Geometria e Topologia Differenziale

Secondo compitino A.A. 2007/08

6 dicembre 2007

Nome e Cognome:

1) Sia $S \subset \mathbb{R}^3$ l'insieme definito da

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x \cos z - y \sin z = 1\} .$$

- (i) Dimostra che S è una superficie regolare chiusa in \mathbb{R}^3 .
- (ii) Dimostra che $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ data da

$$\varphi(t,s) = (\cos t + s\sin t, -\sin t + s\cos t, t)$$

è una parametrizzazione globale di S.

- (iii) Calcola i coefficienti metrici di S e determina un campo di versori normali su S.
- (iv) Calcola i coefficienti di forma, la curvatura Gaussiana e la curvatura media di S.
- **2)** Dati un piano affine $H \subset \mathbb{R}^3$, un vettore $v \in \mathbb{R}^3$ trasverso ad H (cioè non appartenente al traslato di H passante per l'origine) e un arco di Jordan $\sigma: I \to H$ regolare di classe C^{∞} , il cilindro di base σ e direttrice v è l'insieme $S \subset \mathbb{R}^3$ dato dall'unione di tutte le rette parallele a v e passanti per un punto del sostegno di σ . Non è difficile dimostrare che S è una superficie regolare (e nel seguito potrai dare per acquisita questa informazione).
- (i) Scrivi una parametrizzazione di S, e calcola i relativi coefficienti metrici e di forma.
- (ii) Calcola la curvatura Gaussiana di S.
- (iii) Dimostra che l'insieme $\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid z = e^{x+y}\}$ è una superficie regolare di \mathbb{R}^3 con curvatura Gaussiana identicamente nulla, senza calcolarne esplicitamente coefficienti metrici o di forma.