Geometria e Topologia Differenziale

Secondo scritto — 20 febbraio 2007

Nome e Cognome:

Anno d'immatricolazione:

1) Sia $\sigma: I \to \mathbb{R}^3$ una curva regolare parametrizzata rispetto alla lunghezza d'arco con curvatura κ mai nulla e riferimento di Frenet $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$, e siano $v_0, p_0 \in \mathbb{R}^3$ fissati con $||v_0|| = 1$. Definiamo $\sigma_0: I \to \mathbb{R}^3$ ponendo

$$\sigma_0(s) = \sigma(s) - p_0 - \langle \sigma(s) - p_0, v_0 \rangle v_0.$$

- (i) Trova un piano che contiene σ_0 .
- (ii) Dimostra che $\sigma'_0(s) = O$ sse $v_0 = \pm \mathbf{t}(s)$.
- (iii) Supponendo che σ_0 sia una curva regolare, calcolane la curvatura. (Suggerimento: scrivi $v_0 = \langle \mathbf{t}, v_0 \rangle \mathbf{t} + \langle \mathbf{n}, v_0 \rangle \mathbf{n} + \langle \mathbf{b}, v_0 \rangle \mathbf{b}$.)
- (iv) Supponendo che σ_0 sia una curva regolare con curvatura mai nulla, e indicando con ℓ la retta passante per p_0 parallela a v_0 , dimostra che il sostegno di σ è contenuto nel cilindro circolare retto di asse ℓ e raggio r > 0 se e solo se

$$\kappa \frac{|\langle \mathbf{b}, v_0 \rangle|}{\left(1 - \langle \mathbf{t}, v_0 \rangle^2\right)^{3/2}} \equiv \frac{1}{r}.$$

2) Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid (x - \cosh z)^2 + y^2 = \cosh^2 z\},\,$$

e sia $\varphi {:}\, \mathbb{R}^2 \to \mathbb{R}^3$ la funzione così definita:

$$\varphi(u, v) = ((1 + \cos v) \cosh u, \sin v \cosh u, u).$$

Per ogni $a \in \mathbb{R}$, siano infine $\gamma_a, \sigma_a : \mathbb{R} \to \mathbb{R}^3$ le curve definite da $\gamma_a(t) = \varphi(a, t)$ e $\sigma_a(t) = \varphi(t, a)$.

- (i) Dimostra che S è una superficie regolare, e che opportune restrizioni di φ forniscono un atlante per S.
- (ii) Calcola i coefficienti metrici ed i coefficienti di forma di S rispetto a φ .
- (iii) Calcola la curvatura di Gauss di S, dimostra che essa è ovunque non positiva, e determina il luogo dei punti ove essa si annulla.
- (iv) Determina i valori reali di a per cui γ_a sia una geodetica (nota che γ_a è parametrizzata rispetto a un multiplo della lunghezza d'arco).
- (v) Determina i valori reali di a per cui la riparametrizzazione di σ_a rispetto alla lunghezza d'arco sia una geodetica.
- 3) Sia S una superficie compatta orientabile con curvatura Gaussiana strettamente positiva, e supponiamo che la mappa di Gauss $N: S \to S^2$ sia un diffeomorfismo (Nota: se K>0 si può dimostrare che la mappa di Gauss è sempre un diffeomorfismo con la sfera, ma non è questo il punto dell'esercizio). Dimostra che se σ è una geodetica semplice chiusa in S allora $N \circ \sigma$ divide S^2 in due parti di ugual area. (Suggerimento: la formula di cambiamento di variabile negli integrali multipli dice che, sotto queste ipotesi, per ogni regione regolare $R \subseteq S$ si ha $\int_R K \, d\nu = \operatorname{Area}(N(R))$.)