existdy, € [an, th[ such thawp(bn, &n) € IEx(ro) andg([b tn] X {&n}) € Ex(ro).
Since&, — 0 andg(ty, &n) — 0, Proposition 1.17 implies that

dist(¢(an, &n), Iocro(x)maEX(ro))—>O dist(¢(bn, &n), Iocro(x)maEX(ro))—>0.

Therefore, by (28), taking into account the fact tihas uniformly continuous on
EX(rO)v

limsupf(¢(an, &)) < sup f < inf f< Ii[]n_jgf f(o(bn, &n)),

e Iocr (X)maEX(rO) Iocr (X)maEX(rO)
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a contradiction becausg < by, implies f(¢(an, &n)) = f(d(bn, &n))-
The second statement in (i), and statements (ii), (iii) are immediate conse-
guences of Lemma 1.10. The inclusions

W, (09 € W) N (), W, (9 € WR() 1 Ex(r)

are obvious. The opposite inclusions follow from statement (i). TW(x) and
W3(x) are submanifold oM, because

WH(X) = {o(t, p) | pe WI(X) NE(r), O <t<t"(p)},
WE(X) = {4(t. p) | pe W) NE(r), t*(p) <t <0},

and becausg(t, -) is a difeomorphism. O

REMARK 1.21. The weak inequality always holds in (28). The strict inequality
holds if either:

(i) xhas finite Morse index;

(i) M is a Hilbert manifold,f is twice diferentiable ak and the second fier-
ential of f at x satisfiesD?f(x)[¢,&] < —A||€||? for every¢ e EY, for some
positive constant.

Indeed, in the first casé/’

loc.r,(¥) is & compact set, so

sup f= max f<f(x) < inf f.
Wi ()NIEx(ro) Wioerg (MINIEx(ro) Wie ro (INGEx(r0)
oc,rg

In the second case, a second order expansidnabk yields to the same conclu-
sion.

2. The Morse complex in the case of finite Morse indices

2.1. THE PALAIS—-SMALE CONDITION

Assume thaff is a Lyapunov function for the vector fiel on the Banach man-
ifold M. A Palais —Smal€PS)sequence at levalis a sequencepg) € M such
that (f (pn)) converges t@ and © f(pn)[X(pn)]) is infinitesimal. We shall say that
(X, f) satisfies thé”alais — Smal€¢PS)condition at levek if every Palais— Smale
sequence at levelis compact.

If (X, f) satisfies the (PS) condition at every [a, b], then restk)n f~([a, b])
is compact, so iK is also Morse this set is finite.
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REMARK 2.1. Assume thad, = ¢([0, t)] X {pn}), tn > O, is contained in a strip
{a< f < b}, and that

i (o) = 1@t o) _

N—oo tn

0. (29)

Then there is a (PS) sequerges J,. Indeed, by the mean value theorem there is
Sy €]0, ty[ such that

f(pn) — f(¢(th, Pn))

D f(¢(Sn, Pn))[X(¢(Sn. Pn))] = t

and by (29)gn = ¢(s, pn) is a (PS) sequence.

Actually, the above observation could be used to give a weaker formulation
of the (PS) condition, which does not requiréo be diferentiable, and could be
used to study flows in the continuous category.

2.2. THE MORSE -SMALE CONDITION

We recall that two closed linear subspatgsV, of a Banach spack are said
transverséf V1+V, = E andV;NV, is complemented i&. Two C! submanifolds
M; andM of the Banach manifol®/ are saidransversef for everyp € M1NnM
the closed linear subspacgsM; andT,M, are transverse ifi,M.

Let X be a Morse vector field having only rest points with finite Morse index
and admitting a Lyapunov function. We will say th4t satisfies theMorse —
Smale condition up to ordds € N if for every pair of rest points, y satisfying
m(x) — m(y) < k, the submanifold$v"(x) andW>(y) are transverse. In this case,
the implicit function theorem implies thaw"(x) N W5(y) —if nonempty —is a
submanifold of dimensiom(x) — m(y).

Notice that the presence of a Lyapunov function implies W&tx) N WS(x) =
{x}, and such an intersection is always transverse. Notice also that the fact that
#(t,-) is a difeomorphism implies that ¥WY(x) N W3(y) meet transversally at
somep € M, they meet transversally at every point of the orbipof

2.3. THE ASSUMPTIONS

Let M be an open subset of the Banach maniﬂplandj\ezt? be aC? vector field
on M (possibly,M = M). Denote byA the open subsei \ M, and denote by
the restriction ofX to M.

We shall construct the Morse complex f&ron M under the following as-
sumptions:

(Al) Ais positively invariant with respect to the flow o andX is positively
complete with respect té,;
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(A2) Xis a Morse vector field oM;

(A3) every rest point oK has finite Morse index;

(A4) X admits a Lyapunov functiof € C1(M) n Co(M);

(A5) f is bounded below oM;

(AB) (X, f) satisfies the (PS) condition at every legel f(M);
(A7) X satisfies the Morse — Smale condition up to order O.

The local flow ofX will be denoted bys. By (A1), the local flow ofX is just
the restriction of to

Q(X) = {(t, p) € QX) | pe M, ¢(t, p) € M.

In most applicationd is actually defined on the whold andA is a sublevel
of f.

Notice that (A6) and the fact thdte C°(M) imply that there are no rest points
on the boundary oM: such a rest point would be the limit of a (PS) sequence in
M, which does not converge M.

Notice also that (A7) means asking thét(x) does not meetVs(y) whenever
X # y are rest points witln(x) < m(y).

2.4. FORWARD COMPACTNESS

The (PS) condition plays a crucial role in the following compactness result.

PROPOSITION 2.2.AssumdAl)—(A7). Then

(i) for everyp € M, ¢(t, p) either converges to a rest point Bffor t — +oco or
eventually enterg,,

(ii) if (pn) C M converges t@ € M, (tn) C [0, +oo[, and(¢(tn, pn)) € M, then
the sequencés(t,, pn)) is compact inM.

Proof. (i) Let p e M. Assume thap(t, p) never enters\: by (Al) this implies
thatt™(p) = +o0. By Remark 2.1, wittp, = p, t, — +o0,a=inf f, b = f(p), and
by (PS) we can find a sequensge — +co such thaip(s,, p) converges to a rest
pointx € M. The functiont — f(¢(t, p)) converges fot — +o0, being monotone,
therefore

Jim_£(o(t.p) = fim 1(s(s. p) = 1.

Assume by contradiction tha{t, p) does not converge tofort — +co. Then we
can findr > 0 (as small as we like), two sequen@s< bp < an.1, an — +oo,
such thatp(an, p) € GEx(r), ¢(bn, p) € IEX(2r), ¢([an, bn] X {p}) < Ex(2r) \ Ex(r).



60 A. ABBONDANDOLO AND P. MAJER

Choosingr so small thatX is bounded orE4(2r) c M, one has thab, — a, is
bounded away from 0. Since

im (é(an. ) = im f(8(on, ) = im_ (4t P) = £

we have
im 1@®n. P) — T(é(@n. p) _

0,
n—oo bn — an

so by Remark 2.1 there is a (PS) sequenci,i2r) \ Ex(r), converging by (PS)
to arest point. Sinceis arbitrarily small x is not isolated in resK), contradicting
(A2).

(ii) If (t,) is bounded, then

lim supt, < t*(p). (30)
N—oo
Indeed, if by contradictioti*(p) < lim sup,_,., th, t*(p) is finite, so by (A1) there
existss € [0,t*(p)[ such thaty(s, p) € A. Theng(s, pn) eventually belongs té,
sos > t, for nlarge, and limsup, ., ty < s < t*(p), a contradiction.

When ¢,) is bounded, the continuity af and (30) imply thai(¢(ts, pn)) is
compact inM, so we may assume thigt— +co.

By Remark 2.1 and (PS) there exists a sequence [0, ty] such that, up to
a subsequence(a,, pn) converges to a rest point € M, with inf f < f(x) <
f(p). Since there are finitely many rest points in this strip, we may assume that
f(x) is minimal, that is for no sequeneg < [0, t,], ¢(a;, pn) has a subsequence
converging to a rest poinyte M with f(y) < f(X).

If ¢(tn, pn) converges tax then there is nothing to prove, otherwise up to a
subsequence we can fimd> 0 (as small as we like) anld, € [an,t,] such
that¢(bn, pn) € JEx(r) and¢([an, bn] X {pn}) € Ex(r). By Proposition 1.17, the
sequencép(bn, pn)) is compact, since its distance from the compacv%c'gr(x)m
0Ex(r) tends to O (here we are using the fact thdias finite Morse index). So a
subsequence @b(b,, pn)) converges to a poirg with

f@ <, max f<f.

loc,r

The sequenck, — by, is bounded: otherwise by Remark 2.1 and (PS) there would
existc, € [bp, th] such that a subsequence(gfc,, pn)) converges to a rest point
y with f(y) < f(g) < f(x), contradicting the minimality off (x). Therefore

&(th, pn) = d(th — bn, ¢(bn, pn)) is compact inM. O
The above result has the following immediate consequence.

COROLLARY 2.3. For everyx e restX), WY(x) " M has compact closure iN.
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Another consequence is the following convergence result for forward orbits:
if (pn) € M converges t@ € M, up to a subsequence the forward orbitpaf
converges to a “broken orbit” consisting lof+ 1 flow lines,h > 0, matching at
h rest pointsx, ..., X1. The first of these flow lines is the forward orbit pfthe
last one either converges to a rest poigt which is also the common limit of
o(t, pn) for t - +oo, or eventually enterd\, together with all the orbits ofy,.
More precisely, the situation is described by the following corollary.

COROLLARY 2.4. Assume thatp,) ¢ M converges to somge M. Then there
exists a subsequengey,) such that one of the following two alternatives holds

(@) t*(px,) = +oo, and there existgy € rest(X) such thatp(t, px,) converges to
Xo fort — +oo, for everyn € N;

(b) for everyn € N, ¢(t, px,) eventually enterd\.

Moreover, there exish € N, a set{Xjh<j<n C resti), with f(x;) < --- <
f(xn), sequences of real numbefs> t > --- > tf = 0, and pointsgp, 4, . . .,
gh = pin M such that

(i) gj € WS(xj) N WY(xj1) for everyl < j < h-1;

(i) gn = p € W3(X), unless caséb) holds andh = 0, in which cases(t, gn) =
¢(t, p) eventually enterg;

(iii) go € WY(xq) if h > 1;in case(a) gop € W3(xo), in case(b) ¢(t, go) eventually
entersA;

(iv) lim e o(tl, px,) = q; for every0 < j < h.

The proof is an easy application of Proposition 2.2, together with an induction
argument. Details are left to the reader.

2.5. CONSEQUENCES OF COMPACTNESS AND TRANSVERSALITY

Given a subseB c M, we will denote bys([0, +oo[ x B) its forward evolution,
although this set should more properly be indicated by

#(([0, +oo[ x B) N Q(X)).

The Morse — Smale condition up to order zero, assumption (A7), has the following
consequence.

LEMMA 2.5. Assume(Al)—(A7). Let x, y be distinct rest points oK, with
m(x) < m(y). Then there exists> 0 such that

9([0, +oof x Ex(1)) N Ey(r) = .
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Proof. Assume the contrary: there exist a sequengg € M converging to
x and a sequence,] c [0, +oo such that(¢(t,, pn)) converges tg. By Corol-
lary 2.4, a subsequence of the sequence of forward orbip, abnverges to a
“broken orbit” passing througl andy. In particular, there are pairwise distinct
rest pointsz; = X, z,...,z = Y, kK > 2, such thaM\M(z) n W5(z,1) # @ for
every 1< i < k- 1. The Morse—Smale condition up to order zero implies that
m(x) = m(z;) > --- > m(z) = m(y), a contradiction. O

In particular, the closure of the unstable manifold of a rest poinitindexk
does not contain rest points of index greater than or equaldther thanx itself.
Let us state a stronger assumption, which will be later removed:

(A8) every rest poiny does not belong to the closure of the union of the unstable
manifolds of rest pointg # y with m(x) < m(y):

y ¢ U WY(X).
x € restX) \ {y}
() < m)

Since the closure of a finite union is the union of the closures, by Lemma 2.5
condition (A8) is implied by the Morse —Smale condition up to order zero (A7)
whenX has finitely many rest points of indéx for everyk € IN. In general it is
strictly more restrictive.

Assumption (A8) implies the following result.

PROPOSITION 2.6. AssumgAl) —(A8). Then there exists a positive function
p:restX) — 10, +oo[ such that

#(10, +oo[ x Ex(p())) N Ey(o(y)) = @

for all pairs of rest pointsc # y with m(x) < m(y).
Proof. By (A8) there exists a functionr: rest(X) — ]0, +co[ such that

Ey(o(y)) N U WH(X) = @ Vy e restX). (31)
x € restX) \ {y}
m(x) < M)

Let us prove that for every e rest(X) there is a positive numb@(x) such that

#([0, +oo[ X Ex(0(x))) N Ey(c(y)) = @ Vy € rest) \ {x}, m(y) = m(x). (32)

Then the functiop(x): restX) — 10, +oo[, X > min{o(X), 8(X)}, will satisfy the
requirements.

We argue by contradiction, assuming that there existsrest(X) for which
(32) does not hold, no matter how sm@(k) is. Since there are finitely many rest
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points in{pe M | f(p) < f(x)}, we can find a sequencey) c M converging

to x and a sequencé,] c [0, +oo such thatp(t,, pn) € Ey(o(y)), for somey €
restX) \ {x} with m(y) > m(x). By Corollary 2.4, a subsequence of the sequence of
the forward orbits o, converges to a “broken orbit” starting frorrand passing
throughEy(o(y)). In particular, there are rest poir#s= X, ...,z # Yy, k> 1, such
thatW'(z) nWS(z,1) # o forl<i<k-1,and

Wz N Ey(o(y) # 2. (33)

By the Morse —Smale condition up to orderm(z) < m(x) < m(y), and since
Z #Y, (33) contradicts (31). O

2.6. CELLULAR FILTRATIONS

Cellular filtrations are a useful tool to compute the singular homology of a topo-
logical space. See Dold (1980, Section V.1) for a more extensive discussion and
for the proof of the results stated in this section.

Let T be atopological space. A sequen€e= {Fn}ncz Of subsets of is said
acellular filtration of T if:

(i) Fn c Fneq foreveryn e Z;
(i) every singular simplex ifT is a simplex inF, for somen;
(i) the k-th singular homology grouplk(Fn, Fn-1) vanishes for everi # n.

Notice that (ii) is fulfilled whenT is the union of the familyF,} and eactF,
is open. The spadeé_; may be empty. The spacég for n < -2 will be actually
irrelevant in the construction. Singular homology is always meant to have integer
codficients.
If ¥ = {Fn}lnez is a cellular filtration ofT, we denote by the Abelian
group
WF = Hk(Fk, Fr-1).

The homomorphism: Wk — Wi_1F is given by the composition
Hik(Fk, Fr-1) = Hi-1(Fk-1) = Hk-1(Fi-1, Fk-2),

where the first map is the boundary homomorphism of the paik-1), and the
second map is induced by the inclusion. It is readily seervidiat; = 0, SOW.F
is a chain complex of Abelian groups, said ttedlular complex of the filtration
¥

A cellular mapg: (T,F) — (T’,F’) is a continuous map frorm to T’ map-
ping eachF into F;,. Such a map induces homomorphisms

W@ WeF — WiF', Wig = 0. Hk(Fx, Fr-1) = Hk(Fy, Fy_q),
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which are readily seen to form a chain mapg: W.F — W.¥’. This makedV a
functor from the category of cellular filtrations and cellular maps to the category
of chain complexes of Abelian groups and chain maps.

THEOREM 2.7. If F = {Fn}nez is a cellular filtration of the topological space
T, then there is an isomorphism

H (W, F, 0.}) = H(T, F_1).

Such isomorphisms form a natural transformation between the fuhtférand
the singular homology functadd, in the sense that i§: (T,#) — (T, ') is a
cellular map, then the diagram

H (W, F, 8,}) —— Hi(T, F_1)

Hkagl J{g*

Hk({W*qj,, a*}) i> Hk(T,’ Fl_l)
commutes.

A cellular homotopyh between two cellular magp, 91: (T, ) — (T",7) is
cellular maph: ([0, 1] x T, ) — (T’,¥’), ¥ being the cellular filtratior[0, 1] x
Fnlnez, such thath(0,-) = go andh(,:) = gi. If there is a cellular homotopy
betweeng and g’, the homotopy invariance of singular homology implies that
W.g =W.0'.

A cellular mapg: (T, F) — (T’,F”’) is said acellular homotopy equivalence
if there are a cellular mag': (T’, ") — (T, F), said acellular homotopy inverse
of g, and cellular homotopiels betweeny’ o g and idr #) andh’ betweeng o ¢’
and igy #). By functoriality and homotopy invariance gfis a cellular homotopy
equivalence thelV.g is an isomorphism.

2.7. THE MORSE COMPLEX

Denote by reg(X) the set of rest points of of Morse indexk, and letCy(X) be
the free Abelian group generated by the elements of(P€st
Let p: restX) — ]0, +oo[ be a function satisfying

#(10. +oo[ x Ex(p(X))) N Ey(p(y)) = @, Vx#y € rest), m(x) < m(y), (34)
whose existence is established by Proposition 2.6. Consider the subbkts of
Mq = M(o) := AU | | ¢([0, +oo[ x Ex(p(x))) Yk = 0, My = Ak <0,

0 <K
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andM, = My () := Ukez Mk. EachMy is open and positively invariant.

We shall denote by the closed unit ball oR¥, and bywy the generator
of Hx(DK, dD¥) corresponding to the standard orientatiofR¥t Here is the main
result of this second part.

THEOREM 2.8. AssumdAl)—(A8). Letp: rest(X) —]0, +oo[ be a function sat-
isfying (34), and letMy be the sets defined above. Then

() The inclusioMy, A) — (I\W, A) is a homotopy equivalence.
(i) M = M(p) := {Mglkez is a cellular filtration of M., with

WIM = Hi(Mg, Mg_1) = C(X), Vke N.

More precisely, the choice of an orientation of each unstable manitic)
determines an isomorphism

Ok(p): Ci(X) = WM(p), X - b(wi), VX € resk(X),

wheres*: (DX, dD*) — (Mg, My_1) is a map of the formd*(¢) = ¢(t(&), w(¢)),
with w an orientation preserving embedding Bf onto an open neighbor-
hood ofx in WY(x), and0 < t < t* so large thatg(t(£), w(&)) € Mg for
every¢ € 9DK.

(i) If p” < p, then the inclusion = j,,: Mw(p’) — Mu(p) is a cellular ho-
motopy equivalence with respect to the cellular filtrati¢M(o’) }kez and
{Mk(p)}kez- Moreover, the diagram

WM(p")
W kai (35)
C(X) 55 WieM(o)

commutes.

By (iii), the isomorphism class of the cellular chain complggM (o) does not
depend on the choice of the functiprsatisfying (34). In order to fix a standard
representative, we can define

W, (X) := lim W, M(p),
pl0
the limit of the direct system of chain complex@¥. M(p), W. jo0}. The chain

complexW,(X) is said theMorse complex oK. By Theorem 2.7, the homology
of such a chain complex is isomorphic to the singular homologiaf,(A), which
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by statement (i) of the theorem above is isomorphic to the singular homology of
(M, A): .
HkW.(X) = H(M,A) Vke N.

In particular whenA is the empty set (so thaf is a positively complete Morse
vector field onM admitting a Lyapunov function which is bounded below), the
homology of the Morse complex is isomorphic to the singular homology of
By (ii) and by the commutativity of diagram (35), a choice of an orientation
of each unstable manifold allows to identify the gro@iéX) andWi(X), by the
isomorphism
Ok = I;i)rf(} Ok(p): Ck(X) = Wi(X).

EXERCISE 2.9. Deduce the so callsttong Morse relationsthere exists a
formal serieQ with codficients inlN U {+o0} such that

i |resk(X)|t = iﬁk(m A+ (L+HQ), (36)
k=0 k=0

whereBi(M, A) = rankH(M, A) € N U {+oo} is thekth Betti number of {1, A).

Before proving Theorem 2.8, we recall the semi-continuity properties of the
entrance time functiomto a subse€ c M:

te(p) := inf{t € [0,t"(P)[ | $(t, p) € C} € [0, +c].

LEMMA 2.10. If C is open,tc is upper semi-continuous. @ is closed,tc is
lower semi-continuous.

Proof. Assume thaC is open. Ittc(p) < t, there exists € [tc(p), t[ such that
¢(s, p) € C. By continuity, ¢(s,q) € C for everyq in a neighborhood of, so
tc(q) < s< tin such a neighborhood.

Assume thaC is closed. Iftc(p) > t, choosingt’ €]t, tc(p)[ we have that
¢(s, p) belongs to the open sét \ C for everys € [0,t']. By continuity and
compactnessi(s,q) € M \ C for everys € [0,t'] and everyg in a neighborhood
of p. Thereforefc(g) > t’ > tin such a neighborhood. O

Proof of Theoren2.8. (i) By Proposition 2.2(i), the orbit of eveny € M either
converges to some rest poie M fort — +oo, or eventually enteré. SinceM.,
is a neighborhood of restj and containg, for everyp € M the entrance time of
¢(" p) in Mocn

tm., (p) := inf{t € [0,t"(P)[ | #(t, P) € Moo}

is finite, and less thatt (p). SinceM., is open, by Lemma 2.10 the functiowg_
is upper semi-continuous.
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On the other hand, the functiari is lower semi-continuous. A simple ar-
gument with partitions of unity (also known as Dowker theorem; see Dugundiji,
1978, VII1.4.3) shows that on a paracompact topological space we can always find
a continuous function between an upper semi-continuous function and a lower
semi-continuous one. So we can find a continuous fundiol — R such that
tm., < S<t*. Then the continuous map

(M, A) = (Mo, A),  1(p) = ¢(S(p), P),

is a homotopical inverse of the inclusior(M., A) — (M, A), the homotopies
id(M,A) ~iorandidgm,a) ~ I oibeing the map

(10, 1] x M, [0, 1] x A) = (M, A), (2, p) = ¢(AS(p), p),

and its restriction to (JOL] X Mw, [0, 1] X A) into (M, A).

(ii) Let us prove thaiM is a cellular filtration. SinceM is an open covering
of My, we just need to compute the singular homologyM§,(Mk-1). SinceMg
is the union of the open sek,_; and

Uci= | (10, +oo x Ex(o(3))

xeresk(X)

by excision the singular homology oM, My_1) is isomorphic to the singular
homology of Uk, Ux N Mk_1). Condition (34) implies that the open séi$x) :=
#([0. +oo[xEx(p(x)bigr)), x € res(X), are pairwise disjoint, so

H, (M, Mic1) = H (U Uk D Mic) = @D HUU(, U(X) 0 Mica).
xeresk(X)

We shall prove that{ (x), U(X) N My_1) is homotopically equivalent toladimen-
sional disc modulo its boundary, so that

Hi(U(9. U0 1 Micr) = {% D

proving thatM is a cellular filtration. .

Set for simplicityp = p(x). By Lemma 1.10(iii),E}(0) x E3(p) € U(X). Let
p e UX) \ E}(p) x E5(p). By Proposition 2.2(ii), the orbit op either eventually
entersA, or converges to a rest poigtfor t — +co. In the latter casey # X
because of Theorem 1.20(i), so by (34(y) < k — 1. In both cases, the orbit @f
eventually enterdly_1. The upper semi-continuous function

0 if pe Ex(o),

a:UX)—> R, p+ {th_l(p) if pe U(X)\ éx(P)v
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is strictly less than the lower semi-continuous functibnso we can find a con-
tinuous functiora: U(X) — [0, +oo[ such thata’™< a < t*, so that

#(a(p), p) € M1 VYp e U(X) \ Ex(p). (37)

Then we can define the continuous map

a: (Ex(p)  ES(p). 9EX(p) X Ex(p)) = (UM, U(X) N Mi1),  p > ¢(a(p). p)-
By Theorem 1.20(i), for everp € U(X) there holds

b(p) := surit € 1t"(p), 0] | 4(t, p) € Ex(p)} = maxt € ]t(p), 0] | 4(t, p) € Ex(p)),

so by Lemma 2.10 the functidn U(x) — ]—o0, 0] is both lower and upper semi-
continuous, hence continuous. The npap> ¢(b(p), p) is the identity orEx(o) x
E)S((p) and maps all the other points bf(x) into dEg(p) x ES x(0). Since by (34)
Ex(0) N My_1 = &, the continuous map

B (U, U(¥) N Mi1) = (Eo) X Ex(0), 0EX(p) X Ex(p)),  p = ¢(b(p), p),

is well-defined.
It is easy to check that ands are homotopy inverses. Indeed,

(1. p) = B(¢(1a(p). p))

is a homotopy betweegsva and the identity map ofEy (o) x ES 2(0), OEZ (p) x ES 3(0)).
On the other hand, by (37),

(4, p) = ¢(a(@(ab(p). p)). #(ab(p). p))

is a homotopy betweem o 8 and the map
(U(X), U(X) N My-1) = (U(X),U(X) N My-1),  p > ¢(@(p), p),

which is clearly homotopy equivalent to the identity &wh(X), U(X) N My_1).
We conclude that{(x), U(x)NnM-1) is homotopy equivalent (o) x ES 2(0), OEY(p) X ES 3(0)),
which is homotopy equivalent t(E} (o), dEX(0)), ak dlmenS|onaI disc modulo
its boundary. The latter pair is homeomorphic(t Ioc (x), oOW! (X)), and the
statement about the form of the isomorphi®measily foIIows
(iii) Since M(p") € Mk(p) for everyk, j is a cellular map; we will construct
a cellular homotopy inverse gfof the form

¥(p) = ¢(c(p). P). (38)

with ¢ a suitable positive continuous function.

Ioc .0
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Givenp € My (p), set
«(p) := minfk € N | p € Mi(p)},

and
é(p) = tMK(p)(p’)(p)7

the entrance time gb into the open sel, ) (0"). By (34), every point ifM(p)
either eventually enter& or converges to a rest poirtwith m(x) < k; in both
casesp eventually enterdy(o’). Thereforec< t*.

Since{Mn(p")}nez is a filtration,tu, () is nonincreasing i, so

&(p) = min{tw,)(P) | 0 < h < «(p)} = Min{tm, ) (Pxn(p) | h € N},

whereyn(p) = 1if h < x(p), i.e., p € Mn-1(0), andyn(p) = +oo otherwise;
hence the positive functiop, is upper semi-continuous. Since atggy,) is upper
semi-continuous and nonnegative, so is the funation ~

Let ¢: Mw(0) — IR be a continuous function such that<" ¢ < t*, and let
v: Mo (p) = Mw(0’) be the map defined in (38). By constructionmapsMg (o)
into Mi(p’), so it is a cellular map. The cellular homotopiegig,) ~ j oy and
idm.. () ~ vo] are given by the cellular mag(p) — ¢(Ac(p), p) on the respective
domains.

If 6%(p): (DX, 8D¥) — (Mk(p), Mk-1(p)) and6*(p’): (DX, 4D¥) — (Mk(p’), Mk-1(0"))
are the continuous maps appearing in (ii), the*(0’) is homotopic t@*(p), so
the diagram (35) commutes. O

2.8. REPRESENTATION OB, IN TERMS OF INTERSECTION NUMBERS

Let us strengthen the Morse — Smale assumption (A7) by requiring:
(A7") X satisfies the Morse —Smale condition up to order 1.

In this case, the boundary operad@iof the Morse complex oK can be expressed
in terms of intersection numbers of unstable and stable manifolds of rest points of
index diference 1.

First of all notice that ifm(x) — m(y) = 1, the assumption (AY implies that
WH(X) N W5(y) is a flow-invariant 1-dimensional manifold, that is a discrete set of
flow lines. We claim thatV*(x)nW53(y) is compact: otherwise Corollary 2.4 would
imply the existence of a “broken orbit” fromy = X to z, =y, with intermediate
rest pointsz, ..., zn-1, for someh > 2. By the Morse —Smale condition (up to
order 0)m(zy) > m(z) > - -- > m(z,), a contradiction becausa(zp) — m(z,) = 1.
ThereforeW!(x) N WS(y) consists of finitely many flow lines.

Let us fix an orientation of each unstable manifdlf(x). As we have seen in
Section 2.7, this choice determines a preferred isomorpBigr@y(X) = Wi(X).
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Moreover, it determines an orientation of each transverse intersasti¢x) N
W3(y). Indeed, the orientation of each unstable manifold determines a co-orien-
tation of each stable manifold (that is an orientation of its normal bundle), and
the transverse intersection of a finite-dimensional oriented submanifold with a
finite-codimensional co-oriented submanifold carries a canonical orientation: if
p € WH(x)NnW3(y) andV c T,W!(x) is a linear complement af,(W"(x) "W*(y))

in ToWY(x), by transversality/ is also a complement af,W3(x) in ToM, so it is
oriented, and the orientation @"(x) N W3(y) is the one for which

TpWH(X) = Tp(WH(X) N W(y)) @ V

is an oriented sum.

In particular, ifm(x)—m(y) = 1 each connected componé&kiof WY (x) "WS(y)
is an oriented line, and we can defie@V) to be+1 if ¢ is orientation preserving
onW, -1 otherwise. Then we can define the integer

n(x,y) = Z e(W), Vxy e restX), m(x) — m(y) = 1.

W connected component
of WHY(X) N WS(y)

Assume that conditions (Al)—(A6), (A and (A8) hold. Then we have the
following fact.

THEOREM 2.11. In terms of the preferred isomorphigiy: Cy(X) = Wk(X), the
boundary operator of the Morse complex6has the form

OX = Z n(xy)y, Vx e resk(X)c Cu(X). (39)
yeresk-1(X)

Before proving this result, we recall thatif, denotes the generator |f,(S")
corresponding to the standard orientatio@bf** = S", that is the one for which
R™! = R¢@T,S"is an oriented sum, for everyin S", we have that the boundary
homomorphisnHy,1(D™1, dD™1) — Hp(dD™1) mapswn,1 into oy,

EXERCISE 2.12. Lef\,..., A, be pairwise disjoint closed-discs inS", with
maps

a: (D", aD" — (s", s \ O A&-),
i=1

mappingD" homeomorphically onté, preserving the standard orientations. Let
j:S" — (S",S"\ UM, A)) be the inclusion. Then

h
jolorn) = > (wn).
i=1
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Proof of Theoren?.11 Notice first of all that by (A2) and (A6), for every
x € restX) there are finitely many rest poingss rest(X) with f(y) < f(x), so the
sum appearing in (39) is finite.

Let p:restX) — ]0, +oo[ be a function satisfying (34), and &l = Mk(o),
for k e N U {co}. Let us fix a rest poink of Morse indexk.

By the naturality of the boundary homomorphism of pairs in singular homol-
ogy, we have the commutative diagram

0%
Hy (DX, aDK) —— Hi(My, Mk_1)

| |

Hy_1(8DK) ——— Hi_1(Mk_1)

wherea: 9DK — My_1 is the restriction ob*. The cellular boundary homomor-
phismdy of the cellular filtration{ My }ke7 is the compaosition of the right vertical
arrow with the homomorphism induced by the inclusiody_1 < (Mk_1, Mk_2).
On the other hand, the left vertical arrow is an isomorphism mappingto
ok-1. Therefore gy maps the generatéi(wk) of Hx(Mk, Mk_1) into i.a.(ok_1) €
Hik_1(Mk_1, Mk_2), and we must express the latter element in terms of the genera-
tors 6 (wk-1) of Hi1(Mk_1, Mk_2), fory € rest_1(X).

By the Morse — Smale condition up to order 1,

a/‘l( U \,\,S(y)):{gl,...,gh}

yeresk-1(X)

is a finite subset oDX, anda maps all the other points into points which either
belong to stable manifolds of rest points of index less thanl, or eventually
enterA; so the orbit of any point i(9D¥ \ {1, . .., ¢n)) eventually enterddy_o.
Chooser > 0 so small that the closedballs B;(5) c 9D centered in; are
pairwise disjoint k— 1)-discs. Leb: dD¥ — R be a continuous function such that

xtw,oa<b<tioq,

wherey is the characteristic function of the open 8B \ Uih:1 Br (&), andty, ,
is the entrance time function intdy_». Thena is homotopic to the map

9D > Mic1, & ¢(0(0). a(?).
SO
ef(wk) = i*a*(o-k—l) = i*ﬁ*(o-k—l)‘

Denote by
yi: (D1, DY) = (My_1, My_2)
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the composition of o 8 with an orientation preserving homeomorphism
(DX,0DK) — (B,(4). 9B,(4)).

Then the result of Exercise 2.12 shows that:
h

% (wk) = B (0k-1) = Z Vi (Wk-1). (40)
i—1

Fix somei € {1,...,h}, lety be the rest point of indek — 1 toward which the
orbit of a(%), i.e., of (&), converges fot — +co, and letW; be the connected
component ofA/(x) N WS(y) consisting of such an orbit.

We claim thaty; is homotopic to eithe#”, in the case(W) = 1, or to®” o p,
wherey is an orientation reversing automorphism 8%, 9D1), in the case
(W) = —1. Therefore

Yin(wke1) = €(W)E (wi-1),

and (40) allows to conclude.
Let us proof the claim. Up to a small perturbation, we may assumetieat
C! embedding of a closed  1)-disc, meetingV3(y) transversally at the single
point p = ¥;(0). The difeomorphismy; induces an orientation dpri(D"‘l), the
one for which
TpW!(x) = RX(p) & Tpyi(D*?)

is an oriented sum. The ftierential of the flowD2¢(t, ) at p maps the tangent
space ofy;(D¥1) at p onto a subspace Ofyt,p)M which converges td,W!(y)

fort — +co (see for instance Abbondandolo and Majer, 2003c, Theorem 2.1(iii)).
A first consequence is that the orientationTofy; (D) defined above is(W)
times the orientation obtained by seeTygy.(D -1 as a complement o WE(y)

in ToM. A second consequence is that, by the evolution of graphs of Lipschitz
maps fromEy(r) to Ej(r) near the hyperbolic rest poiyt(see Shub, 1987, or
Abbondandolo and Majer, 2001, Proposition A.3 and Addendum A.%)>if0

is small andt > 0 is large therp({t} x ¥i(D¥™1)) N Ey(r) is the graph of a m&p

T E;,‘(r) - E§(r). Let K c D*! be the closed neighborhood of 0 such that

(it} x ¥i(K)) = graphr.

SinceK is a closedK — 1)-disc, it is a deformation retract 8. Since the local
unstable manifold\. . (y) is also the graph of a map": EJ(r) — EJ(r), it is
now easy to comblne the above maps to construct a homotopy bewvaenl
an embedding of*~%, 9DK1) into (WU(y), W¥(y) N My_2), which is orientation

3 This statement is part of the content of the so calldémma, in the particular case of a
gradient-like flow. See Palis (1968) and Palis and de Melo (1982).
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preserving, hence homotopic &, if (W) = 1, orientation reversing, hence
homotopic to?Y o y, if e(W) = —1. O

2.9. HOW TO REMOVE THE ASSUMPTION (A8)

If we drop assumption (A8), there need not exist a fungtisatisfying (34), and it
becomes more fficult to associate a cellular filtration ¥ Nevertheless, we can
make the graded group.(X) into a chain complex by taking a direct limit of the
Morse complexes on sublevdls < a}, for a T supf. On these domains indeed,
there are finitely many rest points and condition (A7) guarantees condition (A8).
Not being forced to assume (A8) is a positive fact, in that assumption (A7) can be
more easily achieved by generic perturbations, as we shall see in Section 2.12.
If the supremum off on M is attained, by (A2) and (A6X has finitely many
rest points, so (A8) is implied by (A7). Thus, we can assume thaf samot
attained.
Fora < supf, letW,(X)? be the Morse complex associatedid := AU {f <
a}, and ifa < b < supf, let

Wap: W, (X)? — WL (X)P

be the chain map induced by the inclusih? < MP. TheMorse complex oX
is defined to be the chain complex

W, (X) = lim W, (X)?,
aTsupf

the limit of the direct systemW.,(X), wsp}. Notice that if (A8) holds, so that
W, (X) is the chain complex defined in Section 2.7, the family of chain com-
plexes{W,(X)?}a<supt is identified with an increasing and exhausting family of
sub-complexes diV,(X), so this definition of the Morse complex agrees with the
previous one.

Since the homology of a direct limit of chain complexes is the direct limit of
the homologies (see Dold, 1980, VIII.5.20),

H WL (X) = lim H WL (X)2.
arsupf
Similarly, the singular homology of an increasing union of open subsets is the
limit of the singular homologies (see Dold, 1980, VIII.5.22), so
Hi(M, A) = lim H (M2, A).
atsupf
We conclude that the homology of the Morse complexa$ isomorphic to the
singular homology of M, A),
Hi(W. (X)) = H(M, A)  Vk e N.
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Finally, having fixed an orientation for each unstable manifold, we have the
isomorphisms
OF: Ci(X)™ = Wi(X)?,

Ck(X)? being the subgroup & (X) generated by the rest pointsvith f(x) < a,
and the limit of this direct system defines an isomorphism

Ok: Ck(X) = Wi(X).

REMARK 2.13. Since the boundary afe rest(X) in C.(X) and inC.(X)? coin-

cide whenf(X) < a < supf, the formula for the boundary homomorphism under
the Morse—Smale condition up to order 1 (Theorem 2.11) holds also without
assuming (A8).

2.10. MORSE FUNCTIONS ON HILBERT MANIFOLDS

A particular but important case is the following situatidris aC? Morse function
on a smooth Hilbert manifol®ll, endowed with & Riemannian metrig, —00 <
a<bg+oo,M={peN]| f(p)p<b, M={peN|a<f(p)<b},andX =
-V f, the negative gradient df with respect to the metrig. Let us see what the
assumptions (A1) — (A8) look like in this situation.

In this case, of course, reXiY = crit(f)n{a < f < b}, the set of critical points
of f with values between andb. Condition (A2) is equivalent to saying that
is a Morse function oM, and in condition (A3) the Morse index is the standard
Morse index of a critical point of |y. The set of critical points of with indexk
will be denoted by crii ).

Condition (A4) is automatically fulfilledf itself being a Lyapunov function
for -V f, and so is condition (A5).

In the case of a gradient flow the (PS) condition can be restated in the more
familiar way: the pair (f,g) satisfies th€PS)condition at levelc € R if every
sequenceft,) ¢ M such thatf(p,) — c and||df(pn)l| — 0 is compact (here the
norm||-|| onT*M is induced by the Riemannian structgde The assumption (A6)
is equivalent to: {, g) satisfies the (PS) condition at lewefor everyc € [a, by,
anda is a regular value fof.

As we shall see in Section 2.12, the Morse — Smale condition required in (A7)
can be always achieved by perturbing the megric R

Finally, assumption (A1) is automatically fulfilled wheM(g) is complete.
Indeed, the following fact holds.

PROPOSITION 2.14.Let f € C?(M,R) anda € R be such that the strifa <
f < ¢} is completgwith respect to the geodesic distarecen M induced by the
Riemannian metrig), for everyc < supf. Then the vector fieldVf is positively
complete with respect td < a}.
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Proof.Let p € M and consider the curve [0, t*(p)[ — M, u(t) = ¢(t, p). If
f(p) = supf, thenp is a critical point off, sot*(p) = +co. If inf f o u < athen
u(t) eventually entergf < aj.

Therefore we can assume thifp) < supf andu([0,t"(p)[) c {a < f <
f(p)}, and we must prove that(p) = +c0. Let0< s<t. Then

t t
F(u) - F(u(9) = f D UE)[-VF(u()] dr = - f oV F(U()), VE(u() dr,

S

and the Cauchy — Schwarz inequality implies that

d(u(9), u(t) < fs t Jow @, w) de

| oV (). V(e de

V=g fs t oV (), VE(u(r)) dr)l/z
T=sy/f(U(9) - F(u) < Vi—syT(p)—inf fou.

The above estimate shows thatis uniformly continuous. If by contradiction
t"(p) < +o0, by the completeness of the stfip < f < f(p)} we deduce that
u(t) converges fot — t*(p). But then the solutiom of ' = -V f(u), u(0) = p,
can be extended to a right neighborhood*@p), contradicting the maximality of
t*(p). O

IA

We summarize the above discussion into the following proposition.

PROPOSITION 2.15.Let f be aC? function on the smooth Hilbert manifold,
endowed with &€* Riemannian metrig, and let-co < a < b < +co. Assume
that

(B1) ais aregular value off;

(B2) f is a Morse function otfla < f < b}, and it has only critical points of finite
Morse index in such a strjp

(B3) for everyc < b, the strip{a < f < ¢} is complete
(B4) f satisfies théPS)condition at every levet € [a, b[.

Then, settingVl = {f < b}, X = -Vf|g andM = {a < f < b}, the conditions
(A1) — (A6) are fulfilled.

Notice that only (B3) and (B4) involve the metric. Moreover, if (B3) and (B4)
hold for some metric, they hold also for every uniformly equivalent metric.
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Under the assumptions (B1)—(B4), the free Abelian group generated by the
critical points of f of indexk in {a < f < b} will be denoted byCy(f)3. The
lower index will be omitted whea < inf f, the upper index will be omitted when
b= +c.

If —Vf satisfies also the Morse — Smale condition up to order{@daenf < b},
the boundary operator of the Morse complex-6ff on{a < f < b} will be
denoted by

A(f,9)2: Cu(F)E - Cra(F)E.

Its homology is isomorphic to the singular homology of & b}, {f < a}):

Hk(IC.(F)2, 8.(F, 9)2)) = H({f < b}, {f < &)).

2.11. BASIC RESULTS IN TRANSVERSALITY THEORY

In the following lemma we single out a useful family of linear mappings whose
kernel is complemented.

LEMMA 2.16. LetE, F, G be Banach spaces, and assume that £(E, G) has
complemented kernel and finite-codimensional range. Then for Bverf(F, G)
the kernel of the operatd® € £(E x F,G), C(e, f) = Ae— Bf, is complemented
in ExF.

Proof. Let Eg := kerA, E; be a closed complement & in E, andPg, Py
be the associated projectors. &t := ranA, Gy be a (finite-dimensional) com-
plement ofG; in G, andQp, Q1 be the associated projectors. Th&induces an
isomorphism fronE; ontoGy, whose inverse will be denoted Bye £(G3, Ej).

The equatiorC(e, f) = 0 is equivalent tcAP,e = Bf, which is equivalent to
the system

APe= Qle,
QoBf =0,
again equivalent to
P,e= TQBf,
{QoBf =0, (“1)

SinceQpB has finite rank, its kernel — sdyy — has a (finite-dimensional) com-
plementF;. By (41), the kernel o€ is

kerC = {(eo + TQuBfo, fo) e Ex F | &g € Eo, fo € Fo,

and the closed linear subspdegex F1 is a complement of keE. O

Let us recall some definitions and basic facts about transversality in a Banach
setting. A classical reference for these topics is Abraham and Robbin (1967). If
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¢:M — N is aC* map between Banach manifoldsz 1, a pointq € N is said a
regular value fory if for every p € ¢~1({q}) the diferentialDy(p): ToM — TgN
is a left inverse, i.e., if it is onto and its kernel is complemented. In this case,
¢ 1({q}) is a submanifold of class.

A Cl mapy: M — N between Banach manifolds is saidFeedholm map
if its differential at every point is a Fredholm operator. When the index of the
differential is constant (for instance whighis connected), this integer is said the
Fredholm index op.

PROPOSITION 2.17.Let M, N, O be Banach manifolds, and lete Cl(M, N),
¥ € C{(M, O) be maps with regular valugse N andq € O. Then

() pis a regular value forypl,-1q if and only if g is a regular value for
Ypaipiys

(i)) ¢ly-1qy) Is @ Fredholm map if and only i 1) is @ Fredholm map, in
which case the indices coincide.

This proposition is a consequence of the following linear statements.

PROPOSITION 2.18.LetE, F, G be Banach spaces, and late £(E,F), B €
L(E,G) be leftinverses. Then

() Alkers is a leftinverse if and only Blkera is a left inverse

(ii) Alkers is Fredholm if and only iB|kera is Fredholm, in which case the indices
coincide.

Proof. Let R € L(F,E) andS € £(G,E) be right inverses ofA and B,
respectively.

() If Ry € L(F, kerB) is a right inverse ofAlkers, i.€., a right inverse oA
with range in keB, the mapSy := (Ie — RyA)S is a right inverse oB, being a
perturbation ofS by an operator with range in k& and it takes value in kex
because

ASy = AS- ARRAS = AS- IFAS =0.

Therefore Sy is a right inverse oBlyera.
(i) The kernels ofAlkers andBlkera coincide:
kerAlkerg = kerBlkera = kerAn kerB.
Moreover, sinceR F — RF is an isomorphism and sinde- RAis a projector
onto kerA,

F RF N kerA + RF 3 E
AkerB ~ RAkerB =~ kerA + RAkerB  kerA+ kerB’

We conclude that the assertions in (ii) are equivalent, each of them being equiv-
alent to the fact that the pair of subspaces &éewerB) is Fredholm, i.e., keA N

[135s)
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kerB is finite-dimensional, and ke + kerB is finite-codimensiondl. The index
of Alkers and of Blkera €quals the index of (kek, kerB),

ind(kerA, kerB) = dim kerA n kerB — codim(kerA + kerB). O

We recall that a subspad€ of a topological spacé is saidresidualif it
contains a countable intersection of open and dense subspdcd3afe theorem
guarantees that a residual subspace of a complete metric space is dense.

The following Sard — Smale Theorem, combined with Proposition 2.17, is the
basic tool to deal with transversality questions.

THEOREM 2.19. Let M, N be C" Banach manifoldsh > 1, with M Lindelof.
Letg: M — N be aC" Fredholm map of indem. If h > max0, m} then the set of
regular values ofy is residual inN.

The proof can be found in Smale (1965).

2.12. GENERICITY OF THE MORSE —SMALE CONDITION

Let f be aC'"? real function)h > 1, on the smooth Hilbert manifold, endowed

with a Riemannian metrig of classC". Let - < a < b < +0, and assume
(B1)—(B4). The aim of this section is to show that it is possible to perturb the
metricg obtaining a uniformly equivalent metric such that the associated negative
gradient off has the Morse —Smale property up to ordeWe shall assumél

to be infinite-dimensional and second countable (in particular, it is modeled on a
separable Hilbert space).

A well-known theorem by Eells and Elworthy (1970) implies that every infi-
nite-dimensional Hilbert manifold can be smoothly embedded as an open subset
of a Hilbert space. So we may assume tNat an open subset of the separable
Hilbert spaceld, (-, -)).°

Denote by Synil) the Banach space of self-adjoint bounded linear operators
onH. The metriay can be represented byC& mapG: N — Sym(H) taking values
in the cone of positive operators, such that

g(p)é.n] = (G(p)é.n) VpeN, VE,npeTpN =H.

We shall always denote by a lower case letter a symmetric bilinear form, and
by the corresponding upper case letter the associated self-adjoint operator. The

4 See also Section 3.2.

5 Viewing N as an open subset of a Hilbert space is useful to simplify the notation (some spaces
of maps are Banach spaces and not Banach manifolds, some sections of Banach bundles are just
maps between Banach spaces, and so on) but it is by no means necessary. Therefore the results of
this section hold also for a finite-dimensiomaivhich is not difeomorphic to an open subsetRf.
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gradient of f with respect to the metrig is V4f(p) = G(p)1Vf(p), whereV f
denotes the gradient dfwith respect to the Hilbert inner produgt-).

The Morse —Smale property will be achieved by rank 2 perturbatior. of
In order to describe the space of such perturbationsg:ldt — [0, +oo[ be a
continuous function such that

6(p) < Vpe N. (42)

1
IG(P)~ I
The vector space

K = {K e C)(N, SymH) )| rankK(p) < 2¥pe N,
Jc > 0 such thatiK(p)ll < c6(p) Vp € N}

is a Banach space with the norm

IK(p)II
IKll% := IK|lch + su .
X < e(p)fo 6(p)

As usual, the symbcﬂ:{; denotes the space of maps whosedéentials up to the
hth order are continuous and bounded. Notice that the dapg( vanish on the
set of zeroes df. By (42), for everyp € N

IG(P) K (P)II < IG(P) MK lIxcO(p) < IKllgc

so if [Kllg < 1, G + K = G(I + G 1K) is positive, and defines a metric+ k
which is uniformly equivalent t@. Denote byX; the open unit ball ofK. The
main result of this section is the following theorem.

THEOREM 2.20. Let f be aC™! function,h > 1, on the smooth second count-
able Hilbert manifoldN c H, endowed with a Riemannian metgof classCh.
Let—o0 < a < b £ +o0, and assuméB2). Assume that the continuous function
0:N — [0, +oo[ satisfieq42), that its set of zeroes is the closure of an open set,
and that it has the following propertyf x,y are critical points infa < f < b}
with m(x) — m(y) < h, such thatW"(x) and W3(y) (with respect to-V4f) have a
nontransverse intersection at thend > 0 somewhere on the orbit gk

Then for everK in a residual subspace &{1, the metricg + k associated to
G + K is such that the vector fieldVg, f satisfies the Morse —Smale property up
to orderh.

Notice that high regularity of andg is needed if we want to achieve the
Morse —Smale property up to a high order. This phenomenon is determined by
the regularity versus Fredholm index assumption required by the Sard —Smale
Theorem 2.19. In a finite-dimensional setting this problem does not occur because
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thereC" functions can always b@"-approximated by smooth ones, while such an
approximation may not be possible on an infinite-dimensional Hilbert space (see
for instance Nemirovskiand Semenov, 1973 and Lasry and Lions, 1986). Notice
thatC? regularity of f is enough to get the Morse —Smale property up to order 1,
which is just what we need in order to have the Morse complex and to represent it
by intersection numbers.

The possibility of having a functioé which vanishes on some regions where
the intersections are already transversal and which can be very small elsewhere
will be useful in Section 2.13.

Let us set up the proof of Theorem 2.20. Fix two critical poirts y in
{a < f < b} with m(x) — m(y) < h, and consider the space of curves

C=C(xy) = [ue CHR.N) ] Jim u@) = x lim u@) =y, lim u'() =0}

The spaceC is a smooth Banach manifold, being an open subset offiamea
Banach space modeled ﬁ]é(lR, H) (the spaceﬁ:g are defined in Section 1.2).
Therefore T C = C}(R, H). The map

P:Cx K1 — CYR,H), (UK) - U+ Vguf(u) = U + (G +K)Hu)Vi(u),

is of classCP, and its zeroes are the paits K) such thau is a negative gradient
flow line of f with respect to the metrig+k, going fromxtoy. SetZ := ¥~-1({0}).
The following two lemmas describe some properties of tiedintial of ¥ with
respect to the first, respectively the second variable.

LEMMA 2.21. Let(u,K) e Z. Then
(i) the operatoD1¥(u, K): T,C — Cg(lR, H) is Fredholm of indexn(x) — m(y);

(i) the operatorD1¥(u, K) is onto if and only if the unstable manifold »&nd
the stable manifold of with respect to the vector fieldVg,f intersect
transversally au(t) for some(hence alj t € R;

(iii) ifwe Cg(IR, H) anda < b are real numbers, then there existg T,C such
that
D1¥(u, K)[V](t) = w(t) Vte]-oco,a] Ulb,+oo.
Proof. The diferential of¥ with respect to the first variable is of the form

D1¥(u, K): C(R, H) = CJ(R,H), vV — Ay,
whereA: R — £(H) is defined by
A = =(G + K) " (u())D? f(u(t) - D(G + K))(u®)V f (u(t)).
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Sinceu(t) converges tc, resp. toy, fort — —oo, respt — +oo, A(t) converges in
norm to the operators

A(-0) = —(G+K) (0D f(x) = -VZ, f(x),
A(+) = =(G+K) " (Y)D*f(y) = -V, f(¥),

which are hyperbolic, and have positive eigenspaces of dimengigrandm(y),
respectively. Then (i) follows from Proposition 1.8. Claim (ii) follows from the
second identity in (9) , and from the identities

TuoW'(X) = WR,  TuoW(y) = W;.

As for claim (iii), up to a translation we may assume that 0 < b. Then the con-
clusion follows from Proposition 1.6(i), applied Ao +«] and toA|_w oj(—). O

LEMMA 2.22. Let(u,K) € Z, and leta < b be real numbers such théfu(t)) #
0 for everyt € [a b]. Letw € C'(R, H) be a curve with support ifa, b]. Then
there exists) € K such thatD,¥(u, K)[J] = w.

Proof. The diferential of¥ with respect to the second variable is

Do¥(u, K)[J] = —(G + K) 1) I(u)(G + K)~L(u)V f (u).

Since (1, K) € Z, the curveu is a flow line of the vector field-V4,k f going from
x to y. In particular,u is aC™?! embedding ofR into N, andV g,k o u never
vanishes.

It is easy to find &C" curve Jo: R — Sym(H) with support in B, b] such
that for everyt € R the symmetric operatai(t) has rank not exceeding 2, and
maps the nonzero vecto® (+ K)1(u(t))V f(u(t)) = Vg f(u(t)) into the vector
—(G + K)(u(t))w(t). Indeed, one may write an explicit formula fd§ by noticing
that if ¢ # 0 andn are two elements dfl, the bounded linear operator éh

&0 N (77,05_ (&, m<&, )

2 Tt e T
is self-adjoint, has rank not exceeding 2, vanishes wherd, maps¢ into n, and
depends smoothly o () € (H \ {0}) x H.

Sinceu is aC"! embedding, gived > 0 we can find an open neighborhood

U of u(a - 6,b + d[) and aC™?! submersionr:U — ]a — 6,b + [ such that
T(u(t)) = t for everyt € Ja— 6,b + §[. Sinced is positive onu([a, b]), up to
choosing a smalletand a smallet we may assume that igfd > 0, and also that
7 has bounded derivatives up to ordier 1. If ¢ € C’(H, R) is a cut-df function
with support inU and taking value 1 on([a, b]), the C" mapJ:N — SymH),
J(p) = v(p)Jo(r(p)), belongs toK and has the required property. O

gH é:’

The following lemma is the key point in the proof of Theorem 2.20.
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LEMMA 2.23. Let (u,K) € Z. Then the dferential D¥(u,K): T,.C x K —
CI(R.H) s a left inverse.
Proof. We must prove that the operator

D¥(u, K)[(v, J)] = D1¥(u, K)[V] + D2¥(u, K)[J]

is onto and that its kernel is complementedliyC x K. By Lemma 2.21(i), the
operatorD;¥(u, K) is Fredholm, so Lemma 2.16 implies that K8F(u, K) is
complemented iT,C x K. Moreover, the range d¥(u, K) contains the range
of D1¥(u, K), in particular it has finite codimension.

If 6o u(t) = 0 for everyt € R, alsoK o u vanishes identically, sBg,kf o u =
Vg f ou, and (recalling that the set of zeroesha$ the closure of an open set) the
tangent spaces of the unstable and stable manifoldaidly alongu are the same
for —Vg.«f and for-Vyf. Therefore, the assumption of Theorem 2.20 guarantees
that these manifolds meet transversally alanBy Lemma 2.21(ii) D1¥(u, K) is
onto, and so i®D¥(u, K).

If 6 o uis not identically zero, we can find real numbers< b such that
O(u(t)) # O for everyt € [a,b]. Letw € Cg(lR,H) and lete > 0. By Lemma
2.21(iii), there existy € T,C such that

D1¥(u, K)[V](t) = W(t) ¥t € ]—co0,a] U [b, +oo[.

The curvew — D1¥(u, K)[V] is continuous and has support ia, p], and we can
find aC" curvez: R — H with support in B, b] such that

llz— (w— D1¥(u, K)[V)lleo < €.

Sincez has support ind, b], where@ o u does not vanish, by Lemma 2.22 there
existsJ € K such thaD,¥(u, K)[J] = z Hence

IDY¥(u, K)[(V, J)] = Wlleo = ID1¥(u, K)[V] + Z— Wlleo < €.

Therefore D¥(u, K) has dense and finite-codimensional range, so it is onfa.

In particular,Z is aC" submanifold ofC x %K. Let & be the restriction taZ
of the projection onto the second factor in the prodtist K.

LEMMA 2.24. The mapr: Z — K is Fredholm of indexn(x) — m(y).

Proof. Everything follows from Proposition 2.17(ii), applied k& = C x K3,
N =%, 0 = C8(IR, H), ¢:C x K1 — %1 projection onto the second factor,
¥ =¥, together with Lemma 2.21(i) and Proposition 2.23. O

Denote byH(x,y) the set of regular values af

LEMMA 2.25. The setH(x,Y) is residual in%.
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Proof. Notice thatR acts freely on the submanifol@ by (t, (u,K)) +—

(u(t + -), K), and the mapr is invariant with respect to this action. Therefore, the
quotient spac€ = Z/R is still aC" manifold, and the induced mapZ — %1

is of classC" and Fredholm indexn(x) — m(y) - 1 < h— 1, by Lemma 2.24.
Moreover K is a regular value for if and only if it is a regular value for.

SinceN, and thusH, is assumed to be second countaldles K3 is second
countable, and so aig and Z. Since the level of dierentiability ofr is strictly
greater than its Fredholm index, the Sard —Smale Theorem 2.19 implies that the
set of regular values 6f— and thus ofr —is residual inkj. O

Proof of Theoren2.2Q By Proposition 2.17(i))H(X,y) is also the set oK e
9, for which the map¥(-,K) : C(x,y) — Cg(IR, H) has 0 as a regular value. By
Lemma 2.21 (ii)H(x, y) is also the set oK € K such that the unstable manifold
of x and the stable manifold of with respect to-Vg,xf meet transversally. By
Lemma 2.25, the countable intersection

M H(x.Y)

x,yecrit(f)nfa< f < b}
x#Yy, mX)—my) <h

is the required residual subset%f. O

2.13. INVARIANCE OF THE MORSE COMPLEX

Let f € C?(M) be a Morse function on the smooth second countable Hilbert
manifold M, with critical points of finite index. Assume thétis bounded below
and thatM admits a complete Riemannian metgsuch that ¢, g) satisfies the
Palais — Smale condition. We know from the previous section that by pertugbing
we can achieve also the Morse — Smale property up to order 1. In genéieak i
Morse — Smale metrics will produceftirent Morse complexes: the groupg f)

are the same, but the boundary operatiprsnay vary. Of course the homology

of the Morse complex does not vary, being isomorphic to the singular homology
of M, but we can say more: varying the metric we obtain isomorphic chain com-
plexes. This fact was observed by Cornea and Ranicki (2003) (together with other
interesting rigidity results) for finite-dimensional manifolds, and for some cases
of Floer theory. The proof we give here in our infinite-dimensional situation uses
an idea from Abbondandolo and Majer (2001) (see alsmPdx, 1991).

THEOREM 2.26. Let f € C%(M) be a Morse function, bounded below, having
only critical points of finite Morse index. Lgy andg; be complete Riemannian
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metrics onM, such that botl{f, gop) and(f, g1) satisfy(PS)and the Morse —Smale
property up to orded. Then there is a chain complex isomorphism

®: {C*(f)’a*(f’ gO)} = {C*(f)’a*(f7 gl)}

of the form

dX = X+ Z n(xy)y, VYxecrit(f), ke N, (43)
ye critk(fg
f(y) < f(x

for suitable integersi(x, y).
The following lemma will be needed in the proof:

LEMMA 2.27. Letabe a nondegenerate continuous symmetric bilinear form on
the real Hilbert spacéH, (-, -)), with either finite Morse index or finite Morse co-
index. Lettp > 0, and lett — (-, -}, t € R, be a continuous path of inner products
on H—equivalent tq-, -) —constant foit > ty and fort < —tg. Let A(t) be the

(-, -)¢-self-adjoint bounded operator du representinga with respect to the inner
product(-, -): a(&, n) = (A(), n); for everyé, n € H. Then the linear stable and
unstable spaces of the path(see Sectiod.2) satisfy

H =W e W,.
Proof. The pathA is continuous and it is constant fox to and fort < —t.
Let us assume thathas finite Morse index, the other case being easily reducible
to this one. The linear stable spasg has dimensiomy(a), the Morse index o4,
while the linear unstable spa®¢, is closed and has codimensima). Therefore,
itis enough to prove that/z N Wy = (0).
Letug € V\/,i NWY, and letu: IR — H be the solution of the linear Cauchy
problem
u'(t) = A(u(b),
{u(O) = Up.

SinceA is constant fok > tg and fort < —tg,
u(t) = e"AOY(te) VE > to,  u(t) = DAY (—tg) Vit < —tq.

Sinceu(t) — 0 for|t| — 0, we deduce thaif(tp) belongs to the negative eigenspace
of A(tp), andu(—tp) belongs to the positive eigenspace?dfty). Since bothA(tp)
andA(—tp) represent the symmetric forap we have

a(u(to), u(tp)) < 0, a(u(-to), u(-to)) > O. (44)
On the other hand, sina&(t) represena for everyt, the inequality
1d

5 g U, u()) = a(u(t), u'(©) = a(u(®), A)u(t)) = ADUED, Afu(t) > 0
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is compatible with (44) if and only iti(t) = O for everyt € [—to, to] (hence for
everyt € R), proving thatug = 0. ThereforeV; N W, = (0). O

Proof of Theoren2.26 We introduce the smooth Morse function
eR—>R, ¢(5)=25-3+1,

which has two critical points, namely a local maximum at O, wif@) = 1, and a
local minimum at 1, withp(1) = 0. Moreovery'(s) diverges forls — +co.
On the manifoldM = R x M consider theC? function

f:M >R, f(sp)=e(s)+ f(p).
It is a Morse function, with critical points of finite Morse index, and
critk(f~) = ({0} x crite-1(f)) U ({1} x critk(f)),
for everyk € N. Therefore
Cu(f) = Cr_1(f) ® Cu(f), VkeN, (45)

the first group in the sum corresponding to the critical poin{®js M, the second
one to critical points i1} x M.

If y:IR — [0, 1] is a smooth cut+ function such thag(s) = 1 fors < 1/3
andy(s) =0fors> % we can consider the complete Riemannian metri¢/on

(s, Pl(e8). (07.&)] = o0’ + x(990(P)E. & + (1 - x()au(P)E. €],

for every ¢, €), (07,&') € TepM = R® TpM.

Let ((sh, pn)) be a (PS) sequence fof,@). Sincel[V5f(s pllg > l¢'(9)], we
can find a subsequence &, which converges either to 0 or to 1. Sinde dp)
and (f, g;) satisfy (PS) an@)(5 p)lyetm is justgo for s close to 0 andy; for s
close to 1, we conclude that,@) satisfies (PS).

Let us examine the negative gradient flonfafith respect to the metrig. ~

(i) The hypersurface®} x M and{1} x M are flow-invariant, and the restriction
of the flow to{i} x M is nothing else but the negative gradient flowfafith
respect to the metrig;, fori = 0, 1.

Moreover the invariant s¢0} x M is a repeller, whilg1} x M is an attractor.
Therefore:

(ii) The only flow lines going from a critical point ifi} x M to a critical point
in the same hypersurface are those which are fully containg¢xnM, for
i=0,1.

(iii) There are no flow lines going from a critical point {i} x M to a critical
point in{0} x M.
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If we view f as a function orﬂ, we have

Df(s P)[-Vsf(s P)] = Df(s PI(-¢'(9,~Ve(s) f(P)]
V(s F(PIIEs.)- (46)

This implies thatf is almost a Lyapunov function for the vector fiel&gf:

(iv) f decreases strictly on all the nonconstant orbits, apart from those of the
form

ts ((t), ), with x € crit(f), S'(t) = —¢(Kt)).

In particular, up to time shifts there is exactly one flow line going frog)0
to (1, x), for x € crit(f), namely the orbit

o [0 =—¢' (D))
t— (s(t),x), with {QO) -1 (47)

We claim that the intersectio"((0, X)) N W3((1, x)) = ]0, 1[ x {x} is transverse.
Indeed, by linearizing along the flow ling(f), x), we easily see that

Ta2oWH(0, X)) = ReWs, Ta2yWH((LX) =RaeW,;,

where the bounded linear operaft) : TxM — TxM is minus the Hessian df
at the critical poinix with respect to the inner product

a(s(t), Yloperm = x(S())go + (1 — x(S(1))) G2

Then A(t) represents the secondié@rential of f at x with respect to the above
inner product, so by Lemma 2.2VyM = W; ® Wj. Therefore

Ta/2,0WH((0, X)) @ T/29W(L, X)) = R® TxM = T1/2,0M,

proving transversality.

The vector field-Vgf need not satisfy the Morse—Smale condition up to
order 1, but the only points where transversality can fail are the intersections of
the unstable manifold of a critical point,(¥) with the stable manifold of a critical
point (1, y), with x # y critical points off. We can perturb the metriifi order to
achieve the Morse — Smale property up to order 1 without loosing the nice features
(i) —(iv) of the vector field-Vgf. More precisely, by Theorem 2.20, taking into
account (46), we can find a complete metyion M such that

(a) (f,g) satisfies (PS);

(b) g coincides withg'on the setsjeo, ] x M, [Z, +oo[ x M, andR x U, where
U c M is a neighborhood of crif();

(c) Df(s P)[-Vof(s P < 0if p ¢ crit();
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(d) (f, g) satisfies the Morse — Smale property up to order 1.

Indeed, the functior® appearing in the statement of Theorem 2.20 can be
chosen to vanish on the regions indicated in (b), where the intersections are al-
ready transverse, and to be so small that the metrics belonging to the space of
perturbations satisfy (c). By property (b), the flowwgf still satisfies (i), (ii),

(iii). By (c), it satisfies also (iv).

We can now consider the Morse complex df ) relative to the sublevel
(f <inf f - 1}. Notice that this sublevel contains no critical points. The boundary
operatordy(f, g) can be described by using Theorem 2.11 and Remark 2.13. To
this purpose, it is convenient to choose the orientations of the unstable manifolds
in the following way: since for every € crit(f) there is a privileged isomorphism

TYWY(X; =V, ) = TWH(x; - Vg, T),

namely the restriction to the first space of the projection onto the first factor in the
splitting

we can endow these two spaces with orientations which are compatible with this
isomorphism. Then

T(0.0WY((0, X); - Vg f) = R T,WY(xX; ~Vgo f)
and _
TaxyWY((1, X); =Vgf) = (0)® TXW!(x; -V, f)

can be given the product orientations by the the standard orientatidRsaofl
(0). In this way, we have chosen an orientation for the unstable manifold of each
critical point of f. With this choice the transverse intersection

WH((0, X)) " W(1, X)) =10, 1[ x {x} (48)

is given the orientation corresponding to the veda¥s, which agrees with the
direction of the flow.
By (i), (ii), (i), and (45) the boundary operator

k(f, 0): Ciea(f) @ Ci(f) = Cia(f) © Cieca(f)

can be written as
& [0k-1(f,00) 0
6k(f’ g) - q)k_l ak(f’ gl) ’

for some homomorphism
Dy: Cy(f) — Ci(1).

The fact tha®.(f, g) is a boundary, i.ed(f, g) dk.1(f, g) = 0, implies that
®y_10k(f, 9o) = k(f, 91)Px,
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that is @k)ken iS @ chain homomorphism from the Morse complex fifgg) to
the Morse complex off(, g).
By (iv), the intersection

WHU((0, X); —Vg ) N WE((L,y); —Vgf)

can be nonempty only if(y) < f(x) or x =y, and in the latter case it consists of
the single orbit (48).

Together with the previous discussion on orientations, this fact implies that
@ has the form (43). So if we order the critical points fofvith Morse indexk
by increasing value of, we see that the homomorphishy is represented by
an upper-triangular matrix, with 1 on the diagonal entries. A homomorphism of
this form must be an isomorphism: this is well known wi@(f) has finite rank,
because in this cagpy is represented by a finite matrix with determinant 1, an
invertible element of, but it remains true if the rank @(f) is infinite. Indeed
if X1, Xo, ..., are the critical points of indexordered by increasing value 6f the
inverse ofdy is defined inductively by

h-1
O txg = X1, OptXn = X — Z N, )0, 1, Vh > 2. 0

i=1
EXERCISE 2.28. Generalize this result to the case of a &rip f < b}.

EXERCISE 2.29. Wheiffi satisfies the condition (A8), itis possible to obtain the
same conclusion of Theorem 2.26 by looking directly at the two cellular filtrations
induced by the two negative gradient flows. Prove this fact. Then use the limit
arguments of Section 2.9 to prove Theorem 2.26 under the hypothesis,tixgt (
and (f, g1) satisfy the Morse — Smale condition only up to order O.

3. The Morse complex in the case of infinite Morse indices

3.1. THE PROGRAM

In this part we will consider a gradient-like* vector fieldX on a Hilbert man-
ifold M, whose rest points have infinite Morse index and co-index. In this case,
the stable and the unstable manifolds of rest points are infinite-dimensional, and
the flow of X does not produce a meaningful cellular filtrationMf Indeed, the
infinite-dimensional Hilbert ball is retractable onto its boundary, so the rest points
of X are homotopically invisible.

However, we may hope that in some cases the unstable and the stable man-
ifolds of pairs of rest points have finite-dimensional intersections. If this holds,
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we could use the formula for the boundary operator of Theorem 2.11 not as a
description, but rather as the definition of the Morse complex. Our program is to
follow this idea.

Of course this program cannot be pursued in full generality. A first reason is
that in general the unstable and stable manifolds may not have finite-dimensional
intersections. A deeper reason is that the setting of gradient-like flows for a Morse
function with critical points of infinite Morse index and co-index has too little
rigidity. For instance, the following result was proved in Abbondandolo and Majer
(2004). A sketch of the proof will be presented at the end of Section 3.3.

THEOREM 3.1. Let f:M — R be a smooth Morse function on a separable
Hilbert manifold, whose critical points have infinite Morse index and co-index.
Leta: crit(f) — Z be an arbitrary function. Then there exists a Riemannian metric
g on M such that the corresponding negative gradient flow bfs the following
property for every pair of critical pointsx,y, the intersectionV¥(x) N W3(y) is
transverse and —if nonempty — has dimensiof) — a(y).

Moreover, the metrig can be chosen to be uniformly equivalent to any given
metric gg on M. Finally, if (xi,y;), i = 1,...,k, are pairs of critical points such
that x; andy; can be connected by a path [0, 1] — M such thatD f (u;(t))[u; (t)]
is negative for every € ]0, 1[, the metricg can be chosen in such a way that
WH(x) N WE(y;) is not empty.

Therefore the situation is drastically less rigid than the case of finite Morse
indices, where the Morse index of a critical point does not involve the metric, and
where we have seen that the isomorphism class of the Morse complex does not
depend on the metric, and that its homology does not even depehd on

Let us examine another example of the lack of rigidity determined by infinite
Morse indices and co-indices. We have seen that when the Morse indices are finite,
the transverse intersectiofh®®(x) N WS(y) is always orientable, and each of its
components has the same dimensigri) — m(y). On the other hand, & is any
separable Hilbert manifold (finite-dimensional or not, possibly with components
of different dimension), there exists a smooth gradient-like flow on the Hilbert
spaceH with exactly two rest pointx andy, such that the intersectioW"(x) N
W5(y) is transverse and fieomorphic toZ x R (see Abbondandolo and Majer,
2003b, Section 4).

These phenomena suggest that a Morse theory for functiomd — R with
critical points of infinite Morse index and co-index requires more structure than
just the pair M, f). Our choice will be to consider a subbundkeof T M, suitably
compatible with the gradient-like flow.
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3.2. FREDHOLM PAIRS AND COMPACT PERTURBATIONS OF LINEAR
SUBSPACES

Before proceeding, we need to review some facts abouitbert Grassmannian
Gr(H), the set of all closed linear subspaces of the separable Hilbert space
See Abbondandolo and Majer (2003a) for a more complete presentathre If
Gr(H), we shall denote bfpy the orthogonal projection ont. The set Gid) is a
complete metric space with the distance dst{) := ||Pv — Pwll. The connected
components of GH) are the subspaces

Gram(H) = {V € Gr(H) | dimV = n,codimV = m},
wheren,me N U {co}, N + M = oo.

A pair (V, W) € Gr(H)xGr(H) is aFredholm pairif VNW s finite-dimensional
andV + W s finite-codimensional. In this case, the number i) := dimV n
W — codim({V + W) is said theFredholm index ofV, W). The space of Fredholm
pairs, denoted by Fpl), is an open subset of Gt x Gr(H), and the Fredholm
index is a continuous (i.e., locally constant) function on it. See for instance Kato
(1980, 1V §4).

LetW € Gr(H). A closed linear subspadéis acompact perturbation oV if
the operatoPy — Py is compact. In this case, the paif, W) is Fredholm, and
its index is said theelative dimension o¥ with respect tdV, denoted by

dim(V,W) := ind(V, W*) = dimV n W+ — dimV+ n W,

If (V, W) is a Fredholm pair and is a compact perturbation &, then g W) is
still a Fredholm pair, and its index is

ind(Z, W) = ind(V, W) + dim(z, V). (49)

3.3. FINITE-DIMENSIONAL INTERSECTIONS

Let M be a smooth Hilbert manifold, and I be aC! Morse vector field on
M, with local flow ¢: Q(X) — M. We shall always assume thdthas a Lya-
punov functionf. In view of Remark 1.21(ii), we shall assume tHat C?(M)
and that it is anondegenerate Lyapunov functjameaning that for everyx e
rest(X) the quadratic form — D?f(X)[£,£] is coercive onES(VX(X)), while
& —D?f(X)[£, €] is coercive onEY(VX(X)).

Let ¥ be a smooth subbundle afM, and let® be a projector ontoV: P
is a smooth section of the bundle of endomorphism$ bf such that for every
p e M, P(p) € L(TyM) is a projector ontdV(p). We shall assume the following
compatibility conditions betweeX andV:
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(C1) for everyx € rest(X), the positive eigenspade'(VX(x)) of the Jacobian of
X atx is a compact perturbation af(x);
(C2) for everyp € M, the operatorl{xP)(p)P(p) is compact.

HereLx® denotes the Lie derivative @t alongX. By (C1), we can define the
relative Morse index of the rest poirtwith respect toV to be the integer

m(x, V) := dim(EY(VX(X)), V(X)).

Condition (C2) depends only on the subbundfeand not on the choice of the
projector® onto it. Notice that the subbundi¥ is ¢-invariant (in the sense that
Doo(t, p)V(p) = V(4(t, p)) for every ¢, p) € Q(X)) if and only if (LxP)P = 0.
Condition (C2) is equivalent to the fact that is ¢-essentially invariant
D2¢(t, p)V(p) is a compact perturbation oF(4(t, p)), for every €, p) € Q(X).
WhenM is an open subset of the Hilbert spadeandV is a constant subbundle
V =V € Gr(H), so that we can choo$ = Py, there holds

(LxP)P = [DX, Py]Pv = (I — Py)DXPy. (50)
These assumptions have the following consequence.

PROPOSITION 3.2.Assume that the Morse vector fidagatisfie{C1)and(C2)
with respect to the subbundig. Then for every € restX):

(i) for everyp e WH(x), TpW"(x) is a compact perturbation o¥’(p), with
dim(T,WH(X), V(p)) = m(x, V);

(ii) for everyp € W3(x), the pair(TpW>(x), V(p)) is Fredholm, with
ind(TpWS(X), V(p)) = —m(x, V).

So loosely speaking\V!(x) is essentially parallel td’, while W5(x) is essen-
tially normal toV.

Let us sketch the proof of the first claim in a simpler case: we assume that
M is an open set of the Hilbert spake and thatV = V € Gr(H) is a constant
subbundle. Lep € WH(x), and letu(t) := ¢(t, p) be the orbit ofp. By linearization
alongu, using the notation of Section 1.2, we have that

ToWU(X) = W, (51)

where A(t) := DX(u(t)). By (C1),W = T\WY(X) = EY(A(-)) is a compact
perturbation ofV. By (C2), the operatorA(t), Pyv]Py is compact for every, and
so is the operato/(t), Pw]Pw. Set

B(t) := A(t) — [A(t). Pw]Pw.
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so0 thatB(—o0) = A(—o0) = DX(X), EY(B(—0)) = W, andB(t)W c W for every
t. These facts easily imply thavg = W. On the other hand, sino&(t) — B(t)
is compact for every, Wy is a compact perturbation &y = W, hence ofV.
By (51), T,W!(X) is a compact perturbation &f. The formula for its relative
dimension with respect tg follows by continuity.

The proof of claim (ii) is simpler. Since the set of Fredholm pairs is open and
the index is locally constant, by (C1) the pairp,iV3(x), V(p)) is Fredholm of
index—m(x, V) for everyp € W3(x) in a neighborhood ok. The tangent bundle
TWA(X) is ¢-invariant, and by (C2) the subbundléis ¢-essentially invariant, so
these facts remain true for evepye W3(X).

By (49), Proposition 3.2 has the following easy corollary.

COROLLARY 3.3. Assume that the Morse vector fieldsatisfieC1) and (C2)
with respect to the subbundi¥. Let x,y € rest(X), and assume that“(x) and
W5(y) meet transversally. Thew"(x) N W5(y) is a submanifold of dimension

m(X’ (V) - m(y9 (V)

We conclude this section by sketching the proof of Theorem 3.1. By the al-
ready mentioned embedding theorem of Eells and Elworthy (1970), we can embed
M as an open subset of the separable Hilbert spad&y modifying this embed-
ding near the critical points df, and by using the Morse Lemma (see for instance
Palais, 1963), we may assume tias quadratic near every critical poirt

f(x+&) = f(X) + 3(AMXE &),  for l¢] small,

for some self-adjoint invertible operatéx). Fix a closed linear subspatkof
H, with infinite dimension and codimension. By a further modification of the
embedding, we may also rotate small neighborhoods of the critical points in such
a way that the negative eigensp&£¢A(x)) of the operatoA(X) is a compact per-
turbation ofV, of relative dimensiom(x). Here we actually need to use Kuiper's
theorem (Kuiper, 1965), stating the orthogonal groupla$ contractible.

It is now easy to build a vector field havingf as a nondegenerate Lyapunov
function, and which satisfies (C1) and (C2) with respect to the constant subbundle
V. Indeed, near a critical pointone may choosX to be the linear vector field

X(x+ &) = -VIi(x+ & =-A(X)¢, for|€ small. (52)

Since the negative eigenspaceAgk) is a compact perturbation &f of relative
dimensiona(x), X satisfies (C1) ana has relative Morse indem(x, V) = a(x).
The linear vector fiel satisfies also (C2). Indeed by (50),

(LxPv)Py = =(I = Pv)A(X)Pv = =Py Pes(ap)A(X) Py — Py A(X)Peucacg) Py,

and the operatorBy.: Pes(ax) and Peuax)Pv are compact because®(A(x)) is
a compact perturbation &f. If p € M is not a critical point, we may choose
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X to be the constant vector fieli(p + £) = -V (p), for everyé so small that
Df(p+ &é)[-VT(p)] < 0. Every constant vector field trivially satisfies (C2) with
respect to the constant subbundle

These local definitions oK can be patched together by a smooth partition
of unity. In this way one can build a vector fieKl satisfying (52) near critical
points, so that (C1) holds. The set of vector fields satisfying condition (C2) is a
module over the ring of real functions, Xmatisfies (C2). Having as a Lyapunov
function is a convex condition, sbis a Lyapunov function foX. Up to a small
perturbation, we may assume thatalso satisfies the Morse —Smale condition.
Then Corollary 3.3 implies thatv¥(x) N W3(y) is a submanifold of dimension
m(x, V) — m(y, V) = a(x) — a(y). The fact thatX is actually the negative gradient
of f near the critical points makes it possible to find a mefrisn M such that
X = —Vgf.

We refer to Abbondandolo and Majer (2004) for details on how to kgep
uniformly equivalent to a given metric, and on how to obtain iN&{x;) N W3(y;)
is nonempty for every=1,...,k.

3.4. ESSENTIAL SUBBUNDLES

It is readily seen that iX satisfies (C1) and (C2) with respect to a subbundle
V, then it satisfies (C1) and (C2) also with respect to a subbubdle/hich at
every point is a compact perturbation®t This fact suggests the possibility of
weakening the structure, fixing only assential subbundief T M.

In order to make this precise, we need to introduce the essential Grassmanni-
ans of a Hilbert space. See again Abbondandolo and Majer (2003b) for a complete
discussion. Theessential Grassmannian ¢f is the quotient of Gifl) by the
equivalence relation

{(V, W) € Gr(H) x Gr(H) | V is a compact perturbation &Y},

and it is denoted by GfH). This space can also be seen as the space of sym-
metric projectors in the Calkin algeb&(H)/L.(H) (£Lc(H) denotes the closed
ideal of compact operators). Notice that the finite-dimensional and the finite-
codimensional spaces represent two points ig(kbx. We shall actually be in-
terested in the complementary @) of these two points, that is in the quotient
of Greo.o0o(H).

The (Oyessential GrassmanniaGr)(H) is the quotient of Gifi) by the
stronger equivalence relation

{(V,W) € Gr(H) x Gr(H) | V is a compact perturbation &% and dim{/, W) = 0}.

Again, GIZ‘O)(H) denotes the quotient of Gr.(H). The Bott periodicity theorem
(see Bott, 1959), and the fact that the group of automorphisnt$ which are
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compact perturbations of the identity is homotopy equivalent to the infinite gen-
eral linear group Glg) = Ian) GL(n) (see Palais, 1965), allow to determine the
homotopy type of the essential Grassmannian, proving the following result.

THEOREM 3.4. The quotient projectio®re «(H) — Gr(*o)(H) is a fiber bundle
with contractible total space. The quotient projectiGi, (H) — Gre(H) is a
universal covering. The spa€&g(H) is path connected, its fundamental group is
infinite cyclic, and if > 2,

7 ifi=1,5mod 8§
mi(Gri(H)) = mi_2(GL(c0)) =372 ifi=2,3mod §
0 ifi=0,46,7modS8

Since the tangent bundle of an infinite-dimensional Hilbert manifold is always
trivial (by the already mentioned Kuiper’'s theorem; Kuiper, 1965), a subbundle
YV of TM can be identified with a mafy: M — Gr(H). Similarly, anessential
subbundld€respectively a (Bessential subbundi@f T M can be identified with a
map&: M — Greg(H) (resp.&: M — Grg)(H)).

By Theorem 3.4, an essential subbundleof TM can be lifted to a (0)-
essential subbundle if and only if the homomorphism

& (M) = 11(Gri(H)) = Z

vanishes. A (0)-essential subbundlef T M can be lifted to a true subbundle of
T M if and only if all the homomorphisms

&1 mi(M) — 7i(Grig)(H))

vanish (a condition which has to be checked onlyifarl, 2, 3,5 mod 8).

If the vector fieldX satisfies (C1) and (C2) with respect to a (0)-essential
subbundleS of T M, then the relative Morse index(x, &) can still be defined,
and the conclusions of Proposition 3.2 and of Corollary 3.3 still hold (with the
obvious changes).

If the vector fieldX satisfies (C1) and (C2) with respect to an essential sub-
bundle, there is no relative Morse index. In this case the transverse intersection
WH(x) N WA(y) is finite-dimensional, but éierent components may havefdrent
dimension. More precisely, the dimension of the connected component contain-
ing p depends on the homotopy class of the orbitppfseen as a curve from
(R, —o0, +00) into (M, x,y). It is actually possible to construct an example of a
gradient-like vector field o8 x H, which satisfies (C1) and (C2) with respect to
a nonliftable essential subbundle, and has two critical poiaisdy such that the
intersectionV!(X)NW>3(y) is transverse and consists of two connected components
of different dimension.



MORSE COMPLEX FOR INFINITE-DIMENSIONAL MANIFOLDS 95

3.5. ORIENTATIONS

We recall that in the case of finite Morse indices, an arbitrary choice of the ori-
entation of all the unstable manifolds — or equivalently of the finite-dimensional
spacesTy\W"(x) —determines an orientation of each transverse intersection of
unstable and stable manifolds. NawW"(x) is infinite-dimensional, so it does
not carry orientations. The right object to orient turns out to be the Fredholm pair
(TXW(X), V(X)).

In order to deal with this question, we need to introduce degerminant
bundle

Det(FpH)) — FpH)

on the space of Fredholm pairs (see Abbondandolo and Majer, 2003b, for more
details). It is a real line bundle, whose fiber ¥t\\) € Fp(H) is

Det(V, W) := Det(v N W) ® (Det(H/(V + W)))

where Det?) := A%MZ(Z) denotes the space of top degree in the exterior algebra
of the finite-dimensional vector spaZeDefining a bundle structure for this object

is not immediate, because the mapswW) —» VnWand Y,W) —» V + W are

not continuous. We just mention the key ingredients in the constructions. The
intersection map\y{, W) — V N W is continuous on the space of transverse pairs,
while the sumY, W) — V+W is continuous on the space of pairs with intersection
(0). Then the bundle structure near a Fredholm p&ir\(p) can be constructed

by fixing a finite-dimensional spa&such thaZ + Vo +Wp = H andZn Vg = (0),

and by replacing each pai¥,(\W) in a neighborhood of\{op, Wo) by (Z + V, W).

Such a replacement turns out to be possible because of the existence of an exact
sequence

*
’

H
VNnWwW Z+V)NW—>Z—> —— .
00— - (Z+V) - —>V+W—>O

We recall that an exact sequence of finite-dimensional vector spaces
0-2g—>--->2%4—-0

induces a natural isomorphism

(X) Det@) = (X) Det(@).

i odd i even

The space of Fredholm operators frdfi to Hp, denoted byF (Hq, Hy) is
“contained” in the space of Fredholm pairstdf x H,. Indeed, the operatdk €
L(H1, Hy) is Fredholm if and only if the pair (graph Hy x (0)) € Gr(H; x
H>) x Gr(H1 x Hy) is Fredholm, and the index is the same. The pullback of the
determinant bundle on Fd( by the map

7:(H1, Hz) - Fp(Hl X H2), A (graphA, H]_ X (0)),
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is the determinant bundle on the space of Fredholm operatassdefined by
Quillen (1985).
Letne N, and let

Det(Gry e (H)) = Gro(H)
be the real line bundle whose fiberat Gr,(H) is DetZ). Let S be the set of
all (Z,(V,W)) in
(I GwstH)) x Fp(H)

nelN

such thaZz NV = (0), and let Detf) — S be the restriction t& of the tensor
product of the bundlels),cn Det(Gry(H)) and DetFp(H)). The map

S—-FpH), (Z (VW) — (Z+V,W),

is continuous, and can be lifted to a continuous morphism between the corre-
sponding determinant bundles:

S: Det(S) — Det(Fp(H)).
The construction of such a morphism is based on the exact sequence

Z+V H H
=7 — — —
V+W Z+V+W

The morphismS is associative, meaning that4f andY are finite-dimensional
linear subspaces ¢f suchthaZ nY = (Z + Y) nV = (0), the diagram

0O-VNW->(Z+V)NW — 0.

Det(Y) ® Det(Z) ® Det(V, W) %2 Det(Y) ® Det(Z + V., W)

s E

Det(Y + Z) ® Det(V, W) —> Det(Y + Z + V, W)

commutes.

An orientation of a finite-dimensional spagean be defined as an orientation
of the line DetE); similarly, anorientation of the Fredholm paifV,W) is an
orientation of the line DeY{, W). The morphisnt allows to sum orientations: if
(Z,(V,W)) € S, the orientations of two objects among

Z, (V\W), (Z+V,W),

determines an orientation of the other object.

Let us go back to the question of orienting the intersections between unstable
and stable manifolds. The assumption is that the vector Mekhtisfies (C1)
and (C2) with respect to a subbundié of T M. By assumption (C1), the pair
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(TxW3(X), V(X)) is Fredholm, for everx € rest(X). Let us choose an orientation
o(x) of such a Fredholm pair, for every rest poiyin an arbitrary way.

Now let X, y be rest points such th&(x) andW3(y) have transversal inter-
section. Letp € WY(x) n W5(y). By Proposition 3.2(ii), the paifTpW5(y), V(p))
is Fredholm. Choose a closed complemérdf T,(W"(x) N W(y)) in ToWS(y).
By transversalityV is also a complement af, W!(x) in T, M. It is a general fact
in this case that the backward evolution\bfvith respect to the dlierential of the
flow converges ta ,W3(x):

tIir_n D2¢(t, p)V = TYWS(X).

Therefore, the Fredholm paiv, V(p)) inherits by continuity an orientation from
the orientationo(x) of (TxWS(X), V(x)). On the other hand, the Fredholm pair
(ToWA(y), V(p)) inherits an orientation from the orientatiofy) of (TyWS(y), V(y)).
The last two objects among

Tp(WH) N WAY)), (V. V().
(Tp(WH(X) N WE(Y)) + V. V() = (TpW(Y), V(p))

are then oriented, so they induce an orientation of the first space. The construction
continuously depends gm hence it determines an orientationWf(x) N W3(y).

We shall see in Section 3.7 that the orientations defined here satisfy a suitable
coherence property.

3.6. COMPACTNESS

In the case of finite Morse indices, we have seen that the (PS) condition together
with the positive completeness Kfimplies thatW!(x) n {f > a} is precompact.
Now the unstable manifold is infinite-dimensional, so this cannot be true, but we
can hopeW'(x) N W3(y) to be precompact. However, assumptions (C1) and (C2)
are not sfficient to get this resultW"(x) N WS(y) may consist, for instance, of
infinitely many flow lines going fronx to y, with no cluster points besidesand
y. We need to strengthen condition (C2), a local assumption, into a more global
condition.

We recall that that the Hausdbdistance of two subsets, B of a complete
metric space\W, d) is the number

disty (A, B) = max{supinf d(a, b), supinf d(a, b)} € [0, +o],
acA beB beB a€A

and that théHausdoyf measure of noncompactnessfok the number

Bw(A):=inf{r>0| A can be covered by finitely many balls of radiy&[0, +0],
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so thatAis precompact if and only Bw(A) = 0. The functiorg is continuous with
respect to the Hausd®distance. Moreovegw(A) coincides with the Hausdfir
distance ofA from the space of compact subsetd/\af

Bw(A) = inf{disty (A, K) | K c W compact. (53)
In the case of a normed vector spales has also the following properties:

Bw(AA) = |ABw(A), Bw(A+ B) < Bw(A) + Bw(B),
Bw(conv@A)) = Bw(A). (54)

Let & be an essential subbundle DM, different from the trivial essential
subbundles [(0)] andl[M]. We shall assume th& admits aglobal presentation
there exists a smooth ma® : M — N into a Hilbert manifold such that for
everyp € M, DQ(p) has finite-codimensional range, and ke&2(p) belongs to
the equivalence class(p). For instance& could be the equivalence class of a
subbundle which is the vertical space of a submer&ion

We shall assume that is endowed with a complete Riemannian metric, and
we shall consider the induced metric M. The new assumption on the vector
field X is:

(C3) (i) IDQ o X||eo < +00;
(i) for everyg e N there exist$ = §(g) > 0 andc = ¢(q) > O such that

Bra(DQ(X(A))) < cANQ(A) VA C @ Y(Bs(q)).

Let us restate this condition in a simple situation: assumeuhiatan open set
of the Hilbert spacéd, and that is the equivalence class of a constant subbundle
V e Gr(H). Then we can choose the global presentation to be the orthogonal
projector ontdVN := V*, Q := Py. Denote by Ky, Xw) be the two components of
X with respect to the orthogonal splittiri) = V & W. Condition (C3)(i) says that
Xw is bounded, while (C3)(ii) is equivalent to: for evefye W there exists > 0
andc > 0 such that

Bw(Xw(A)) < cpw(PwA) YAC M (V x (Bs(é) NW)). (55)

In particular, if A ¢ M is such thatPwA is precompact, then alsiw(A) =
PwX(A) is required to be precompact. Thus, for evére M the mapn —

(I = Py)X(& + Pyn) is a compact map in a neighborhood of 0. Therefore, the
differential of this map at 0, namely

(I = Py)DX(£)Py = (LxPv)(£)Pv

is compact. Hence (C3) implies (C2): the simple situatioM—< H, & constant,
Q projector—in which we have checked this fact is indeed the general local
situation, and (C2) is a local assumption.
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Notice that in general (55) is strictly stronger than the fact that for eyery
W, Xw should map £ + V) n M into a precompact set, because (55) involves a
Lipschitz control on the measure of noncompactness. However, these conditions
are equivalent under a mild Lipschitz assumptionXorSee Abbondandolo and
Majer (2003b, Proposition 7.9) for a precise statement (in the case of a general
mapQ). The main result of this section is the following compactness theorem.

THEOREM 3.5. Let & be an essential subbundle ©M with a global presen-
tation @M — N into a complete Riemannian Hilbert manifold. Assume that
the Morse vector fielK is complete, has a nondegenerate Lyapunov fundtjon
(X, f) satisfiedPS) Assume also th&X satisfieqC1)—(C3) Then for every pair

of critical pointsx, y, the intersectiotW!(x) N W%(y) is precompact.

Let us sketch the proof. It is useful to introduce the following notion: a subset
A c M is saidessentially verticaif Q(A) is precompact. The proof is then based
on the following steps:

(i) if Ais essentially vertical and> 0, theng([0, t] x A) is essentially vertical;
(i) each local unstable manifolyj! . (x) is essentially vertical,

(iii) each local stable manifolel? . .(X) has precompact intersection with every
essentially vertical subset.

Let us prove (i) under the simplifying assumption that the target of the map
Q is a Hilbert spacds, and that the constants appearing in condition (C3)(ii) are
uniform: ¢ does not depend ay and we can také = +oo. So (C3)(ii) becomes

Be(DQIX(B)) < Be(Q(B) VB C M. (56)

Let A c M be an essentially vertical set, thapig(Q(A)) = 0. SinceQ takes value
in a Hilbert space, there holds

Q) =)+t [ DAl PIXG(S P ds
from which we deduce that
Q(¢([0.1] x A)) ¢ Q(A) + [0, 1] CoMY DQ(X(4([0.1] x A))).
Then, by the properties (53) of the measure of noncompacsss by (56),

INA

Be(@(A) + e[GO DQ(X((10. 1] x A)))
t6e(DQX(@(10.1 x A))) < tepe(Q@([0.1 x A).

Be(Q(e([0.1] x A))
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By the above inequalityiE(Q(¢([O, t] x A))) vanishes for every < 1/c, and by
iteration, for everyt > 0. This proves (i).

Since (ii) and (iii) are local statements, we may assume that the rest)point
is the origin of the Hilbert spacH, and thatQ is the orthogonal projector with
kernelV, a constant local representative of the essential subbdhddy (C1),

EY := EY(VX(0)) is a compact perturbation &f. This fact easily implies that

a bounded sef c H is essentially vertical if and only if its projectidP®A on

ES := ES(VX(0)) is precompact. In particular, the graph of a neafe"(r) — ES(r)

is essentially vertical if and only if the mapis compact. So (ii) can be restated by
saying that the map": EY(r) — ES(r) whose graph is the local unstable manifold
(see Theorem 1.12) is compact. By the graph transform method (see Shub, 1987,
Chapter 5)¢Y is the fixed point of the contractiof, mapping every 1-Lipschitz
mapo € Lip;(EY(r), E3(r)) into the mapF (o) € Lip,(EY(r), ES(r)), whose graph

is theg-evolution at time 1 of the graph ef, intersected witfE"(r) x E3(r). So
claim (i) implies that the contractioR maps the closed nonempty subspace of
compact maps into itself, hence the fixed paifitis a compact map, proving (ii).
Claim (iii) is an immediate consequence of the fact m@:’r(x) is the graph of a
continuous map-s: E3(r) — EY(r).

Let us see how claims (i), (ii), and (iii) allow to conclude, in the case in which
there are no rest points in the strip whé(g) < f(p) < f(x). Let (p,) € W4(X) N
W5(y). We must prove thatp) has a converging subsequence. We can assume
thatx andy are not limit points of p,). Then we can fing;, < 0 < t,, such that

¢(S‘I, pn) € Vvll(J)(;,r(X) N {f = f(X) - E}’ ¢(tn, pn) € Vvlf)c,r(y) N {f = f(y) + E}’

for some smalk > 0. The fact that the are no rest points in the stfify) < f <
f(X)} implies that ¢, — s,) is bounded: otherwise by Remark 2.1, we could find
a sequence, € [s,, ty] such that(D f(¢(rn, pn))[X(¢(rn, Pn))]) tends to zero, and
by (PS) the sequende(r,, pn)) would have a subsequence converging to a rest
point in the strip{f(y) + € < f < f(X) — €}, a contradiction. By claim (ii), the set
{¢(sn, Pn) | N € IN} is essentially vertical. By claim (i) and by the fact thiat< s,)
is bounded, also the sgf(t,, pn) | n € N} is essentially vertical. But the latter set
is contained in the local stable manifold yfso by claim (iii) it is precompact.
Since () is bounded, also the sequengg)(is compact.

In the general case, one needs the following stronger versions of (ii) and (iii):
there exist arbitrarily small neighborhoodsof the rest poinix such that if @)
converges tx then:

(i") if t, > 0 and¢(ty, pn)dU then the sefé(tn, pn) | N € N} is essentially

vertical;

(ii”) if sy < 0 andg(ss, pn)dU then the sef¢(sy, pn) | N € N} has compact
intersection with any essentially vertical subset.
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The proof of (if) and (iii") makes use of Proposition 1.17. Then a combination
of the argument shown above and the argument in the proof of Theorem 2.2(ii)
allows to conclude the proof of Theorem 3.5. O

REMARK 3.6. The requirement that the essential subbué&déould have a
global presentation can be weakened, by replacing the@apa suitable family

of maps@i: Mj — N, i € |, where{Mi}ic| is an open covering oM. Besides
allowing more general essential subbundles, this fact has also the advantage of
localizing even more the constants appearing in assumption (C2)(ii).

3.7. TWO-DIMENSIONAL INTERSECTIONS

Assume that the Morse vector fieXdis complete, has a nondegenerate Lyapunov
function f, and that X, f) satisfies (PS). Assume also théasatisfies (C1)—(C3)
with respect to a subbundi® of T M. In analogy with the finite indices case, we
shall say thaiX satisfies the Morse —Smale property up to okler Z if WY(X)
meetsWs(y) transversally wheneven(x, V) — m(y, V) < k.

Let us study what happens when the Morse —Smale condition up to order 2
holds, andx, z are rest points witm(x, V) — m(z V) = 2. LetW be a connected
component ofAV(x) N W3(2). It is a two-dimensional manifold, ari acts freely
on it. ThereforaV/IR is a connected one-dimensional manifold, that is it is either
a circle or an interval. In the first case, it is easy to see\at W U {x, 2z} is a
two-dimensional sphere, and the restrictiorydd W is topologically conjugated
to the exponential flow on the Riemann sph&fe= C U {co},

RxS%3(t,0) - €¢ e S

We shall be more interested in the second case, in whidghthe union ofW and
two “broken orbits,” with exactly one intermediate rest point. More precisely, the
situation is described by the following theorem.

THEOREM 3.7. Assume that the Morse vector fields complete, has a honde-
generate Lyapunov functiohy and that(X, f) satisfiegPS) Assume also that
satisfieg(C1) — (C3)with respect to a subbundi® of T M, and has the Morse —
Smale property up to ord&. Letx, y be rest points wittm(x, V) — m(z, V) = 2,
and letW be a connected component W(x) N W5(2) such thatW/RR is an
interval. Then restriction of the flow to W is topologically conjugated to the
product of two shift flows oR: there exists a continuous surjective map

hRxR — W

with the following properties
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(i) ¢(t,h(u,v)) = h(u+t,v+t) forevery(u,v) e R x R, t € R;

(i) h(R? = W, and there exist rest pointgy with m(y, V) = my,V) =
m(x, V) - 1, andWy, W, W], W, connected components\(x) n WS(y),
WH(Y) N W3(2), WH(X) nW3(Y'), WH(Y') N WS(2), respectively, such thath U
W, # W, UW,, and

h(IR x {—co})
h({—co} x R)

Wi, h({+oo} x R) = Ws,
Wi,  h(R X {+oo}) = W5;

(iii) the restrictions oh to IR?, to {+co} x R, and toRR x {+co}, are difeomor-
phisms

(iv) denoting bydegthe Z-topological degree, referred to the orientations de-
fined in Sectior®.5, there holds

degh = - degh|{_m}><]R . deghl]RX{m} = degh|R><{_oo} . degh|{+oo}><R.

Wheny # v, his injective, so it is a conjugacy. When= v, it may happen
that W, = Wi, or thatW, = W, but these identities cannot hold simultane-
ously. Statement (iv) expresses a form of coherence of the orientations defined
in Section 3.5.

Let us describe the main idea in the constructiom.oBy compactness and
transversality, we can find a “broken orbit” in the closurégfwith exactly one
intermediate rest point of relative Morse indexn(y, V) = m(x, V) — 1. LetW;
andW, be the corresponding componentsVigf(x) N W3(y) andWU(y) N W5(2).
Let p € Wy, and letg € Ws. Let A be a small hypersurface WY(x) meeting
W3(y) transversally ap, and letB be a small hypersurface WW5(z) meetingW"(y)
transversally a). Consider a neighborhodd of y of the formU = EJ(r) x EJ(r),
wherer is so small that the local stable manifoldyo the graph of &-Lipschitz
mapo® @ E)(r) — Ey(r), while the local unstable manifold gfis the graph of
a 6-Lipschitz mapo: Ey(r) — EJ(r), for somed < 1. The forward evolution of
A eventually intersectd) in the graph of @-Lipschitz map fromEy(r) to Ej(r):
there isty > 0 such that for every > ty

o({th x A) N U = graphay: Ey(r) — EJ(r), lip(ar) <6,
and|la; — 0Y]l.c — O fort — +co. Similarly, for everyt < —to,
¢({t} x B)n U = graphgy: EJ(r) — Ey(r), lip(By) <6,

and||f; — 0%l — O fort — —co. Letu > tg andv < —to. Since lipy) < 6 < 1
and lipy) < 0 < 1, the graphs o, and ofg, intersect in exactly one point, and
we can definda(u, v) as

h(u, v) := (graphay) N (graphgy).



MORSE COMPLEX FOR INFINITE-DIMENSIONAL MANIFOLDS 103

This definesh in a neighborhood of{c0, —). See Abbondandolo and Majer
(2003b, Section 11) for a complete proof.
An analogous argument allows to prove the following result.

PROPOSITION 3.8.Let x, y, z be rest points such that(x, V) = m(y,V) +

1 =m(zV) + 2, and letW;, W,> be connected components\WF(x) N W5(y),
WH(y) N W5(2), respectively. Then there exists a unique connected compdhent
of WY(X)NW?3(2) such thatw; U W, belongs to the closure ¢b(RR X {p}) | pe W}
with respect to the Hausdgdistance.

3.8. THE MORSE COMPLEX

We now dispose of all the ingredients to build the Morse complex. The assump-
tions are that the Morsg? vector fieldX on the Hilbert manifoldVl is complete,
satisfies (C1)—(C3) with respect to a subbuniflef T M, with a global presen-
tation@: M — N, thatX satisfies the Morse — Smale condition up to order 2, has
a nondegenerate Lyapunov functibre C?(M), and that the pairX, f) satisfies
(PS).

For anyk € Z, denote by reg{X) the set of rest points of X of relative Morse
indexm(x, V) = k, and letCx(X) be the free Abelian group generated by yes}.
Assume the following finiteness condition:

(C4) for everyk € Z, f is bounded below on rggi).

For every rest point, we fix an orientation of the Fredholm pair{\V3(x), V(X))
in an arbitrary way. This choice induces an orientation of all the intersections
WH(X) N WE(y), for m(x, V) — m(y, V) < 2.

Let x, y be rest points oK with m(x, V) — m(y, V) = 1. ThenW"(x) N W5(y)
is a 1-dimensional manifold with a free action®f that is it is the union of the
orbits of a discrete set of points. By Theorem 3.5 and by transversafix) N
W3(y) is compact: otherwise we could find a sequences of orbMg"ifx) N W3(y)
converging to a “broken orbit” fronx to y, with at least one intermediate rest
point, violating the Morse —Smale condition (up to order 0). Therefdf&x) N
W5(y) consists of finitely many orbité/, i = 1,..., h, each of which can be given
a signe(W) € {+1, -1} depending on whether the direction Xfagrees or does
not agree with the orientation &Y. In other words, it = ¢(R x {p}), e(W) is
the degree of the mafy(-, p): R — W;. We define the integai(x,y) as

>

n(xy) = ) e(Wh).

i=1
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By assumption (C4), we can define a homomorphignCy(X) — Cy_1(X) gen-
eratorwise, as
kX = Z nxvy)y, VYxeresk(X).
yeresk-1(X)
The results of Section 3.7 imply that these homomorphisms are boundary opera-
tors.

PROPOSITION 3.9.For everyk € Z, dx-19k = 0.

Proof. Let x andz be rest points witlm(x, V) — m(z, V) = 2, and letS(x, z) be
the set of “broken orbits” fronx to zwith exactly one intermediate rest point, nec-
essarily of relative inder(z V) + 1. By compactness and transversalByx, )
is a finite set. By Proposition 3.8, for every elem&wt U W, of S(x, 2) there is
a unique connected componéhitof WY(x) N WS(y) such thatw; U W, belongs
to the closure of¢(IR x {p}) | p € W} with respect to the Hausd®rdistance.
By Theorem 3.7, the closure &Y contains exactly one other elemeff U W,
different fromW; U W5. So there is an involutiod; UW, — W] UW, on S(X, 2),
without fixed points, and by Theorem 3.7 (iv),

e(We(W5) = —e(Wi)e(Wo). (57)

If m(x, V) =k, the codficient ofzin dx_1 dkX is the number

D, = DL e(Wae(Wo),

yeresk_1(X) WiUWLeS(%,2)

which is zero by (57). O

Therefore, the Abelian groupi(X) and the homomorphisnik, for k € 7Z,
are the data of a chain complex, called Merse complex oK. The construction
depends on the choice of the subbundfe and on the choice of the orienta-
tions of (TxW3(X), V(X)). Replacing the subbundf® by a compact perturbations
produces a shift in the indices, equal to the relative dimension of the compact
perturbation. A change of the orientations produces an isomorphic chain complex,
the isomorphism being actually an involution.

When the conditions (C1)—(C3) hold only with respect to a (0)-essential
subbundle, there is no orientation theory available, and the above construction
produces a chain complex @h-vector spaces.

Replacing the vector fielX by another one (still satisfying conditions (C1) —
(C3) with respect to the same subbundtg having the same Lyapunov function
f, produces an isomorphic Morse complex: the argument is analogous to the one
used in the proof of Theorem 2.26. In particular, the homology of the Morse
complex does not depend on the vector field, at it can be denotétl (#y, the
Morse homology of.
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Although in this situation we should not expect the Morse homolagif) to
be directly related to the singular homologyMf H..(f) is still considerably stable
with respect to modifications of the functidnFor instance, ifXo, fp) and X1, f1)
satisfy conditions (PS) and (C1)—(C4) (with respect to the same subbtf)dle
and if f;— fg is bounded, then the corresponding Morse homologies are isomorphic
(see Abbondandolo and Majer, 2001, Theorem 1.8, but see also Theorem 1.10).

This fact is a consequence of a more general functorial property of the Morse
homology: Morse homology is a functor from the class of Morse functions which
are Lyapunov functions of some vector field satisfying (PS) and (C1)—(C4), seen
as a small category with the usual order relation, to the category of graded Abelian
groups. In other words, to each inequality > f; is associated a sequence of
homomorphisms of Abelian groups

d1o1,- He(fo) = Hk(f1), VkeZ,

such thatps, t,0 1,1, = d1r, andess = id. Actually, ¢port = id, if 0:R — R is
a smooth function such that > 0 andé(s) > s. This fact is clearly useful in
order to compute the Morse homology of a given functfoif one can squeeze
f between two functionsfp > f > f1, the knowledge of the Morse homology of
fo and f; and of the homomorphisi, s, allows to get information on the Morse
homology off. For instance, it +,s, is an isomorphism, thegx, is injective and
o1, IS surjective, hence the Morse homologyfois at least as rich as the Morse
homology offp and f.

The construction of the homomorphispg,, involves the same idea used in
the proof of Theorem 2.26f; and f; can be used to build a new functidnon
R x M, whose boundary operatdiis the cone of some homomorphigny, from
the Morse complex ofy to the one off;. Thed? = 0 formula then implies that
Y1t IS @ chain map, so it induces a homomorphisg, in homology.

Bibliographical note

The Morse complex approach for compact manifolds

WhenM is a compact manifold an¥ is the negative gradient flow of a smooth
function, the relations (36) were proved by Morse (1925), see also Morse (1934;
1947). A classical reference for Morse theory is Milnor (1963). See also the review
papers by Bott (1982; 1988).

The dynamical system point of view arose after the seminal work of Smale,
see Smale (1960; 1961) and the beautiful foundational paper Smale (1967), and
it immediately had influences in topology, see Milnor’s book onfttebordism
theorem (Milnor, 1965). In this framework, one can consider Morse — Smale flows,
which are dynamical systems more general than gradient-like flows since they
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may have periodic orbits. The connection between Morse theory for Morse —
Smale flows and the homotopy of the underlying manifold has been further clari-
fied by Franks (1979), see also Franks (1980), and Cornea (2002a; 2002b).

Interpreting the boundary homomorphism of a cellular filtration in terms of
an algebraic count of the gradient flow lines connecting critical points of index
difference 1, was already implicit in a paper by Thom (1949), who however did
not clarify the conditions required on the gradient flow. This interpretation was
pointed out by Witten (1982), where it is deduced quite indirectly from a relation-
ship between Morse theory and certain deformations of the Laplace — Beltrami op-
erator. The first explicit construction of the Morse complex is due to Floer (1989),
see also Salamon (1990). Floer’s proof makes use of Conley index theory, a gen-
eral and powerful method to decompose a dynamical system into simpler invariant
sets, see Conley (1978), Conley and Zehnder (1984), and Salamon (1985).

Weber (1993) contains a concise construction of the Morse complex, by dy-
namical systems techniques (see also Weber, 2004). A systematic study of the
Morse complex of a function as a tool to build a homology theory which satisfies
the Eilenberg— Steenrod axioms can be found in Schwarz (1993). Here the meth-
ods are closer to those used in Floer homology. The isomorphism with the singular
homology is deduced by the fact that all the homology theories which satisfy the
Eilenberg — Steenrod axioms are equivalent on compact CW-complexes. A more
direct proof of this isomorphism, still in this spirit, can be obtained by interpreting
singular homology theory in terms of pseudocycles, see Schwarz (1999).

Banyaga and Hurtubise (2004) presents a self-contained exposition of Morse
homology, adopting the dynamical system point of view and providing all the
necessary tools from hyperbolic dynamics, as well as applications to Morse theory
on Grassmannians and on Lie groups.

The dynamical system point of view is at the basis of Harvey and Lawson’s
approach to Morse theory in terms of the de Rham—Federer theory of currents
(Harvey and Lawson, 2001). The idea is to construct a chain map from the com-
plex of smooth dferential forms to the complex of currents, by taking the limit
for t — +oo of the pullback of a dferential form by the flows(t, -). Such a chain
map is chain homotopic to the inclusion, and it is a retraction onto the subcomplex
of currents spanned by the stable manifolds of the flow. The cohomology of such
a subcomplex is then isomorphic to the de Rham cohomology of the manifold, a
result which implies the Morse relations (36).

Infinite-dimensional Morse theory

Morse theory forC? functions on Hilbert manifolds was developed by Palais
(1963) and Smale (1964a; 1964b). The Palais — Smale condition was introduced in
these papers. This version of Morse theory has been extensively used in the study
of geodesics, see Klingenberg (1978; 1982). The first of these references contains
also a description of the cellular complex approach to infinite-dimensional Morse
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theory, in the case of self-indexing functions. A complete presentation of infinite-
dimensional Morse theory including many applications tbedéential equations
can be found in Mawhin and Willem (1989) and Chang (1993).

Morse theory in the case of infinite Morse indices

In simple situations, functions with critical points of infinite Morse index and
co-index can be studied by taking finite-dimensional approximations. See, for
instance, Chang, (1981; 1993), Conley and Zehnder, (1983; 1984), and Abbondan-
dolo (2001). Another way of overcoming the lack of rigidity due to the presence
of critical points of infinite Morse index and co-index is to restrict the class
of admissible deformations to more rigid classes, as in Benci and Rabinowitz
(1979) and Rabinowitz (1986). In the same spirit, a Morse theory for special
classes of functions on a Hilbert space has been introduced by Szulkin (1992), and
further refined by Abbondandolo (1997; 2000), Kryszewski and Szulkin (1997),
Gegha et al. (1999), and Izydorek (2001). The idea is to develgereeralized
cohomology theorywhich satisfies all the Eilenberg— Steenrod axioms except
the dimension axiom. This axiom is replaced by the requirement that suitable
infinite-dimensional spheres should have nontrivial cohomology. These general-
ized cohomologies will be functorial only with respect to restricted classes of
continuous maps (the infinite-dimensional sphere is contractible), and it is possi-
ble to develop a Morse theory for functions whose gradient flow belongs to such
a class.

The idea of forgetting about the whole ambient space and looking only at
the gradient flow lines connecting critical points is due to Floer, who applied
it to a Cauchy—Riemann type equation which does not even produce a local
flow (so the framework is quite flerent from the setting of these notes). See
Floer (1988a; 1988b; 1988c; 1989), and the expository paper Salamon (1999).
Angenent and van der Vorst (1999) have used this approach to study the gradient
flow of a function associated to a class of elliptic systems. A complete study of the
Morse complex approach in the case of functions on a Hilbert space consisting of
a compact perturbation of a nondegenerate quadratic form has been carried on by
the authors in Abbondandolo and Majer (2001). The results of Abbondandolo and
Majer (2003b) summarized in the third part of these notes, allow a much more
general setting.

There is a large literature about the Hilbert Grassmannian, and related con-
structions. In particular, the space of all compact perturbations of an infinite-
dimensional and -codimensional closed linear subspace is cafigitted Grass-
mannianby some authors (although sometimes this term is reserved for Hilbert-
Schmidt perturbations). See for instance Sato (1981), Segal and Wilson (1985),
Pressley and Segal (1986), Guest (1997), and Arbarello (2002). The role of these
objects in the homotopy theory underlying Floer homology is discussed in Cohen
et al. (1995).
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