Analisi Matematica 1.

Differenziabbilitá. Integrazione. Equazioni ordinarie

VLADIMIR GEORGIEV

Dipartimento di Matematica "L.Tonelli", Università di Pisa, Largo Bruno Pontecorvo 5, I-56127, Pisa, Italy. E-mail: georgiev@dm.unipi.it

Contents

1	Der	ivata (della funzione: parte teorica	5			
	1.1	Regol	e di derivazione	5			
	1.2	Il sim	bolo: $o(*)$	6			
2	Ese	rcizi s	ulla differenziabilitá	11			
	2.1	Eserci	zi sulla derivata delle funzioni elementari	11			
	2.2	Eserci	zi sui teoremi di Rolle, Lagrange e Cauchy	14			
	2.3	Eserci	zi sulla formula di Taylor	15			
	2.4	Eserci	zi sullo studio delle funzioni	22			
3	Inte	egrale	indefinito di Riemann in \mathbb{R} .	33			
	3.1	Integr	ale indefinito	33			
		3.1.1	Regole dell'integrazione	35			
		3.1.2	Cambiammento di variabili	37			
		3.1.3	Tabella delle primitive	39			
	3.2						
		3.2.1	Esercizi sull'integrazione per parti	40			
		3.2.2	Integrali di funzioni razionali	45			
		3.2.3	Il metodo di Hermite	48			
		3.2.4	Integrali del tipo $\int R(x, \sqrt{ax+b})dx$	57			
		3.2.5	Integrali del tipo $\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p/q}\right) dx$	58			
		3.2.6	Integrale del tipo $\int R\left(x, \sqrt[q_1]{\left(\frac{ax+b}{cx+d}\right)^{p_1}}, \cdots, \sqrt[q_h]{\left(\frac{a}{c}\right)^{q_1}}\right)$	$\left(\frac{x+b}{x+d}\right)^{p_h}$			
		3.2.7	Integrali del tipo $\int R(x, \sqrt{x^2 + ax + b}) dx$	63			
		3.2.8	Integrali del tipo $\int R(x, \sqrt{-x^2 + ax + b}) dx$.	64			

		3.2.9 Integrali del tipo $\int x^m (ax^p + b)^q dx$	65
		3.2.10 Integrali del tipo $\int R(\sin x, \cos x) dx$	67
		3.2.11 Vari esercizi sugli integrali indefiniti	69
4	Ese	rcizi su integrali definiti e impropri	77
	4.1	Integrale di Riemann ed esercizi	77
	4.2	Funzioni integrabili in senso improprio	81
		4.2.1 Esercizi su integrali impropri	82
5	Equ	azioni ordinarie	97
		5.0.1 Equazioni ordinarie a variabili separabili	97
		5.0.2 Equazioni ordinarie lineari	98
		5.0.3 Esercizi su equazioni differenziali lineari del I or-	
		dine	99
		5.0.4 Equazioni ordinarie di secondo ordine	101
	5.1	Equazioni particolari	102
	5.2	Un'altro tipo di equazioni omogenee	103
	5.3	Equazioni ordinarie di secondo ordine	104
6	Equ	nazioni ordinarie di ordine $n \geq 1$.	105
	6.1	Risoluzione globale di un problema di Cauchy	106
	6.2	Eserizi su equazioni differenziali	107
	6.3	Esercizi sul prolungamento della soluzioni	109
	6.4	Esercizi sui sistema di biomatematica	116
7	Equ	ıazioni lineari	121
	7.1	Equazione lineare omogenea a coeficienti costanti	121
		7.1.1 Il metodo delle variazioni delle costanti per equazioni	ni
		lineari	126
	7.2	Esercizi sulle equazioni lineari di ordine n : livello standard.	128
		7.2.1 Problema di Sturm	129
	7.3	Esercizi sui integrali primi	133
8	Ser	ie Numeriche	137
	8.1	Definizioni e proprietá di base	137
		8.1.1 Somma delle serie	141
		8.1.2 Assoluta convergenza	141

8.2	Criteri	di convergenza per serie a termini positivi	142
	8.2.1	Criterio della radice e del rapporto	144
	8.2.2	Esercizi sulle serie con termini positivi	151
8.3	Criteri	di Leibniz e di Abel-Dirichlet	156
	8.3.1	Raggio di convergenza	161
	8.3.2	Esercizi sulle serie di potenze	163

Chapter 1

Derivata della funzione: parte teorica

1.1 Regole di derivazione

$$(f(x) \pm g(x))' = f'(x) \pm g'(x), \ (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}, \ g(x) \neq 0, \ \frac{dg(f(x))}{dx} = \frac{dg}{dy}(f(x)) \cdot f'(x).$$

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}, \ (\sqrt{x})' = \frac{1}{2\sqrt{x}}, \ (x^A)' = Ax^{A-1},.$$

$$(\ln x)' = 1/x$$
, $(\log_a x)' = \frac{1}{x \ln a}$, $(e^x)' = e^x$, $(a^x)' = a^x \ln a$.

$$(\sin x)' = \cos x, \ (\cos x)' = -\sin x, \ (\tan x)' = \frac{1}{\cos^2 x}, \ (\cot x)' = -\frac{1}{\sin^2 x}..$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \ (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \ (\arctan x)' = \frac{1}{1+x^2} \ (\operatorname{arccot} x)' = -\frac{1}{1+x^2}.$$

Formula di Leibniz

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_k^n f^{(n-k)}(x)g^{(k)}(x),$$

dove

$$C_k^n = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

1.2 Il simbolo: o(*)

Si supponga che f(t) e g(t) siano due funzioni definite su qualche sottoinsieme del tipo $(N, +\infty)$ dei numeri reali. Supponiamo inoltre che

$$g(t) \neq 0 \tag{1.2.0.1}$$

per $t \in (N, +\infty)$. Diciamo che

$$f(t) \in o(g(t)) \text{ per } t \to \infty$$

se e solo se

$$\lim_{t \to \infty} \frac{f(t)}{g(t)} = 0.$$

La notazione puó anche essere usata per descrivere il comportamento di f nell'intorno di un numero reale a. Si supponga che f(t) e g(t) siano due funzioni definite su qualche intervallo I dei numeri reali tale che $a \in I$. Supponiamo inoltre che

$$g(t) \neq 0 \tag{1.2.0.2}$$

per $t \in I, t \neq a$. Diciamo che

$$f(t) \in o(q(t))$$
 per $t \to a$

se e solo se

$$\lim_{t \to a} \frac{f(t)}{g(t)} = 0.$$

Esempio 1.2.0.1. Per $t \to \infty$ abbiamo

$$a > b \Longrightarrow t^b = o(t^a), \quad a > 0 \Longrightarrow \log t = o(t^a), \quad t^a = o(e^t). \quad (1.2.0.3)$$

Esempio 1.2.0.2. Per $t \to 0$ abbiamo

$$a < b \Longrightarrow t^b = o(t^a). \tag{1.2.0.4}$$

Algebra del simbolo o(*).

Lemma 1.2.0.1. Sia $t \to t_0$ e $g: I \longrightarrow \mathbb{R}$ é una funzione definita in un intorno I di t_0 che soddisfa (1.2.0.2) per $t \neq t_0, t \in I$. Allora abbiamo le seguenti proprietá:

- a) $o(g(t)) \pm o(g(t)) = o(g(t)), \quad C \neq 0 \Longrightarrow Co(g(t)) = o(Cg(t)) = o(g(t)),$
- b) per ogni funzione f(t) definita in I che soddisfa (1.2.0.2) per $t \neq t_0, t \in I$ vale l'inclusione

$$o(f(t))o(g(t)) \subseteq o(f(t)g(t)),$$

c) per ogni funzione f(t) definita in I che soddisfa (1.2.0.2) per $t \neq t_0, t \in I$ vale l'inclusione

$$f(t)o(g(t)) \subseteq o(f(t)g(t)),$$

d) per ogni funzione f(t) definita in I che soddisfa $|f(t)| \ge |g(t)|$ per $t \ne t_0, t \in I$ vale l'inclusione

$$o(g(t)) \subseteq o(f(t)),$$

- $e) \ o(o(g(t))) \subseteq o(g(t)),$
- f) per ogni funzione f(t) definita in I tale che $\lim_{t\to t_0} f(t) = C \neq 0$ allora

$$o(f(t)g(t)) = o(g(t)).$$

Idea della dimostrazione di d
). Sia $h(t) \in o(g(t))$. Abbiamo quindi

$$\frac{|h(t)|}{|g(t)|} = o(1)$$

La disequazione

$$\frac{|h(t)|}{|g(t)|} \ge \frac{|h(t)|}{|f(t)|}$$

e principio di confronto implicano

$$\frac{|h(t)|}{|f(t)|} = o(1).$$

Idea della dimostrazione di e). La definizione di o ci da

$$h(t) \in o(o(g(t))) \Longrightarrow \exists H(t) \in o(g(t))$$
 tale che $h(t) \in o(H(t))$

e $H(t) \neq 0$ per $t \in I, t \neq t_0$. Quindi

$$\frac{h(t)}{H(t)} = o(1), \frac{H(t)}{g(t)} = o(1), \tag{1.2.0.5}$$

cosi molteplicando queste due identitá otteniamo

$$\frac{h(t)}{H(t)}\frac{H(t)}{g(t)} = \frac{h(t)}{g(t)} = o(1) \Longrightarrow h(t) \in o(g(t)).$$

Idea della dimostrazione di f). La condizione

$$\lim_{t \to t_0} f(t) = C$$

significa che

$$f(t) = C + o(1).$$

Quindi l'ipotesi $C \neq 0$ implica l'esistenza di un $\delta > 0$ tale che

$$\frac{|C|}{2} \le |f(t)| \le 2|C| \tag{1.2.0.6}$$

per $0 < |t - t_0| < \delta$. Molteplicando per g(t) troviamo

$$\frac{|g(t)||C|}{2} \le |f(t)||g(t)| \le 2|C||g(t)| \tag{1.2.0.7}$$

Usando la proprietá d
) e la disequazione $|f(t)||g(t)| \leq 2|C||g(t)$ in (1.2.0.7) si trova

$$o(fg) \subseteq o(2Cg) = o(g).$$

In modo simile la proprietá d) e la disequazione $|f(t)||g(t)| \geq \frac{|g(t)||C|}{2}$ in (1.2.0.7) implica

$$=o(g)=o\left(\frac{Cg}{2}\right)\subseteq o(fg).$$

Problema 1.2.0.1. Se f(t) e g(t) sono due funzioni tale che

$$f(t) = Cg(t) + o(g(t))$$

 $con~C \neq 0~allora$

$$o(f(t)) = o(g(t)).$$

Suggerimento. Usare l'identita

$$f(t) = (C + o(1)) g(t)$$

e il punto f) in Lemma 1.2.0.1.

Chapter 2

Esercizi sulla differenziabilitá

2.1 Esercizi sulla derivata delle funzioni elementari

Problema 2.1.0.1. Trovare la derivata di

$$\sin(\cos x) - \ln(2x/\pi)$$

Problema 2.1.0.2. Verificare l'identitá

$$\arcsin x + \arccos x = \pi/2.$$

Problema 2.1.0.3. Trovare la derivata di:

a)
$$f(x) = e + \cos(\arcsin(x+1)),$$

$$b) f(x) = \sqrt{\frac{1 + \cos x}{\sin x}},$$

b)
$$f(x) = \sqrt{\frac{1+\cos x}{\sin x}},$$

c) $f(x) = \sqrt{\frac{1+\arccos x}{\arcsin x}},$
d) $f(x) = \left(\frac{1}{x}\right)^{\sin x}.$
e)

d)
$$f(x) = \left(\frac{1}{x}\right)^{\sin x}$$
.

$$f(x) = \ln\left(\sqrt{\frac{2x+1}{x-1}}\right)$$

$$(\ln x)^2 \cos(1 + \ln x).$$

Soluzione a). Abbiamo le relazioni

$$(e + \cos(\arcsin(x+1)))' = -\sin(\arcsin(x+1))(\arcsin(x+1)))' =$$

$$= -\sin(\arcsin(x+1))\frac{1}{\sqrt{1-(x+1)^2}}.$$

Soluzione b). Abbiamo le relazioni

$$\left(\sqrt{\frac{1+\cos x}{\sin x}}\right)' = \frac{1}{2\sqrt{\frac{1+\cos x}{\sin x}}} \left(\frac{1+\cos x}{\sin x}\right)' =$$

$$= \frac{1}{2\sqrt{\frac{1+\cos x}{\sin x}}} \frac{-\sin^2 x - (1+\cos x)\cos x}{\sin^2 x} = \frac{1}{2\sqrt{\frac{1+\cos x}{\sin x}}} \frac{-1-\cos x}{\sin^2 x}$$

Soluzione c). Abbiamo le relazioni

$$\left(\sqrt{\frac{1+\arccos x}{\arcsin x}}\right)' = \frac{1}{2\sqrt{\frac{1+\arccos x}{\arcsin x}}} \left(\frac{1+\arccos x}{\arcsin x}\right)' =$$

$$= \frac{1}{2\sqrt{\frac{1+\arccos x}{\arcsin x}}} \frac{-\arcsin x/\sqrt{1-x^2} - (1+\arccos x)/\sqrt{1-x^2}}{\arcsin^2 x} =$$

$$= \frac{1}{2\sqrt{\frac{1+\arccos x}{\arcsin x}}} \frac{-1-\arcsin x -\arccos x}{\sqrt{1-x^2}\arcsin^2 x}.$$

$$= \frac{1}{2\sqrt{\frac{1+\arccos x}{\arcsin x}}} \frac{-1-\pi/2}{\sqrt{1-x^2}\arcsin^2 x}.$$

Soluzione d). Abbiamo le relazioni

$$\left(\left(\frac{1}{x}\right)^{\sin x}\right)' = \left(\frac{1}{x}\right)^{\sin x} \left(-\ln x \sin x\right)' =$$

$$= \left(\frac{1}{x}\right)^{\sin x} \left(-\frac{\sin x}{x} - \ln x \cos x\right).$$

Soluzione e). Abbiamo le relazioni

$$\left(\ln\left(\sqrt{\frac{2x+1}{x-1}}\right)\right)' = \sqrt{\frac{x-1}{2x+1}} \left(\sqrt{\frac{2x+1}{x-1}}\right)' =$$

$$= \frac{1}{2} \frac{x-1}{2x+1} \left(\frac{2x+1}{x-1}\right)' = \frac{1}{2} \frac{x-1}{2x+1} \left(\frac{2(x-1)-(2x+1)}{(x-1)^2}\right) =$$

$$= -\frac{3}{2(2x+1)(x-1)}.$$

Soluzione f). Abbiamo le relazioni

$$((\ln x)^2 \cos(1 + \ln x))' = ((\ln x)^2)' \cos(1 + \ln x) + (\ln x)^2 (\cos(1 + \ln x))' =$$

$$= 2 \frac{\ln x}{x} \cos(1 + \ln x) - (\ln x)^2 \sin(1 + \ln x) \frac{1}{x}.$$

Problema 2.1.0.4 (Test 2017 Energia). La derivata di $\cos^2(x)e^{\sqrt{\sin^2(x)+4}}$ in $x=\pi$ vale

 $A: e^2;$ $B: non \ esiste;$ C: 0; D: 2; E: N.A.

Risp C

Problema 2.1.0.5 (Test 2017 Energia). La derivata di $\cos(x)e^{\sqrt{\sin^2(x)+3}}$ in $x = \pi/2$ vale

A: 2; B: $-e^2$; C: non esiste; D: 0; E: N.A.

Risp B

Problema 2.1.0.6 (Test 2017 Energia). La derivata di $\cos(x)e^{\sqrt{\sin(x)+4}}$ $in \ x = \pi \ vale$

A: 0; B: non esiste; C: 1/4; D: $e^2/4$; E: N.A.

Risp D

Problema 2.1.0.7 (Test 2017 Energia). La derivata di $\sin^2(x)e^{\sqrt{\cos(x)+4}}$ in $x = \pi/2$ vale

A: 1; B: $e^2/4$; $C: 0; D: non \ esiste; E: N.A.$

Risp E

Problema 2.1.0.8. Trovare la seconda derivata di:

- $a) x^2 e^x$
- b) $x^2 e^x \cos x$,
- c) $\frac{x^2}{1-x^2}$, d) $\frac{x}{\sqrt{1-x}}$,
- $e) \ln(\arcsin x).$
- f) $\arctan(x+2)$.

Esercizi sui teoremi di Rolle, Lagrange 2.2e Cauchy

Problema 2.2.0.1. Se f non \acute{e} continua su [a,b], ma derivabile in (a,b) e se vale f(a) = f(b), allora non vale il teorema di Rolle.

Problema 2.2.0.2. Se f non \acute{e} derivabile su (a,b), ma f \acute{e} continua in [a,b] e se vale f(a) = f(b), allora non vale il teorema di Rolle.

Problema 2.2.0.3. *Sia* $f(x) = x - \log(1 + x)$.

- a) Studiare intervalli dove f(x) é monotona ed intracciare il grafico approssimativo.
 - b) Vedere se

$$x > -1 \Longrightarrow f(x) \ge 0.$$

c) Risolvere l'equazione f(x) = 0.

Problema 2.2.0.4. Vedere se per $x \in [0, +\infty)$ abbiamo

$$\sin x \le x$$
.

Problema 2.2.0.5. Vedere se per $x \in [0,1)$ abbiamo

$$\cos x \ge 1 - \frac{x^2}{2}.$$

Problema 2.2.0.6. Vedere se per $x \in [0, +\infty)$ la funzione

$$\cos x + \frac{x^2}{2}$$

é monotona.

Problema 2.2.0.7. Vedere se per $x \in (-1,0]$ abbiamo

$$\cos x \le 1 - \frac{x^2}{2}.$$

Problema 2.2.0.8. Vedere quanti soluzioni ha l'equazione

$$\cos x = 1 - \frac{x^2}{2}.$$

Problema 2.2.0.9. *Se* $a > 0, \lambda > 1$ *sono numeri reali dimostrare*

$$(1+a)^{\lambda} > 1 + a\lambda.$$

2.3 Esercizi sulla formula di Taylor

Problema 2.3.0.1 (Test 2017 Energia). Lo sviluppo di Taylor di ordine 3 in x = 0 di $f(x) = \ln(1 + \sin(x))$ è

A:
$$x - x^2/2 + o(x^3)$$
; B: $x - x^2/2 - x^3/6 + o(x^3)$; C: $x - x^2/2 - x^3 + o(x^3)$;

$$D: x - x^2/2 + x^3/6 + o(x^3); E: N.A.$$

Risp. D

Problema 2.3.0.2 (Test 2017 Energia). Lo sviluppo di Taylor di ordine 3 in x = 0 di $f(x) = \ln(1 - \sin(x))$ è $A: -x - x^2/2 + o(x^3)$; $B: -x - x^2/2 - x^3/6 + o(x^3)$; $C: -x - x^2/2 - x^3 + o(x^3)$; $D: -x - x^2 - 5x^3/6 + o(x^3)$; E: N.A.

Risp. B

Problema 2.3.0.3 (Test 2017 Energia). Lo sviluppo di Taylor di ordine 3 in x = 0 di $f(x) = \ln(1 + \sin(x))$ è $A: x - x^2/2 + o(x^3);$ $B: x - x^2/2 - x^3/6 + o(x^3);$ $C: x - x^2/2 - x^3 + o(x^3);$ $D: x - x^2/2 + x^3/6 + o(x^3);$ E: N.A.

Risp. D

Problema 2.3.0.4. Calcolare il limite

$$\lim_{x \to 0} \frac{-(x^3/6) - x + \tan(\sin(x))}{bx^3 + 3x - 3x\sqrt[3]{1 + bx^2}},$$

 $con b \neq 0$.

Soluzione. Si studia

$$\lim_{x \to 0} \frac{(ax^2 - 1 + \cos(\sin(x)))}{-2bx^2 + 3\sqrt{1 + 2bx^2} - 3\sqrt[3]{1 + bx^2}}.$$

Abbiamo lo sviluppo asintotico

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5), \quad x \to 0,$$

$$\tan y = y + y^3/3 + (2y^5)/15 + o(|y|^5), \quad y \to 0$$

Con $y = \sin x$ abbiamo

$$\tan(\sin x) = x + x^3/6 - x^5/40 + o(|x|^5).$$

Le relazioni

$$\sqrt[3]{1+bx^2} = 1 + \frac{bx^2}{3} - \frac{b^2x^4}{9} + o(x^5),$$

implica

$$bx^{3} + 3x - 3x\sqrt[3]{1 + bx^{2}} = \frac{b^{2}x^{5}}{3} + o(x^{5}).$$

Cosi troviamo

$$\lim_{x \to 0} \frac{-(x^3/6) - x + \tan(\sin(x))}{bx^3 + 3x - 3x\sqrt[3]{1 + bx^2}} = -\frac{3}{40b^2}.$$

Osservazione. Spesso in alcuni soluzioni si puo trovare l'identitá

$$\lim_{x \to 0} \frac{-(x^3/6) - x + \tan(\sin(x))}{bx^3 + 3x - 3x\sqrt[3]{1 + bx^2}} = \lim_{x \to 0} \frac{-(x^3/6) - x + \tan(x)}{bx^3 + 3x - 3x\sqrt[3]{1 + bx^2}},$$
(2.3.0.1)

"giustificata" con la relazione

$$\sin x \sim x. \tag{2.3.0.2}$$

L'utilizzo del simbolo \sim al posto di

$$\sin x = x + o(x) \tag{2.3.0.3}$$

spesso crea errori gravi nelle soluzioni. Bisogna usare sviluppi precisi, tipo (2.3.0.3) o

$$\sin x = x - x^3/6 + o(x^4), \tag{2.3.0.4}$$

oppure

$$\sin x = x - x^3/6 + x^5/120 + o(x^6),$$

dove serve.

Un controesempio tipico dove si puo ottenere risultato sbagliato usando (2.3.0.2) senza tenere conto del ordine del resto é

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}.$$

Usando lo sviluppo (2.3.0.4) troviamo

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x^3/6 + o(x^4)}{x^3} = \frac{1}{6}.$$

"Usando" (2.3.0.2) nel modo

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$$

ovviamente commettiamo errore grave.

Problema 2.3.0.5. Stabilire i coefficienti a_0, a_1, a_2 nello sviluppo assintotico

$$\frac{1+\sin x}{\cos x} = a_0 + a_1 x + a_2 x^2 + o(|x|^2)$$

 $per x \to 0.$

Suggerimento.

1 + sin
$$x = 1 + x + o(x^2)$$
, cos $x = 1 - \frac{x^2}{2} + o(x^2)$

e usando la relazione

$$1 + \sin x = \cos x(a_0 + a_1x + a_2x^2 + o(x^2))$$

arriviamo alla conclusione

$$1 + x + o(x^{2}) = \left(1 - \frac{x^{2}}{2} + o(x^{2})\right) \left(a_{0} + a_{1}x + a_{2}x^{2} + o(|x|^{2})\right) =$$
$$= a_{0} + a_{1}x - \frac{a_{0}x^{2}}{2} + a_{2}x^{2} + o(x^{2})$$

Cosí abbiamo

$$a_0 = 1, a_1 = 1, a_2 = \frac{1}{2}.$$

Problema 2.3.0.6. Stabilire i coefficienti a_0, a_1 nello sviluppo assintotico

$$\frac{\sin^2 x}{\cos x + 1} = a_0 + a_1(x - \pi) + o(|x - \pi|^1)$$

 $per x \to \pi$.

Problema 2.3.0.7. Stabilire i coefficienti a_0, a_1, a_2 nello sviluppo assintotico

$$\frac{\sin^2 x}{\cos x + 1} = a_0 + a_1(x - \pi) + a_2(x - \pi)^2 + o((x - \pi)^2)$$

 $per x \to \pi$.

Soluzione. Dopo la sostituzione $y=x-\pi$ abbiamo $x=y+\pi$ e usando le relazioni

$$\sin(y+\pi) = -\sin y, \ \cos(y+\pi) = -\cos y$$

dobbiamo avere sviluppo

$$\frac{\sin^2 y}{1 - \cos y} = a_0 + a_1 y + a_2 y^2 + o(y^2).$$

Abbiamo le relazioni

$$\sin y = y - \frac{y^3}{6} + o(y^4)$$

e quindi

$$\sin^2 y = \left(y - \frac{y^3}{6} + o(y^4)\right) \left(y - \frac{y^3}{6} + o(y^4)\right) =$$

$$= y^2 - \frac{y^4}{3} + o(y^4) =$$

$$= y^2 - \frac{y^4}{3} + o(y^4)$$

D'altra parte

$$1 - \cos y = \frac{y^2}{2} - \frac{y^4}{24} + o(y^4).$$

Cosi cerchiamo a_0, a_1, a_2 tali che

$$\frac{y^2 - \frac{y^4}{3} + o(y^4)}{\frac{y^2}{2} - \frac{y^4}{24} + o(y^4)} = a_0 + a_1 y + a_2 y^2 + o(y^2)$$

oppure dopo la simplifica

$$\frac{1 - \frac{y^2}{3} + o(y^2)}{\frac{1}{2} - \frac{y^2}{24} + o(y^2)} = a_0 + a_1 y + a_2 y^2 + o(y^2)$$

La relazione significa

$$1 - \frac{y^2}{3} + o(y^2) = \qquad (2.3.0.5)$$

$$\left(\frac{1}{2} - \frac{y^2}{24} + o(y^2)\right) \left(a_0 + a_1 y + a_2 y^2 + o(y^2)\right).$$

L'espresione a destra di (2.3.0.5) si puo simplificare come segue

$$\left(\frac{1}{2} - \frac{y^2}{24} + o(y^2)\right) \left(a_0 + a_1 y + a_2 y^2 + o(y^2)\right) =$$

$$= \frac{a_0}{2} + \frac{a_1}{2} y + \left(\frac{a_2}{2} - \frac{a_0}{24}\right) y^2 + o(y^2).$$

Confrontando con (2.3.0.5) deduciamo che a_0, a_1, a_2 devono soddisfare le relazioni

$$1 = \frac{a_0}{2},$$

$$0 = \frac{a_1}{2},$$

$$-\frac{1}{3} = \left(\frac{a_2}{2} - \frac{a_0}{24}\right)$$
(2.3.0.6)

e quindi

$$a_0 = 2, a_1 = 0, a_2 = -\frac{1}{2}.$$

Problema 2.3.0.8. Stabilire i coefficienti a_0, a_1, \dots, a_{20} nello sviluppo assintotico

$$\frac{1}{1+x^2} = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20} + o(x^{20})$$

 $per x \to 0.$

Problema 2.3.0.9. Calcolare $f^{(20)}(0)$ della funzione

$$f(x) = \frac{1}{1+x^2}.$$

Problema 2.3.0.10. Stabilire i coefficienti a_0, a_1, \dots, a_{20} nello sviluppo assintotico

$$\frac{1}{1+x^2} = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_{20}}{x^{20}} + o\left(\frac{1}{x^{20}}\right)$$

 $per x \to \pm \infty$.

Suggerimento Cambiamento di variabili x=1/y e sviluppo per $y\to 0_\pm$, usando il Problema 2.3.0.8.

Problema 2.3.0.11. Usando il teorema di Taylor vedere che lo sviluppo asintotico

$$f'(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + o(x^{n-1})$$

implica

$$f(x) = f(0) + a_0 x + \frac{a_1 x^2}{2} + \dots + \frac{a_{n-1} x^n}{n} + o(x^n).$$

Problema 2.3.0.12. Stabilire i coefficienti a_0, a_1, \dots, a_{20} nello sviluppo assintotico

$$\arctan x = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_{20}}{x^{20}} + o\left(\frac{1}{x^{20}}\right)$$

 $per x \to \infty$.

Problema 2.3.0.13. Stabilire i coefficienti a_0, a_1, a_2 nello sviluppo assintotico

$$\left(1 + \frac{1}{x}\right)^x = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + o\left(\frac{1}{x^2}\right)$$

 $per x \to \infty$.

2.4 Esercizi sullo studio delle funzioni

Problema 2.4.0.1 (Test 2017 Energia). La funzione $f:(0,+\infty)\to\mathbb{R}$ data da $f(x)=\ln(e^{1-x}+x)$

A: è crescente; B: è limitata; C: ammette minimo;

D: ammette massimo; E: N.A.

Risp. C

Problema 2.4.0.2 (Test 2017 Energia). La funzione $f(x) = \frac{\sin(x) + x}{x^4 + 2x^2 + 1}$ A: ha un asintoto verticale; B: è periodica; C: è crescente; D: N.A.; E: è limitata.

Risp. E

Problema 2.4.0.3 (Test 2017 Energia). La funzione $f:(0,+\infty)\to\mathbb{R}$ data da $f(x)=\arctan\left(\frac{3}{x}\right)$

A: è crescente; B: è limitata; C: ammette minimo; D: ammette massimo; E: N.A.

Risp. B

Problema 2.4.0.4. Studiare la funzione

$$f(x) = x^3 - x^2 - 5x + 1$$

e tracciare un grafico approssimativo.

Problema 2.4.0.5. Studiare la funzione

$$f(x) = x^3 - 3x - 1$$

e tracciare un grafico approssimativo.

Problema 2.4.0.6. Studiare la funzione

$$f(x) = x^3 - x^2 - 5x$$

e tracciare un grafico approssimativo.

Problema 2.4.0.7. Studiare la funzione

$$f(x) = \frac{x}{\sqrt[3]{x^2 - 1}}$$

e tracciare un grafico approssimativo.

Problema 2.4.0.8. *Disegnare* $f(x) = \ln(1 + |x|)$.

Problema 2.4.0.9. *Disegnare* $f(x) = \ln |1 + x|$.

Problema 2.4.0.10. Studiare la funzione

$$f(x) = \frac{\ln x}{x}.$$

Problema 2.4.0.11. Studiare la funzione

$$f(x) = \ln\left(\sqrt{\frac{2x+1}{x-1}}\right)$$

e tracciare un grafico approssimativo.

Problema 2.4.0.12. Studiare la funzione

$$f(x) = \frac{4x}{4+x^2}$$

 $e\ tracciare\ un\ grafico\ approssimativo.$

Problema 2.4.0.13. Studiare la funzione

$$f(x) = x^2 + \frac{2}{x}.$$

e tracciare un grafico approssimativo.

Problema 2.4.0.14. Studiare la funzione

$$f(x) = -x + 1 + \ln\left(1 + \frac{5}{|x|}\right)$$

e tracciare un grafico approssimativo.

Problema 2.4.0.15. Studiare la funzione

$$f(x) = -2x + 3 + \ln\left(1 + \frac{3}{|x|}\right)$$

e tracciare un grafico approssimativo.

Problema 2.4.0.16. Studiare la funzione

$$f(x) = x + 2 + \ln\left(1 + \frac{2}{|x|}\right)$$

e tracciare un grafico approssimativo.

Problema 2.4.0.17. Studiare la funzione

$$f(x) = \sqrt{x} + \frac{1}{3\sqrt{x}} - \sqrt{1+x}, \quad x \ge 2$$

é trovare

$$\sup f(x), \inf f(x)$$

se esitono.

Suggerimento. Abbiamo

$$f'(x) = \frac{1}{2}x^{-1/2} - \frac{1}{6}x^{-3/2} - \frac{1}{2}(1+x)^{-1/2}.$$

Possiamo verificare che

$$f'(x) > 0, \quad \forall x \ge 1.$$

Infatti, dobbiamo verificare

$$3x(1+x)^{1/2} - (1+x)^{1/2} - 3x^{3/2} > 0 \iff (3x-1)^2(1+x) > 9x^3 \iff 9x^3 - 6x^2 + x + 9x^2 - 6x + 1 > 9x^3$$

e quasta disequazione ed equaivalente a

$$3x^2 - 5x + 1 > 0$$

e questo é ovvio se x>2. Cosi la funzione é crescente. Si puo vedere inoltre che

$$\lim_{x \to \infty} f(x) = 0.$$

cosi

$$\sup_{x \ge 2} f(x) = 0, \quad \inf_{x \ge 2} f(x) = f(2).$$

Problema 2.4.0.18. Sia

$$f(x) = g(|x - 1/x|^{1/k}), x > 0$$

dove k > 1, $g(x) = (e^x + e^{-x})/2$. Studiare la differenziabilitá della funzione nel punto x = 1 e tracciare il grafico (senza la derivata seconda).

Soluzione. Sia $h(x) = |x - 1/x|^a$, dove $a \in (0, 1/2)$. Abbiamo la relazione

$$f(x) = g(H(x)), H(x) = |x - 1/x|^a$$

е

$$f'_{-}(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \frac{g(H(1+h)) - g(0)}{h}.$$

Abbiamo inoltre

$$g(y) = g(0) + g'(1)y + \frac{g''(0)y^2}{2} + o(y^2)$$

per $y \to 0$. Usando

$$g'(x) = (e^x - e^{-x})/2, \quad g''(x) = (e^x + e^{-x})/2$$

troviamo

$$g(y) = 1 + \frac{y^2}{2} + o(y^2)$$

e quindi

$$\frac{g(H(1+h)) - g(0)}{h} = \frac{H(1+h)^2}{2h} = \frac{\left(\frac{1}{1+h} - 1 - h\right)^{2a}}{h}.$$

L'ipotesi a < 1/2 e h < 0 implica

$$f'_{-}(1) = -\infty.$$

La funzione non é differenziabile in x = 1. Possiamo tracciare il grafico.

$$f'(x) = g'(H(x))a\left(x - \frac{1}{x}\right)^{a-1}\left(1 + \frac{1}{x^2}\right) > 0 \text{ se } x > 1$$

е

$$f'(x) = -g'(h(x))a\left(\frac{1}{x} - x\right)^{a-1}\left(1 + \frac{1}{x^2}\right) < 0 \text{ se } 0 < x < 1.$$

L'unico punto critico (la soluzione di f'(x) = 0) é $x_0 = e^{-1/a}$. Per $x > x_0$ la funzione é crescente, mentre per $0 < x < x_0$ é decrescente. La figura 2.1 rapprasenta il grafico di f(x).

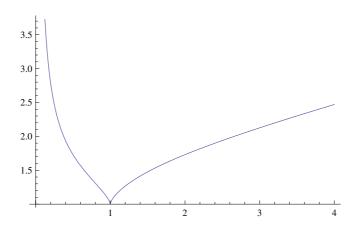


Figure 2.1: Grafico di f(x).

Osservazione. Spesso nelle soluzioni dei compitini si trova l'identità

$$(|x|^a)' = a|x|^{a-1}$$

dove $a \neq 0$. Questa formula non é vera per ogni $x \neq 0$. La formula vera é

$$(|x|^a)' = a|x|^{a-2}x, \quad \forall x \neq 0.$$
 (2.4.0.7)

О

$$(|x|^a)' = a \operatorname{sgn}(x) |x|^{a-1} x, \quad \forall x \neq 0,$$
 (2.4.0.8)

dove

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{se } x > 0; \\ -1, & \text{se } s < 0. \end{cases}$$

Cosí abbiamo

$$\left(\left|x - \frac{1}{x}\right|^a\right)' = a\left|x - \frac{1}{x}\right|^{a-2} \left(x - \frac{1}{x}\right) \left(1 + \frac{1}{x^2}\right)$$

per ogni $x \in \mathbb{R} \setminus \{0, 1, -1\}.$

Problema 2.4.0.19. Studiare la funzione

$$f(x) = \ln \frac{x^2}{|x - 9|}$$

e tracciare un grafico approssimativo.

Problema 2.4.0.20. Studiare (senza calcolare la derivata seconda) la funzione

$$f(x) = \cos x \cos 2x$$
.

e tracciare un grafico approssimativo.

Problema 2.4.0.21. Studiare (senza calcolare la derivata seconda) la funzione

$$f(x) = \frac{\arcsin x}{\sqrt{1 - x^2}}$$

e tracciare un grafico approssimativo.

Problema 2.4.0.22. Studiare la funzione

$$f(x) = \ln(\sin x)$$

e tracciare un grafico approssimativo.

Problema 2.4.0.23. Studiare la funzione

$$f(x) = \frac{x}{2} + \arctan x$$

e tracciare un grafico approssimativo.

Problema 2.4.0.24. Studiare la funzione

$$f(x) = \arctan(2x) - \arctan x$$

e tracciare un grafico approssimativo.

Problema 2.4.0.25. Trovare tutti funzioni f(x) tali che f(x) e' una funzione differnziabile in \mathbb{R} e

$$f'(x) = |x|.$$

Problema 2.4.0.26. Trovare i coefficienti della funzione

$$f(x) = \frac{x^3}{4} + mx^2 + n|x| + 2$$

se la funzione ha minimo

$$\min f(x) = -2$$

nel punto x = 2. Intracciare il grafico della funzione f(x).

Problema 2.4.0.27. Trovare tutti gli A tali che l'equazione

$$5\sin x + 2\cos x = A$$

ha soluzione.

Risp.
$$-\sqrt{29} \le A \le \sqrt{29}$$
.

Problema 2.4.0.28. Sia $M \ge 1$ intero e sia X(M) l'insieme

$$X(M) = \{x \in (-M, M); \{x\} = \frac{2}{\pi} \arctan x\},\$$

 $dove\ b(x) = \{x\}\ \'e\ la\ parte\ frazionaria\ di\ x\ cio\'e'$

$$0 \le b(x) < 1, \ x - b(x) \in \mathbb{Z}.$$

Studiare l'esistenza dell'limite

$$\lim_{M \nearrow \infty} \frac{card(X(M))}{M}.$$

Soluzione. Se $M\geq 1$ é un numero intero si puo vedereche (tracciando i grafici delle funzioni $b(x),\ f_1(x)=\frac{2}{\pi}\arctan x$

$$\leq card(X(M)) = (M-1).$$

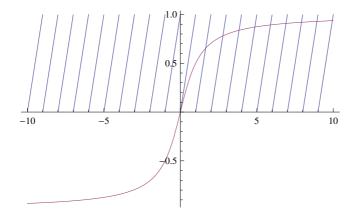


Figure 2.2: Il grafico di $f_1(x)$

Cosi otteniamo

$$\frac{card(X(M))}{M} \to 1.$$

Problema 2.4.0.29. Tracciare il grafico della funzione

$$\int_0^x \frac{\sin t}{(t+1)} dt$$

 $per x \in (0, \infty).$

Soluzione. Abbiamo l'identita'

$$f'(x) = \frac{\sin x}{1+x}.$$

$$f'(x) = 0 \iff x = k\pi, k = 0, \pm 1, \pm 2, \cdots$$

Abbiamo inoltre

$$\lim_{x \searrow 0} f(x)$$

esiste ed e un numero positivo (il problema (4.2.1.23)) Il grafico e' tracciato sulla Figura 2.3

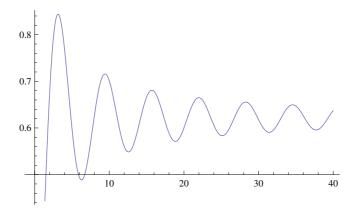


Figure 2.3: Il grafico di f(x)

Problema 2.4.0.30. Trovare il massimo e il minimo della funzione

$$f(x) = 24x - \cos(12x) - 3\sin(8x)$$

per $x \in [-\pi/6, \pi/6]$.

Risp.
$$f_{max} = 4\pi - 1 + \frac{3}{2}\sqrt{3}$$
, $f_{min} = -4\pi - 1 - \frac{3}{2}\sqrt{3}$.

Problema 2.4.0.31. Trovare il massimo e il minimo della funzione

$$f(x) = 18x - \sin(9x) + 3\sin(6x)$$

 $per \ x \in [-7\pi/18, \pi/18].$

Risp.
$$f_{max} = \pi - 1 + \frac{3}{2}\sqrt{3}, f_{min} = -7\pi - 1 - \frac{3}{2}\sqrt{3}.$$

Problema 2.4.0.32. Trovare tutti i punti $x \in \mathbb{R}$ tali che f'(x) = 0, dove

$$f(x) = \frac{\sin(5x)}{5} - \frac{2\sin(3x)}{3} + \sin x.$$

Intracciare il grafico di f.

Risp. $x = \pi(2k+1), k \in \mathbb{Z}.$

Problema 2.4.0.33. Trovare tutti i punti $x \in \mathbb{R}$ tali che f'(x) = 0, dove

$$f(x) = \frac{\sin(3x)}{3} - \frac{\sin(2x)}{2} - \sin x.$$

 $Intracciare\ il\ grafico\ di\ f.$

Risp.
$$x = \frac{\pi}{6} + \frac{\pi k}{3}, \ k \in \mathbb{Z}.$$

Problema 2.4.0.34. Trovare il minimo della funzione

$$f(x) = 4x + \frac{9\pi^2}{x} + \sin x.$$

ha soluzione.

Risp.
$$f_{min} = 12\pi - 1$$
.

Chapter 3

Integrale indefinito di Riemann in \mathbb{R} .

3.1 Integrale indefinito

Sia f una funzione definita in (a, b) con valori in \mathbb{R} .

Definizione 3.1.0.1. La funzione F(x) definita e differenziabile in (a,b) é primitiva di f(x) nel intervallo (a,b) se e solo se F'(x) = f(x) per ogni $x \in (a,b)$.

Indichiamo con $\int f(x)dx$ (integrale indefinito di f) l'insieme delle funzioni primitive di f ovvero

$$\int f(x)dx = \{F(x) \text{ \'e differenziabile in } (a,b) \text{ e } F'(x) = f(x), \forall x \in (a,b)\}.$$

In generale si puo chiedere se l'insieme $\int f(x)dx$ non é vuoto. Infatti per certi funzioni f(x) esiste alemeno una primitiva F

Esempio 3.1.0.1. Usando le tabelle delle derivate delle funzioni elementari possiamo vedere che

$$(x^A)' = Ax^{A-1} \implies \frac{x^A}{A} \in \int x^{A-1} dx, \forall A \neq 0,$$

 $(\ln|x|)' = 1/x \implies \ln|x| \in \int \frac{1}{x} dx,$

$$(e^x)' = e^x \Longrightarrow e^x \in \int e^x dx.$$

La caratterizzazione dell'insieme $\int f(x)dx$ é basato sulla segunete proprietá ottenuta come conseguenza del teorema di Lagrange.

Lemma 3.1.0.1. Se $G:(a,b)\to\mathbb{R}$ é una funzione differenziabile e G'(x)=0 per ogni $x\in(a,b)$, allora la funzione G(x) é costante.

Dimostrazione. Se $x_1 < x_2$ so due punti dell'intervallo (a, b), allora il teorema di Lagrange ci da

$$G(x_2) - G(x_1) = G'(\xi)(x_2 - x_1), \quad \xi \in (x_1, x_2)$$

e l'ipotesi G'(x) = 0 per ogni $x \in (a, b)$ implica $G'(\xi) = 0$ e quindi

$$G(x_1) = G(x_2), \ \forall x_1, x_2 \in (a, b).$$

Se $\int f(x)dx$ non é vuoto e $F_0(x)\in \int f(x)dx$ possiamo verificare che

Lemma 3.1.0.2.

$$\int f(x)dx = \{F_0 + C; C \text{ \'e costante}\}.$$
 (3.1.0.1)

Dimostrazione. Se F(x) è primitiva di f(x) allora F(x) + C è anche una primitiva di f. Questa osservazione dimostra

$$\{F_0 + C; C \text{ \'e costante}\} \subset \int f(x)dx.$$

Per dimostrare l'inclusione opposta

$$\int f(x)dx \subset \{F_0 + C; C \text{ \'e costante}\}\$$

si puo prendere una qualsiasi primitiva F di f e per $G=F-F_0$ si vede che

$$G'(x) = F'(x) - F'_0(x) = f(x) - f(x) = 0.$$

Applicando Lemma 3.1.0.1 possiamo concludere la dimostrazione. \square

Il Lemma precedente ci permette di scrivere l'identitá

$$\underbrace{\int f(x)dx}_{\text{é un insieme}} = \underbrace{F_0 + C}_{\text{é sottointeso l'insieme a destra in (3.1.0.1)}}$$
(3.1.0.2)

3.1.1 Regole dell'integrazione.

Visto che la definizione 3.1.0.1 significa che l'integrale indefinito $\int f(x)dx$ é un insieme, possiamo usare la seguente regole per operazione tra insiemi. Se A e B sono due sottoinsiemi di \mathbb{R} , allora poniamo

$$A + B = \{a + b; a \in A, b \in B\}.$$
 (3.1.1.3)

In modo simile se A é un sottoinsieme di \mathbb{R} e λ é un numero reale, allora poniamo

$$\lambda A = \{\lambda a; a \in A\}. \tag{3.1.1.4}$$

Lemma 3.1.1.1. Se $\int f(x)dx$ e $\int g(x)dx$ sono insiemi non vuoti, allora

$$\int f(x) + g(x)dx \neq \emptyset$$

e

$$\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx.$$
 (3.1.1.5)

Dimostrazione. Se

$$F_0(x) \in \int f(x)dx, \ G_0(x) \in \int g(x)dx,$$

ovviamente

$$F_0'(x) + G_0'(x) = f(x) + g(x)$$

e quindi

$$F_0 + G_0 \in \int f(x) + g(x)dx.$$

Lemma 3.1.1.2. Se $\int f(x)dx$ e un insieme non vuoto e α é un numero reale, allora

$$\int \alpha f(x)dx \neq \emptyset$$

e

$$\int \alpha f(x)dx = \alpha \int f(x)dx. \tag{3.1.1.6}$$

Dimostrazione. Se

$$F_0(x) \in \int f(x)dx,$$

e α é un numero reale ovviamente

$$(\alpha F_0(x))' = \alpha f(x)$$

e quindi

$$\alpha F_0 \in \int \alpha f(x) dx.$$

Lemma 3.1.1.3 (Integrazione per parti). Se $f,g:(a,b)\to\mathbb{R}$ sono due funzioni differenziabili e

$$\int f'(x)g(x)dx$$

é un insieme non vuoto, allora

$$\int f(x)g'(x)dx \neq \emptyset$$

e

$$\int f'(x)g(x)dx + \int f(x)g'(x)dx = f(x)g(x) + C.$$
 (3.1.1.7)

Dimostrazione. Se

$$\Phi(x) \in \int f'(x)g(x)dx,$$

ovviamente

$$(f(x)g(x))' - \Phi'(x) = f'(x)g(x) + f(x)g'(x) - f'(x)g(x) = f(x)g'(x)$$

e quindi

$$f(x)g(x) - \Phi(x) \in \int f(x)g'(x)dx.$$

3.1.2 Cambiammento di variabili

Se

$$\varphi:(a,b)\to\mathbb{R}$$

é una funzione differenziabile, allora possiamo definire il differenziale $d\varphi$ di $\varphi(x)$ come segue

$$d\varphi(x) = \varphi'(x)dx.$$

Se I=(a,b) é un intervallo aperto, J=(c,d) ed un altro intervallo aperto e

$$\varphi:I\to J$$

$$f: y \in J \to f(y) \in \mathbb{R}$$

sono due funzioni, allora possiamo definire la composizione (nota anche come "pull-back")

$$\varphi^*(f)(x) = f(\varphi(x)).$$

Se

$$f: y \in J \to f(y) \in \mathbb{R}$$

é una funzione tale che

$$\int f(y)dy \neq \emptyset,$$

allora poniamo

$$\varphi^* \left(\int f(y) dy \right)(x) = \left\{ F(\varphi(x)); F(y) \in \int f(y) dy \right\}.$$

Spesso per semplificare le notazioni useremo anche la notazione

$$\int f(y)dy\bigg|_{y=\varphi(x)}$$

al posto di

$$\varphi^* \left(\int f(y) dy \right) (x).$$

Lemma 3.1.2.1 (Formula di cambiamento di variabili). Se

$$\varphi:I\to J$$

é una funzione differenziabile e

$$f: y \in J \to f(y) \in \mathbb{R}$$

é una funzione tale che

$$\int f(y)dy \neq \emptyset,$$

allora abbiamo le segunte relazioni

$$\int \varphi^*(f)(x)\varphi'(x)dx \neq \emptyset$$
 (3.1.2.8)

 ϵ

$$\int f(\varphi(x))\varphi'(x)dx = \varphi^* \left(\int f(y)dy\right)(x). \tag{3.1.2.9}$$

C

$$\int f(\varphi(x))\varphi'(x)dx = \int f(y)dy \bigg|_{y=\varphi(x)}.$$

Dimostrazione. Se

$$F(y) \in \int g(y)dy,$$

allora F é differenziabile e

$$F'(y) = f(y).$$

Poniamo

$$G(x) = \underbrace{F(\varphi(x))}_{=\varphi^*(F)(x)}.$$

Abbiamo

$$G'(x) = F'(\varphi(x))\varphi'(x) = f(\varphi(x))\varphi'(x)$$

e quindi

$$G(x) \in \int f(\varphi(x))\varphi'(x)dx.$$

3.1.3 Tabella delle primitive

Funzione	Primitiva	Vincoli
x^a	$x^{a+1}/(a+1) + C$	$a \neq -1, a \in \mathbb{R}, C \text{ \'e costante}$
x^{-1}	$\log x + C$	C é costante .
$\sin x$	$-(\cos x) + C$	C é costante .
$\cos x$	$(\sin x) + C$	C é costante .
e^x	$e^x + C$	C é costante .
a^x	$a^x/(\log a) + C$	a > 0, e C é costante .
$1/\cos^2 x$	$(\tan x) + C$	$\tan x = (\sin x)/(\cos x), C \text{ \'e costante}.$
$1/\sin^2 x$	$(-\cot x) + C$	$\cot x = (\cos x)/(\sin x), C \text{ \'e costante}.$
$1/\sqrt{1-x^2}$	$(\arcsin x) + C$	C é costante .
$1/\sqrt{k^2 - x^2}$	$(\arcsin(x/k)) + C$	k > 0, C é costante .
$1/\sqrt{1+x^2}$	$(\log x+\sqrt{1+x^2}) + C$	C é costante .
$1/\sqrt{k^2 + x^2}$	$(\log x + \sqrt{k + x^2}) + C$	$k \neq 0, C$ é costante .
$1/(1+x^2)$	$\arctan x + C$	$k \neq 0, C$ é costante .
$1/(k^2 + x^2)$	$k^{-1}\arctan(x/k) + C$	$k \neq 0, C$ é costante .
$1/(k^2 + (ax+b)^2)$	$(ak)^{-1}\arctan((ax+b)/k)+C$	$k \neq 0, C$ é costante .

Quindi abbiamo le relazioni:

$$\int x^A dx = \frac{x^{A+1}}{A+1} + C, A \neq -1,$$

$$\int \frac{1}{x+a} dx = \ln|x+a| + C,$$

$$\int e^x dx = e^x + C,$$

$$\int a^x dx = \frac{a^x}{\ln a} + C, a > 0, a \neq 1.$$

$$\int \cos x dx = \sin x + C,$$

$$\int \sin x dx = -\cos x + C,$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C,$$

$$\int \frac{dx}{\sin^2 x} = \cot x + C.$$

$$\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C,$$

$$-\int \frac{dx}{\sqrt{1 - x^2}} = \arccos x + C,$$

 $\int \frac{dx}{1+x^2} = \arctan x + C.$ La sostituzione universale $u = \tan x/2$, soddisfa

$$\cos x = \frac{1 - u^2}{1 + u^2}, \ \sin x = \frac{2u}{1 + u^2}, \ dx = \frac{2}{1 + u^2} du.$$

Problema 3.1.3.1. Calcolare

(a)
$$\int \frac{1}{\sqrt[n]{x}} dx$$
, (b) $\int \frac{(x^m - x^n)^2}{\sqrt{x}} dx$, (c) $\int 3^x e^x dx$
(d) $\int \frac{\cos^2 x + \sqrt{1 - x^2} \cos^2 x \sin x - \sqrt{1 - x^2}}{\cos^2 x \sqrt{1 - x^2}} dx$

Problema 3.1.3.2. Calcolare

$$\int \frac{x^7 dx}{(1+4x^8)^4}.$$

3.2 Esercizi sull'integrale indefinito

3.2.1 Esercizi sull'integrazione per parti

Problema 3.2.1.1. (test 2017) Calcolare

$$\int \sin^2 x \, dx$$

Risposta.

Applichiamo la formula di integrazione per parti dopo aver scritto l'integrale assegnato nel modo che segue

$$\int \sin^2 x \ dx = \int \sin x \ \sin x \ dx.$$

Poniamo $g(x) = \sin x$ e $f'(x) = \sin x$, quindi $g'(x) = \cos x$ e $f(x) = -\cos x$. Sostituendo

$$\int \sin x \sin x \, dx = -\cos x \sin x - \int -\cos^2 x \, dx =$$

$$= -\cos x \sin x + \int \cos^2 x \, dx =$$

$$= -\cos x \sin x + \int (1 - \sin^2 x) \, dx =$$

$$= -\cos x \sin x + x + C - \int \sin^2 x \, dx$$

ovvero

$$\int \sin^2 x dx = -\cos x \, \sin x + x + C - \int \sin^2 x dx$$

Portando al primo membro l'integrale

$$2\int \sin^2 x dx = -\cos x \sin x + x + C$$

da cui

$$\int \sin^2 x dx = \frac{-\cos x \sin x + x}{2} + C$$

Allo stesso risultato si arriva mediante le formule di bisezione:

$$\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \int \frac{1}{2} dx - \int \frac{\cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} + C.$$

Problema 3.2.1.2. (test 2017) Calcolare

$$\int \cos^2(x)\sin(x)\,dx$$

Idea della soluzione. Usiamo le relazioni

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

e

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

Cosi troviamo

$$\cos^{2}(x)\sin(x) = \frac{1 + \cos(2x)}{2}\sin x = \frac{\sin x}{2} + \frac{\cos(2x)\sin x}{2} = \frac{\sin x}{2} + \frac{1}{4}(\sin(3x) - \sin x)$$

Il risultato si trova subito

$$\int \cos^2(x)\sin(x)dx = \frac{1}{2}\int \sin x dx + \frac{1}{4}\int \sin(3x)dx - \frac{1}{4}\int \sin(3x)dx =$$
$$= -\frac{1}{4}\cos x - \frac{1}{12}\cos(3x) + C.$$

Problema 3.2.1.3. Calcolare

$$\int x \sin x \, dx$$

Risposta

Procediamo mediante l'integrazione per parti ponendo g(x) = x e $f'(x) = \sin x$, quindi $f(x) = -\cos x$:

$$\int x \sin x \, dx = x(-\cos x) + \int \cos x \, dx = -x \cos x + \sin x + C$$

Problema 3.2.1.4. Calcolare

$$\int e^x \sin x \, dx$$

Risposta. Applichiamo la formula di integrazione per parti ponendo $g(x) = \sin x$ e $f'(x) = e^x$:

$$\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx = e^x \sin x - e^x \cos x - \int e^x \sin x \, dx$$

Portando al primo membro l'ultimo integrale e dividendo per 2:

$$\int e^x \sin x \, dx = e^x \frac{\sin x - \cos x}{2} + C$$

Problema 3.2.1.5. Calcolare

$$\int \sin mx \, \cos nx \, dx$$

Risposta. Si può integrare per parti prendento ad esempio $g(x) = \sin mx$ e $f'(x) = \cos nx$, oppure si possono utilizzare le formule di Werner:

$$\int \sin mx \, \cos nx \, dx = \int \frac{1}{2} \left[\sin(m-n)x + \sin(m+n)x \right] \, dx =$$

$$= -\frac{1}{2} \frac{\cos(m-n)x}{m-n} - \frac{1}{2} \frac{\cos(m+n)x}{m+n} + C$$

Problema 3.2.1.6. Calcolare

$$\int x \cos x \ e^x \, dx$$

Risposta. Procediamo integrando per parti. Poniamo $g(x) = x \cos x$ e $f'(x) = e^x$

$$\int x \cos x \ e^x \, dx = x \cos x \ e^x - \int \cos x \ e^x \, dx - \int x \sin x \ e^x (dx \cdot 2.1.10)$$

Consideriamo l'ultimo integrale

$$\int x \sin x \ e^x \ dx = x \sin x \ e^x - \int \sin x \ e^x \ dx - \int x \cos x e^x (3x2.1.11)$$

Da (3.2.1.10) e (3.2.1.11) otteniamo

$$2 \int x \cos x \ e^x \, dx = x \, e^x \, (\sin x + \cos x) - \int \cos x \ e^x \, dx - \int \sin x \ e^x \, dx.$$

Si ritorna così agli integrali visti sopra.

OSSERVAZIONE

Anche nel caso che si voglia calcolare

$$\int P_n(x) e^x dx$$

(dove $P_n(x)$ è un polinomio di grado n in x) si può procedere per parti. Esiste comunque un metodo alternativo che permette di semplificare la risoluzione di integrali di questo tipo o del tipo

$$\int P_n(x) \sin x \, dx, \quad \int P_n(x) \cos x \, dx,$$

si tratta del **metodo dei coefficienti indeterminati.** Illustrimo questo metodo con un esempio.

Problema 3.2.1.7. Calcolare

$$\int e^x \left(5x^2 + x - 3\right) dx$$

Risposta.

Cerchiamo primitive del tipo $(Ax^2 + Bx + C)e^x$, ovvero determiniamo $A, B, C \in \mathbb{R}$ tali che

$$\int e^x (5x^2 + x - 3) dx = (Ax^2 + Bx + C)e^x + C_1,$$

che equivale a

$$\frac{d}{dx}[(Ax^2 + Bx + C)e^x] = e^x (5x^2 + x - 3)$$

Effettuando la derivazione otteniamo l'identità:

$$Ax^{2} + (2A + B)x + B + C = 5x^{2} - x - 3$$

e quindi il sistema

$$\begin{cases} A = 5\\ (2A+B) = -1\\ B+C = -3 \end{cases}$$

Da cui A = 5, B = -9, C = 6.

Problema 3.2.1.8. Calcolare

$$\int (x^2 + x) \sin x \, dx$$

Risposta.

Procediamo in modo analogo all'esercizio precedente determinando $A, B, C, \alpha, \beta, \gamma \in \mathbb{R}$, tali che

$$\int (x^2 + x) \sin x \, dx = (Ax^2 + Bx + C) \sin x + (\alpha x^2 + \beta x + \gamma) \cos x + k.$$

Usando il metodo di integrazione per parti, calcolare

- $(1) \int \log x dx$
- (2) $\int \arctan x dx$
- (3) $\int x^{\alpha} \log x dx$

- $(4) \int \log^2 x dx$
- $(5) \int x^2 \log^2 x dx \qquad (6) \int x \arctan x dx$
- (7) $\int x^2 \arctan x dx$ (8) $\int x e^x dx$
- (9) $\int x \cos x dx$

- $(10) \int x^2 \cos x dx \qquad (11) \int \arcsin x dx \qquad (12) \int x e^x \sin x dx$
- (13) $\int \sin mx \sin nx \, dx$ (14) $\int \cos mx \cos nx \, dx$

3.2.2 Integrali di funzioni razionali

Si deve calcolare l'integrale $\int f(x)dx$, dove f(x) = P(x)/Q(x), e P(x), Q(x)sono polinomi in x.

I caso:

$$\int \frac{1}{(x-a)^n} dx, n > 1$$

In questo caso abbiamo

$$\int \frac{1}{(x-a)^n} dx = \frac{1}{-n+1} \frac{1}{(x-a)^{n-1}} + C.$$

II caso:

$$\int \frac{1}{(x-a)} dx,$$

In questo caso abbiamo

$$\int \frac{1}{(x-a)} dx = \log|x-a| + C.$$

III Caso:

$$\int \frac{1}{x^2 + ax + b} dx,$$

a) se $x^2 + ax + b$ ha radice reale α con molteplicità 2:

$$\int \frac{1}{x^2 + ax + b} dx = \int \frac{1}{(x - \alpha)^2} dx = -\frac{1}{(x - \alpha)} + C,$$

b) se $x^2 + ax + b$ ha due radici reali $\alpha \neq \beta$, allora

$$\frac{1}{x^2 + ax + b} = \frac{1}{(x - \alpha)(x - \beta)} = \frac{1}{\beta - \alpha} \left(\frac{1}{x - \beta} - \frac{1}{x - \alpha} \right).$$

c) se $x^2 + ax + b$ ha due radici complesse

$$\alpha = p + iq, \ \overline{\alpha} = p - iq,$$

allora

$$\frac{1}{x^2 + ax + b} = \frac{1}{(x-p)^2 + q^2}.$$

Problema 3.2.2.1. Verificare che

$$\int \frac{Ax+B}{(x-p)^2+q^2} dx$$

$$= \frac{A}{2} \ln((x-p)^2+q^2) + \frac{Ap+B}{q} \arctan\left(\frac{x-p}{q}\right).$$
(3.2.2.12)

Soluzione. Abbiamo le relazioni

$$\int \frac{Ax+B}{(x-p)^2+q^2} dx = A \int \frac{x-p}{(x-p)^2+q^2} dx + \int \frac{Ap+B}{(x-p)^2+q^2} dx =$$

$$= \frac{A}{2} \int \frac{d((x-p)^2)}{(x-p)^2+q^2} + \frac{Ap+B}{q} \arctan\left(\frac{x-p}{q}\right) =$$

$$= \frac{A}{2} \ln((x-p)^2+q^2) + \frac{Ap+B}{q} \arctan\left(\frac{x-p}{q}\right).$$

IV caso:

$$\int \frac{P(x)}{Q(x)} dx,$$

dove $\operatorname{grad} P \ge \operatorname{grad} Q$. In questo caso abbiamo

$$\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)},$$

dove $\operatorname{grad} R < \operatorname{grad} Q$.

Problema 3.2.2.2. Calcolare

$$\int \frac{x^4 - 2x^2 + x + 1}{x^2 + 1} dx.$$

Soluzione. Abbiamo le relazioni

$$\begin{pmatrix} x^4 & +0x^3 & -2x^2 & x & +1 & | & x^2 & +0x & +1 \\ \circ & \circ \\ x^4 & +0x^3 & +x^2 & 0 & 0 & | & x^2 & -3x & +1 \\ \rightarrow & \rightarrow \\ 0 & 0 & -3x^2 & +x & +1 & | & \bullet & \bullet & \bullet \\ 0 & 0 & -3x^2 & 0 & -3 & | & \bullet & \bullet & \bullet \\ \rightarrow & \rightarrow \\ 0 & 0 & 0 & +x & +4 & | & \bullet & \bullet & \bullet \end{pmatrix}$$

e quindi

$$\frac{x^4 - 2x^2 + x + 1}{x^2 + 1} = x^2 - 3x + 1 + \frac{x + 4}{x^2 + 1}.$$

Cosi troviamo

$$\int \frac{x^4 - 2x^2 + x + 1}{x^2 + 1} dx = \int (x^2 - 3x + 1) dx + \int \frac{x + 4}{x^2 + 1} dx =$$
$$= \frac{x^3}{3} - \frac{3x^2}{2} + x + \frac{1}{2} \ln(x^2 + 1) + 4 \arctan x + C.$$

3.2.3 Il metodo di Hermite

Iniziamo con alcuni esempi.

$$\int \frac{x^2}{(1+x^2)^2} dx = \frac{1}{2} \int x \frac{d(x^2+1)}{(1+x^2)^2} = -\frac{x}{2(1+x^2)} + \int \frac{1}{2(1+x^2)} dx$$

$$(3.2.3.13)$$

$$\int \frac{1}{(1+x^2)^2} dx = \int \frac{1+x^2}{(1+x^2)^2} dx - \int \frac{x^2}{(1+x^2)^2} dx = \frac{x}{2(1+x^2)} + \int \frac{1}{2(1+x^2)} dx.$$

$$(3.2.3.14)$$

Si possano verificare inoltre le relazioni

$$\int \frac{x^2}{(1+x^2)^m} dx = \frac{1}{2} \int x \frac{d(x^2+1)}{(1+x^2)^m} = -\frac{x}{2(m-1)(1+x^2)^{m-1}} + \int \frac{1}{2(m-1)(1+x^2)^{m-1}} dx$$

е

$$\int \frac{1}{(1+x^2)^m} dx = \int \frac{1+x^2}{(1+x^2)^m} dx - \int \frac{x^2}{(1+x^2)^m} dx = \frac{x}{2(m-1)(1+x^2)^{m-1}} + \int \frac{2m-3}{2(m-1)(1+x^2)^{m-1}} dx.$$

Cosí per ogni $m \geq 2$ abbiamo

$$\int \frac{1}{(1+x^2)^m} dx = \frac{x}{2(m-1)(1+x^2)^{m-1}} + \int \frac{2m-3}{2(m-1)(1+x^2)^{m-1}} dx.$$
(3.2.3.15)

Se Q(x) é polinomio con grad $Q=N\geq 1,$ allora abbiamo.

Lemma 3.2.3.1. Se Q(x) é polinomio con grad $Q = N \ge 1$, allora

$$Q(x) = \prod_{j=1}^{n} q_j(x)^{a_j}, \ a_j \ge 1,$$

dove $q_j(x)$ sono polinomi primi tra loro tali che loro sono lineari o polinomi quadratici irreducibili.

Proof. Siano

$$\alpha_1, \alpha_2, \cdots, \alpha_h,$$

radici reali di Q con molteplicitá m_1, m_2, \cdots, m_h . Siano

$$\beta_1, \beta_2, \cdots, \beta_k,$$

е

$$\overline{\beta_1}, \overline{\beta_2}, \cdots, \overline{\beta_k},$$

radici complesse di Q(x) con molteplicitá μ_1, \dots, μ_k . Posto

$$\beta_j = p_j + iq_j, \quad j = 1, \cdots, k$$

abbiamo

$$Q(x) = (x - \alpha_1)^{m_1} \cdots (x - \alpha_h)^{m_h} (x - \beta_1)^{\mu_1} \cdots (x - \beta_k)^{\mu_k} (x - \overline{\beta_1})^{\mu_1} \cdots (x - \overline{\beta_k})^{\mu_k}.$$

L'identitá

$$(x - \beta_j)(x - \overline{\beta_j}) = (x - p_j)^2 + q_j^2$$

implica

$$Q(x) = (x - \alpha_1)^{m_1} \cdots (x - \alpha_h)^{m_h} ((x - p_1)^2 + q_1^2)^{\mu_1} \cdots ((x - p_k)^2 + q_k^2)^{\mu_k}.$$

Dobbiamo studiare

$$\int \frac{P(x)}{Q(x)} dx,$$

 $dove \ {\rm grad} P < {\rm grad} Q.$

Il metodo di Hermite - Ostrogradski é basato sulla furmula.

Lemma 3.2.3.2. (vedi [9])

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx,$$
(3.2.3.16)

dove

$$Q_1(x) = \prod_{j=1}^n q_j(x)^{(a_j-1)}, \quad Q_2(x) = \prod_{j=1}^n q_j(x).$$

Proof. Se $Q(x) = (x - c)^m$ e

$$P(x) = \sum_{k=0}^{n} a_k (x - c)^k$$

allora l'identitá (3.2.3.16) si puo dedurre come segue

$$\int \frac{P(x)}{Q(x)} dx = \sum_{j=-m}^{n-m} a_{j+m} \int (x-c)^j =$$

$$= \frac{P_1(x)}{Q_1(x)} + a_{m-1} \int \frac{1}{x-c} dx.$$

Se $Q(x) = (x^2 + ax + b)^m$, $P(x) = R(x)Q_2(x) + S(x)$ con S(x) lineare, allora

$$\int \frac{P(x)}{Q(x)} dx = \int \frac{R(x)}{Q_2(x)^{m-1}} dx + \int \frac{S(x)}{Q_2(x)^m} dx$$

e possiamo verificare la tesi solo per

$$\int \frac{S(x)}{Q_2(x)^m}.$$

Se S(x) = Ax + B, e m = 1 allora l'identitá (3.2.3.16) vale con $P_1(x) = 0$.

Se S(x) = Ax + B, e $m \ge 2$ allora (3.2.3.15) implica

$$\int \frac{1}{Q_2(x)^m} dx = \frac{C_1}{Q_2(x)^{m-1}} + \int \frac{C_2}{Q_2(x)^{m-1}} dx$$

e possiamo dedurre (3.2.3.16).

Poniamo

$$T(x) = (x - \alpha_1)^{m_1 - 1} \cdots (x - \alpha_h)^{m_h - 1} ((x - p_1)^2 + q_1^2)^{\mu_1 - 1} \cdots ((x - p_k)^2 + q_k^2)^{\mu_k - 1}.$$

Abbiamo la seguente

Proposizione 3.2.3.1. Esistono numeri A_j, B_j, C_j ed esiste un polinomio R(x) con gradR = gradT - 1 tale che per ogni x con $Q(x) \neq 0$ vale l'identità

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{h} \frac{A_j}{(x - \alpha_j)} + \sum_{j=1}^{k} \frac{B_j x + C_j}{(x - p_j)^2 + q_j^2} + \frac{d}{dx} \left(\frac{R(x)}{T(x)}\right).$$

Problema 3.2.3.1. Calcolare

$$\int \frac{1}{(x^2-1)(x^2+1)}.$$

Soluzione. Cerchiamo come soggerito dal Proposizione 3.2.3.1 relazione del tipo

$$\frac{1}{(x^2-1)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}.$$

Questa relazione e equivalente a

$$1 = A(x+1)(x^2+1) + B(x-1)(x^2+1) + (Cx+D)(x^2-1).$$

Cosi confrontando i due polinomi a sinistra e destra troviamo

$$0 = A + B + C,$$
 (3.2.3.17)
 $0 = A - B + D$
 $0 = A + B - C$
 $1 = A - B - D.$

Da queste relazioni deduciamo C = 0, B = -A e

$$0 = 2A + D,$$

$$1 = 2A - D$$
(3.2.3.18)

e quindi $A=1/4,\,D=-1/2.$ Alla fine otteniamo

$$\frac{1}{(x^2-1)(x^2+1)} = \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)}.$$

Per l'integrale abbiamo

$$\int \frac{1}{(x^2 - 1)(x^2 + 1)} = \int \frac{1}{4(x - 1)} dx - \int \frac{1}{4(x + 1)} dx - \int \frac{1}{2(x^2 + 1)} dx =$$
$$= \frac{1}{4} \ln(x - 1) - \frac{1}{4} \ln(x + 1) - \frac{1}{2} \arctan x + C.$$

Problema 3.2.3.2. Calcolare

$$\int \frac{dt}{(t^2+t+1)^2}.$$

Soluzione. Abbiamo

$$\frac{1}{(t^2+t+1)^2} = \frac{A}{t^2+t+1} + \left(\frac{Bt+C}{t^2+t+1}\right)'.$$

secondo il metodo di Hermite. Abbiamo

$$\frac{1}{(t^2+t+1)^2} = \frac{A}{t^2+t+1} + \frac{B(t^2+t+1) - (Bt+C)(2t+1)}{(t^2+t+1)^2}.$$

Cosi troviamo

$$1 = A(t^2 + t + 1) + B(t^2 + t + 1) - (Bt + C)(2t + 1)$$

e quindi abbiamo il sistema

$$A - B = 0$$
, $A - 2C = 0$, $A + B - C = 1$.

L'unica soluzione e

$$A = B = \frac{2}{3}, \quad C = \frac{1}{3}.$$

In conclusione

$$\int \frac{dt}{(t^2+t+1)^2} = \frac{2}{3} \int \frac{dt}{t^2+t+1} + \frac{1}{3} \frac{2t+1}{t^2+t+1} =$$
$$= \frac{2}{3} \frac{2}{\sqrt{3}} \arctan\left(\frac{2t+1}{\sqrt{3}}\right) + \frac{1}{3} \frac{2t+1}{t^2+t+1} + C.$$

Problema 3.2.3.3. Calcolare

$$\int \frac{dt}{(t^2 - t + 1)^2}.$$

Soluzione. Abbiamo

$$\frac{1}{(t^2 - t + 1)^2} = \frac{A}{t^2 - t + 1} + \left(\frac{Bt + C}{t^2 - t + 1}\right)'.$$

secondo il metodo di Hermite. Abbiamo

$$\frac{1}{(t^2-t+1)^2} = \frac{A}{t^2-t+1} + \frac{B(t^2-t+1) - (Bt+C)(2t-1)}{(t^2-t+1)^2}.$$

Cosi troviamo

$$1 = A(t^2 - t + 1) + B(t^2 - t + 1) - (Bt + C)(2t - 1)$$

e quindi abbiamo il sistema

$$A - B = 0$$
, $A + 2C = 0$, $A + B + C = 1$.

L'unica soluzione e

$$A = B = \frac{2}{3}, \quad C = -\frac{1}{3}.$$

In conclusione

$$\int \frac{dt}{(t^2 - t + 1)^2} = \frac{2}{3} \int \frac{dt}{t^2 - t + 1} + \frac{1}{3} \frac{2t - 1}{t^2 - t + 1} =$$

$$= \frac{2}{3} \frac{2}{\sqrt{3}} \arctan\left(\frac{2t - 1}{\sqrt{3}}\right) + \frac{1}{3} \frac{2t - 1}{t^2 - t + 1} + C.$$

Problema 3.2.3.4. Calcolare

$$\int \frac{1}{(t-1)^2(t^2+t+1)} \ dt$$

Soluzione. Usiamo il metodo di Hermite

$$\frac{1}{(t-1)^2(t^2+t+1)} = \frac{A}{t-1} + \frac{B}{(t-1)^2} + \frac{C}{(t^2+t+1)}$$

e quindi

$$1 = A(t^3 - 1) + B(t^2 + t + 1) + C(t^2 - 2t + 1)$$

Troviamo il sistema

$$A = 0, B - 2C = 0, -A + B + C = 1,$$

 $A = 0, C = \frac{1}{3}, B = \frac{2}{3}.$

In conclusione

$$\int \frac{1}{(t-1)^2(t^2+t+1)} dt = -\frac{2}{3(t-1)} + \frac{1}{3}\frac{2}{\sqrt{3}}\arctan\left(\frac{2t+1}{\sqrt{3}}\right) + C.$$

Problema 3.2.3.5. Calcolare

$$\int \frac{1}{(t+1)^2(t^2-t+1)} \ dt$$

Soluzione. Usiamo il metodo di Hermite

$$\frac{1}{(t+1)^2(t^2-t+1)} = \frac{A}{t+1} + \frac{B}{(t+1)^2} + \frac{C}{(t^2-t+1)}$$

e quindi

$$1 = A(t^3 + 1) + B(t^2 - t + 1) + C(t^2 + 2t + 1)$$

Troviamo il sistema

$$A = 0, B + 2C = 0, A - B + C = 1,$$

$$A = 0, C = \frac{1}{3}, B = -\frac{2}{3}$$

In conclusione

$$\int \frac{1}{(t+1)^2(t^2-t+1)} dt = \frac{2}{3(t+1)} - \frac{1}{3} \frac{2}{\sqrt{3}} \arctan\left(\frac{2t-1}{\sqrt{3}}\right) + C.$$

Problema 3.2.3.6. Calcolare

$$\int \frac{1}{(x^2-1)(x^2+1)^2}.$$

Soluzione. Usando Proposizione 3.2.3.1 cerchiamo

$$\frac{1}{(x^2-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} + \left(\frac{Ex+F}{x^2+1}\right)'.$$

Problema 3.2.3.7. Calcolare

$$\int \frac{2-x^2}{(x+1)^2(x+2)^2} dx.$$

Soluzione. Abbiamo

$$\frac{2-x^2}{(x+1)^2(x+2)^2} = -\frac{x}{(x+1)(x+2)^2} + \frac{1}{(x+1)^2(x+2)} =$$
$$= -\frac{1}{(x+2)^2} + \frac{1}{(x+1)(x+2)^2} + \frac{1}{(x+1)^2(x+2)}.$$

Possiamo supporre

$$\frac{2-x^2}{(x+1)^2(x+2)^2} = \frac{a+bx}{(x+1)^2} + \frac{c+dx}{(x+2)^2}$$

e quindi

$$2 - x^{2} = (a + bx)(x + 2)^{2} + (c + dx)(1 + x)^{2}$$

Confrontando i coefficienti troviamo

$$b+d=0$$
, $a+4b+c+2d=-1$, $4a+4b+2c+d=0$, $4a+c=2$

е

$$b = d = 0, a = 1, c = -2.$$

Cosi

$$\int \frac{2-x^2}{(x+1)^2(x+2)^2} dx = -(1+x)^{-1} + (x+x)^{-1} + c.$$

Problema 3.2.3.8. Calcolare

$$\int \frac{x^2 + 22x + 13}{(x-1)^2(x+2)^2} dx.$$

Risp.

$$-4(x-1)^{-1} + 3(x+2)^{-1} + c.$$

Problema 3.2.3.9. Calcolare

$$\int \frac{x^2 + 22x + 10}{(x+2)^2(x^2 - 2x + 2)} dx.$$

Risp.

$$4\arctan(x-1) + 3(x+2)^{-1} + c.$$

Problema 3.2.3.10. Calcolare

$$\int \frac{3x^2 + 2x + 4}{x^3 - 1} dx.$$

Risp.

$$\frac{2}{\sqrt{3}}\arctan(2(x+1/2)/\sqrt{3}) - 3\log(x-1) + c.$$

3.2.4 Integrali del tipo $\int R(x, \sqrt{ax+b}) dx$.

Si fa la sostituzione

$$t^2 = ax + b.$$

Abbiamo

$$\int R(x, \sqrt{ax+b})dx = \int R\left(\frac{t^2-b}{a}, t\right) \frac{2t}{a}dt.$$

Problema 3.2.4.1. Calcolare

$$\int \frac{\sqrt{2x+3}-x}{x-1} \, dx$$

Risposta Poniamo $t = \sqrt{2x+3}$, da cui $t^2 = 2x+3$ e quindi $x = \frac{t^2-3}{2}$ da cui dx = t dt. Sostituendo nell'integrale proposto

$$\int \frac{\left(t - \frac{t^2 - 2}{2}\right)t}{\frac{t^2 - 3}{2} - 1} dt = -\int \frac{t^3 - 2t^2 - 3t}{t^2 - 5} dt.$$

Effettuando la divisione tra numeratore e denominatore della funzione integranda possiamo scrivere: $t^3 - 2t^2 - 3t = (t-2)(t^2-5) + (2t-10)$. Sostituiamo l'espressione ottenuta nell'integrale:

$$-\int \frac{t^2 - 2t - 3}{t^2 - 5} dt = -\int (t - 2) dt + \int \frac{2t - 10}{t^2 - 5} dt$$

Osserviamo che

$$\frac{2t - 10}{t^2 - 5} = \frac{A}{t - \sqrt{5}} + \frac{B}{t + \sqrt{5}}$$

Da cui si ha $2t - 10 = (A + B)t + (A - B)\sqrt{5}$, e quindi il sistema

$$\begin{cases} A+B = 2 \\ A-B = -\frac{10}{\sqrt{5}} \end{cases}$$

Da questo otteniamo $A=\frac{\sqrt{5}-5}{\sqrt{5}},\,B=\frac{\sqrt{5}+5}{\sqrt{5}}$. Sostiuiamo questi valori nell'integrale dato e risolviamo ottenendo l'insieme delle primitive:

$$-\frac{1}{2}t^2 + 2t - \frac{\sqrt{5} - 5}{\sqrt{5}}\log|t - \sqrt{5}| + \frac{\sqrt{5} + 5}{\sqrt{5}}\log|t + \sqrt{5}| + C.$$

Problema 3.2.4.2. Calcolare

$$I(x) = \int \frac{x^2 + 3}{1 + \sqrt{x + 1}} dx.$$

Soluzione. La sostituzione

$$t = \sqrt{x+1}$$

implica

$$x = t^{2} - 1, dx = 2tdt$$

$$\int \frac{x^{2} + 3}{1 + \sqrt{x + 1}} dx = \int \frac{(t^{2} - 1)^{2} + 3}{1 + t} tdt =$$

$$= \int \frac{t^{5} - 2t^{3} + 4t}{1 + t} dt$$

Abbiamo

$$\frac{t^5 - 2t^3 + 4t}{1 + t} = t^4 - t^3 - t^2 + t + 3 - \frac{3}{t + 1}.$$

Cosi

$$I(x) = \int (t^4 - t^3 - t^2 + t + 3) dt - \int \frac{3}{t+1} dt =$$

$$= \frac{t^5}{5} - \frac{t^4}{4} - \frac{t^3}{3} + \frac{t^2}{2} + 3t - 3\log(t+1) + C,$$

dove $t = \sqrt{x+1}$.

3.2.5 Integrali del tipo $\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p/q}\right) dx$.

Si fa il cambiamento di variabili

$$\frac{ax+b}{cx+d} = t^q$$

Problema 3.2.5.1. Calcolare

$$\int \frac{1}{x^2} \sqrt[3]{\left(\frac{x+1}{x-1}\right)^2} dx$$

Integrali del tipo
$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p/q}\right) dx$$
. 59

Risposta.

Poniamo $t^3 = \frac{x+1}{x-1}$, da cui segue $x = \frac{t^3+1}{t^3-1}$ e $dx = \frac{-6t^2}{(t^3-1)^2}dt$. Sostituiamo nell'integrale dato

$$-6\int \frac{t^4}{(t^3+1)^2} dt$$

Si osservi che il grado del numeratore è minore del grado del denominatore. Calcoliamo le radici del denominatore per applicare il metodo di Hermite: $t_1=-1,\ t_{2,3}=\frac{1\pm i\sqrt{3}}{2},\ (t^3+1)^2=(t+1)^2[(t-\frac{1}{2})^2+\frac{3}{4}]^2.$

Quindi dobbiamo determinare $A, B, C \in \mathbb{R}$ tali che

$$\frac{t^4}{(t^3+1)^2} = \frac{A}{t+1} + \frac{Bt+C}{(t-\frac{1}{2})^2 + \frac{3}{4}} + \frac{d}{dt} \frac{R(t)}{T(t)},$$

dove

$$T(t) = (t+1)[(t-\frac{1}{2})^2 + \frac{3}{4}], \ R(t) = Dt^2 + Et + F.$$

Quindi

$$\frac{t^4}{(t^3+1)^2} = \frac{A(t+1)(t^2-t+1)^2}{(t^3+1)^2} +$$

$$+\frac{(Bt+C)(t+1)^2(t^2-t+1)+(2Dt+E)(t^3+1)-3t^2(Dt^2+Et+F)}{(t^3+1)^2}.$$

Da questa relazione ricaviamo A,B,C,D,E,F e quindi risolviamo l'integrale sostituendo sopra.

Un altro modo di scomporre la frazione $\frac{P(x)}{Q(x)}$ alternativo al metodo di Hermite è il seguente:

$$\frac{P(x)}{Q(x)} = \frac{A_{11}}{x - \alpha_1} + \frac{A_{12}}{(x - \alpha_1)^2} + \dots + \frac{A_{1m_1}}{(x - \alpha_1)^{m_1}} + \frac{A_{21}}{x - \alpha_2} + \frac{A_{22}}{(x - \alpha_2)^2} + \dots + \frac{A_{2m_2}}{(x - \alpha_2)^{m_2}} + \dots + \frac{A_{m_1}}{(x - \alpha_1)^{m_1}} + \frac{A_{m_1}}{x - \alpha_m} + \frac{A_{m_1}}{(x - \alpha_m)^2} + \dots + \frac{A_{m_m}}{(x - \alpha_m)^{m_m}} + \frac{A_{m_1}}{(x - \alpha_m)^2} + \frac{B_{12}x + C_{12}}{(x - \alpha_m)^2} + \dots + \frac{B_{1m_1}x + C_{1m_1}}{(x - \alpha_m)^{m_1}} + \frac{B_{21}x + C_{21}}{(x - \alpha_m)^2} + \frac{B_{22}x + C_{22}}{(x - \alpha_m)^2} + \dots + \frac{B_{2m_2}x + C_{2m_2}}{(x - \alpha_m)^2} + \dots + \frac{B_{2m_2}x + C_{2m_$$

Come esempio applichiamo al problema precedente questa scomposizione

$$\frac{t^4}{(t^3+1)^2} = \frac{A_{11}}{t+1} + \frac{A_{12}}{(t+1)^2} + \frac{B_{11}t + C_{11}}{[(t-\frac{1}{2})^2 + \frac{3}{4}]} + \frac{B_{12}t + C_{12}}{[(t-\frac{1}{2})^2 + \frac{3}{4}]^2}$$

Da cui

$$\frac{t^4}{(t^3+1)^2} = \frac{A_{11}(t+1)(t^2-t+1)^2 + A_{12}(t^2-t+1)^2}{(t^3+1)^2} + \frac{(B_{11}t+C_{11})(t^2-t+1)(t+1)^2 + (B_{12}t+C_{12})(t+1)^2}{(t^3+1)^2}.$$

Otteniamo quindi un sistema lineare di primo grado in sei equazioni nelle incognite A_{11} , A_{12} , B_{11} , B_{12} , C_{11} , C_{12} , che risolto mi permette di scomporre la frazione $\frac{t^4}{(t^3+1)^2}$ in somma di frazioni delle quali si riesce a calcolare le primitive in maniera elementare.

Problema 3.2.5.2. Calcolare

$$\int x\sqrt{\frac{x-1}{x+1}}dx.$$

Integrale del tipo
$$\int R\left(x, \sqrt[q_1]{\left(\frac{ax+b}{cx+d}\right)^{p_1}}, \cdots, \sqrt[q_k]{\left(\frac{ax+b}{cx+d}\right)^{p_k}}\right)$$
. 61

3.2.6 Integrale del tipo
$$\int R\left(x, \sqrt[q_1]{\left(\frac{ax+b}{cx+d}\right)^{p_1}}, \cdots, \sqrt[q_h]{\left(\frac{ax+b}{cx+d}\right)^{p_h}}\right)$$
.

Dove $p_j, q_j \in \mathbb{N}, p_j > 0, q_j > 1$ $j = 1, \dots, h$. Questi integrali si possono ricondurre ad integrali di funzioni razionali mediante la sostituzione:

$$t^q = \frac{ax + b}{cx + d}.$$

dove

$$q = m.c.m.(q_1, \cdots, q_h)$$

Problema 3.2.6.1. Calcolare

$$\int \sqrt[3]{\frac{x+1}{x+2}} \sqrt{\frac{x+2}{x+1}} dx$$

Soluzione. Usando la relazione

$$\sqrt[3]{\frac{x+1}{x+2}} \sqrt{\frac{x+2}{x+1}} = \sqrt[6]{\frac{x+2}{x+1}},$$

si vede che possiamo fare la sostituzione

$$t^6 = \frac{x+1}{x+2}$$

da cui

$$x = \frac{2t^6 - 1}{1 - t^6}$$
 e $dx = \frac{6t^5}{(1 - t^6)^2}dt$.

Dopo la sostituzione abbiamo

$$I(x) = \int \sqrt[3]{\frac{x+1}{x+2}} \sqrt{\frac{x+2}{x+1}} dx = 6 \int \frac{t^4}{(1-t^6)^2} dt =$$

$$= 6 \int \frac{t^4}{(1-t^3)^2 (1+t^3)^2} dt$$

Usiamo la relazione

$$t^4 = \frac{t(t^3+1)^2 - t(t^3-1)^2}{4}$$

e troviamo

$$\frac{t^4}{(1-t^6)^2} = \frac{t^4}{(t^3-1)^2(1+t^3)^2} = \frac{t}{4(t^3-1)^2} - \frac{t}{4(t^3+1)^2}$$
$$I(x) = \frac{6}{4} \int \frac{t}{(t^3-1)^2} dt - \frac{6}{4} \int \frac{t}{(t^3+1)^2} dt =$$
$$= \frac{3}{2} \int \frac{t}{(t^3-1)^2} dt - \frac{3}{2} \int \frac{t}{(t^3+1)^2} dt.$$

Usando le relazioni

$$t = (t^2 + t + 1) - (t - 1)^2, \ t = \frac{(t+1)^2 - (t^2 - t + 1)}{3},$$

troviamo

$$I(x) = \frac{3}{2} \int \frac{1}{(t-1)^2(t^2+t+1)} dt - \frac{3}{2} \int \frac{1}{(t^2+t+1)^2} dt - \frac{1}{2} \int \frac{1}{(t^2-t+1)^2} dt + \frac{1}{2} \int \frac{1}{(t+1)^2(t^2-t+1)} dt.$$

Usiamo Problema 3.2.3.2 per

$$\int \frac{dt}{(t^2+t+1)^2}.$$

Usiamo Problema 3.2.3.3 per

$$\int \frac{dt}{(t^2 - t + 1)^2}.$$

Usiamo Problema 3.2.3.4 per

$$\int \frac{1}{(t-1)^2(t^2+t+1)} \ dt$$

Usiamo Problema 3.2.3.5 per

$$\int \frac{1}{(t+1)^2(t^2-t+1)} dt.$$

3.2.7 Integrali del tipo $\int R(x, \sqrt{x^2 + ax + b}) dx$.

Esempio 3.2.7.1. Calcoliamo

$$\int \frac{dx}{(1+x^2)^{1/2}}.$$

 \acute{E} un integrale della tabella

$$\int \frac{dx}{(1+x^2)^{1/2}} = \log(x + (1+x^2)^{1/2}) + c.$$

Esempio 3.2.7.2. Calcoliamo

$$\int \frac{dx}{(1+x^2)^{3/2}}.$$

Usiamo le relazioni

$$\int \frac{dx}{(1+x^2)^{3/2}} = \int \frac{(1+x^2-x^2)dx}{(1+x^2)^{3/2}} =$$

$$= \int \frac{dx}{(1+x^2)^{1/2}} - \int \frac{x^2dx}{(1+x^2)^{3/2}} =$$

$$= \int \frac{dx}{(1+x^2)^{1/2}} - \frac{1}{2} \int \frac{xd(x^2+1)}{(1+x^2)^{3/2}} =$$

$$= \int \frac{dx}{(1+x^2)^{1/2}} + \int xd\left((x^2+1)^{-1/2}\right) =$$

$$= \int \frac{dx}{(1+x^2)^{1/2}} + x(x^2+1)^{-1/2} - \int \frac{dx}{(1+x^2)^{1/2}} =$$

$$= x(x^2+1)^{-1/2}.$$

In generale per l'integrale del tipo

$$\int R\left(x,\sqrt{x^2+ax+b}\right)\,dx$$

si fa il cambiamento di variabili

$$\sqrt{x^2 + ax + b} = x + t.$$

Problema 3.2.7.1. Calcolare

$$\int \frac{3x+1}{\sqrt{x^2-2x+3}} \ dx.$$

Poniamo

$$\sqrt{x^2 - 2x + 3} = x + t$$

da cui

$$x = \frac{1}{2} \frac{3 - t^2}{t + 1}$$
, $dx = \frac{1}{2} \frac{-t^2 - 2t - 3}{(t + 1)^2}$ e $\sqrt{x^2 - 2x + 3} = \frac{1}{2} \frac{3 - t^2}{t + 1} + t$.

Sostituendo sopra ci riconduciamo a risolvere

$$-\frac{1}{2} \int \frac{-3t^2 + 2t + 11}{(t+1)^2} dt.$$

Problema 3.2.7.2. Calcolare

$$\int \sqrt{x^2 + 1} \ dx.$$

3.2.8 Integrali del tipo $\int R(x, \sqrt{-x^2 + ax + b}) dx$.

Siano $\alpha, \beta \in \mathbb{R}$ le radici dell'equazione $-x^2 + ax + b = 0$, (se le radici sono complesse l'espressione non è definita) supponiamo $\alpha < \beta$. Osserviamo che

$$\sqrt{-x^2 + ax + b} = \sqrt{(x - \alpha)(\beta - x)} = (\beta - x) \sqrt{\frac{x - \alpha}{\beta - x}}$$

Si pone

$$t^2 = \frac{x - \alpha}{\beta - x}$$
 quindi $\sqrt{-x^2 + ax + b} = t(\beta - x)$.

Problema 3.2.8.1. Calcolare

$$\int \frac{x+1}{\sqrt{-x^2 - 2x + 8}} \, dx$$

Le radici del radicando sono $\alpha=-2,\,\beta=4.$ Quindi poniamo

$$t = \sqrt{\frac{x+2}{4-x}}$$

da cui

$$x = \frac{4t^2 - 2}{1 + t^2}, \ dx = \frac{12t}{(1 + t^2)^2} \ dt$$

Sostituendo nell'integrale dato, ci riconduciamo a risolvere

$$2\int \frac{5t^2 - 1}{(1+t^2)^2} dt$$

3.2.9 Integrali del tipo $\int x^m (ax^p + b)^q dx$.

Questi integrali si trasformano in un integrale di funzioni razionali se almeno uno dei seguenti numeri

$$q, \frac{m+1}{p}, \ q + \frac{m+1}{p}$$

è intero. Nel caso in cui q è intero q si ritorna ad uno dei casi esaminati in precedenza. Se è intero

$$\frac{m+1}{p}$$
,

О

$$q + \frac{m+1}{n}$$

si fa il cambiamento di variabili

$$x^p = t$$
.

Problema 3.2.9.1. Calcolare

$$\int x^3 (3 + 2x^2)^{\frac{1}{3}} dx.$$

In questo caso

$$m = 3, p = 2q = \frac{1}{3}$$

risulta intero

$$\frac{m+1}{p} = 2.$$

Si pone $x^2 = t$, quindi $x = \sqrt{t}$, e $dx = \frac{1}{2\sqrt{t}} dt$. L'integrale diventa

$$\frac{1}{2} \int t (3+2t)^{\frac{1}{3}} dt,$$

che è del tipo visto nel S4.

Problema 3.2.9.2. Calcolare

$$\int \frac{1}{\sqrt[4]{3+2\sqrt[3]{x^8}}} \frac{1}{\sqrt[3]{x}} dx$$

L'integrale può essere scritto nella forma

$$\int x^{\frac{1}{3}} \left(3 + 2x^{\frac{8}{3}}\right)^{-\frac{1}{4}} dx.$$

In questo caso

$$m = -\frac{1}{3}, \ p = \frac{8}{3}, \ q = -\frac{1}{4}$$

Risulta intero $q + \frac{m+1}{p}$. Si pone $x^{\frac{8}{3}} = t$ da cui $x = t^{\frac{3}{8}}$ e $dx = \frac{3}{8}t^{-\frac{5}{8}}dt$. Sostituendo nell'integrale otteniamo

$$\frac{3}{8} \int \frac{1}{t} \left(\frac{t}{3+2t} \right)^{\frac{1}{4}} dt,$$

che è del tipo di integrali visti nella sezione 3.2.5.

Problema 3.2.9.3. Calcolare

$$\int x^3 (1+2x^2)^{-3/2} dx.$$

3.2.10 Integrali del tipo $\int R(\sin x, \cos x) dx$.

Si possono effettuare vari cambiamenti variabili. La scelta dipende dall'espressione della funzione integranda. Il più generale è il seguente

$$t = \tan \frac{x}{2}.$$

da cui

$$\cos x = \frac{1-t^2}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$, $dx = \frac{2}{1+t^2}dt$.

Altri cambiamenti di variabile che si possono effettuare sono

$$t = \cos x$$
, oppure $t = \sin x$, oppure $t = \tan x$.

Vediamo alcuni esempi.

Problema 3.2.10.1. Calcolare

$$\int \frac{1}{\cos x + \sin x + 1} \, dx$$

Risposta. Poniamo

$$t = \tan \frac{x}{2}$$

Sostituiamo nell'integrale dato

$$\int \frac{1}{\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2} + 1} \frac{2}{1+t^2} dt = \int \frac{1}{1+t} dt = \log|1+t| + C$$

Tenuto conto della posizione fatta l'insieme delle primitive dell'integrale di partenza è dato da:

$$\log\left(1+\tan\frac{x}{2}\right) + C.$$

Problema 3.2.10.2. Calcolare

$$\int \frac{\sin x(\cos x - 1)}{1 + \cos^2 x} dx$$

Risposta Poniamo $t = \cos x$ da cui $dt = -\sin x dx$. Sostituendo nell'integrale proposto

$$-\int \frac{t-1}{1+t^2} dt = -\frac{1}{2} \int \frac{2t}{1+t^2} dt + \int \frac{1}{1+t^2} dt = -\log|1+t^2| + \arctan(t) + C$$
Quindi

$$\int \frac{\sin x(\cos x - 1)}{1 + \cos^2 x} dx = -\log|1 + \cos^2 x| + \arctan(1 + \cos^2) + C$$

Problema 3.2.10.3. Calcolare

$$\int \frac{1}{(\sin x - 3) \cos x} \, dx$$

Risposta

$$\int \frac{1}{(\sin x - 3)\cos x} \, dx = \int \frac{1}{\sin x - 3} \, \frac{\cos x}{\cos^2 x} \, dx = \int \frac{1}{\sin x - 3} \, \frac{1}{1 - \sin^2 x} \, \cos x \, dx$$

Poniamo $t = \sin x$, quindi $dt = \cos x dx$. Sostituendo nell'integrale di partenza ci riportiamo a risolvere

$$\int \frac{1}{t-3} \frac{1}{1-t^2} dt.$$

Problema 3.2.10.4. Calcolare

$$\int \frac{\sin^2 x + 4\cos^2 x}{\tan x + 2} dx$$

Risposta.

$$\int \frac{\sin^2 x + 4\cos^2 x}{\tan x + 2} dx = \int \cos^4 x \, \frac{\tan^2 x + 4}{\tan x + 2} \, \frac{1}{\cos^2 x} \, dx =$$

$$= \int \frac{1}{(1 + \tan^2 x)^2} \, \frac{\tan^2 x + 4}{\tan x + 2} \, (1 + \tan^2 x) \, dx$$

Poniamo $t = \tan x$, da cui $dt = \frac{1}{\cos^2 x} dx = (1 + \tan^2 x) dx$. Sostituendo nell'integrale dato ci riconduciamo a risolvere

$$\int \frac{1}{(1+t^2)^2} \, \frac{t^2+4}{t+2} \, dt$$

Problema 3.2.10.5. Calcolare

$$\int \frac{1 - \sin x}{\sin x (1 - \cos x)} dx.$$

3.2.11 Vari esercizi sugli integrali indefiniti

Problema 3.2.11.1. Calcolare

(a)
$$\int \frac{\ln^2 x}{x} dx,$$
(b)
$$\int \frac{\ln x}{x^2} dx,$$
(c)
$$\int \frac{\ln^2 x}{x^2} dx$$
(d)
$$\int \frac{\ln^2 x}{x^3} dx,$$
(e)
$$\int e^x x^2 dx$$
(f)
$$\int x^2 \sin x dx$$
(g)
$$\int \frac{x-1}{4x^3-x} dx$$
(h)
$$\int \frac{x}{(x^2+2)(x-2)} dx$$
(i)
$$\int \frac{x^3}{(x+1)(x-2)} dx$$
(j)
$$\int \frac{x(x+3)}{(x^4-1)} dx$$
(k)
$$\int \frac{1+\cos x}{1-\cos x} dx$$
(l)
$$\int \frac{dx}{\sin x}$$
(m)
$$\int \frac{dx}{1+\cos^2 x}$$
(o)
$$\int \frac{\cos^3 x \sin 2x}{1+\cos^2 x} dx.$$

Risposte. a)

$$\frac{\ln^3 x}{3} + C.$$

$$-\frac{\ln x}{x} - \frac{1}{x} + C.$$

c)
$$-\frac{\ln^2 x}{x} - \frac{2\ln x}{x} - \frac{2}{x} + C.$$

d)
$$-\frac{\ln^2 x}{2x^2} - \frac{\ln x}{2x^2} - \frac{1}{4x^2} + C.$$

e)
$$e^x x^2 - 2e^x x + 2e^x + C$$
.

f)
$$-x^2\cos x + 2x\sin x + 2\cos x + c.$$

g) Usando la relazione

$$x - 1 = 2x - 1 - x$$
,

troviamo

$$\int \frac{x-1}{4x^3 - x} dx = \int \frac{1}{x(2x+1)} dx - \int \frac{1}{(2x-1)(2x+1)} dx =$$

$$= \int \frac{1}{2x} dx - \int \frac{1}{(2x+1)} dx - \frac{1}{2} \left(\int \frac{1}{(2x-1)} dx - \int \frac{1}{(2x+1)} dx \right) =$$

$$= \frac{1}{2} \ln x - \ln(2x+1) - \frac{1}{4} \ln(2x-1) + \frac{1}{4} \ln(2x+1) + C.$$

h) Usando il metodo di Hermite troviamo

$$\frac{x}{(x^2+2)(x-2)} = \frac{1}{3(x-2)} - \frac{x-1}{3(x^2+2)}$$

e quindi

$$\int \frac{x}{(x^2+2)(x-2)} dx = \frac{1}{3} \ln(x-2) - \frac{1}{6} \ln(x^2+2) + \frac{1}{3\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C.$$

i) abbiamo la relazione (usando Hermite)

$$\frac{x^3}{(x+1)(x-2)} = x+1 + \frac{1}{3(x+1)} + \frac{8}{3(x-2)}$$

e quindi

$$\int \frac{x^3}{(x+1)(x-2)} dx = \frac{x^2}{2} + x + \frac{1}{3}\ln(x+1) + \frac{8}{3}\ln(x-2) + C.$$

(j) Abbiamo (usando Hermite)

$$\frac{x(x+3)}{(x^4-1)} = \frac{1}{2(x+1)} + \frac{1}{x-1} - \frac{3x-1}{2(x^2+1)}$$

e quindi

$$\int \frac{x(x+3)}{(x^4-1)} dx = \frac{1}{2} \ln(x+1) + \ln(x-1) - \frac{3}{4} \ln(x^2+1) + \frac{1}{2} \arctan x + C.$$

k) usando la sostituzione universale $t = \tan(x/2)$ troviamo

$$\int \frac{1 + \cos x}{1 - \cos x} dx = \int \frac{2dt}{t^2(t^2 + 1)}.$$

La relazione

$$\frac{1}{t^2(t^2+1)} = \frac{1}{t^2} - \frac{1}{t^2+1}$$

implica

$$\int \frac{2dt}{t^2(t^2+1)} = 2\int \frac{dt}{t^2} - 2\int \frac{dt}{t^2+1} = -\frac{2}{t} - 2\arctan x + C.$$

 ℓ)

$$\ln(\cos x - 1) - \ln(\cos x + 1) + C.$$

m) abbiamo la sostituzione universale $t = \tan(x/2)$ e troviamo

$$\int \frac{dx}{1+\cos x} = 4 \int \frac{dt}{(t^2+1)^2}.$$

Usiamo le relazioni (usando Hermite)

$$\frac{1}{(t^2+1)^2} = \frac{1}{2(t^2+1)} + \frac{1}{4} \left(\frac{2t+1}{t^2+1}\right)'$$

e quindi

$$4\int \frac{dt}{(t^2+1)^2} = 2\arctan t + \frac{2t+1}{t^2+1} + C.$$

n) abbiamo le relazioni

$$\frac{1}{1+\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\sin^2 x + 2\cos^2 x} = \frac{1+\tan^2 x}{2\tan^2 x + 1}$$

e usando la sostituzione

$$t = \tan x$$

troviamo

$$\int \frac{1}{1+\cos^2 x} dx = \int \frac{1+t^2}{2t^2+1} \frac{dt}{t^2+1} = \int \frac{dt}{2t^2+1} = \frac{\sqrt{2}}{2} \arctan(\sqrt{2}t) + C.$$

o) abbiamo le relazioni

$$\int \frac{\cos^3 x \sin 2x}{1 + \cos^2 x} dx = 2 \int \frac{\cos^4 x \sin x}{1 + \cos^2 x} dx = -2 \int \frac{t^4}{1 + t^2} dt,$$

dove $t = \cos x$. Usiamo le relazioni

$$\frac{t^4}{1+t^2} = t^2 - 1 + \frac{1}{t^2+1}$$

e quindi

$$-2\int \frac{t^4}{1+t^2}dt = -2\int (t^2 - 1)dt - 2\int \frac{dt}{t^2 + 1} =$$
$$= -\frac{2}{3}t^3 + 2t - 2\arctan t + C.$$

Problema 3.2.11.2. Calcolare

$$I(x) = \int \frac{\ln x - 1}{\ln^2 x} dx.$$

Risposta. $I(x) = C + x/\ln x$.

Problema 3.2.11.3. Calcolare

$$\int (1 + \log x) x^{2x} dx.$$

Soluzione. Usiamo la sostituzione

$$x \log x = t$$
.

Da qui deduciamo

$$x^x = e^{x(\log x)} = e^t, \ x^{2x} = e^{2x(\log x)} = e^{2t}$$

е

$$(\log x + 1)dx = dt$$

e quindi

$$\int (1 + \log x)x^{2x} dx = \int e^{2t} dt = \frac{e^{2t}}{2} + C$$

e dopo la sostituzione troviamo

$$\int (1 + \log x)x^{2x} dx = x^{2x}/2 + C.$$

Problema 3.2.11.4. Calcolare

$$I(x) = \int \frac{dx}{\sin^4 x + \cos^4 x}.$$

Risposta.

$$I(x) = \frac{\sqrt{2}}{2} \arctan\left(\frac{\tan 2x}{\sqrt{2}}\right) + C.$$

Problema 3.2.11.5. Calcolare

$$I(x) = \int \frac{xdx}{1 + x^4}.$$

Problema 3.2.11.6. Calcolare

$$I(x) = \int \frac{xdx}{1 + x^6}.$$

Problema 3.2.11.7. Calcolare

$$I(x) = \int \frac{xdx}{1+x^8}.$$

Problema 3.2.11.8. Calcolare

$$I(x) = \int \frac{dx}{1 + x^4}.$$

Suggerimento. Verificare l'identitá

$$\frac{1}{1+x^4} = \frac{1}{(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)} =$$

$$= \frac{-\frac{x}{2\sqrt{2}} + \frac{1}{2}}{(x^2 - \sqrt{2}x + 1)} + \frac{\frac{x}{2\sqrt{2}} + \frac{1}{2}}{(x^2 + \sqrt{2}x + 1)}$$

Alla fine la risposta é

$$\frac{\sqrt{2}}{4} \left[-2 \arctan\left((1 - \sqrt{2}x) + 2 \arctan\left((1 + \sqrt{2}x) \right) \right] - \frac{\sqrt{2}}{8} \log\left(\frac{(x^2 - \sqrt{2}x + 1)}{(x^2 + \sqrt{2}x + 1)} \right).$$

Problema 3.2.11.9. Calcolare

$$I(x) = \int \sqrt{\tan x} dx.$$

Suggerimento. La sostituzione

$$\sqrt{\tan x} = t$$

implica

$$\tan x = t^2$$

e quindi abbiamo

$$x = \arctan(t^2), \quad dx = \frac{2tdt}{1+t^4}.$$

Dopo la sistituzione troviamo

$$I = \int \frac{2t^2dt}{1 + t^4}.$$

e possiamo seguire il metodo standard della soluzione del problema 3.2.11.8 per esempio. $\hfill\Box$

Problema 3.2.11.10. Calcolare

$$I_{\alpha}(x) = \int x^{\alpha} \ln x \ dx, \quad \alpha \in \mathbb{R}$$

e' trovare una funzione F(x) tale che

- a) F(x) é primitiva di $x^{\alpha} \ln x$,
- b) F(e) = 1.

Chapter 4

Esercizi su integrali definiti e impropri

4.1 Integrale di Riemann ed esercizi

Problema 4.1.0.1. (test 2017) Calcolare

$$\int_{-\pi/4}^{\pi/4} \tan(x) \cos(x + x^3) \, dx.$$

Soluzione. La funzione

$$f(x) = \tan(x)\cos(x + x^3)$$

é una funzione dispari e quindi per ogni intervallo symmetrico (-a, a) con a > 0 abbiamo

$$\int_{-a}^{a} f(x)dx = 0.$$

Cosi troviamo

$$\int_{-\pi/4}^{\pi/4} \tan(x) \cos(x + x^3) \, dx = 0.$$

Problema 4.1.0.2. (test 2017) Calcolare

$$\int_{-\pi/4}^{\pi/4} x \sin(x^2 + x^4) \, dx.$$

Risp. 0.

Problema 4.1.0.3. (test 2017 Gestionale) Calcolare

$$\int_0^{\pi} x \cos x dx$$

Soluzione. Abbiamo

$$\int_0^{\pi} x \cos x dx = \int_0^{\pi} x d \sin x = x \sin x \Big|_0^{\pi} - \int_0^{\pi} \sin x dx = \cos x \Big|_0^{\pi} = -2.$$

Problema 4.1.0.4. (test 2017 Gestionale) Calcolare

$$\int_0^1 \frac{dx}{\sqrt{4-2x}}.$$

Soluzione. La sostituzione 4-2x=t ci da dx=-dt/2 e

$$\int_0^1 \frac{dx}{\sqrt{4 - 2x}} = -\frac{1}{2} \int_4^2 \frac{dt}{\sqrt{t}} = \frac{1}{2} \int_2^4 \frac{dt}{\sqrt{t}} = \sqrt{t} \Big|_2^4 = 2 - \sqrt{2}.$$

Problema 4.1.0.5. Calcolare

(a)
$$\int_{1}^{2} \frac{\ln(x+1)}{x+1} dx$$
, (b) $\int_{0}^{1} \frac{dx}{(x-4)\sqrt{x}} dx$, (c) $\int_{0}^{1} \frac{x-1}{(x+2)\sqrt{x}} dx$
(d) $\int_{1}^{10} \frac{dx}{e^{x} + e^{-x}} dx$, (e) $\int_{1/2}^{2} e^{-1/x} \frac{dx}{x^{2}}$ (f) $\int_{0}^{\pi} x^{2} \cos x dx$

Problema 4.1.0.6. Calcolare

$$\int_{-1}^{1} |e^x - 1| dx.$$

Risposta. Tenuto conto della seguente proprietà degli integrali

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, \ a < c < b,$$

e di

$$|e^x - 1| = \begin{cases} e^x - 1 & x \ge 0\\ -e^x + 1 & x < 0, \end{cases}$$

sostituiamo

$$\int_{-1}^{0} -(e^{x}-1) dx + \int_{0}^{1} (e^{x}-1) dx = \left[-e^{x}\right]_{-1}^{0} + \left[x\right]_{-1}^{0} + \left[e^{x}\right]_{0}^{1} + \left[x\right]_{0}^{1} = 2e.$$

Problema 4.1.0.7. Calcolare

$$\int_0^2 e^{|x-1|} dx.$$

Risposta. Da

$$e^{|x-1|} = \begin{cases} e^{x-1} & x \ge 1\\ e^{-(x-1)} & x < 1, \end{cases}$$

e dalla proprietà degli integrali definiti vista nell'esercizio precedente otteniamo

$$\int_0^2 e^{|x-1|} dx. = \int_0^1 e^{-(x-1)} dx + \int_1^2 e^{x-1} dx = \left[-ee^{-x} \right]_0^1 + \left[e^{-1} e^x \right]_1^2 = 2e - 2.$$

Problema 4.1.0.8. (disequazione di Cauchy) Se $f,g \in C[a,b]$ dimostrare la disequazione

$$\left| \int_{a}^{b} f(x)g(x)dx \right|^{2} \le \int_{a}^{b} f(x)^{2}dx \int_{a}^{b} g(x)^{2}dx. \tag{4.1.0.1}$$

Problema 4.1.0.9. (disequazione di Hölder) Se $p, q \in (1, \infty)$ soddisano

$$\frac{1}{p} + \frac{1}{q} = 1,$$

allora per ogni $f, g \in C[a, b]$ abbiamo la disequazione

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \left(\int_{a}^{b} |f(x)|^{p}dx \right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q}dx \right)^{1/q}. \quad (4.1.0.2)$$

Problema 4.1.0.10. (disequazione di Minkowski) Se $p \in (1, \infty)$ allora per ogni $f, g \in C[a, b]$ abbiamo la disequazione

$$\left(\int_{a}^{b} |f(x) + g(x)|^{p} dx\right)^{1/p} \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p} + \left(\int_{a}^{b} |g(x)|^{p} dx\right)^{1/p}.$$
(4.1.0.3)

Problema 4.1.0.11. Se $f(x) \in C[0,1]$ e la funzione e' derivabile in (a,b) e soddisfa la condizione

$$\int_0^1 |f'(x)|^2 dx \le 1 \tag{4.1.0.4}$$

allora la condizione f(0) = 0 implica

$$|f(x)| \le 1 \tag{4.1.0.5}$$

per ogni $x \in [0, 1]$.

Problema 4.1.0.12. Se $f(x) \in C[0,1]$ e la funzione e' derivabile in (a,b) e soddisfa le condizioni

$$\int_0^1 |f'(x)|^2 dx \le 1 \tag{4.1.0.6}$$

e

$$\int_0^1 |f(x)|^2 dx \le 1 \tag{4.1.0.7}$$

implicano

$$|f(x)| \le 3\tag{4.1.0.8}$$

per ogni $x \in [0, 1]$.

Problema 4.1.0.13. Calcolare

$$I = \int_{-3}^{3} \frac{\ln(x + \sqrt{1 + x^2})}{1 + x^2 + x^{1000}} \arctan^2(x + x^{2005}) dx.$$

Risposta I = 0.

Problema 4.1.0.14. Calcolare

$$I = \int_{-\pi/2}^{\pi/2} \frac{e^{\sin x}}{1 + e^{\sin x}} \sqrt{\cos x - \cos^3 x} \, dx.$$

Risposta I = 2/3.

Problema 4.1.0.15. Dimostrare che per ogni funzione f continua abbiamo

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

Problema 4.1.0.16. Calcolare

$$I = \int_0^\pi x \, \frac{\sin x}{1 + \cos^2 x} \, dx.$$

Risposta $I = \pi^2/4$.

Problema 4.1.0.17. Se $f \in C[0,1]$ e' crescente, allora per ogni numero $\alpha \in (0,1)$ abbiamo

$$\int_0^1 f(t)dt \ge \frac{1}{\alpha} \int_0^{\alpha} f(t)dt.$$

4.2 Funzioni integrabili in senso improprio.

Sia $f:(a,b] \longrightarrow \mathbb{R}$. Diremo che f è integrabile in senso improprio su (a,b] se

- 1. f è integrabile secondo Riemann in ogni intervallo (c,b] con a < c < b,
- 2. esiste finito il limite $\lim_{c\to a+} \int_c^b f(x) dx$,

in tal caso poniamo

$$\lim_{c \to a+} \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Analogamente

Sia $f:[a,+\infty)\longrightarrow \mathbb{R}$. Diremo che f è integrabile in senso improprio su $[a,+\infty)$ se

- 1. f è integrabile secondo Riemann in ogni intervallo [a, c] con a < c,
- 2. esiste finito il limite $\lim_{c\to +\infty} \int_a^c f(x) dx$,

in tal caso poniamo

$$\lim_{c \to +\infty} \int_{a}^{c} f(x) dx = \int_{a}^{+\infty} f(x) dx$$

4.2.1 Esercizi su integrali impropri

Problema 4.2.1.1. Calcolare

$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx, \quad a > 0.$$

Soluzione. Sia 0 < a < c.

$$\int_{a}^{c} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha} x^{1-\alpha} & \alpha \neq 1\\ \log x & \alpha = 1. \end{cases}$$

Quindi se $\alpha \neq 1$

$$\lim_{c \to +\infty} \int_a^c \frac{1}{x^{\alpha}} dx = \lim_{c \to +\infty} \frac{1}{1-\alpha} \left[x^{1-\alpha} \right]_a^c = \begin{cases} \frac{1}{\alpha-1} a^{\alpha-1} & \alpha > 1 \\ +\infty & \alpha < 1 \end{cases}$$

Se invece $\alpha = 1$

$$\lim_{c \to +\infty} \int_a^c \frac{1}{x} dx = \lim_{c \to +\infty} \left[\log x \right]_a^c = +\infty.$$

In definitiva la funzione

$$f(x) = \frac{1}{x^{\alpha}}$$

è integrabile in senso improprio su $[a, +\infty)$ se $\alpha > 1$.

Problema 4.2.1.2. Vedere se l'integrale

$$\int_0^1 \left(\cos(x+\pi) + 1 - \frac{x^2}{2} \right) \frac{dx}{x^5}$$

esiste.

Soluzione. Usiamo lo sviluppo di Taylor

$$\cos(x+\pi) + 1 - \frac{x^2}{2} = \frac{x^4}{24} + o(x^4)$$

e troviamo che l'integrale NON esiste.

Problema 4.2.1.3 (Gestionale 2018). Studiare la convergenza del integrale improprio

$$\int_0^1 \frac{e^x sin(\sqrt{x})}{x^\alpha} dx$$

al variare del parametro α .

Soluzione. L'integrale ha singlaritá solo per x vicino a 0. Abbiamo lo sviluppo asintotico

$$\frac{e^x sin(\sqrt{x})}{r^{\alpha}} = \frac{1}{r^{\alpha - 1/2}} \left(1 + o(1) \right)$$

per $x \to 0$. Cosi applicando il principio di confronto troviamo che

$$\int_0^1 \frac{1}{x^{\alpha - 1/2}} dx$$

converge se e solo se $\alpha - 1/2 < 1$, che significa $\alpha < 3/2$.

Problema 4.2.1.4. (Gestionale 15 Dic. 2018) Vedere se l'integrale

$$\int_0^1 \left(e^{1+2\sin x} - e - 2ex \right) \frac{dx}{x^{5/2}}$$

esiste.

Soluzione. Usiamo lo sviluppo di Taylor

$$e^{1+2\sin x} - e - 2ex = 2ex^2 + o(x^2)$$

e troviamo che l'integrale esiste.

Problema 4.2.1.5. (Gestionale, Dic. 15 2018) Vedere se l'integrale

$$\int_0^1 \left(\sin(x+\pi) + x - \frac{x^3}{6} \right) \frac{dx}{x^6}$$

esiste.

Soluzione. Usiamo lo sviluppo di Taylor

$$\sin(x+\pi) = -x + \frac{x^3}{6} - \frac{x^5}{120}$$

e troviamo che l'integrale NON esiste.

Problema 4.2.1.6. Studiare la convergenza del integrale improprio

$$\int_0^{\pi/10} \frac{\ln x}{\sin(x\ln^2 x)} dx.$$

Soluzione. Usiamo lo svilupo di Taylor

$$\sin(x\ln^2 x) = x\ln^2 x + o(x\ln^2 x)$$

e applicand il principio di confronto troviamo che l'integrale da studiare e

$$\int_0^{\pi/10} \frac{\ln x}{x \ln^2 x} dx = \int_0^{\pi/10} \frac{1}{x \ln x} dx.$$

L'ultimo integrale diverge a $-\infty$. Infatti, per $\delta > 0$ piccolo utiliziamo la sostituzione $y = \ln x$ e troviamo

$$\int_0^\delta \frac{1}{x \ln x} dx = \int_{-\infty}^{\ln \delta} \frac{dy}{y}$$

e la sostituzione t = -y ci da

$$\int_{-\infty}^{\ln \delta} \frac{dy}{y} = \int_{\infty}^{-\ln \delta} \frac{dt}{t} = -\int_{-\ln \delta}^{\infty} \frac{dt}{t}$$

e ovviamente l'ultimo integrale improprio tende a $-\infty$.

Problema 4.2.1.7. (Gestionale Gennaio 2019) Sia

$$I_{\alpha,\beta} = \int_0^{\pi/2} \frac{1 + (\beta - 1)x + \alpha \tan^2 x}{\beta + \tan x + \tan^2(x)} dx$$

- a) Calcolare l'integrale $I_{\alpha,\beta}$ (se esiste) per $\alpha = 1, \beta = 1$;
- b) Calcolare l'integrale $I_{\alpha,\beta}$ (se esiste) per $\alpha = 0, \beta = 1$;
- c) Studiare l'esistenza di $I_{\alpha,\beta}$ al variare dei parametri $\alpha \in \mathbb{R}, \beta \geq 0$.

Soluzione a). Usiamo la sostituzione

$$\tan x = t$$

e troviamo

$$I_{\alpha,1} = \int_0^\infty \frac{1 + \alpha t^2}{(1 + t + t^2)(1 + t^2)} dt. \tag{4.2.1.9}$$

Per $\alpha = 1$ troviamo

$$I_{1,1} = \int_0^\infty \frac{1}{(1+t+t^2)} dt. \tag{4.2.1.10}$$

Abbiamo la relazione

$$\int \frac{1}{(1+t+t^2)} dt = \frac{2}{\sqrt{3}} \arctan\left(\frac{2t+1}{\sqrt{3}}\right) + C$$

e quindi

$$I_{1,1} = \int_0^\infty \frac{1}{(1+t+t^2)} dt = \frac{\pi}{\sqrt{3}} - \frac{\pi}{3\sqrt{3}} = \frac{2\pi}{3\sqrt{3}}.$$
 (4.2.1.11)

Soluzione b). Usiamo (8.3.0.18) e con $\alpha = 0$ troviamo

$$I_{0,1} = \int_0^\infty \frac{1}{(1+t+t^2)(1+t^2)} dt. \tag{4.2.1.12}$$

Usiamo il metodo di Hermite

$$\frac{1}{(1+t+t^2)(1+t^2)} = \frac{At+B}{1+t+t^2} + \frac{Ct+D}{1+t^2}$$

e troviamo A = B = -C = 1, D = 0

$$\int \frac{1}{(1+t+t^2)(1+t^2)} dt = \int \frac{t+1}{(1+t+t^2)} dt - \int \frac{t}{(1+t^2)} dt =$$

$$= \int \frac{t+1/2}{(1+t+t^2)} dt + \frac{1}{2} \int \frac{1}{(1+t+t^2)} dt - \int \frac{t}{(1+t^2)} dt =$$

$$= \frac{1}{2} \ln(1+t+t^2) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2t+1}{\sqrt{3}}\right) - \frac{1}{2} \ln(1+t^2) + C.$$

e quindi

$$I_{0,1} = \frac{\pi}{3\sqrt{3}}. (4.2.1.13)$$

Soluzione c). Usiamo la sostituzione

$$\tan x = t$$

e troviamo

$$I_{\alpha,\beta} = \int_0^\infty \frac{1 + (\beta - 1) \arctan t + \alpha t^2}{(\beta + t + t^2)(1 + t^2)} dt.$$
 (4.2.1.14)

Per $\beta>0$ si vede che l'integrale converge. Per $\beta=0$ abbiamo

$$I_{\alpha,\beta} = \int_0^\infty \frac{1 - \arctan t + \alpha t^2}{(t + t^2)(1 + t^2)} dt.$$
 (4.2.1.15)

L'integrale diverge vicino a t = 0.

Problema 4.2.1.8. Studiare la convergenza della serie

$$\sum_{k=1}^{\infty} c_k, \quad c_k = \int_{\pi(k-1)}^{\pi k} \frac{\sin y}{(y+1)} dy.$$

Soluzione. La successione c_k soddisfa le proprietá

$$c_1 > -c_2 > c_3 > -c_4 > \cdots > c_{2N-1} > -c_{2N} > 0$$

e $c_k \to 0$. Quindi, la serie converge

Problema 4.2.1.9. Calcolare

$$\int_0^\infty \frac{dx}{1+x^4}.$$

Problema 4.2.1.10. Calcolare

$$\int_a^b \frac{1}{(x-a)^{\alpha}} dx, \quad a > 0.$$

Procedendo in modo analogo a quello visto in precedenza si ottiene che la funzione

$$f(x) = \frac{1}{(x-a)^{\alpha}}$$

è integrabile in senso improprio su (a, b] se $\alpha < 1$.

Problema 4.2.1.11. Sia $f \in C^0([a, +\infty))$. Supponiamo che

$$\lim_{x \to +\infty} f(x) = L \neq 0$$

dimostrare che

$$\int_{a}^{+\infty} f(x) = \begin{cases} +\infty & L > 0\\ -\infty & L < 0 \end{cases}$$

Una funzione f si dice assolutamente integrabile in senso improprio se è integrabile in senso improprio la funzione |f|.

Si dimostra che

se f assolutamente integrabile in senso improprio allora è integrabile in senso improprio.

Questa proposizione ci permette di risolvere il seguente problema.

Problema 4.2.1.12. Dimostrare che esiste finito il seguente integrale improprio.

$$\int_{a}^{+\infty} \sin x^2 \, dx$$

Non è restrittivo considerare a > 0. Sia a < b. Dopo aver effettuato il cambiamento di variabile $x^2 = t$ si ha

$$\int_{a}^{b} \sin^{2} x \, dx = \int_{a^{2}} b^{2} \frac{\sin t}{\sqrt{t}} \, dt = \text{(integrazione per parti)}$$

$$= \left[-\frac{\cos t}{\sqrt{t}} \right]_{a}^{b} - \frac{1}{2} \int_{a}^{b^{2}} \frac{\cos t}{\sqrt{t^{3}}} \, dt = -\frac{\cos b^{2}}{b} + \frac{\cos a^{2}}{a} - \frac{1}{2} \int_{a^{2}}^{b^{2}} \frac{\cos t}{\sqrt{t^{3}}} \, dt$$

Osserviamo che

$$\lim_{b \to +\infty} \frac{\cos b^2}{b} = 0$$

mentre

$$\lim_{b \to +\infty} \int_{a^2}^{b^2} \frac{\cos t}{\sqrt{t^3}} dt < +\infty$$

perchè

$$\left|\frac{\cos t}{\sqrt{t^3}}\right| < \frac{1}{\sqrt{t^3}}, \ t > 0.$$

Poichè la funzione $t \to \frac{1}{\sqrt{t^3}}$ è integrabile in senso improprio su $(a, +\infty)$ anche $x \to \left|\frac{\cos t}{\sqrt{t^3}}\right|$ risulta integrabile in s.i. in tale intervallo e quindi la funzione $x \to \frac{\cos t}{\sqrt{t^3}}$ è ivi assolutamente integrabile in s.i. e dunque integrabile in s.improprio. Abbiamo anche utilizzato il *criterio del confronto per integrali impropri* nelle considerazioni precedenti.

Problema 4.2.1.13. Studiare al variare di $\alpha \in \mathbb{R}$ l'integrabilita sulla semiretta $[0, +\infty)$ della funzione

$$f(x) = \left(\frac{\pi}{2} - \arctan x\right)^{\alpha}$$

Risposta: la funzione risulta integrabile in s.i. per $\alpha > 1$.

Problema 4.2.1.14. Studiare al variare di $\alpha \in \mathbb{R}$ l'integrabilita sulla semiretta $[0, +\infty)$ della funzione

$$f(x) = \left(\frac{\pi}{2} - \arctan x - \frac{1}{x}\right)^{\alpha}$$

Risposta: la funzione risulta integrabile in s.i. per $\alpha > \frac{1}{3}$.

Problema 4.2.1.15. Dato l'integrale improprio

$$I(n) = \int_0^1 \left(\log \frac{1}{x}\right)^n dx$$

- 1. dimostrare che esiste finito per ogni $n \in \mathbb{N}$;
- 2. dimostrare che I(n) = n! per ogni $n \in \mathbb{N}$.

Problema 4.2.1.16. (Gestionale, 2018, Dic. 15) Studiare la convergenza del integrale

$$\int_{3}^{\infty} \ln^{\alpha}(x-2)\sin(1+x^2)dx$$

al variare del parametro $\alpha \in [0, 1]$.

Soluzione. Per x vicino a 2 abbiamo

$$\ln(x-1) = \ln(1+(x-2)) = (x-2) + o(x-2)$$

e quindi

$$\ln^{\alpha}(x-1) = (x-2)^{\alpha}(1+o(1)).$$

Per $\alpha \in [0,1]$ l'inntegrale converge vicino a x=2. Così rimane a studiare

$$\int_{3}^{\infty} \ln^{\alpha}(x-1)\sin(1+x^2)dx$$

Usiamo la relazione

$$\sin(1+x^2) = -\frac{(\cos(1+x^2))'}{2x}$$

e dopo una integrazione per parti troviamo

$$\int_{3}^{R} \ln^{\alpha}(x-1)\sin(1+x^{2})dx = -\ln^{\alpha}(x-1)\frac{\cos(1+x^{2})}{2x}\bigg|_{3}^{R} + \int_{3}^{R} \left(\frac{\ln^{\alpha}(x-1)}{2x}\right)'\cos(1+x^{2})dx.$$

PPer x grande abbiamo

$$\left| \left(\frac{\ln^{\alpha}(x-1)}{2x} \right)' \right| \le \frac{C \ln^{\alpha-1}(x-1)}{x^2} \le \frac{C}{x^{3/2}}.$$

Cosi l'integrale converge.

Problema 4.2.1.17. (Gestionale, 2018, Dic. 15) Studiare la convergenza del integrale

$$\int_{2}^{\infty} \ln^{\alpha}(x-1)\sin(1+x^2)dx$$

al variare del parametro $\alpha \in [-2, -1]$.

Soluzione. Per x vicino a 2 abbiamo

$$\ln(x-1) = \ln(1+(x-2)) = (x-2) + o(x-2)$$

e quindi

$$\ln^{\alpha}(x-1) = (x-2)^{\alpha}(1+o(1)).$$

Per $\alpha \in [-2, -1]$ l'integrale diverge vicino a x = 2.

Per x vicino a $+\infty$ usiamo

$$\sin(1+x^2) = -\frac{\cos(x^2+1)}{2x}$$

e dopo integrazione per parti troviamo la convergenza vicino $a + \infty$. \square

Problema 4.2.1.18. Studiare al variare di $\alpha \in \mathbb{R}$ l'integrabilita sulla semiretta $(0, +\infty)$ della funzione

$$f(x) = \frac{x^{\alpha}}{(1 + 2\arctan x)^{x} - (1 + \arctan 2x)^{x}}$$

Soluzione. Si verifica prima di tutto che il denominatore di f non ammette zeri sulla semiretta $(0, +\infty)$. Abbiamo due integrali impropri

$$\int_0^1 \frac{x^{\alpha}}{(1+2\arctan x)^x - (1+\arctan 2x)^x} dx$$

е

$$\int_{1}^{\infty} \frac{x^{\alpha}}{(1+2\arctan x)^{x} - (1+\arctan 2x)^{x}} dx.$$

Per x vicino a 0 abbiamo

$$(1 + 2\arctan x)^x = e^{x\ln(1+2\arctan x)}$$

e usando

$$\arctan x = x - \frac{x^3}{3} + o(x^3), \ \arctan(2x) = 2x - \frac{8x^3}{3} + o(x^3)$$

troviamo

$$\ln(1+2\arctan x) = 2\arctan x - \frac{4\arctan^2 x}{2} + \frac{8\arctan^3 x}{3} + o(x^3) =$$
$$= 2x - \frac{2x^3}{3} - \frac{4x^2}{2} + \frac{8x^3}{3} + o(x^3).$$

е

$$\ln(1 + \arctan(2x)) = \arctan(2x) - \frac{\arctan^2(2x)}{2} + \frac{\arctan^3(2x)}{3} + o(x^3) =$$
$$= 2x - \frac{8x^3}{3} - \frac{4x^2}{2} + \frac{8x^3}{3} + o(x^3).$$

Cosi troviamo

$$x\ln(1+2\arctan x) - x\ln(1+\arctan(2x)) = \frac{6x^4}{3} + o(x^4).$$

In questo caso troviamo

$$(1+2\arctan x)^x - (1+\arctan 2x)^x =$$

$$= (1 + \arctan 2x)^x \left[e^{x \ln(1 + 2\arctan x) - x \ln(1 + \arctan(2x))} - 1\right] = (1 + o(1))(\frac{6x^3}{3} + o(x^3))$$

e usando il principio di confronto si vede che l'integrale \int_0^∞ converge se e solo se converge

$$\int_0^1 \frac{x^{\alpha} dx}{x^4}$$

e quindi $\alpha > 3$.

Per

$$\int_{1}^{\infty} \frac{x^{\alpha}}{(1+2\arctan x)^{x} - (1+\arctan 2x)^{x}} dx$$

usiamo

$$\arctan x = \frac{\pi}{2} + 1/x + o(1/x), \ x \to \infty.$$

Cosi troviamo

$$(1 + 2\arctan x)^x - (1 + \arctan(2x))^x =$$

$$= (2\pi/2 + 2/x + o(1/x))^{x} - (\pi/2 + 1/(2x) + o(1/x))^{x} \ge c\pi^{x}(1 + o(1))$$

per qualche costante c > 0. L'integrale

$$\int_{1}^{\infty} \frac{x^{\alpha} dx}{\pi^x}$$

converge sempre. Intersecando i valori di α per i quali f è integrabile in s. i. nei due intervalli la funzione risulta integrabile in s.i. su $(0, +\infty)$ per $\alpha > 3$.

Problema 4.2.1.19. Studiare la convergenza del integrale improprio

$$\int_0^\infty \frac{\sin^2 x}{a+x^2} \ e^{x-a\sqrt{x^2+1}} dx$$

al variare del parametro $a \geq 0$.

Idea della solzuione. Usiamo la relazione

$$x - a\sqrt{x^2 + 1} = \begin{cases} x(1 - a) + o(x), & \text{se } x \text{ \'e grande e } a \neq 1; \\ 1/(2x) + o(1/x), & \text{se } x \text{ \'e grande e } a = 1. \end{cases}$$

Abbiamo 4 casi diversi.

Caso a) a > 1. In questo caso

$$e^{x-a\sqrt{x^2+1}} < 2e^{x(1-a)}$$

per x grande e quindi la disequazione

$$\frac{\sin^2 x}{a + x^2} e^{x - a\sqrt{x^2 + 1}} \le \frac{2}{a} e^{x(1 - a)}$$

e applicando principio di confronto concludiamo che integrale converge.

Caso b) $a \in (0,1)$. In questo caso

$$e^{x-a\sqrt{x^2+1}} > e^{x(1-a)}/2$$

per x grande. Usiamo la relazione

$$\sin^2 x > \frac{1}{2} \iff x \in A,$$

dove

$$A = \cup_k (I_k \cup J_k)$$

dove

$$I_k = (\pi/4 + 2k\pi, 3\pi/4 + 2k\pi), \ J_k = (5\pi/4 + 2k\pi, 7\pi/4 + 2k\pi)$$

Scegliendo $R = (2N + 1)\pi$ usiamo la inclusione

$$\cup_{k=1}^{N} I_k \cup J_k \subset (0,R)$$

troviamo

$$\int_0^R f(x)dx \ge \sum_{k=0}^N \left(\int_{I_k} f(x)dx + \int_{J_k} f(x)dx \right),$$

dove

$$f(x) = \frac{\sin^2 x}{a + x^2} e^{x - a\sqrt{x^2 + 1}}.$$

Le disequazioni

$$f(x) = \frac{\sin^2 x}{a + x^2} e^{x - a\sqrt{x^2 + 1}} \ge \frac{1}{4a} e^{x(1-a)}$$

per $x \in A$ e x grande. E quindi

$$\int_{I_k} f(x)dx = \int_{\pi/4+2k\pi}^{3\pi/4+2k\pi} f(x)dx \ge$$

$$\ge \frac{1}{4a} e^{2k\pi(1-a)} \int_{\pi/4+2k\pi}^{3\pi/4+2k\pi} 1dx = \frac{\pi}{8a} e^{2k\pi(1-a)}$$

per k grande. Inoltre abbiamo anche

$$\int_{J_k} f(x)dx \ge \frac{1}{4a} e^{2k\pi(1-a)} \int_{J_k} 1dx = \frac{\pi}{8a} e^{2k\pi(1-a)}$$

La serie

$$\sum_{k>k_0} e^{2k\pi(1-a)}$$

diverge per ogni $k_0 \ge 1$ e per $a \in (0,1)$ e quindi

$$\int_{0}^{R} f(x)dx \ge C \sum_{k \ge k_0} e^{2k\pi(1-a)}$$

mostra che l'integrale diverge.

Caso a=0 si studia in modo come fatto nel caso b). La serie diverge.

Caso a = 1 In questo caso per x grande abiamo

$$f(x) = \frac{\sin^2 x}{1 + x^2}$$

e confrontando con

$$g(x) = \frac{1}{1+x^2}$$

da convergenza assoluta del integrale improprio.

Problema 4.2.1.20. Calcolare il valore del sequente limite

$$\lim_{x \to 0+} \int_{\frac{x}{2}}^{x} \frac{1 - \cos t}{\sqrt{t^5}} \, dt$$

Risposta. Il valore del limite è 0.

Problema 4.2.1.21. Calcolare il valore del seguente limite

$$\lim_{x\to 0+} \int_{\frac{x}{2}}^{x} \frac{1-\cos t}{t^3} dt$$

Risposta. Il valore del limite è $\frac{1}{2} \log \frac{1}{2}$.

Problema 4.2.1.22. Studiare la funzione:

$$f(x) = \frac{x^3}{3} + x - \int_0^x e^{t^2} dt, \ x \in \mathbb{R}.$$

Problema 4.2.1.23. Dire se la successione

$$a_N = \sqrt{N} \int_0^{2\pi N^2} \frac{\sin x/N}{(x+N)} dx, \ N = 1, 2, \cdots$$

é limitata.

Soluzione. Cambiamento di variabli Nx = y implica

$$\int_0^{2\pi N^2} \frac{\sin Nx}{(x+N)} dx = \int_0^{2\pi N} \frac{\sin y}{(y+1)} dy.$$

Si vede che

$$b_N = \int_0^{2\pi N} \frac{\sin y}{(y+1)} dy = \sum_{k=1}^{2N} c_k, \quad c_k = \int_{\pi(k-1)}^{\pi k} \frac{\sin y}{(y+1)} dy.$$

La successione c_k soddisfa le proprietá

$$c_1 > -c_2 > c_3 > -c_4 > \cdots > c_{2N-1} > -c_{2N} > 0$$

cosi otteniamo

$$b_N > c_1 + c_2 + c_3 + c_4 + \dots + c_{2N-2} + c_{2N} > c_1 + c_2 > 0.$$

Quindi, la successione

$$a_N = \sqrt{N}b_N > \sqrt{N}(c_1 + c_2)$$

é illimitata.

Chapter 5

Equazioni ordinarie

5.0.1 Equazioni ordinarie a variabili separabili

Equazioni Ordinarie L'equazione y'(x) = f(y) é una equazione ordinarie. La soluzione si trova integrando:

$$\int \frac{dy}{f(y)} = \int dx.$$

Se F(y) é una primitiva di 1/f(y) allora 1/f(y) = F'(y) e tutti soluzioni y(x) sono soluzioni di

$$F(y) = x + C.$$

Il problema di Cauchy

$$y'(x) = f(y), \quad y(x_0) = y_0$$
 (5.0.1.1)

con $f(y_0) \neq 0$ ha unica soluzione y = y(x)in un intorno di x_0 definita dalla primitiva

della funzione 1/f(y) cioe' dell'integrale indefinito

$$F(y) = \int \frac{dy}{f(y)} \iff F'(y) = \frac{1}{f(y)}$$

e dalla costante C che soddisfa l'equazione

$$F(y_0) + C = x - x_0. (5.0.1.2)$$

L'equazione

$$y'(x) = f(y)g(x),$$

e' equazione a variabili separabili.

Il problema di Cauchy

$$y'(x) = f(y)g(x), y(x_0) = y_0$$
 (5.0.1.3)

con $f(y_0) \neq 0$ ha unica soluzione y = y(x) in un intorno di x_0 definita dalla equazione

$$F(y) + C = G(x), (5.0.1.4)$$

dove

$$F(y) = \int \frac{dy}{f(y)}, \quad G(x) = \int g(x)dx.$$
 (5.0.1.5)

Problema 5.0.1.1. Trovare tutti soluzioni di

$$y' = y^2$$
, $y' = siny$, $y' = 2y + 3$.

Problema 5.0.1.2. Risolvere le equazioni

$$xy + (x+1)^2y' = 0$$
, $y'\sqrt{1+x^2} = \sqrt{1+y^2}$.

Risp.

$$y = \frac{c}{x+1} e^{-1/(x+1)}, y + \sqrt{1+y^2} = c(x+\sqrt{1+x^2}).$$

5.0.2 Equazioni ordinarie lineari

L'equazione

$$y' = a(t)y(t) + b(t), (5.0.2.6)$$

dove $t\in I$ e I e' un intervallo in $\mathbb R$ si chiama equazione lineare. Se b(t)=0 l'equazione si chiama omogeneo. Tutte le soluzioni di questa equazione si possono representare come

$$y(t) = e^{A(t)} \left(c + \int b(s)e^{-A(s)} ds \right),$$

dove $A(t) = \int a(s)ds$ e' una primitiva di a(t). Il problema di Cauchy

$$y' = a(t)y(t) + b(t), \quad y(x_0) = y_0$$
 (5.0.2.7)

ha soluzione definita da

$$y(t) = e^{A(t)} \left(C + \int b(t)e^{-A(t)} dt \right), \quad A(t) = \int a(t) dt.$$

5.0.3 Esercizi su equazioni differenziali lineari del I ordine

Problema 5.0.3.1. Trovare tutti soluzioni di

1)
$$y' = 3t^2y(t) + t^5$$
, $2)y' = y + \sin t$.

Risp.

1)
$$y(t) = ce^{-t^3} - \frac{1}{3}(t^3 + 1),$$
 2) $y(t) = ce^t - \frac{1}{2}(\sin t + \cos t).$

Problema 5.0.3.2. (Gestionale, 2018, Dic. 15) Determinare la soluzione del problema di Cauchy

$$y'(x) + \frac{y(x)}{(x-1)^2} = -\frac{\sin x}{x-1}$$
$$y(0) = -1.$$

Soluzione. La soluzone é

$$y(x) = -1 - e^{1/(x-1)} \left(\int_0^x e^{-1/(y-1)} \frac{\sin y}{y-1} dy \right).$$

La funzione e ben definita per $x \in (-\infty, 1)$. Il limite per $x \to -\infty$ esiste ed e

$$\lim_{x \to -\infty} y(x) = -1 + \int_{-\infty}^{0} e^{-1/(y-1)} \frac{\sin y}{y-1} dy$$

dove l'integrale

$$\int_{-\infty}^{0} e^{-1/(y-1)} \frac{\sin y}{y-1} dy$$

e oscillante e esiste. Per vedere il comportamento di y(x) quando $x \to 1_-$, si studia l'integrale improprio

$$\int_0^1 e^{-1/(y-1)} \frac{\sin y}{y-1} dy$$

L'integrale diverge in 1. Per vedere il limite di

$$\frac{\int_0^x e^{-1/(y-1)} \frac{\sin y}{y-1} dy}{e^{1/(1-x)}}$$

usiamo la regola di l'Hôpital

$$\frac{e^{1/(1-x)}\sin x/(x-1)}{e^{1/(1-x)}/(1-x)^2}$$

Cosi si puo vedere che

$$\lim_{x \nearrow 1} y(x) = 0.$$

Problema 5.0.3.3. Determinare la soluzione del problema di Cauchy

$$y'(x) + \frac{y(x)}{(x-1)^2} = -\frac{\cos x}{x-1}$$
$$y(0) = 0.$$

Soluzione. La soluzone é

$$y(x) = -e^{1/(x-1)} \left(\int_0^x e^{-1/(y-1)} \frac{\cos y}{y-1} dy \right).$$

La funzione e ben definita per $x \in (-\infty, 1)$. Il limite per $x \to -\infty$ esiste ed e

$$\lim_{x \to -\infty} y(x) = -1 + \int_{-\infty}^{0} e^{-1/(y-1)} \frac{\cos y}{y-1} dy$$

dove l'integrale

$$\int_{-\infty}^{0} e^{-1/(y-1)} \frac{\cos y}{y-1} dy$$

e oscillante e esiste. Per vedere il comportamento di y(x) quando $x \to 1_-$, si studia l'integrale improprio

$$\int_0^1 e^{-1/(y-1)} \frac{\cos y}{y-1} dy$$

L'integrale diverge in 1. Per vedere il limite di

$$\frac{\int_0^x e^{-1/(y-1)} \frac{\cos y}{y-1} dy}{e^{1/(1-x)}}$$

usiamo la regola di l'Hôpital

$$\frac{e^{1/(1-x)}\sin x/(x-1)}{e^{1/(1-x)}/(1-x)^2}$$

Cosi si puo vedere che

$$\lim_{x \nearrow 1} y(x) = 0.$$

5.0.4 Equazioni ordinarie di secondo ordine

Problema 5.0.4.1. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a e' costante, allora l'energia

$$E(t) = \frac{|y'(t)|^2}{2} - a\frac{|y(t)|^2}{2}$$

e' costante. Concludere che se a < 0, y(t) soddisfa y(0) = y'(0) = 0, allora y(t) = 0 per ogni $t \in \mathbb{R}$.

Problema 5.0.4.2. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a e' costante, e y(t) soddisfa y(0) = y'(0) = 0, allora y(t) = 0 per ogni $t \in \mathbb{R}$.

Problema 5.0.4.3. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a < 0 e' costante, allora esistono due costanti A, B tali che

$$y(t) = A\cos\left(\sqrt{-a}\ t\right) + B\sin\left(\sqrt{-a}\ t\right)$$

per ogni $t \in \mathbb{R}$.

5.1 Equazioni particolari

L'equazione di Bernoulli

$$z' = a(t)z(t) + b(t)z^{k}, \ k \neq 0, 1, \tag{5.1.0.8}$$

si puo trasformare in (5.0.2.6) con la trasformata

$$z^A = y,$$

dove il parametro A si sceglie in modo opportuno. Abbiamo le relazioni

$$\underbrace{Az^{A-1}z'}_{y'} = Az^{A-1} \left(az + bz^{k}\right) = Aay + Abz^{A-1+k},$$

quindi con A = 1 - k deduciamo

$$y' = Aay + Ab$$
.

L'equazione di Riccati

$$z' = a(t)z^{2}(t) + b(t)z + c(t), (5.1.0.9)$$

non si puo risolvere esplicitamente in generale. Se conosciamo una soluzione $z_0(t)$ usando la sostituzione

$$z(t) = u(t) - z_0(t)$$

possiamo ottenere una equazione (rispetto u(t)) tale che questa equazione e' una equazione di Bernoulli.

Problema 5.1.0.1. Trovare tutti soluzioni di

$$2ty' + y = y^3 t^3 e^{2t}$$

Risp.

$$y^{2}(t) = ct - e^{2t} \left(\frac{t^{2}}{2} - \frac{t^{2}}{4} \right).$$

Problema 5.1.0.2. Trovare tutti soluzioni della equazione di Riccati

$$3t^2y' + y^2t^2 + 2 = 0,$$

Soggerimento. Una soluzione particolare e' del tipo y(t)=a/t, dove a=1,2 Dopo la sostituzione y=x+1/t otteniamo l'equazione di Bernoulli

$$3tx' + x^2t + 2x = 0$$

Le soluzioni sono x = 0 o $x = (t + ct^{2/3})^{-1}$.

5.2 Un'altro tipo di equazioni omogenee

Sia

$$y'(t) = f\left(\frac{y(t)}{t}\right)$$

Allora si sostituisce v = y/t da cui

$$v'(t) = \frac{f(v) - v}{t}$$

e dunque

$$\int \frac{dv}{f(v) - v} = \log|t| + C.$$

Risostituendo e risolvendo rispetto a y si ottiene la soluzione cercata.

5.3 Equazioni ordinarie di secondo ordine

Problema 5.3.0.1. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a e' costante, allora l'energia

$$E(t) = \frac{|y'(t)|^2}{2} - a\frac{|y(t)|^2}{2}$$

e' costante. Concludere che se a < 0, y(t) soddisfa y(0) = y'(0) = 0, allora y(t) = 0 per ogni $t \in \mathbb{R}$.

Problema 5.3.0.2. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a e' costante, e y(t) soddisfa y(0) = y'(0) = 0, allora y(t) = 0 per ogni $t \in \mathbb{R}$.

Problema 5.3.0.3. Se y(t) soddisfa l'equazione

$$y''(t) = ay(t),$$

dove a < 0 e' costante, allora esistono due costanti A, B tali che

$$y(t) = A\cos\left(\sqrt{-a}\ t\right) + B\sin\left(\sqrt{-a}\ t\right)$$

per ogni $t \in \mathbb{R}$.

Chapter 6

Equazioni ordinarie di ordine $n \ge 1$.

Sia $F: \Omega \subseteq \mathbb{R}^{n+2} \to \mathbb{R}$, con $\Omega \neq \emptyset$ un insieme aperto e connesso e $n \geq 1$ intero. Si definisce equazione differenziale ordinaria di ordine n una relazione del tipo:

$$F(x, u(x), u'(x), \dots, u^{(n)}(x)) = 0, (6.0.0.1)$$

dove con $u^{(j)}(x), j = 1, \dots, n$ si indica la derivata j—esima della funzione u(x).

Definizione 6.0.0.1. Sia I un intervallo aperto di \mathbb{R} . Si definisce soluzione o integrale dell'equazione differenziale ordinaria una funzione u = u(x) tale che:

$$u(x) \in C^n(I)$$
 $F\left(x, u(x), u'(x), \dots, u^{(n)}(x)\right) = 0$ $\forall x \in I$

Un'equazione differenziale ordinaria si dice autonoma se F non dipende esplicitamente da x, cioé (6.0.0.1) diventa

$$F(u(x), u'(x), \dots, u^{(n)}(x)) = 0, (6.0.0.2)$$

.

L'equazione differenziale ordinaria (6.0.0.1) si dice scritta in forma normale se puó essere esplicitata rispetto $u^{(n)}(x)$:

$$u^{(n)}(x) = G(x, u, u', \dots, u^{(n-1)}).$$
 (6.0.0.3)

Si dice inoltre che L'equazione differenziale ordinaria (6.0.0.1) é lineare se F é combinazione lineare di $u, u', \ldots, u^{(n)}$, ovvero:

$$F(x, u, u', \dots, u^{(n)}) = s(x) + b_0(x)u + b_1(x)u' + \dots + b_n(x)u^{(n)}$$

o, l'equazione (6.0.0.1) si puo rescrivere come segue

$$u^{(n)} = \sum_{i=0}^{n-1} a_i(x)u^{(i)} + f(x)$$

dove:

$$f(x), a_0(x), a_1(x), \dots, a_{n-1}(x) \in C^0(I)$$

Il termine f(x) é detto sorgente o forzante, e se e' nullo l'equazione differenziale lineare si dice omogenea.

6.1 Risoluzione globale di un problema di Cauchy

Consideriamo due tipi di equazioni ordinarie:

$$y'(t) = f(t, y), (6.1.0.4)$$

dove f sia continua in $(\alpha, \beta) \times \mathbb{R}$, oppure un sistema (2×2)

$$y'_1(t) = f_1(t, y_1, y_2),$$
 (6.1.0.5)
 $y'_2(t) = f_2(t, y_1, y_2).$

Vediamo ora le condizioni sufficienti per la risoluzione globale di (6.1.0.4) in un intervallo (α, β) assegnato a priori.

Theorem 6.1.0.1. (di esistenza ed unicita' globale della soluzione di un Problema di Cauchy):

Sia

$$f: [(\alpha, \beta) \times \mathbb{R}] \to \mathbb{R}$$

tale che

- 1. f sia continua in $(\alpha, \beta) \times \mathbb{R}$;
- 2. f sia localmente lipschitziana rispetto a y, uniformemente rispetto a t;

3.

$$|f(t,y)| \le A(t) + B(t)|y|,$$

dove A(t) e B(t) siano funzioni continue in (α, β) .

Allora

$$\forall t \in (\alpha, \beta), \ \forall y^0 \in \mathbb{R}$$

esiste un'unica soluzione globale del problema di Cauchy

$$y' = f(t, y)$$
$$y(t_0) = y^0$$

ossia esiste un'unica soluzione del problema di Cauchy definita su tutto (α, β) .

Ci sono due casi tipici.

(a) Sempre assumendo che valgano le (1) e (2) si richiede (al posto dell'ipotesi (3)) che f sia limitata su

$$(\alpha, \beta) \times \mathbb{R}$$
.

$$|f(t,y)| \le A(t)$$

ovvero la limitatezza di f.

(b) Si richiede la funzione f sia continua nel suo insieme di definizione, ossia che valga l'ipotesi (1) e che essa sia globalmente lipschitziana.

6.2 Eserizi su equazioni differenziali

L'algoritmo per lo studio del problema generico

$$y^{(k)}(x) = f(x, y, y', \dots, y^{(k-1)}),$$

$$y(0) = a_1, y'(0) = a_2, \dots, y^{(\ell)}(0) = a_{\ell+1}$$

$$(6.2.0.6)$$

é seguente:

Passo A: si vede se $\ell=k$ e se f é una funzione continua in x e Lipshiziana rispetto l'altri parametri. Se la risposta e si, allora abbiamo il problema di Cauchy e concludiamo che esiste unica soluzione LOCALE in x.

Passo B: se il passo A non ci da nienete e $\ell \geq k$ si fa un TEST sostituendo x con 0 nella equazione differenziale. Se questa sostituzione ci prota a contradizione concludiamo che NON ci sono soluzioni di (6.2.0.6)

Passo C: se i passi precedenti non ci permettono di fare conclusione allora cerchiamo soluzione esplicita e raggioniamo caso per caso (non abbiamo un metodo semplice in questo caso)

Problema 6.2.0.1. Quante soluzioni deviniti in tutto \mathbb{R} ha il problema

$$y'(x) = 1 + y^2, \quad y(0) = 0.$$
 (6.2.0.7)

Soluzione. Seguendo l'algoritmo dei passi A),B) e C) sora si vede che il passo A) ci da soluzione LOCALE.

Visto che la domanda chiede soluzioni globali (definititi in tutto \mathbb{R}) passiamo direttamente al passo C) e risolvendo l'equazione a variabili separati troviamo

$$y(x) = \arctan(x + C)$$

La costante C si trova dai nostri dati iniziali y(0) = 0. Cosi troviamo C = 0 e quindi abbiamo 1 soluzione definitia in tutto \mathbb{R}

$$y(x) = \arctan(x)$$

Problema 6.2.0.2. Quante soluzioni deviniti in tutto \mathbb{R} ha il problema

$$y'(x) = -y + 2, \quad y(0) = 1.$$
 (6.2.0.8)

Soluzione. Seguendo l'algoritmo dei passi A),B) e C) sora si vede che il passo A) ci da soluzione LOCALE.

Visto che la domanda chiede soluzioni globali (definititi in tutto \mathbb{R}) passiamo direttamente al passo C) e risolvendo l'equazione. L'equazione omogenea

$$z'(x) = -z(x)$$

ha soluzione $z=Ce^{-x}$ La soluzione particlare e $y_0(x)=2$ e quindi la soluzone genrica é

$$y(x) = Ce^{-x} + 2$$

da qui usando y(0)=1 troviamo C=-1 L'equazione ha 1 soluzione globale

$$y(x) = -e^{-x} + 2.$$

6.3 Esercizi sul prolungamento della soluzioni

Stime a rpiori ed esistenza globale

Problema 6.3.0.1. Vedere se il problema di Cauchy

$$\begin{cases} u'(t) = 3t + 2 + e^{-2u}, & t \in (0, \infty); \\ u(0) = 0 & , \end{cases}$$
 (6.3.0.9)

ha una soluzione (globale).

Problema 6.3.0.2. Vedere se il problema di Cauchy

$$\begin{cases} u'(t) = 3t - e^{-u^2}, & t \in (0, \infty); \\ u(0) = 0 & , \end{cases}$$
 (6.3.0.10)

ha una soluzione (globale).

Problema 6.3.0.3. Vedere se il problema di Cauchy

$$\begin{cases} u'(t) = 3t^2 + \sqrt{1 + u^2} \sin u, & t \in (0, \infty); \\ u(0) = 0 & , \end{cases}$$
 (6.3.0.11)

ha una soluzione (globale).

Problema 6.3.0.4. Vedere se il problema di Cauchy

$$\begin{cases} u''(t) = -u - u^3, & t \in (0, \infty); \\ u(0) = 1, u'(0) = 0 & , \end{cases}$$
 (6.3.0.12)

ha una soluzione (globale).

Problema 6.3.0.5. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = t^2 + e^{t-y}, & t \in (0, \infty); \\ y(0) = 1, & , \end{cases}$$
 (6.3.0.13)

- a) ha una soluzione (globale);
- b) se la soluzione globale esiste allora soddisfa la stima "esponenziale"

$$y(t) \le Ce^t$$
;

c) (parte pi'u difficile) se la soluzione globale esiste allora soddisfa la stima "polinomiale"

$$y(t) \le C(1+t)^N.$$

Problema 6.3.0.6. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = e^{1/(1+t)-1/y}, & t \in (0,\infty); \\ y(0) = 1 & , \end{cases}$$
 (6.3.0.14)

- a) ha una soluzione (globale);
- b) se la soluzione globale esiste allora soddisfa la stima "esponenziale"

$$|y(t)| \le C(1+t).$$

Problema 6.3.0.7. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = ye^{1/(1+t)-1/y}, & t \in (0,\infty); \\ y(0) = 2 & , \end{cases}$$
 (6.3.0.15)

ha una soluzione (globale).

Problema 6.3.0.8. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = t^3 + y^3, \\ y(0) = 0 \end{cases}, \tag{6.3.0.16}$$

ha una soluzione (globale) in $t \in (-\infty, 0]$.

Problema 6.3.0.9 (Difficoltá: *). Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = \frac{1}{2+t^4} - y^2, \\ y(0) = 0 \end{cases} , \tag{6.3.0.17}$$

ha una soluzione (globale) in $t \in [0, +\infty)$.

Suggerimento. Applicare il principio di confronto (Lemma ??) e dimostrare che

$$y(t) > 0$$
.

Problema 6.3.0.10 (Difficoltá: *). Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = e^{y(t)^4} - e^{t^4}, \\ y(0) = 0 \end{cases}, \tag{6.3.0.18}$$

ha una soluzione (globale) in $t \in [0, +\infty)$.

Suggerimento. Applicare il principio di confronto (Lemma ??) usando il fatto che $y_{\pm}(t) = \pm t$ sono soluzioni di

$$y'_{+}(t) > e^{y_{+}(t)^{4}} - e^{t^{4}}.$$

$$y'_{-}(t) < e^{y_{-}(t)^4} - e^{t^4}.$$

Problema 6.3.0.11 (Difficoltá: *). Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = 1 - (t + y(t))^3, \\ y(0) = 0 \end{cases} , \tag{6.3.0.19}$$

ha una soluzione (globale) in $t \in [0, +\infty)$.

Esplosione della soluzione

Problema 6.3.0.12. (La buccia di banana) Studiare il seguente problema di Cauchy:

$$y' = y^2$$
$$y(0) = 1$$

Risp. Il problema di Cauchy ha un'unica soluzione massimale (e non globale) data da

$$y(t) = \frac{1}{1-t}.$$

Problema 6.3.0.13. Sia a > 0. Studiare il seguente problema di Cauchy:

$$y'(t) = (1+t)^a y^2$$

 $y(0) = A > 0$.

Risp. Integrando l'equazione a variabili separati, troviamo

$$-\frac{1}{y(t)^2} + \frac{1}{y(0)} = \frac{(1+t)^{a+1} - 1}{a+1}$$

e quindi

$$\frac{1}{y(t)^2} = 1 - \frac{(1+t)^{a+1} - 1}{a+1}.$$

Ovviamente la funzione

$$\varphi(t) = 1 - \frac{(1+t)^{a+1} - 1}{a+t}$$

é decrescente e ha unico zero t^* tale che

$$\varphi(t^*) = 0 \Longrightarrow \lim_{t \nearrow t^*} y(t) = \infty.$$

La soluzione

$$y(t) = \frac{1}{\varphi(t)}$$

esiste in $[0, t^*)$ e

$$\lim_{t \nearrow t^*} y(t) = \infty.$$

significa che $[0,t^*)$ é l'intervallo massimale di esistenza, la soluzione "esplode" in t^* . \square

Problema 6.3.0.14. Studiare l'esistenza della soluzione

$$u(t) \in C^2([0,\infty))$$

della equazione

$$u''(t) - u^{5}(t) = (1+t)^{-3}u'(t)^{3}$$
(6.3.0.20)

con dati inziali

$$u(0) = 0, u'(0) = a$$
 (6.3.0.21)

 $al\ variare\ del\ parametro\ a>0.$

Soluzione. Suppogniamo per assurdo che esiste una soluzione

$$u(t) \in C^2([0,\infty))$$

della equazione (8.3.0.20) con dati iniziali (8.3.0.21). Abbiamo l'identitá

$$E'(t) = (1+t)^{-3}u'(t)^4,$$

dove

$$E(t) = \frac{|u'(t)|^2}{2} - \frac{|u(t)|^6}{6}.$$

Usando i dati iniziali

$$E(0) = \frac{\varepsilon}{2} > 0$$

si trova

$$E(t) \ge E(0) > 0.$$

Le disequazioni

$$|u'(t)|^2 - \frac{|u(t)|^6}{3} > 0$$

е

$$u'(0) > \frac{u(0)^3}{\sqrt{3}} = 0$$

implicano

$$u'(t) > \frac{u(t)^3}{\sqrt{3}}, \forall t > 0,$$
 (6.3.0.22)

e quindi

$$u(t) > 0, \forall t > 0.$$

La disequazione (6.3.0.23) ed il principio del confronto implicano

$$u(t) \ge v(t)$$
,

dove v(t) é la soluzione di

$$v'(t) = \frac{v(t)^3}{\sqrt{3}}, \forall t \ge \delta, \tag{6.3.0.23}$$

con dati iniziali

$$v(\delta) = u(\delta) > 0.$$

Usando la relazione

$$\left(\frac{1}{v^2(t)}\right)' = -\frac{1}{\sqrt{3}}$$

ed integraziondo in (δ, t) troviamo

$$\frac{1}{v^2(t)} - \frac{1}{v^2(\delta)} < -\frac{t - \delta}{\sqrt{3}}$$

e prendendo il limite, $t \to \infty$, otteniamo contradizione.

Problema 6.3.0.15. Sia a < 0. Studiare l'esistenza della soluzione globale del problema di Cauchy:

$$y'(t) = (1+t)^{a}y^{2}$$
$$y(0) = A > 0$$

al variare del parametro a < 0.

Problema 6.3.0.16. Sia a < 0, b > 1. Studiare l'esistenza della soluzione globale del problema di Cauchy:

$$y'(t) = (1+t)^a y^b$$
$$y(0) = A > 0$$

al variare dei parametri a < 0, b, A.

Problema 6.3.0.17. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = (t+y)^3, \\ y(0) = 0 \end{cases} , \tag{6.3.0.24}$$

ha una soluzione (globale) in $t \in [0, \infty)$.

Suggerimento. Dopo la sostituzione t + y = u abbiamo il problema di Cauchy

$$u'(t) = u^3 + 1$$
 (6.3.0.25)
 $u(0) = 0$.

Si puo dimostrare che la traiettoria

$$(t, u(t)); t \in [0, T)$$

non puo interseccare la retta u=1 perche $u_1(t)=1$ é una soluzione del problema

$$u'(t) = u^3 - 1.$$

Quindi abbiamo la disequazione

$$u(t) < 1, t \in [0, T),$$
 (6.3.0.26)

dove T > 0 é tale che

$$\forall t \in (0, T), u'(t) < 0.$$

Cosi otteniamo

$$\forall t \in (0, T), u(t) = u(0) + \int_0^t u'(\tau) d\tau < 0.$$

Otteniamo la disequazione

$$u(t) = \int_0^t (-1 + u^3(\tau))d\tau < -t.$$

La disequzione

$$u(t) < \int_0^t (u^3(\tau))d\tau$$

mostra che

$$u(t) < u_2(t)$$

dove

$$u_2'(t) = u^3(t), u_2(0) = 0, u_2(t) < 0$$

é una soluzione che esplode cioé

$$\lim_{t \nearrow T} u_2(t) = -\infty.$$

Problema 6.3.0.18. Vedere se il problema di Cauchy

$$\begin{cases} y'(t) = t - y^2, \\ y(0) = 0 \end{cases} , \tag{6.3.0.27}$$

ha una soluzione (globale) in $t \in [0, +\infty)$.

6.4 Esercizi sui sistema di biomatematica.

Le equazioni di Lotka - Volterra si possano scrivere come segue:

$$\frac{dx}{dt} = (A - By)x,$$

$$\frac{dy}{dt} = (Cx - D)y$$
(6.4.0.28)

dove

f y, é la popolazione della specie predatore;
x, é la popolazione della specie preda;
t, é il tempo;
A, B, C, D, sono i parametri positivi di interazione tra le specie.

Problema 6.4.0.1. Sia A = B = C = D = 1 nel sistema di Lotka - Volterra. Se $I \subseteq \mathbb{R}$ é un intervallo aperto con $0 \in I$ e

$$(x(t), y(t)) \in C^1(I; \mathbb{R}^2)$$

é una soluzione del problema di Cauchy

$$\frac{dx}{dt} = (1 - y)x,
\frac{dy}{dt} = (x - 1)y
x(0) = 1/2, y(0) = 1/2$$
(6.4.0.29)

allora la traiettoria rimane sempre nel primo quadrante.

Suggerimento. Vedere che ogni traiettoria

che é soluzione del sistema

$$\frac{dx}{dt} = (1 - y)x,$$

$$\frac{dy}{dt} = (x - 1)y$$

$$x(0) = x_0, y(0) = y_0$$

$$(6.4.0.30)$$

con punto di partenza

$$(x_0, y_0) \in U = \{(x, y) \in \mathbb{R}^2, 0 < x, 0 < y\}$$

rimane sempre in U. Infatti, se t_1 é tale che

$$(x(t_1),y(t_1))$$

é sulla frontiera, possiamo supporre per esempio

$$x(t_1) = 0, 0 < y(t_1) = y^*.$$

Adesso possiamo usare il fatto che

$$\widetilde{x}(t) = 0, \widetilde{y}(t) = Ce^{-t}$$

é una soluzione del

$$\frac{dx}{dt} = (1 - y)x,
\frac{dy}{dt} = (x - 1)y
x(t_1) = 0, y(t_1) = y^*.$$
(6.4.0.31)

Le due soluzioni

$$(x(t), y(t)), \quad (\widetilde{x}(t), \widetilde{y}(t))$$

sono due soluzioni del problema di Cauchy (6.4.0.31), ovviamente questo é assurdo perche il Teorema di Cauchy afferma che la soluzione é unica. La contradizione dimostra che la curva (x(t), y(t)) rimane semptre nel I quadrante.

Problema 6.4.0.2. (modello Rosenzweig - Macarthur) Vedere se il problema di Cauchy

$$u'_{1}(t) = u_{1}(1 - u_{1}) - \frac{u_{1}u_{2}}{1 + u_{1}}$$

$$u'_{2}(t) = -u_{2}\frac{u_{1}u_{2}}{1 + u_{1}}.$$

$$(6.4.0.32)$$

con dati inziali

$$u_1(0) = 1/10, u_2(0) = 1/10$$

rimane sempre nel I quadrante.

Problema 6.4.0.3. (modello Rosenzweig - Macarthur) Vedere se il problema di Cauchy

$$u'_{1}(t) = u_{1}(1 - u_{1}) - \frac{u_{1}u_{2}}{1 + u_{1}}$$

$$u'_{2}(t) = -u_{2} + \frac{u_{1}u_{2}}{1 + u_{1}}.$$
(6.4.0.33)

con dati inziali

$$u_1(0) = 1/10, u_2(0) = 1/10$$

rimane sempre nel I quadrante ed esiste costant C > 0 tale che

$$u_1(t) + u_2(t) \le C.$$

Suggerimento. Suppogniamo che per ogni ${\cal C}>0$ la traiettoria interseca il segmento aperto

$$u_1 + u_2 = C, 0 < u_1 < C,$$

cioé esiste (il primo) t_1 tale che

$$u_1(t_1) + u_2(t_1) = C, u'_1(t_1) > 0, u'_2(t_1) > 0.$$
 (6.4.0.34)

Prendendo la somma delle equazioni in (6.4.0.35), si orriene

$$u_1'(t_1) + u_2'(t_1) = u_1(t_1)(1 - u_1(t_1)) - u_2(t_1) = u_1(t_1)(1 - u_1(t_1)) - C + u_1(t_1).$$

Ponendo

$$G(u) = u(2 - u)$$

si vede che la funzione é limitata superiormente

$$G(u) \le G(1) = 1.$$

Se C > 1 otteniamo

$$u_1'(t_1) + u_2'(t_1) < 1 - C < 0$$

e questo é in contradizione con (6.4.0.34).

Problema 6.4.0.4. (modello Rosenzweig - Macarthur) Vedere se il problema di Cauchy

$$u'_{1}(t) = u_{1}(1 - u_{1}) - \frac{u_{1}u_{2}}{1 + u_{1}}$$

$$u'_{2}(t) = -u_{2} + \frac{u_{1}u_{2}}{1 + u_{1}}.$$
(6.4.0.35)

con dati inziali

$$u_1(0) = 1/10, u_2(0) = 1/10$$

ha soluzione globale?

Problema 6.4.0.5. Sia A = B = C = D = 1 nel sistema di Lotka - Volterra. Vedere se il problema di Cauchy

$$\frac{dx}{dt} = (1 - y)x,
\frac{dy}{dt} = (x - 1)y
x(0) = 1/2, y(0) = 1/2$$
(6.4.0.36)

ha una soluzione

$$x(t), y(t) \in C([0, \infty)) \cap C^{1}((0, \infty))$$

globale?

Chapter 7

Equazioni lineari

7.1 Equazione lineare omogenea a coeficienti costanti

Si consideri l'equazione lineare omogenea

$$z^{(n)}(x) + a_1 z^{(n-1)}(x) + \dots + a_n z(x) = 0$$
(7.1.0.1)

dove a_i sono costanti.

Per trovare tutte le soluzioni si devono trovare le radici dell'equazione caratteristica associata:

$$\lambda^{n} + a_{1} \cdot \lambda^{n-1} + a_{2} \cdot \lambda^{n-2} + \dots + a_{n-1} \cdot \lambda + a_{n} = 0.$$
 (7.1.0.2)

Lemma 7.1.0.1. Se le radici λ_j di (7.1.0.2) sono tutte distinte, allora tutte le soluzioni del problema omogeneo (7.1.0.1) sono della forma:

$$z(t) = \sum_{j=1}^{n} C_j e^{\lambda_j \cdot x},$$

dove C_i sono costanti.

Se il polinomio caratteristico

$$P_n(\lambda) = \lambda^n + a_1 \cdot \lambda^{n-1} + a_2 \cdot \lambda^{n-2} + \dots + a_{n-1} \cdot \lambda + a_n$$

ha coefficienti reali ed ha solo radici reali, allora si puo fare la decomposizione

$$P_n(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}, \tag{7.1.0.3}$$

dove

$$\lambda_1 < \lambda_2 < \dots < \lambda_k$$

е

$$m_1 + m_2 + \dots + m_k = n.$$

La fattorizzazione (7.1.0.3) permette a dire che la molteplicita di λ_1 e m_1 e la molteplicita di ogni radice λ_j é m_j per $j=1,\cdots,k$.

Lemma 7.1.0.2. Se l'equazione caratterisitica (7.1.0.2) ha radice reale

$$\lambda_1$$

con molteplicita m_1 , allora (7.1.0.1) ha soluzioni

$$e^{\lambda_1 x}$$
, $xe^{\lambda_1 x} \cdots x^{m_1-1}e^{\lambda_1 x}$

Lemma 7.1.0.3. Se le radici

$$\lambda_1 < \lambda_2 < \cdots < \lambda_k$$

di (7.1.0.2) sono tali che λ_j ha molteplicitá m_j per $j = 1, \dots, k$, allora tutte le soluzioni del problema omogeneo (7.1.0.1) sono della forma:

$$z(x) = C_{1,0}e^{\lambda_1 \cdot x} + C_{1,1} x e^{\lambda_1 \cdot x} + \dots + C_{1,m_1-1} x^{m_1-1} e^{\lambda_1 \cdot x} + C_{2,0}e^{\lambda_2 \cdot x} + C_{2,1} x e^{\lambda_2 \cdot x} + \dots + C_{2,m_2-1} x^{m_2-1} e^{\lambda_2 \cdot x} + \dots + C_{k,0}e^{\lambda_k \cdot x} + C_{k,1} x e^{\lambda_k \cdot x} + \dots + C_{k,m_k-1} x^{m_k-1} e^{\lambda_k \cdot x} = \sum_{j=1}^k \sum_{\ell_j=0}^{m_j-1} C_{\ell_j,j} x^{\ell_j} e^{\lambda_j \cdot x},$$

dove $C_{\ell_i,j}$ sono costanti.

Problema 7.1.0.1. Trovare le soluzioni dell'equazione

$$z^{(3)} - z' + 2z = 0$$

Soluzione. L'equazione caratteristica é

$$\lambda^3 - \lambda + 2 = 0.$$

Abbiamo l'identita

$$\lambda^3 - \lambda + 2 = (\lambda - 1)^2(\lambda + 2).$$

Le radici della equazione caratterisitica sono

con milteplicita 2 e 1. Applicando Lemma 7.1.0.3 si trova che le soluzioni sono combinazioni lineari di

$$e^t, te^t, e^{2t}$$

cioe

$$z(t) = C_{1,0}e^t + C_{1,1}te^t + C_2e^{2t}.$$

In generale il polinomio puo avere k soluzioni reali

$$\lambda_1, \cdots, \lambda_k$$

ed s soluzioni complessi

$$\mu_1, \mu_2, \cdots, \mu_s$$
.

Se il polinomio $P_n(\lambda)$ ha coefficienti reali e μ é una sua radice complessa, allora $\overline{\mu}$ é anche sua radice. Così deduciamo che s é pari, s=2p, p naturale e possiamo ragruppare tutte le radici complessi come segue

$$\mu_1, \overline{\mu_1}, \mu_2, \overline{\mu_2}, \cdots, \mu_p, \overline{\mu_p}.$$

La fattorizzazione (7.1.0.3) puo avere una forma piu generale:

$$P_n(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k} Q(\lambda), \qquad (7.1.0.4)$$

dove

$$Q(\lambda) = (\lambda - \mu_1)^{q_1} (\lambda - \overline{\mu_1})^{q_1} \cdots (\lambda - \mu_p)^{q_p} (\lambda - \overline{\mu_p})^{q_p}$$

dove μ_1 ha molteplicita q_1 etc.

Lemma 7.1.0.4. Se

$$\mu_1 = \alpha_1 + i\beta_1, \overline{\mu_1} = \alpha_1 - i\beta_1$$

hanno molteplicitá 1 allora due soluzioni di (7.1.0.1) sono

$$e^{\alpha_1 x} \cos(\beta_1 x), e^{\alpha_1 x} \sin(\beta_1 x)$$

Problema 7.1.0.2. Trovare le soluzioni dell'equazione

$$z^{(3)} - z^{(2)} + z' - z = 0$$

Soluzione. L'equazione caratteristica é

$$\lambda^3 - \lambda^2 + \lambda - 1 = 0.$$

Abbiamo l'identita

$$\lambda^3 - \lambda^2 + \lambda - 1 = (\lambda - 1)(\lambda^1 + 1).$$

Le radici sono

$$1, i, -i$$

Le soluzioni sono combinazioni lineari di

$$e^t$$
, $\cos t$, $\sin t$

cioe

$$z(t) = C_1 e^t + C_2 \cos t + C_3 \sin t.$$

Lemma 7.1.0.5. Se l'equazione caratterisitica (7.1.0.2) ha radice complessa

$$\mu_1 = \alpha_1 + i\beta_1$$

con molteplicita
' q_1 , allora soluzioni di (7.1.0.1) sono le combinazioni line
ari di

$$e^{\alpha_1 x} \cos(\beta_1 x)$$
 $x e^{\alpha_1 x} \cos(\beta_1 x)$ $x^2 e^{\alpha_1 x} \cos(\beta_1 x)$ \cdots $x^{q_1 - 1} e^{\alpha_1 x} \cos(\beta_1 x)$

$$e^{\alpha_1 x} \sin(\beta_1 x)$$
 $x e^{\alpha_1 x} \sin(\beta_1 x)$ $x^2 e^{\alpha_1 x} \sin(\beta_1 x)$ \cdots $x^{q_1 - 1} e^{\alpha_1 x} \sin(\beta_1 x)$

Lemma 7.1.0.6. Se l'equazione caratterisitica (7.1.0.2) ha k radici reali

$$\lambda_1, \cdots, \lambda_k$$

 $ed\ 2p\ soluzioni\ complessi$

$$\mu_1, \overline{\mu_1}, \cdots, \mu_p, \overline{\mu_p},$$

allora tutti soluzioni di (7.1.0.1) sono

$$z(x) = z_{\lambda_1}(x) + z_{\lambda_2}(x) + \dots + z_{\lambda_k}(x)(x) + z_{\mu_1}(x) + z_{\mu_2}(x) + \dots + z_{\mu_n}(x),$$

dove

$$z_{\lambda_1}, z_{\lambda_2}, \cdots, z_{\lambda_k}$$

sono le soluzioni costruiti in Lemma 7.1.0.2, mentre

$$z_{\mu_1}(x), z_{\mu_2}, \cdots, z_{\mu_p}$$

sono le soluzioni costruiti in Lemma 7.1.0.5.

Problema 7.1.0.3. Trovare le soluzioni dell'equazione

$$y^{(4)} - 4y^{(3)} + 7y'' - 6y' + 2 = 0$$

Suggerimento. L'equazione caratteristica é

$$\lambda^4 - 4\lambda^3 + 7\lambda^2 - 6\lambda + 2 = 0.$$

Abbiamo l'identita

$$\lambda^4 - 4\lambda^3 + 7\lambda^2 - 6\lambda + 2 = (\lambda - 1)^2((\lambda - 1)^2 + 1).$$

Le soluzioni sono combinazioni lineari di

$$e^t, te^t, e^t \sin t, e^t \cos t.$$

7.1.1 Il metodo delle variazioni delle costanti per equazioni a coefficienti costanti di ordine n

Si consideri l'equazione lineare non - omogenea

$$y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_n y(t) = f(t)$$
(7.1.1.5)

dove a_i sono costanti reali.

Nella sezione 7.1 abbiamo studiato le soluzioni del problema omogeneo (7.1.0.1). partendo delle soluzioni dell'equazione caratteristica

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0. (7.1.1.6)$$

Possiamo trovare soluzioni del problema omogeneo.

In alcuni casi si puo trovare un metodo piu' veloce per costruire una soluzione.

Il caso $f(t) = P_m(t)$.

Sia:

$$f(t) = P_m(t),$$

dove $P_m(t)$ é un polinomio di grado m. In questo caso si cerca una soluzione particolare del tipo

$$u(t) = Q_m(t),$$

dove $Q_m(t)$ é un polinomio formale di grado m. Se $\lambda = 0$ é una soluzione dell'equazione caratteristica di molteplicitá r, allora si deve cercare una soluzione del tipo:

$$u(t) = t^r P_m(t).$$

Il caso $f(t) = A.e^{\alpha t}$.

Sia:

$$f(t) = A \cdot e^{\alpha t}$$

dove A é una costante data. Se α non é una radice dell'equazione omogenea associata, si cerca una soluzione particolare del tipo:

$$u(t) = B \cdot e^{\alpha t},$$

dove B é una costante da determinare. Nel caso α sia radice dell'equazione caratteristica di molteplicitá r si cerca una soluzione del tipo:

$$u(t) = t^r \cdot B \cdot e^{\alpha t}.$$

Il caso $f(t) = P_m(t).e^{\alpha t}$.

Sia:

$$f(t) = P_m(t) \cdot e^{\alpha t}$$

dove $P_m(t)$ é un polinomio di grado m. Se α non é una radice dell'equazione omogenea associata, si cerca una soluzione particolare del tipo:

$$u(t) = Q_m(t) \cdot e^{\alpha t}$$

dove Q_m é un polinomio di grado m. Nel caso α sia radice di molteplicitá r si cerca una soluzione del tipo:

$$u(t) = t^r \cdot Q_m(t) \cdot e^{\alpha t}$$

Il caso $f(t) = P_m(t)\cos(\beta t)e^{\alpha t} + Q_m(t)\sin(\beta t)e^{\alpha t}$

Se f possiede una delle seguenti espressioni:

$$f(x) = P_m(t)\cos(\beta t)e^{\alpha t} + Q_m(t)\sin(\beta t)e^{\alpha t},$$

dove $P_m(t)$ e $Q_m(t)$ sono polinomi di grado m, allora se $\alpha + i\beta$ non é una radice dell'equazione caratteristica si cerca una soluzione particolare del tipo:

$$u(t) = R_m(t)\cos(\beta t)e^{\alpha t} + S_m(t)\sin(\beta t)e^{\alpha t}$$

dove $R_m(t)$ e $S_m(t)$ sono polinomi di grado m da determinare. Nel caso $\alpha + i\beta$ sia radice di molteplicitá r si cerca una soluzione del tipo:

$$u(t) = t^r R_m(t) \cos(\beta t) e^{\alpha t} + t^r S_m(t) \sin(\beta t) e^{\alpha t}$$

7.2 Esercizi sulle equazioni lineari di ordine *n*: livello standard.

Problema 7.2.0.1. Risolvere l'equazione

$$y'''(t) - 4y''(t) + 5y'(t) - 2y(t) = e^{3t}. (7.2.0.7)$$

Idea della soluzione. Prima cosideriamo l'equazione omogenea

$$y'''(t) - 4y''(t) + 5y'(t) - 2y(t) = 0. (7.2.0.8)$$

L'equzione caratteristica é

$$\lambda^3 - 4\lambda^2 - 5\lambda - 2 = 0. (7.2.0.9)$$

Abbiamo

$$\lambda^3 - 4\lambda^2 - 5\lambda - 2 = (\lambda - 1)^2(\lambda - 2).$$

Tutte le soluzione del problema omogeneo (7.2.0.8) sono combinazioni lineari di

$$e^t, te^t, e^{2t}$$

Siccome 3 non é soluzione del (7.2.0.9) una soluzione del (7.2.0.11) deve avere la forma

$$y_0(t) = Ae^{3t}.$$

Sostituzione in (7.2.0.11) da

$$A = \frac{1}{4}$$

e tutte le soluzioni di (7.2.0.11) sono

$$y(t) = y_0(t) + C_1 e^t + C_2 t e^t + C_3 e^{2t} = \frac{e^{3t}}{4} + C_1 e^t + C_2 t e^t + C_3 e^{2t}.$$

Problema 7.2.0.2. Risolvere l'equazione

$$y'''(t) - 2y''(t) + 4y'(t) - 8y(t) = e^{2t}\sin(2t).$$
 (7.2.0.10)

Problema 7.2.0.3. Vedere se per ogni soluzione dell'equazione

$$y''(t) + 9y(t) = e^{-t}\log(2 + t^4)$$
 (7.2.0.11)

esistono due costanti C_1, C_2 tali che

$$\lim_{t \to \infty} (y(t) - C_1 \cos 3t - C_2 \sin 3t) = 0.$$

7.2.1 Problema di Sturm

Problema 7.2.1.1. Considerare il problema

$$y''(x) - \lambda y(x) = 0, x \in (0, \pi)$$
 (7.2.1.12)

dove $\lambda > 0$. Vedere che ogni soluzione

$$y(x) \in C^2(0,\pi) \cap C([0,\pi])$$

tale

$$y(0) = y(\pi) = 0 \tag{7.2.1.13}$$

é identicamente zero.

Problema 7.2.1.2. Considerare il problema

$$y''(x) + \lambda y(x) = 0, x \in (0, \pi)$$
 (7.2.1.14)

Vedere per quali valori del parametro $\lambda > 0$ esiste soluzione

$$y(x) \in C^2(0,\pi) \cap C([0,\pi])$$

del problema (7.2.1.14), tale che

$$y(0) = y(\pi) = 0 \tag{7.2.1.15}$$

Problema 7.2.1.3. Verificare che il problema di Sturm

$$y''(x) + y(x) = 0, x \in (0, \pi)$$
(7.2.1.16)

con dati al bordo

$$y(0) = y(\pi) = 0 \tag{7.2.1.17}$$

ha unica soluzione

$$y(x) \in C^2(0,\pi) \cap C([0,\pi])$$

definita con

$$y(x) = \sin x$$
.

Equazione di Bessel

Problema 7.2.1.4. Costruire una soluzione dell'equazione di Bessel

$$x^{2}y''(x) + xy'(x) + (x^{2} - N^{2})y(x) = 0,$$

 $dove\ N \geq 1\ \acute{e}\ numero\ naturale\ usando\ la\ sostituzione$

$$y(x) = x^N f(x),$$

dove

$$f(x) = \sum_{k=0}^{\infty} a_k x^{2k}$$

converge per ogni $x \in \mathbb{R}$.

Risposta.

$$f(x) = \sum_{k=0}^{\infty} (-1)^k \left(\frac{x}{2}\right)^{2k} \frac{1}{k!(k+N)!}.$$

Problema 7.2.1.5. Costruire una soluzione dell'equazione di Bessel

$$x^{2}y''(x) + xy'(x) + (x^{2} - \nu^{2})y(x) = 0,$$

dove $\nu \geq 0$ é numero reale usando la sostituzione

$$y(x) = x^{\nu} f(x),$$

dove

$$f(x) = \sum_{k=0}^{\infty} a_k x^{2k}$$

converge per ogni $x \in \mathbb{R}$.

Risposta.

$$f(x) = \sum_{k=0}^{\infty} (-1)^k \left(\frac{x}{2}\right)^{2k} \frac{1}{k!\Gamma(k+\nu+1)},$$

dove la funzione $\Gamma(z)$ é la funzione Gamma definita come segue

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$$

Se Rez>0 l'integrale converge assolutamente. Ricordiamo che usando l'integrazione per parti, si puó dimostrare che:

$$\Gamma(z+1) = z\Gamma(z).$$

La funzione

$$J_{\nu}(x) = \sum_{k=0}^{\infty} (-1)^k \left(\frac{x}{2}\right)^{2k+\nu} \frac{1}{k!\Gamma(k+\nu+1)},$$
 (7.2.1.18)

é nota come funzione di Bessel.

Problema 7.2.1.6. Costruire due soluzioni dell'equazione di Bessel

$$x^{2}y''(x) + xy'(x) + (x^{2} - \nu^{2})y(x) = 0,$$

dove $\nu > 0$ é numero reale. usando la sostituzione

Risposta.

$$J_{\nu}(x), J_{-\nu}(x).$$

Problema 7.2.1.7. Sia

$$\Delta = \partial_x^2 + \partial_y^2$$

l'operatore di Laplace in \mathbb{R}^2 . Usando i coordinati polari

$$x + iy = re^{i\varphi}$$

costruire soluzione del problema

$$\Delta u(x,y) = -u(x,y)$$

usando la sostituzione

$$u(x,y) = f(r)e^{ik\varphi},$$

dove $k \geq 0$ é un numero intero.

Suggerimento. L'operatore di Laplace in coordinati polari si puo rappresentare nella forma

$$\Delta = \partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\varphi^2.$$

Usando l'ansatz

$$u(x,y) = f(r)e^{ik\varphi},$$

troviamo

$$f''(r) + \frac{1}{r}f'(r) - \frac{k^2}{r^2}f(r) = -f(r).$$
 (7.2.1.19)

Soluzione é

$$f(r) = J_k(r),$$

dove J_{ν} é la funzione di Bessel del problema 7.2.1.5.

Problema 7.2.1.8. Trovare una soluzione del problema

$$y''(x) + \frac{a}{x}y'(x) + by(x) = 0$$

 $us ando \ rescalamento$

$$y(x) = \lambda^A v(\lambda x),$$

dove $\lambda > 0$ e $A \in \mathbb{R}$ devono essre scelti in modo oportuno.

Suggerimento. Prima si fa la sostituzione

$$y(x) = x^{\alpha}z(x), \alpha = \frac{1-a}{2}.$$

La funzione z(x) soddisfa

$$z''(x) + \frac{1}{x}z'(x) + bz(x) - \frac{\nu^2}{x^2}z(x) = 0, \nu = \alpha.$$

Usare rescalamento

$$z(x) = \lambda^A v(\lambda x),$$

dove $\lambda > 0$ e $A \in \mathbb{R}$ devono essre scelti in modo oportuno.

Soluzioni rappresentati con serie di potenze

Problema 7.2.1.9. Sia

$$W(x) = \sum_{k=0}^{\infty} a_k x^k$$

serie di potenze con ragio di convergenza 1. Verificare che il problema di Cauchy

$$y'' - W(x)y(x) = 0, y(0) = 1, y'(0) = 0 (7.2.1.20)$$

ha soluzione

$$y(x) = 1 + \sum_{k=2}^{\infty} b_k x^k$$

con ragio di convergenza 1.

7.3 Esercizi sui integrali primi

Problema 7.3.0.1. (Lotka Volterra) Sia A = B = C = D = 1 nel sistema di Lotka - Volterra Vedere se il problema di Cauchy

$$\frac{dx}{dt} = (1 - y)x,$$

$$\frac{dy}{dt} = (x - 1)y$$

$$x(0) = 1/2, y(0) = 1/2$$
(7.3.0.21)

ha un primo integrale

Suggerimento. La soluzione del problema (6.4.0.1) ci dice che la soluzione rimane sempre nel I quandrante. Così possiamo scrivere

$$\frac{(x(t))'}{x(t)} = 1 - y(t).$$

$$\frac{(y(t))'}{y(t)} = x(t) - 1.$$

Molteplicando la prima equazione per x(t) - 1 la seconda per y(t) - 1 e sommando, otteniamo

$$\frac{(x(t)-1)(x(t))'}{x(t)} + \frac{(y(t)-1)(y(t))'}{y(t)} = 0$$

e usando la relazione

$$\frac{(x(t)-1)(x(t))'}{x(t)} = (x(t))' - \frac{(x(t))'}{x(t)} = (x(t) - \log x(t))'$$

troviamo

$$I'(t) = 0, I(t) = x(t) + y(t) - \log x(t) - \log y(t) = x(t) + y(t) - \log(x(t)y(t)).$$

Il primo integrale (nel I quadrante é definito come segue

$$I(x,y) = x + y - \log(xy).$$

Le curve di livello rappresentano le traiettorie del sistema di Lotka - Volterra, si puo vedere Figura 7.1 dove le curev di livello sono tracciati.

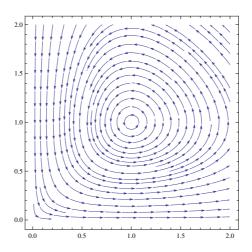


Figure 7.1: Il caso di nodo stabile

L'equazione del pendolo é

$$\theta''(t) = \sin \theta(t)$$
.

si puo rescrivere come un sistema

Problema 7.3.0.2. (modello del pendolo) Vedere se il sistema

$$\frac{du_1}{dt} = u_2(t),
\frac{du_2}{dt} = \sin u_1(t)$$
(7.3.0.22)
(7.3.0.23)

ha un primo integrale.

Suggerimento. Per tutti equazioni autonomu

$$y'' = f(y)$$

abbiamo u n sistema del tipo (7.3.0.24).

$$\frac{du_1}{dt} = u_2(t),$$

$$\frac{du_2}{dt} = f(u_1(t))$$
(7.3.0.24)
(7.3.0.25)

Il primo integrale é

$$H(u_1, u_2) = \frac{u_2^2}{2} - F(u_1),$$

dove F'(u) = f(u), cio
é F é la primitiva di f. Nel caso del pendolo abbiamo

$$H(u_1, u_2) = \frac{u_2^2}{2} + 1 - \cos(u_1).$$

Si puo vedere Figura 7.2 dove le curve di livello sono tracciati. Alcuni delle curve di livello rappresentano le soluzioni periodiche .

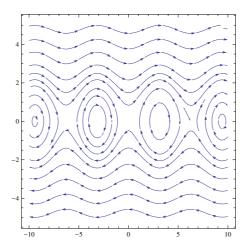


Figure 7.2: Il caso di pendolo

Chapter 8

Serie Numeriche

8.1 Definizioni e proprietá di base

Data una successione $\{a_n\}_{n\in\mathbb{N}}$ ci proniamo di definire la somma infinita $\sum_{n=1}^{\infty} a_n$.

Associamo alla successione $\{a_n\}$ una nuova successione fatta dalle sua somme parziali come segue:

$$S_n = \sum_{i=1}^n a_i.$$

Definizione 8.1.0.1. Diciamo che la serie $\sum_{n=1}^{\infty} a_n$ e' convergente e converge al valore ℓ se $-\infty < \ell < \infty$ e' tale che

$$\lim_{n \to \infty} S_n = \ell.$$

Cos'i

$$\sum_{n=1}^{\infty} a_n = \ell$$

significa

$$S_n = \sum_{i=1}^n a_i \to \ell.$$

Definizione 8.1.0.2. Se

$$\lim_{n\to\infty} S_n = \infty,$$

diciamo che la serie diverge (verso $+\infty$.) Se

$$\lim_{n\to\infty} S_n = -\infty,$$

diciamo che la serie diverge (verso $-\infty$.)

Definizione 8.1.0.3. Una serie che non sia convergente oppure divergente si dice indeterminata.

Cosí abbiamo

NON CONVERGA = DIVERGE o É INDETERMINATA .

Definizione 8.1.0.4. La serie $\sum_{n=1}^{\infty} a_n$ si dice a termini positivi se $a_n \geq 0$ per ogni $n \in \mathbb{N}$.

Usando il criterio di Cauchy della convergenza della successione S_n abbiamo.

Lemma 8.1.0.1 (Criterio di Cauchy). La serie $\sum_{n=1}^{\infty} a_n$ e' convergente se e solo se

$$\forall \epsilon > 0 \exists \nu(\epsilon) \in \mathbf{N} \ tale \ che$$

$$\left|\sum_{i=n}^{m} a_i\right| < \epsilon \ \forall n, m \ge \nu(\epsilon). \tag{8.1.0.1}$$

Scegliendo m = n otteniamo

Lemma 8.1.0.2 (Condizione necessaria per la convergenza). Se la serie $\sum_{n=1}^{\infty} a_n$ e' convergente allora

$$\lim_{n \to \infty} a_n = 0.$$

Corollary 8.1.0.1. Se esiste $\varepsilon > 0$ é sottosuccessione

$$\{a_{n_k}\},\$$

tale che

$$|a_{n_k}| \ge \varepsilon$$
,

allora la serie

$$\sum_{n=1}^{\infty} a_n$$

o diferge ($a + \infty$ o $a - \infty$), o é indeterminata.

Esempio 8.1.0.1. La serie

$$\sum_{n=1}^{\infty} a_n, \quad a_n = \frac{1}{\sqrt{n}} \tag{8.1.0.2}$$

é tale che

$$a_n \to 0$$
.

 $Scegliendo\ m=2n\ in\ (8.2.2.16)\ e\ usando\ le\ disequazioni$

$$\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{n+n}} \ge \underbrace{\frac{1}{\sqrt{2n}} + \frac{1}{\sqrt{2n}} + \dots + \frac{1}{\sqrt{2n}}}_{n+1 \text{ nolte}} = \frac{n+1}{\sqrt{2n}} \to +\infty,$$

concludiamo (usando il criterio di Cauchy, Lemma 8.1.0.1) che la serie (8.1.0.2) diverge.

Esempio 8.1.0.2. Per la serie geometrica

$$\sum_{n=0}^{\infty} x^n \tag{8.1.0.3}$$

possiamo cacolare la somma parziale

$$S_n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}, \text{ se } x \neq 1.$$

e usando

$$\lim_{n \to \infty} x^n = \begin{cases} \text{diverge } a + \infty, & \text{se } x > 1; \\ 0, & \text{se } -1 < x < 1; \\ \text{non esiste}, & \text{se } x \le -1. \end{cases}$$
 (8.1.0.4)

otteniamo

$$\sum_{n=0}^{\infty} x^n = \begin{cases} \text{diverge } a + \infty, & \text{se } x > 1; \\ 1/(1-x), & \text{se } -1 < x < 1; \\ \text{non esiste (\'e indeterminata)}, & \text{se } x \le -1. \end{cases}$$

$$(8.1.0.5)$$

Se x = 1, allora

$$S_n = n + 1$$

e la serie diverge. Così concludiamo che

$$\sum_{n=0}^{\infty} x^n = \begin{cases} \text{diverge } a + \infty, & \text{se } x \ge 1; \\ 1/(1-x), & \text{se } -1 < x < 1; \\ \text{non esiste (\'e indeterminata)}, & \text{se } x \le -1. \end{cases}$$

$$(8.1.0.6)$$

Problema 8.1.0.1. Dimostrare che la serie armonica

$$\sum_{1}^{\infty} \frac{1}{n}$$

diverge.

Suggerimento. Seguire l'argomento dell'esempio 8.1.0.1 e provare che

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2} \ \forall n \in \mathbf{N}.$$

Dedurne che la serie

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

e' divergente.

8.1.1 Somma delle serie

La somma di due serie

$$\sum_{n=0}^{+\infty} a_n \tag{8.1.1.7}$$

е

$$\sum_{n=0}^{+\infty} b_n \tag{8.1.1.8}$$

é la serie:

$$\sum_{n=0}^{+\infty} (a_n + b_n).$$

Se le serie (8.3.0.20) e (8.3.0.21) sono convergenti anche la somma delle due serie sará convergente e abbiamo la relazione

$$\sum_{n=0}^{+\infty} a_n + \sum_{n=0}^{+\infty} b_n = \sum_{n=0}^{+\infty} (a_n + b_n)$$

Se le serie (8.3.0.20) e (8.3.0.21) sono a termini positivi e una delle due serie diverge anche la somma delle serie sará divergente. Se $\lambda \in \mathbb{R}$ é numero reale e la serie (8.3.0.20) converge, allora converge anche la serie

$$\sum_{n=0}^{+\infty} \lambda a_n \tag{8.1.1.9}$$

é abbiamo la relazione

$$\sum_{k=0}^{\infty} \lambda a_k = \lambda \left(\sum_{k=0}^{\infty} a_k \right).$$

8.1.2 Assoluta convergenza

Una serie é detta assolutamente convergente se converge la serie dei valori assoluti, cioé se la serie

$$\sum_{i=0}^{\infty} |a_i|$$

converge.

Lemma 8.1.2.1. Se la serie $\sum_{n=1}^{\infty} |a_n|$ e' convergente allora $\sum_{n=1}^{\infty} a_n$ e' convergente.

Dimostrazione. Si puo usare la disequazione triangulare

$$\left|\sum_{i=n}^{m} a_i\right| \le \sum_{i=n}^{m} |a_i|$$

in (8.2.2.16) e poi applichiamo il criterio di Cauchy.

8.2 Criteri di convergenza per serie a termini positivi

Per stabilire se una serie converge o meno é possibile usare dei criteri di convergenza, che consentono spesso di stabilire velocemente il carattere di una serie (specialmente se e' a termini positivi, cioé se $S_n > S_{n-1}$ per ogni n sufficientemente grande) senza tuttavia permettere di calcolarne effettivamente la somma.

Il metodo principale, che viene usato per dimostrare molti altri é il criterio del confronto:

Lemma 8.2.0.1. Se

$$\sum_{i=0}^{\infty} a_i$$

e

$$\sum_{i=0}^{\infty} b_i$$

sono due serie, tali che $b_i \ge |a_i|$ per ogni n sufficientemente grande e la seconda serie converge, allora converge anche la prima. Inversamente, se la prima diverge cosí fará la seconda.

Idea dell dimostrazione. Usiamo il criterio di Cauchy e la disequazione

$$|\sum_{i=n}^{m} a_i| \le \sum_{i=n}^{m} |a_i| \le \sum_{i=n}^{m} b_i.$$

Secondo criterio del confronto o del confronto asintotico.

Lemma 8.2.0.2. Date due serie a termini positivi

$$\sum a_n$$

e

$$\sum b_n$$
.

 $Se \sum b_n \ \'e \ convergente \ e$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell,$$

dove ℓ esiste ed é finito, allora $\sum a_n$ é convergente. Se $\sum b_n$ é divergente e

$$\lim_{n \to +\infty} \frac{a_n}{b_n} > 0 (anche + \infty),$$

allora $\sum a_n$ é divergente.

Il criterio del confronto asintotico é utile per far vedere che la serie armonica generalizzata é convergente per $\alpha>1.$

Dimostrazione. Dato che

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell, 0 \le \ell < +\infty,$$

per definizione di limite di successione abbiamo che:

$$\forall \varepsilon > 0 \ \exists n_0 : \forall n > n_0 \ \left| \frac{a_n}{b_n} - \ell \right| < \varepsilon$$

se prendiamo $\varepsilon = 1$, allora abbiamo

$$\left| \frac{a_n}{b_n} - \ell \right| < 1,$$

che si puó riscrivere come

$$(\ell-1)b_n < a_n < (\ell+1)b_n$$

e quindi

$$a_n < (\ell + 1)b_n.$$

Applicando il principio di confronto (Lemma 8.2.0.1) concludiamo che $\sum a_n$ converge.

Analogamente per $\sum b_n$ divergente.

8.2.1 Criterio della radice e del rapporto

Altri criteri molto usati sono il criterio del rapporto e il criterio della radice.

Una versione piu generale usa la nozione di limite superiore definito come segue

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right) = \inf \left\{ \sup \left\{ x_k : k \ge n \right\} : n \ge 0 \right\},\,$$

Lemma 8.2.1.1 (Criterio della radice (o di Cauchy)). Consideriamo una serie a termini non negativi

$$\sum_{n=1}^{+\infty} a_n$$

e poniamo

$$\limsup_{n \to +\infty} \sqrt[n]{a_n} = k.$$

Il carattere della serie risulta:

$$\sum_{n=1}^{+\infty} a_n \left\{ \begin{array}{ll} converge, & se \ k < 1; \\ diverge \ , & se \ k > 1; \\ non \ stabilisce \ il \ comportamento \ della \ serie, & se \ k = 1. \end{array} \right.$$

Dimostrazione. Basta osservare che se

$$\limsup_{n \to +\infty} \sqrt[n]{a_n} = k < 1$$

allora possiamo fissare un $q \in (k,1)$ tale che per tutti gli n maggiori di un certo N abbastanza grande abbiamo

$$\forall n > N, \quad \sqrt[n]{a_n} < q < 1.$$

Elevando per n si ottiene dunque:

$$\forall n > N, \quad a_n < q^n$$

Applicando allora il criterio del confronto fra la serie

$$\sum a_n$$

e la serie geometrica

$$\sum q^n$$

si ha che la serie converge.

Se

$$\limsup_{n \to +\infty} \sqrt[n]{a_n} = k > 1$$

allora esiste una sottosuccessione $\{a_{n_k}\}$ ed un numero naturale N tale che per ogni k > N si ha

$$\sqrt[n]{a_{n_k}} > 1$$

da cui

$$a_n > 1$$
.

Dato che $a_{n_k} > 0$ non tende a 0 la serie

$$\sum_{n=0}^{\infty} a_n$$

diverge (vedi Corollario 8.1.0.1).

Di nuovo abbiamo il variante per serie con termini di segno arbitrario.

Lemma 8.2.1.2. [Criterio della radice (o di Cauchy) senza positivitá di a_n] Consideriamo una serie

$$\sum_{n=1}^{+\infty} a_n$$

e poniamo

$$\limsup_{n \to +\infty} \sqrt[n]{|a_n|} = k.$$

Il carattere della serie risulta:

$$\sum_{n=1}^{+\infty} a_n \left\{ \begin{array}{ll} converge, & se \ k < 1; \\ diverge \ o \ \'e \ indeterminata, & se \ k > 1; \\ non \ stabilisce \ il \ comportamento \ della \ serie, & se \ k = 1. \end{array} \right.$$

Lemma 8.2.1.3 (Criterio del rapporto (o di d'Alembert)). Consideriamo una serie a termini positivi

$$\sum_{n=1}^{+\infty} a_n$$

tale che esista il limite

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k, \tag{8.2.1.10}$$

allora la serie:

$$\sum_{n=1}^{+\infty} a_n \begin{cases} converge, & se \ k < 1; \\ diverge, & se \ k > 1; \\ non \ stabilisce \ il \ comportamento \ della \ serie, & se \ k = 1. \end{cases}$$

Dimostrazione. Caso (I): Se

$$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} = k < 1$$

allora possiamo fissare un numero $q \in (k,1)$ tale che per tutti gli n maggiori di un certo N abbastanza grande abbiamo

$$\frac{a_{n+1}}{a_n} < q < 1$$

e usando induzione in n troviamo

$$a_n < q^{n-N-1} a_{N+1}$$

cosí applicando il principio di confronto e usando il fatto che la serie geometrica

$$\sum q^n$$

converge per $0 \le q < 1$, concludiamo che la serie data converge. Caso (II):Si procede in modo simile e si dimostra

$$a_n \ge Q^{n-N-1}a_{N+1}, \quad \forall n > N$$

con Q>1. Usando il fatto che la serie geometrica

$$\sum Q^n$$

diverge per Q > 1, concludiamo che la serie

$$\sum_{n=0}^{+\infty} a_n$$

é divergente.

Esempio 8.2.1.1. La serie armonica

$$\sum_{1}^{\infty} a_n, \quad a_n = \frac{1}{n}$$

é tale che

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n}{n+1}=1$$

e diverge (secondo il Problema 8.1.0.1).

Esempio 8.2.1.2. Consideriamo la serie

$$\sum_{1}^{\infty} a_n, \quad a_n = \frac{1}{n(n+1)},$$

Usando la relazione

$$a_n = b_n - b_{n+1}, b_n = \frac{1}{n},$$
 (8.2.1.11)

troviamo

$$\underbrace{a_1 + a_2 + \dots + a_n}_{S_n} = (b_1 - b_2) + (b_2 - b_3) + \dots + (b_n - b_{n+1}) =$$

$$= b_1 - b_{n+1} = 1 - \frac{1}{n+1} \to 1$$

si ottiene che la serie $\sum a_n$ converge e

$$\sum_{1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Tornando al criterio del raporto possiamo vedere che

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n(n+1)}{(n+1)(n+2)} = 1$$

I due esempi 8.2.1.1 e 8.2.1.2 mostrano che nel caso

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$$

possiamo avere entrabi possibilita: in alcuni casi come in Esempio 8.2.1.1 la serie diverge, in altri casi come nel Esempio 8.2.1.2 puo divergere.

Se il limite in (8.2.1.15) NON esiste, dobbiamo sostituire (8.2.1.15) con

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k$$

Lemma 8.2.1.4 (Criterio del rapporto (o di d'Alembert)). Consideriamo una serie a termini positivi

$$\sum_{n=1}^{+\infty} a_n$$

é poniamo

$$\limsup_{n \to +\infty} \frac{a_{n+1}}{a_n} = k_+, \liminf_{n \to +\infty} \frac{a_{n+1}}{a_n} = k_-$$
 (8.2.1.12)

allora la serie:

$$\sum_{n=1}^{+\infty} a_n \begin{cases} converge, & se \ k_+ < 1; \\ diverge, & se \ k_- > 1; \\ non \ stabilisce \ il \ comportamento \ della \ serie, & altrimenti \end{cases}$$

Idea della dimostrazione. Ricordiamoci Lemma ?? che afferma

$$a_n > 0 \text{ e } \frac{a_{n+1}}{a_n} \to A \Rightarrow (a_n)^{1/n} \to A.$$

Possiamo usare queta proprieta' per vedere che il criterio del radice implica il criterio del rapporto se possiamo dimostrare le disequiazioni

$$\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} \ge \limsup_{n \to \infty} \sqrt[n]{a_n}$$
 (8.2.1.13)

е

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \le \liminf_{n \to \infty} \sqrt[n]{a_n}$$
(8.2.1.14)

Infatti sia

$$\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} = Rap_0$$

allora per ogni $\varepsilon > 0$ possiamo affermare che esiste n_0 , tale che

$$Rap_0 + \varepsilon \ge \frac{a_{n+1}}{a_n}$$

per $n \ge n_0$ e quindi

$$\frac{a_{n+1}}{a_{n_0}} = \prod_{j=n_0}^{n} \frac{a_{j+1}}{a_j} \le (Rap_0 + \varepsilon)^{n-n_0+1}.$$

Cosí si ottiene

$$a_{n+1} \le \underbrace{a_{n_0} (Rap_0 + \varepsilon)^{-n_0}}_{C_0} (Rap_0 + \varepsilon)^{n+1}$$

e quindi

$$a_{n+1} \sqrt{a_{n+1}} \le C_0^{1/(n+1)} (Rap_0 + \varepsilon)$$

Possiamo adesso dedurre che

$$\limsup_{n \to \infty} \sqrt[n+1]{a_{n+1}} \le \limsup_{n \to \infty} C_0^{1/(n+1)} (Rap_0 + \varepsilon) =$$

$$= \lim_{n \to \infty} C_0^{1/(n+1)} (Rap_0 + \varepsilon) = Rap_0 + \varepsilon.$$

Il numero $\varepsilon > 0$ é arbitrario e quindi la disequazione (8.2.1.15) é dimostrata. In modo simile si dimostra (8.2.1.14). \square

Esempio 8.2.1.3. Possiamo costruire una serie

$$\sum a_n$$

tale che

$$\limsup_{n \to \infty} a_n = k^+ > 1$$

e

$$\liminf_{n \to \infty} a_n = k^- < 1$$

Infatti, sia

$$a_n = \begin{cases} 2^{-n}, & \text{se } n \text{ \'e pari;} \\ 5^{-n}, & \text{se } n \text{ e dispari.} \end{cases}$$

Abbiamo un'altro variante del criterio del rapporto.

Lemma 8.2.1.5 (Criterio del rapporto (o di d'Alembert) senza positivitá dei termini a_n). Consideriamo una serie

$$\sum_{n=1}^{+\infty} a_n$$

 \acute{e} sia

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = k, \tag{8.2.1.15}$$

allora la serie:

$$\sum_{n=1}^{+\infty} a_n \left\{ \begin{array}{ll} converge, & se \ k < 1; \\ diverge \ o \ \'e \ indeterminata, & se \ k > 1; \\ non \ stabilisce \ il \ comportamento \ della \ serie, & se \ k = 1. \end{array} \right.$$

Problema 8.2.1.1. Sia

$$a_n = \begin{cases} 1/n, & \text{se } n = 3k, k \in \mathbb{N}; \\ 2^{-n}, & \text{se } n = 3k + 1, k \in \mathbb{N}; \\ 4^{-n}, & \text{se } n = 3k + 2, k \in \mathbb{N}. \end{cases}$$

Calcolare

$$k_{+} = \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$$

e

$$k_{-} = \liminf_{n \to \infty} \frac{a_{n+1}}{a_n}$$

e vedere se si puo applicare il criterio del ravvoporto. Studiare la convergenza della serie

$$\sum_{\mathbb{N}} a_k.$$

Problema 8.2.1.2. Studiare la convergenza della serie $\sum \frac{n!}{n^n}$.

Problema 8.2.1.3. Costruire una serie $\sum a_n$ tale che

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = k > 1$$

e la serie $\sum a_n$ e indeterminate.

Problema 8.2.1.4. Costruire una serie $\sum a_n$ tale che

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = k > 1$$

e la serie $\sum a_n$ diverge.

8.2.2 Esercizi sulle serie con termini positivi

Problema 8.2.2.1. *Se*

$$\sum_{1}^{\infty} a_n$$

é una serie con termini positivi e a_n non tende a 0, allora la serie diverge.

Problema 8.2.2.2. Costruire una serie con termini positivi

$$\sum_{1}^{\infty} a_n$$

tale che a_n tende a 0 e la serie diverge.

Problema 8.2.2.3. Provare che ogni serie a termini positivi e' convergente oppure divergente.

Problema 8.2.2.4. Studiare la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{n^{2\alpha} + 8}{n^7 + e^{(\alpha - 1)n}} \tag{8.2.2.16}$$

al variare del parametro $\alpha \in \mathbb{R}$.

Soluzione. Il termine dominante tra n^7 e $e^{(\alpha-1)n}$ dipende se α é minore oppure maggiore di 1. Il termine dominante tra $n^{2\alpha}$ e 8 dipende se α é positivo e negativo. Questa osservazione ci porta allo studio di seguenti 3 casi

Caso a) $\alpha < 0$. In questo caso

$$n^{2\alpha} + 8 = 8 + o(1),$$

е

$$n^7 + e^{(\alpha - 1)n} = n^7 (1 + o(1))$$

e quindi

$$\frac{n^{2\alpha} + 8}{n^7 + e^{(\alpha - 1)n}} = b_n(1 + o(1)),$$

dove

$$b_n = 8n^{-7}$$

Il principio di confronto ed il fatto che

$$\sum_{n=1}^{\infty} b_n$$

converge implicano che la serie in (8.2.2.16) converge. Lo stesso ragionamento implica la convergena per $\alpha=0$.

Caso b) $0 < \alpha < 1$. Abbiamo

$$n^{2\alpha} + 8 = n^{2\alpha}(1 + o(1)),$$

е

$$n^7 + e^{(\alpha - 1)n} = n^7 (1 + o(1))$$

e quindi

$$\frac{n^{2\alpha} + 8}{n^7 + e^{(\alpha - 1)n}} = c_n(1 + o(1)),$$

dove

$$c_n = n^{2\alpha - 7}$$

Il principio di confronto ed il fatto che

$$\sum_{n=1}^{\infty} c_n$$

converge implicano che la serie in (8.2.2.16) converge. Lo stesso ragionamento implica la convergena per $\alpha=1$.

Caso c) $\alpha > 1$. Abbiamo

$$n^{2\alpha} + 8 = n^{2\alpha}(1 + o(1)),$$

е

$$n^7 + e^{(\alpha-1)n} = e^{(\alpha-1)n}(1 + o(1))$$

e quindi

$$\frac{n^{2\alpha} + 8}{n^7 + e^{(\alpha - 1)n}} = d_n(1 + o(1)),$$

dove

$$d_n = n^{2\alpha} e^{-(\alpha - 1)n}$$

Il principio di confronto ed il fatto che

$$\sum_{n=1}^{\infty} d_n$$

converge implicano che la serie in (8.2.2.16) converge.

Problema 8.2.2.5. Studiare la convergenza della serie

$$\sum_{n=1}^{\infty} \left[\frac{1}{n} \left(1 + \frac{2}{n} \right)^{1/n} - \frac{x}{n} \right]. \tag{8.2.2.17}$$

Soluzione. Abbiamo lo sviluppo

$$\left(1 + \frac{2}{n}\right)^{1/n} = e^{2/n^2 + o(1/n^2)} = 1 + \frac{2}{n^2} + o\left(\frac{1}{n^2}\right).$$

Cosi troviamo

$$\left[\frac{1}{n} \left(1 + \frac{2}{n} \right)^{1/n} - \frac{x}{n} \right] = \frac{1 - x}{n} + \frac{2}{n^2} + o\left(\frac{1}{n^2} \right)$$

ed il principio di confronto implica che la serie converge se e solo se x = 1.

Problema 8.2.2.6. Studiare la convergenza di

$$\sum \frac{2^n + n^3}{3^n + n^2}.$$

Problema 8.2.2.7. Studiare la convergenza di

$$\sum \frac{\cos n^2 + \sqrt{n}}{n}.$$

Problema 8.2.2.8. Studiare la convergenza della serie al variare di a,b>0 e $c\in \mathbf{R}$

$$\sum a^n \left(1 + \frac{b}{n}\right)^{n+c}$$

Problema 8.2.2.9. Studiare la convergenza della serie a

$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^n - e \right].$$

Problema 8.2.2.10. Dire per quali valori di $\alpha > -1$ si ha che la serie

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}}$$

risulta convergente.

Problema 8.2.2.11. Costruire due serie

$$\sum_{1}^{\infty} a_n, \quad \sum_{1}^{\infty} b_n,$$

tali che

$$|a_n| \ge |b_n|,$$
$$\sum_{1}^{\infty} a_n$$

converge, mentre

$$\sum_{1}^{\infty} b_n$$

diverge.

Problema 8.2.2.12. Vedere se il criterio del rapporto si puo applicare per la serie

$$\sum_{1}^{\infty} \frac{1}{3^{b_n}}, \quad b_n = (-1)^n \sqrt{n} + n.$$

Problema 8.2.2.13. Studiare il comportamento della serie $\sum_{n=1}^{\infty} \frac{1}{\ln n!}$ (si ricorda che n! = 1.2....(n-1).n).

Suggerimento. Usare l'dentita'

$$\ln n! = \ln 2 + \ln 3 + \dots + \ln n$$

ed il principio di confronto.

Problema 8.2.2.14. Studiare il comportamento della serie

$$\sum_{n=1}^{\infty} \frac{\sin(n-\sqrt{n^2+1})}{n}.$$

Problema 8.2.2.15. Studiare il comportamento della serie

$$\sum_{n=1}^{\infty} \frac{\sin(n - \sqrt{n^2 + n})}{n}.$$

Problema 8.2.2.16 (Difficolta ellevata). Studiare il comportamento della serie

$$\sum_{n=1}^{\infty} \frac{|\sin n|}{n}.$$

Suggerimento.

$$\frac{|\sin n|}{n} \ge \frac{\sin^2 n}{n} = \frac{1}{2} \left(\frac{1}{n} - \frac{\cos(2n)}{n} \right).$$

Usare il Problema 8.3.0.10.

8.3 Criteri di Leibniz e di Abel-Dirichlet

Si dicono serie a termini di segno alterno le serie a termini reali tali che due termini consecutivi hanno segno opposto. Se

$$a_n > 0 \forall n \in \mathbb{N},$$

allora la serie

$$\sum (-1)^n a_n$$

dunque a termini di segno alterno, infatti: per n pari il termine é positivo; per n dispari il termine é negativo.

Per queste serie vale il seguente criterio di Leibniz:

Lemma 8.3.0.1. Data la serie di termini a segno alterno

$$\sum_{n=0}^{\infty} (-1)^n a_n, \quad a_n > 0,$$

se la successione $\{a_n\}$ é definitivamente positiva, decrescente e tende a 0, $cio\acute{e}$:

$$a_n \ge a_{n+1} > 0 \ \forall n \in \mathbb{N},$$

$$\lim_{n \to \infty} a_n = 0$$

allora si ha che:

• la serie

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

é convergente ;

• le somme parziali

$$S_n = \sum_{k=0}^{n} (-1)^k a_k$$

 $di\ ordine\ pari\ e\ quelle\ di\ ordine\ dispari\ sono\ monotone\ e\ tendono\ ad$

$$S = \sum_{k=0}^{\infty} (-1)^k a_k;$$

• abbiamo inoltre

$$|S_n - S| \le |a_{n+1}| \forall n \in \mathbb{N}.$$

Questo criterio é un caso particolare del criterio di Abel - Dirichlet.

Teorema 8.3.1. (criterio di Abel - Dirichlet) Siano $\{b_n\}_n$ una successione infinitesima e decrescente, ossia

$$\lim_{n \to +\infty} (b_n) = 0 \tag{8.3.0.18}$$

e

$$b_{n+1} \le b_n \text{ per ogni } n \in \mathbb{N}$$
 (8.3.0.19)

e sia $\{a_n\}_n$ una successione tale che per ogni $n \in \mathbb{N} : |\sum_{k=1}^n a_k| \leq C$, con C numero reale. Allora la serie numerica

$$\sum_{n=1}^{+\infty} (a_n b_n)$$

é convergente.

Idea della dimostrazione. Poniamo

$$A_n = \sum_{k=1}^n a_k,$$

abbiamo la relazione

$$a_1 = A_1, \quad a_n = A_n - A_{n-1},$$

cosi possiamo scrivere

$$\sum_{n=1}^{N} a_n b_n = A_1 b_1 + (A_2 - A_1) b_2 + (A_3 - A_2) b_3 + \dots + (A_N - A_{N-1}) b_N =$$

$$= A_1(b_1 - b_2) + A_2(b_2 - b_3) + \dots + A_{N-1}(b_{N-1} - b_N) + A_n b_N.$$

L'idea é l'applicazione del criterio di Cauchy, per quello modifichiame le identitá sopra scegliendo 1 < M < N come segue

$$\sum_{n=M}^{N} a_n b_n =$$

 $= (A_M - A_{M-1})b_M + (A_{M+1} - A_M)b_{M+1} + (A_{M+2} - A_{M+1})b_{M+1} + \dots + (A_N - A_{N-1})b_N =$ $= -A_{M-1}b_M + A_M(b_M - b_{M+1}) + A_{M+1}(b_{M+1} - b_{M+2}) + \dots + A_{N-1}(b_{N-1} - b_N) + A_nb_N,$ e quindi usando l'ipotesi

$$|\sum_{k=1}^{n} a_k| = |A_N| \le C,$$

troviamo

$$\left| \sum_{n=M}^{N} a_n b_n \right| \le C|b_M| + C|b_M - b_{M+1}| + C|b_{M+1} - b_{M+2}| + \dots + C|b_{N-1} - b_N| + C|b_N|.$$

A questo punto possiamo usare l'ipotesi (8.3.0.19) e scrivere

$$|b_M| + |b_M - b_{M+1}| + |b_{M+1} - b_{M+2}| + \dots + |b_{N-1} - b_N| + |b_N| =$$

$$= |b_M| + \underbrace{(b_M - b_{M+1}) + (b_{M+1} - b_{M+2}) + \dots + (b_{N-1} - b_N)}_{=b_M - b_N} + |b_N|.$$

In questo modo troviamo la stima

$$\left| \sum_{n=M}^{N} a_n b_n \right| \le 2C|b_M| + 2C|b_N|$$

e l'ipotesi (8.3.0.18) implica

$$\left| \sum_{n=M}^{N} a_n b_n \right| \le \varepsilon$$

quando M < N sono abbastanza grandi. Applicando il criterio di Cauchy, concludiamo che la serie

$$\sum a_n b_n$$

converge.

Per calcolare varie somme del tipo

$$\sum_{k=n}^{m} \sin(kx+b), \quad \sum_{k=n}^{m} \cos(kx+b),$$

ci servono le formule

$$\sum_{k=0}^{n-1} \sin(a+kd) = \frac{\sin\left(\frac{nd}{2}\right)}{\sin\left(\frac{d}{2}\right)} \sin\left(a + \frac{(n-1)d}{2}\right). \tag{8.3.0.20}$$

$$\sum_{k=0}^{n-1} \cos(a+kd) = \frac{\sin\left(\frac{nd}{2}\right)}{\sin\left(\frac{d}{2}\right)} \cos\left(a + \frac{(n-1)d}{2}\right). \tag{8.3.0.21}$$

Problema 8.3.0.1. Verificare (8.3.0.20) se $\sin(d/2) \neq 0$.

Problema 8.3.0.2. Verificare (8.3.0.21) se $\sin(d/2) \neq 0$.

Problema 8.3.0.3. Studiare la natura della serie $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$.

Problema 8.3.0.4. Studiare la convergenza della serie $\sum_{n=1}^{\infty} (\sin n + \cos n)(x^n)$.

Problema 8.3.0.5. Studiare il comportamento della serie $\sum_{n=2}^{\infty} \frac{\cos(3n)}{(\ln n)^{\alpha}}$ al variare di $\alpha \geq 0$.

Problema 8.3.0.6. Studiare al variare di $\alpha > 0$ ed $x \in \mathbf{R}$ la serie $\sum_{n=1}^{\infty} n^{\alpha} x^{n}$.

Problema 8.3.0.7. Studiare la convegrenza di

$$\sum \left(a^n + \frac{1}{n^{3a}}\right)$$

al variare di $a \in \mathbf{R}$.

Problema 8.3.0.8. Studiare al variare di $x \in \mathbb{R}$ la convergenza di

$$\sum \frac{(\sin x)^n}{n}.$$

Problema 8.3.0.9. Studiare la convergenza di

$$\sum \frac{(-1)^n n}{1+n^2}.$$

Problema 8.3.0.10. Studiare il comportamento della serie

$$\sum_{n=1}^{\infty} \frac{(\sin n)^2}{n}.$$
 (8.3.0.22)

Suggerimento. Usare la relazione

$$\sin^2 n = \frac{1 - \cos(2n)}{2}$$

e usando la relazione

$$\sum_{n=1}^{N} \frac{(\sin n)^2}{n} = \frac{1}{2} \left(\sum_{n=1}^{N} \frac{1}{n} \right) - \frac{1}{2} \left(\sum_{n=1}^{N} \frac{\cos(2n)}{n} \right),$$

verificare che la serie (8.3.0.22) diverge perche

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverge mentre

$$\sum_{n=1}^{N} \frac{\cos(2n)}{n}$$

converge.

Problema 8.3.0.11. Studiare il comportamento della serie

$$\sum_{n=1}^{\infty} \frac{|\sin n|}{n}.$$

Suggerimento. Usare la disequazione

$$\frac{|\sin n|}{n} \ge \frac{\sin^2 n}{n}$$

e applicando il principio di confronto e la soluzioe del Problema 8.3.0.10, concludere che la serie

$$\sum_{n=1}^{\infty} \frac{|\sin n|}{n}$$

diverge.

8.3.1 Raggio di convergenza

Una serie di potenze

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

converge per alcuni valori della variabile x (almeno per x=c) e puó divergere per altri. Infatti, ponendo

$$b_n(x) = a_n (x - c)^n$$

possiamo applicare il Criterio della radice (Lemma 8.2.1.2) secondo quale dobbiamo introdulle il seguente limite superiore

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \sqrt[n]{|b_n(x)|} = k.$$

La definizione di $b_n(x)$ implica

$$k = \limsup_{n \to +\infty} \sqrt[n]{|b_n(x)|} = |x - c| \limsup_{n \to +\infty} \sqrt[n]{|a_n|}$$

Il criterio della radice ci dice che il carattere della serie risulta:

$$\sum_{n=1}^{+\infty} b_n(x) \begin{cases} \text{converge,} & \text{se } k < 1; \\ \text{diverge o \'e indeterminata,} & \text{se } k > 1; \\ \text{non stabilisce il comportamento della serie,} & \text{se } k = 1. \end{cases}$$

Ponendo

$$R = \frac{1}{\limsup_{n \to +\infty} \sqrt[n]{|a_n|}}$$
 (8.3.1.23)

possiamo concludere.

Lemma 8.3.1.1. Esiste un numero R definito con (8.3.1.23) con $0 \le R \le \infty$ tale che la serie converge quando |x - c| < R e diverge o e indeterminata quando |x - c| > R.

Questo numero R é chiamato raggio di convergenza della serie di potenze e per ogni serie é dato dalla formula (8.3.1.23) di Cauchy-Hadamard per il raggio di convergenza. Possiamo rescriver questa formula come segue

$$R = \liminf_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}};$$

Una formula meno generale ma piú semplice è la seguente (formula di D'Alembert)¹:

$$R = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

La serie converge assolutamente per |x-c| < R su ogni sottoinsieme compatto del intervallo x: |x-c| < R.

Per |x-c|=R non si dispone di alcun enunciato generale sulla convergenza o meno della serie.

¹Questa formula è peró applicabile solo se il limite al secondo membro esiste.

8.3.2 Esercizi sulle serie di potenze

Problema 8.3.2.1. a) Studiare la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

al variare del parametro $x \in \mathbb{R}$.

b) Vedere se per x = 1/2 la serie converge e se converge calcolare

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n n}.$$

Soluzione a). Usando il criterio del radice troviamo per

$$a_n = \frac{|x|^n}{n}$$

$$\frac{a_{n+1}}{a_n} \to |x|$$

e quindi la serie converge per |x|<1, diverge per x<-1 e non converge per x>1. Per x=1 applichiamo il criterio di Leibniz e troviamo la serie converge. Per x=-1 abbiamo la serie armonica e quindi diverge.

Soluzione b). Ponendo

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

troviamo

$$f'(x) = -\sum_{n=0}^{\infty} (-1)^n x^n = -\sum_{n=0}^{\infty} (-x)^n = -\frac{1}{1+x}$$

e quindi

$$f(x) = -\ln(1+x).$$

Con x = 1/2 troviamo

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n n} = f(1/2) = -\ln(3/2).$$

Problema 8.3.2.2. a) Studiare la convergenza della serie

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

al variare del parametro $x \in \mathbb{R}$.

b) Vedere se per x = 1/3 la serie converge e se converge calcolare

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n}.$$

Soluzione a). Usando il criterio del radice troviamo per

$$a_n = \frac{|x|^n}{n}$$

$$\frac{a_{n+1}}{a_n} \to |x|$$

e quindi la serie converge per |x|<1, diverge per x<-1 e non converge per x>1. Per x=1 applichiamo il criterio di Leibniz e troviamo la serie converge. Per x=-1 abbiamo la serie armonica e quindi diverge.

Soluzione b). Ponendo

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

troviamo

$$f'(x) = -\sum_{n=0}^{\infty} (-1)^n x^n = -\sum_{n=0}^{\infty} (-x)^n = -\frac{1}{1+x}$$

e quindi

$$f(x) = -\ln(1+x).$$

Con x = 1/3 troviamo

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n} = f(1/3) = -\ln(4/3).$$

Bibliography

- [1] E. Acerbi, G. Buttazzo, Primo corso di Analisi Matematica 1997, *Pitagora Editrice Bologna*, ISBN 88-371-0942-3.
- [2] E. Acerbi; L. Modica; S. Spagnolo, Problemi scelti di analisi matematica I, *Liguori Editore*, 1985.
- [3] S.Campanato, Lezioni di Analisi Matematica I parte, *Li-breria scientifica Giordano Pellegrini*, *Pisa* 1993.
- [4] S.Campanato, Esercizi e complementi di Analisi Matematica, I parte, *Libreria scientifica Giordano Pellegrini*, *Pisa*.
- [5] E.Guisti, Analisi Matematica 1, Bollati Boringhieri, 1988.
- [6] E. Giusti, Esercizi e complementi di Analisi 1, Bollati Boringhieri.
- [7] A. W. Knapp, Basic Real Analysis, Along with a companion volume Advanced Real Analysis, *Birkhäuser*, 2005
- [8] W.Rudin, Principi di Analisi Matematica, McGraw Hill Libri Italia SRL, 1991.
- [9] T. N. Subramaniam, and Donald E. G. Malm How to Integrate Rational Functions, The American Mathematical Monthly 99 (1992), 762 – 772.